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Abstract: Actin cytoskeleton modeling and quantification are essential in studying the
dynamics of cellular mechanotransduction. However, current approaches to actin cytoskeleton
quantification are limited in terms of both efficiency and accuracy. In this paper, we propose to
model the cellular actin cytoskeleton morphology using the graph to vector embedding technique
together with the neural network (NN) classification in machine learning. The proposed model
consists of a skip-gram model followed by a fully connected classifier. The actin cytoskeleton
morphology is modeled based on both the structure and node features extracted from the
cytoskeleton images. Specifically, the embedding tool outputs the embedded vectors of the
cytoskeleton graphs, and then the embedded vectors are used by the fully connected layer
to perform cytoskeleton classification. In this work, we demonstrate the classification accuracy
of the proposed framework using actin cytoskeleton images from cells treated by Latrunculin
B (an actin depolymerizer) at different concentrations. The actin cytoskeleton morphology
corresponding to each treatment concentration is defined as a class (e.g., actin depolymerization

level). The final classification result is showed an accuracy of 85.3%.
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Accumulating evidence indicates that the cellular cy-
toskeleton has significant abilities to affect and reflect the
numerous physiological state and properties of cellular
mechanotransduction (Lichtenstein et al., 2003; Mollaeian
et al., 2018). As one of the main kinds of cytoskeletal
filaments, actin cytoskeleton (or actin filaments) are able
to control the cellular mechanotransduction properties,
such as elasticity, poroelasticity, adhesion, cell morphology,
etc., through affecting motility, contractility, and dynamic
stability of cells (Lichtenstein et al., 2003; Mollaeian et al.,
2018). Particularly, the actin cytoskeleton reshapes in or-
der to regulate cellular dynamic changes triggered by ex-
ternal stimuli, such as the externally applied force and the
change of substrate stiffness (Gupta et al., 2015; Wakat-
suki et al., 2001; Sims et al., 1992). Therefore, the actin
cytoskeleton morphology encodes essential information of
the cellular dynamic properties. However, effectively recog-
nizing the morphology of actin cytoskeleton and investigat-
ing its correlation with cellular biomechanical properties
remains challenging.

Takumi et al. (2010) developed an image analysis frame-
work to quantify the cytoskeleton orientation, bundling,
and density using the measurement of fluorescence micro-
scopic images of plant cells (Higaki et al., 2010). Kimori
et al. (2016) used a mathematic method to quantify the
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morphological properties of biological structures of the
actin cytoskeleton in the plant cells (Kimori et al., 2016).
We also proposed an image recognition-based approach to
quantify the actin cytoskeleton using edge detector, Hough
transforms, and Matlab filling tools (Liu et al., 2018).
However, these methods all require manual processing
and analysis of cellular cytoskeleton images, which often
feature extensive protrusions and blebs that are difficult to
distinguish using traditional parameters. Recent advances
in image modeling with neural networks have provided a
way to derive representations of cell shapes and cellular
structures.

Osokin et al. (2017) proposed a novel application of Gener-
ative Adversarial Networks (GAN) to the synthesis of cell
images taken by fluorescence microscopy (Osokin et al.,
2017). Alex et al. (2019) introduced a convolutional neu-
ral network (CNN) using the self-supervised method to
learn feature representations of single cells in fluorescent
microscopy images without labeled training data(Lu et al.,
2019). Jude Phillip et al. (2021) presented an unsuper-
vised machine learning method for the analysis of cell and
nuclear morphology from bright-field or fluorescent im-
ages using the Visually Aided Morpho-Phenotyping Image
Recognition (VAMPIRE) algorithm, which was designed
by Pei-Hsun et al. (2015) (Wu et al., 2015) and enabled the
profiling and classification of cells based on the cell bound-
ary points and nuclear contours (Phillip et al., 2021).

However, these methods either only focused on external
cell morphology (Osokin et al., 2017; Lu et al., 2019) or
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“Edges”: [1,2], [2,3], [2,4], ..., [13,16]
“Features”: by, b, bs, ..., bg]
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Fig. 1. Preprocessing process of the fluorescent actin cytoskeleton image. Single cell images were cropped from the original
ones. Graph nodes are generated and labeled based on the pixel brightness. The list consisting edges between
neighbor nodes on four directions and features which are the node brightness represents the actin cytoskeleton

graph.

required a high-throughput cell imaging platform (htCIP)
that provides access to extracting high-content individual
cells with cellular and nuclear morphology (Phillip et al.,
2021). Therefore, this study aims to develop a new frame-
work of deep learning to extract feature representations of
the cellular actin cytoskeleton with high-throughput and
accuracy.

In this paper, we propose to model the cellular actin
cytoskeleton morphology using the graph to vector embed-
ding technique together with the neural network classifi-
cation in machine learning. The proposed model consists
of a skip-gram model followed by a fully connected classi-
fier. The actin cytoskeleton morphology is modeled based
on both the structure and node features extracted from
the cytoskeleton images. Specifically, the embedding tool
outputs the embedded vectors of the cytoskeleton graphs,
and then the embedded vectors are used by the fully con-
nected layer to perform cytoskeleton classification. In this
paper, we demonstrate the classification accuracy of the
proposed framework using actin cytoskeleton images from
cells treated by Latrunculin B at different concentrations.
The actin cytoskeleton morphology corresponding to each
treatment concentration is defined as a class (e.g., actin
depolymerization level). The final classification result is
showed an accuracy of 85.3%.

2. DEEP LEARNING FRAMEWORK FOR ACTIN
CYTOSKELETON MODELING

2.1 Convert Images to Graphs

Single-cell fluorescence images are used in the proposed
framework for actin cytoskeleton classification. The color
of the pixels outside the detected cell area can be manda-
torily set as black to remove the background color. To
process the single-cell actin cytoskeleton images, the orig-
inal RGB images need to be converted to grayscale in
which the range of the brightness for each pixel was
from 0~255 (Ojala et al., 2002), the pixels lower than
the average brightness were set as zero to minimize the
noise effect (Wang et al., 1999). To convert the actin

cytoskeleton images to actin cytoskeleton graphs, a Canny
edge detector is used to complete the actin fiber skele-
tonization (Bao et al., 2005). For the skeletonized images,
each non-zero pixel (pixel with brightness larger than the
average brightness) is treated as a node with its brightness
as its node feature. Graph nodes are explored from one
randomly selected root node through four directions (i.e.,
up, down, left, and right) using Breadth-first search. Edges
created between two adjacent nodes and node brightness
are recorded to represent the structure and feature of actin
cytoskeleton graph G as shown in Fig. 1.

2.2 Sampling and Relabeling all Subgraphs from the graph

Subgraph is a set of nodes that appears around the selected
root node n. Nodes in a subgraph are not further than the
designed distance (or walk depth) from the root node, see
Fig. 2. To sample and label subgraphs, we follow the well-
known Weisfeiler-Lehman (WL) relabeling process (Sher-
vashidze et al., 2011), which lays the basis for the WL
kernel (Yanardag and Vishwanathan, 2015; Shervashidze
et al., 2011). The subgraph extraction process is shown in

Algorithm 1 GetSubgraph

input : n: The root node of the subgraph
G = (N, E, )\): Given graph
d: Walk depth considered in subgraph extraction

output: sggld): Rooted subgraph of walk depth d around

node n
Function GetSubgraph(n,G,d):

sgi = {} if d = 0 then
| 59t == A(n)

end
else
N, = {n' | (n,n') € E M? := {GetSubgraph
(n',G,d—1)|n' € N} sgi? = sg\PU GetSub-
graph (n,G,d — 1) ®sort(M2)
end

return sggd)
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If walk depth d = 0:
Sg’= 7

If walk depth d = 1:
Sg! = 7-4-6-8-12

If walk depth d = 2:
Sg;2 = 7-(4-2-5)-(6-11)-(8-5-13)-(12-11-13)

Fig. 2. Subgraphs sg,, of node n = 7 with walk depth d in
range from 0 ~ 2.

Algorithm 1. The algorithm takes a given graph G from
which the subgraph needs to be extracted, a root node n,
and the walk depth d of the intended subgraph as inputs
and returns the extracted subgraph sgﬁld).

A walk depth d is applied around the root node n in a
given graph G. If d = 0, no subgraph exists, therefore the
label of node n is returned. For cases when d > 0, all the
neighbors n’ of n need to be explored. For each neighbor
node, walk depth d — 1 is applied to extract subgraphs of
n’. All subgraphs are saved in list M 2. At the end, the walk
depth d — 1 subgraph around the root node n is obtained
and then concatenated with sorted list M¢ to achieve the

subgraph sgfld) .

2.8 Graph embedding

In order to reduce the dimension of input data, fluorescent
images of the actin cytoskeleton are embedded in vectors
based on their network structure and fluorescent bright-
ness, which correspond to the actin cytoskeleton alignment
and quantity, respectively. The idea of embedding is to
train the weight matrix of the hidden layer to find efficient
representation for given graphs (Jurafsky and Martin,
2000), see Fig. 3.

Algorithm 2 Graph embedding

: G ={G1,Gs,...,Gp}: Set of graphs
D: Maximum walk depth of rooted subgraphs
0: Embedding size
e: Number of epochs
a: Learning rate

input

output: Embedded vector of graphs ® € RICI*?
Function Graph2Vec(G, D, d,e, a):
Initialization: Initialize weight matrix ® € RI®/*  for
e=1toedo
g= SHUFFLE(G) for G; = (Ni7Ei>/\i) € g do
for n € N; do
for d = 0to D do

sg¥  := GetSubgraph (n,Gj,d)
J(@) = —logPr(sg'V|®(G;))
d=0-ald
end
end
end
end
return ¢

In order to embed the actin cytoskeleton graphs, the skip-
gram model is applied as the embedding layer, which is
commonly used in Word2Vec embedding and yields the
highest overall accuracy, and consistently produces the
highest accuracy on semantic relationships (Mikolov et al.,
2013). The skip-gram model is trained to maximize the
probability of predicting subgraphs that exist in the graph
that needs to be embedded on the input, see Algorithm 2.
In the beginning, the weight matrix ® (i.e., embedding
vector) is initialized with random values. The given graph
G; € G is fed as a one-hot vector (Harris and Harris, 2010)
in e epochs to fit the subgraphs contained in graph G;.
During the embedding process, actin cytoskeleton images
with similar structure and quantity are embedded closer
than the others. Specifically, cell images taken under the
same conditions can be represented using vectors having
a closer distance in vector space, which improves the later
classification accuracy. Since subgraphs set SGocap =
{891,892, ...} are extracted from each node of each graph,
its size is very large. This means for each input, it only
makes very small changes to the huge amount of weights
even though there exists just one true example. This makes
the training process very inefficient. Therefore, we propose
to use negative sampling which approximates the loss from
the softmax layer by updating a small subset of all the
weights at once, i.e., update the weights of the correct label
but only a small number of the incorrect label (Goldberg
and Levy, 2014). This makes the network training more
efficient.

2.4 Classification Model Architecture

After the embedded actin cytoskeleton graph vectors were
obtained, they were fed into the classifier to identify the
cytoskeleton class. Details of the class definition are de-
scribed in the following section. Linear neurons as the
hidden layer, and softmax to get the probability distribu-
tion. Cross entropy is taken as the loss function to update
the weights and hyper-parameters in the network. The
training loss, which needs to be minimized, is quantified
by cross entropy as,

H(p,q) =— > p(x)logq(x), (1)
zeX
where ¢(x) is the predicted probability distribution, p(z)
is the true probability distribution (i.e., true label).

3. EXPERIMENTAL DETAILS

To obtain actin cytoskeleton images with different mor-
phologies, the NTH/3T3 cells were treated with Latrun-
culin B, a commonly known actin depolymerizer, with
different concentrations. Specifically, to get enough data
set, 2036, 1555, and 1674 fluorescent images of the actin cy-
toskeleton of NTH/3T3 cells were taken under Latrunculin
B treatment of 0 nM, 40 nM, and 100 nM, respectively.
These three concentrations correspond to 0%, 62%, and
100% of actin cytoskeleton depolymerization, respectively,
according to the data reported (Liu et al., 2020). Thus,
the actin cytoskeleton classes were defined as: Class 1
represents the original untreated status (i.e., control),
Class 2 represents the 62% (relative to the untreated case)
depolymerized actin cytoskeleton (40nM treatment), and
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Fig. 3. The architecture of the Learning model consists of (A) an embedding layer based on the skip-gram model, and
(B) a classifier based on a fully connected neural network. The given graph G; € G is fed to a hidden layer as a
one-hot vector, then be passed to a softmax layer to make a prediction of subgraphs contained in the graph G;.
The embedded vectors are fed to the following classifier to do the actin cytoskeleton classification.

Class 3 represents the 100% (relative to the untreated case)
depolymerized actin cytoskeleton (100 nM treatment) To-
tal of 5265 images were preprocessed as aforementioned to
be converted to actin cytoskeleton graphs.

For the classifier, the input layer has 128 neurons which
is equal to the vector dimension. Three fully connected
hidden layers with neuron numbers of 256, 512, 256,
respectively, were developed, rectified linear unit (ReLU)
was chosen as the activation for each neuron. The output
layer has 3 neurons together with the softmax function
as its logistic function. The output is the probability
distribution of 3 classes. To train, validate (tune the
hyperparameters of the trained model), and test (evaluate
the accuracy) the proposed framework, the total images
were randomly split into three portions (i.e., the training,
the validation, and the test datasets) at fraction of 0.8,
0.1, and 0.1, respectively, with no overlap among the
three sets. As a result, the size of the training dataset
was 4212, the validation dataset was 527, and the test
dataset was 526. To get better fitting results and training
process visualization, 64 batch size and 128 epoch were
applied to train the classification model. Therefore, 12,000
steps were operated in total. For every 500 steps, the
training loss, training accuracy, and validation accuracy
were recorded to help with the tune of hyper-parameters
in the classification model.

3.1 Cell Preparation

Cell culture.  Primary mouse embryonic fibroblast cells
(i.e., NIH/3T3 cell) were maintained at 37°C in an in-
cubator with the humidified atmosphere of 5% CO5 in
Dulbecco’s Modified Eagle’s Medium (ATCC, Rockville,
MD, USA), and cultured in the medium mixed with
10%(V/V) calf bovine serum (Sigma-Aldrich, ST. Louis,
MO, USA) and 1%(V/V) penicillin-streptomycin (Gibco,
Grand Island, NY, USA). NIH/3T3 cells were seeded in
35 mm tissue culture dishes (Azzota Scientific, DE, USA),
and then treated after 24 hours.

Actin cytoskeleton treatment.  To investigate the actin
cytoskeleton in different morphology states, the cells were
treated with latrunculin B (Millipore Sigma, Billerica,
MA, USA) at the final concentration of 0 nM, 40 nM,
and 100 nM in the aforementioned cell culture medium
and incubated for 30 mins. The stock solution was made
by dissolving latrunculin B in Dimethyl sulfoxide (Sigma
Aldrich, St. Louis, MO, USA).

Actin cytoskeleton staining.  To observe the actin cy-
toskeleton, we fixed the cells for 10 mins using 4%
paraformaldehyde (Alfa Aesar, Ward Hill, MA, USA)
in PBS, and permeabilize them for 10 mins using 0.1%
Triton-X (Fisher Scientific, Fair Lawn, NJ, USA) at room
temperature. The actin cytoskeleton was then stained with
Actin-stain? M 488 phalloidin (Cytoskeleton Inc, Denver,
CO, USA) at the concentration of 100 nM in PBS and
kept in the dark at room temperature for 30 mins.

3.2 Fluorescence Microscope

The fluorescent actin cytoskeleton was imaged using an
inverted optical microscope (IX73, Olympus, Japan) inte-
grated with a sola light engine (Lumencor, Beaverton, OR,
USA) which offers access to solid-state illumination.

4. RESULT AND DISCUSSION
4.1 Graph to Vector Embedding

The obtained graphs were embedded to vectors through
the skip-gram model. Graph G; € G was fed as one-
hot vectors to the embedding model. In this phase, the
skip-gram model was trained to maximize the probability
of predicting subgraphs that exist in the graph G;. The
number of input neurons was equal to the size of graph
set G, the number of embedding neuron was equal to the
selected embedding dimension, and the number of output
neurons was equal to the size of subgraph set SGyocap- The
shape of the weight matrix was (R, C), where R = 5265 is
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Fig. 4. Projecting embedded vectors to 3D space using PCA in four directions.
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Fig. 5. (A) Recorded training loss. The blue line shows the
training loss decreased from 6856 to 0. (B) Recorded
accuracy during the optimization and testing process.
The blue line indicates the training accuracy which
starts from 16.5% to 100%. The orange line indi-
cates the validation accuracy improved from 41.2%
to 84.6%. The green line shows the final test accuracy
of 85.3% after the model testing.

the number of input graphs, and C' = 128 is the selected
vector dimension. The embedded vectors are shown in
Table. 1.

Table 1. Embedded vectors

No. Class Label Fts) T T127
1 1 -0.6151  0.9173  -0.41723 -0.1682
2 1 1.4089  -0.4357 1.8118 -0.1492
3 2 0.2851 0.0359 0.8886 -0.3929

5265 3 0.1143 0.2257 0.4484 0.1463

As aforementioned, the graphs were embedded into a vec-
tor space of 128 dimensions. To visualize the embedding
result, 3-dimensional principal component analysis (3D-
PCA) was applied for increasing the interpretability and
minimizing the information loss at the same time. As
shown in Fig. 4, the 3D distribution of embedded vectors
indicates that the vectors representing graphs extracted
from actin cytoskeleton indeed have their own characteris-
tic features under different treatment concentrations. The
explained variance is 97.96%, which indicates a strong
strength of association between the original data and
the first 3 principal components. Since only 3 principal
components were presented in Fig. 4, a more significant
distinction could be generated in higher dimension space.

Therefore, the embedding layer efficiently reduced the
graphs without missing their structure and node features.

4.2 Classifier Training and Validation

The embedded vectors were fed in the classifier to fit the
corresponding labels. The training loss is shown in Fig. 5
(A). As we can see, the training loss is stably decreasing
from 6856 to 0 with the training step increase. Meanwhile,
the training accuracy increased and reached its stable state
at 100% around 5000 steps. The validation accuracy also
increased with the training step, and it reached around
84% at the end, see Fig. 5 (B). The stabilities of the
loss decrease and the accuracy increase indicate that the
classifier worked appropriately during the optimization
process. The difference between training and validation
accuracy might be caused by the lack of training samples.

4.3 Model Test

As there was no overlap between validation and test
datasets, the data independence could avoid the potential
effect on the model optimization from the test process.
In other words, the final test accuracy is independent of
the training process. As we can see in Fig. 5 (B), the
final test accuracy is 85.3%. The test accuracy is close
to the steady-state of the validation accuracy during the
training process, which shows that the developed classifier
was fitted very well on its input and outputs. This also
reinforces the generalization ability of the proposed model.

The final outputs of the modeling framework were the
actin cytoskeleton classes. For each class, i.e., actin cy-
toskeleton depolymerization degree, the corresponding cell
mechanical properties, such as Young’s modulus, could be
pre-measured experimentally, such as using Atomic Force
Microscope, and then stored in the database. Such as
the three classes used in this work, the corresponding
Young’s modulus of NIH/3T3 cells have been reported
previously (Liu et al., 2020). Therefore, by using the
proposed method, other researchers could obtain the cel-
lular elasticity of NIH/3T3 cells directly based on the
actin cytoskeleton classification result generated by the
proposed approach. This implies the repeated operations
of biomechanical experiments are no longer needed, which
could significantly improve the research efficiency and pro-
ductivity.
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5. CONCLUSION

In this paper, a model of the cellular actin cytoskeleton
morphology was built using the graph to vector embedding
technique together with the neural network classification
in machine learning. The proposed model consists of a
skip-gram model followed by a fully connected classifier.
The actin cytoskeleton morphology is modeled based on
both the structure and node features extracted from the
cytoskeleton images. We demonstrated the classification
accuracy of the proposed framework using actin cytoskele-
ton images from cells treated by Latrunculin B at different
concentrations. The actin cytoskeleton morphology corre-
sponding to each treatment concentration was defined as a
class (e.g., actin depolymerization level). Test accuracy of
85.3% was obtained at the end which proved the reliability
of the proposed graph embedding + classifier deep learning
framework to actin cytoskeleton modeling.
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