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24 Abstract. We present a new method, based on fractal analysis, to characterize the
25 output of a physical detector that is in the formn of a set of real-valued, discrete
26 physical measurements. We apply. the method to gravitational-wave data from the
27 latest observing run of the Laser Interferometer Gravitational-wave Observatory. We
28 show that a measure of the fractal dimension of the main detector output (strain
29 channel) can be used to determine the ingtrument status, test data stationarity, and
identify non-astrophysical excess noise in low latency. When applied to instrument
control and environmental datay(auxiliary channels) the fractal dimension can be used
to identify the origins of noise transients, non-linear couplings in the various detector
subsystems, and provide a means to flag stretches of low-quality data.
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1. Introduction

This paper introduces a new method to characterize the data of gravitational-wawve
(GW) interferometric detectors and, more generally, the data of any detector,whose
output is in the form of a (set of) real-valued, discretely-sampled measurements.
Current ground-based GW detectors such as Laser Interferometer, Gravitational-
wave Observatory (LIGO) [l], Virgo [2], and KAGRA [3], are lexquisite’scientific
instruments of extreme sensitivity. Because of this feature and, thefeebleness of the
signals these detectors aim to detect, coveted astrophysical information is typically
buried in instrumental and environmental noise of different. origins. / Therefore, GW
scientists devote considerable effort to the characterization of detector noise and data
quality investigations [4, 5, 6, 7, 8, 9]. These activities are, essential to improve the
instruments, provide feedback to commissioners, validatérdetection candidates, reduce
search backgrounds, and ultimately increase the significance of GW signals.

The noise floor of GW detectors is typically nonsstationary and non-Gaussian [6]. The
detector sensitivity is limited by fundameéntal and technical noise sources, as well as
transient and persistent noise artifacts that arise from physical disturbances and/or
non-linear couplings between the various detectorsubSystems and their environments [4].
Therefore, characterization of GW deteetor noise is a non-trivial task. To complicate the
matter, during observing runs there is arstrong need to perform detector characterization
and data quality assessment in low-lateney/[10]. A rapid and accurate estimation
of detector data is indeed crueial to validate or retract candidate detections and
disseminate accurate physical information of astrophysical triggers. Online and offline
validation of GW triggers requires a series of steps to assess the state of the detector,
evaluate specific metrics, andrultimately produce a single event validation result [0].
Great advances have been made in the automation of online and offline validation of
triggers that minimize human involvement and shorten the latency of the process. Tasks
that are currently implemented in LIGO-Virgo-KAGRA (LVK) low-latency data quality
reports are based on techniques that include signal processing tools such as omicron
[ 1], machine learning algorithms such as iDQ [12], automated checks of lock status and
noise stationarity, and menitors to identify physical couplings between the detectors and
their environmeénts. Nevertheless, many of these process still require a human input for
final validation. "Although identifying noise artifacts with spectrograms and available
auxiliary channel information is relatively easy, assessing their impact on astrophysical
candidate trigger parameters and sky locations is not trivial [13, [4]. Even questions
that are in theory as simple as determining whether the detectors are in a good state
may be-hard to answer. In the following we will show that fractal analysis may serve
as.an additional, effective tool to characterize the instrument output in low latency and
provide data quality assessment.

Fractals arise naturally in non-linear dynamical systems and have been used to study
physical problems in a plethora of disciplines including, among others, biology and
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medicine [15], engineering [16], computer graphics [17], archeology [1&], and economics
[19]. In the context of GW interferometry, they have been used to characterize the
time evolution of Virgo and KAGRA seismometer data [20, 21, 22, 23]. Fractal setgcan
be characterized by their dimension. The fractal dimension Dg of a set determines its
degree of complexity [24]. In the case of a physical measurement over a time interyal, it
has been shown that the value of the fractal dimension is related to the frequency content
of the data [25]. For example, Gaussian (white) noise has Dp = 2,/while noise with a
different power spectrum has typically 1 < Dr < 2. Therefore, the fragtal dimension can
be used to measure the characteristics of the instrument’s noisé, as_well as to monitor
its stationarity over time. As the fractal dimension of a device’s output with stationary
noise floor is constant during normal operations, any change in, the fractal dimension
must denote a variation in the noise power spectrum of the instrument. The fractal
dimension is also particularly suited to capture non-linear effeets in complex physical
devices.

In the case at hand, this paper will show that fractabanalysis can be used to characterize
the behavior of GW detectors and identify data non-stationarity in their output. A
simple measure of the fractal dimension of, the main detector output (the “strain
channel”) enables fast identification of the‘interferometer lock status, instrumental or
environmental excess noise in datasused for ‘astrophysical searches, and also monitors
the stationarity of the detector [20, 24, 28)."When applied to instrument control and
environmental data (“auxiliary channels” 'he fractal dimension can be used to identify
the origins of noise transients, non-linear couplings in the various detector subsystems,
and provide a means to flag stretehes of low-quality data. Moreover, the numerical
calculation of (a good approximant to) the fractal dimension is computationally cheap
and can easily be performedsin real'time, thus enabling on-the-fly information on the

instrument output [26, 27, 24].

For the sake of brevity,sthe following analysis will focus on LIGO data. Extensions of
this analysis to other-GW detector data, as well as discretely-sampled, real-valued data
produced by generic measurement devices are straightforward.

2. Fractal dimension

A detailed discussion of the mathematics of fractals is beyond the scope of this paper.
The eontent of this section is limited to a brief discussion of the basic elements of fractal
analysis that are required to understand its application to GW detector data.

In broad terms, fractals are subsets of n-dimensional Fuclidean spaces with non-integer
dimension Dp < n [24]. The fractal dimension defines the degree of complexity of the set
and quantifies how densely the fractal set occupies its covering n-dimensional Fuclidean
space. Different definitions of fractal dimensions exist in the literature, such as the
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Hausdorfl dimension [29], the packing dimension [30], and the box-counting dimemnsion
[31, 32]. These different definitions are generally equivalent for exactly self-similar fractal
sets, but not for generic fractals. Moreover, discretely-sampled physical'measurements
do not strictly define a fractal set and allow only for an approximate measure of Dp.
Although the fractal dimension of a physical measurement cannot be uniquely defined,
the absolute value of Dp is unimportant for the purpose of this study; all'the relevant
information for the characterization of the instrument noise is encoded in the variation
of Dp. Therefore, throughout this paper we will use the box-counting {Minkowski-
Bouligand) definition of fractal dimension [31, 32] without loss of generality.

Consider a set of real-valued, time-dependent measurements. M =/{t,O(t)}, where
t€ 10,7 and O : |0,T] — R. The set M defines our (fragtal) curve. Let M(¢) be the
union of all measurements of M within a distance e centered'on. M. Providing the limit
exists, the Minkowski-Bouligand dimension of M is [§7]
_In A(M(e))
D™ =2 1 1
F EIE)% Ine ’ ( )
where A is the area of M(e), i.e., the area traced ‘out by a small circle with radius e
following the measurements O(¢) from 0 to, 7" It.can be shown that Eq. (1) can be
rewritten as the box-counting dimension:

D(BC) _ hm IHN(E)
r e—0 ln(l/e) ’

(2)

where AV is the (minimum) number of disjoint squares of side € that are necessary to cover
M(e€). The fractal dimension canbe calculated from Eq. (1) or Eq. (2) by computing the
slope of A(M) or N (€) vsse in double logarithmic scale (log-log plot). For all purposes
of this analysis, the Minkewski-Bouligand dimension and the box-counting dimension
can be considered equivalent. Throughout the remainder of the paper we will make use
of the definition in Eq. (1), which will be referred as Dp.

It was mentioned above that a set of discretely-sampled time-dependent measurements
is not strictlyea, fractal. Therefore, the numerical evaluation of Dp with either
method requires some care. A set of N physical measurements of M is endowed
with two sealesithat break the scaling invariance hypothesis at the basis of the fractal
dimension derivation: A minimum scale defined by the inverse of the sampling frequency,
At = 1/fg.and a maximum scale defined by the measurement time 7' = NAt¢. This
implies that the relation between In A(M) and Ine for physical sets is not linear, nor
can it be ealculated at scales smaller than At or larger than 7. In these cases, Dp is
generally evaluated by computing the argument of the limit in Eq. (1) at different scales
ep = kAL, where £k = 1,2,... M < N, and then performing a linear fit to evaluate the
function in the limit of infinitely-sampled measurements, f; — oo:

Dp(M)=2—-8y{P:,... Pu}), (3)
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where &), denotes the slope of the linear fit computed on the points Ppw=
(In€x, In Ay (eg)) corresponding to the M possible scales in the data.

An additional source of approximation in the calculation of Dp followsyfrom the
numerical scheme used to compute the numerator of Eq. (1). In our analy§is we employ
two different methods to evaluate A(M), the variation (VAR) method [34; 33, 35| and
the ANAM method [36]. We follow Ref. [37] for their implementation:

e VAR method. The VAR method [34] is one of the most efficientsfechniques to
evaluate the fractal dimension [33, 35]. The VAR estimator<s‘defined by taking
the average of the function

FlO(t), €] = ‘max{t’ elt—et+e,0l)} —min{the [t — €t +¢, 0N}, (4)

on the data set, i.e.,

1 /7
A (e) = / dt FlO(), . (5)
0
For a discretly-sampled set of N measurements at’ times ¢; = jA¢, where j =
0,1,... N — 1, we evaluate A2 (¢) at the scales.€x. The discretized version of Eq.

(4) is a d-dimensional vector with components
ka = ‘max[@l,k 090 Ol+k] ~ min[Ol,k e Ol+k] 5 (6)

where | = [k,k+ 1,...N — k + 1),%0; denotes the measurement at time ¢; and
M = N/2 — 1. A simplemumpy implementation returning the vector AYA* with
components AYA® is

import numpy as np
def VAR (data):
N = len(data)
F_k = [[np.abs(np.max(datal[l-k:1+k+1]) - np.min(datal[l-k:1+k+1])) \
for 1 in np.arangeé(l,N-1)] for k in np.arange(1,N//2)]
A_var = [npl.mean (np.asarray(F_k[j])) for j in np.arange(len(F_k))]
return A_ywar

Typically; the slopeiof AYA® is constant to a good approximation. Therefore, it is
not necessary to compute all its components. The computation of the estimator
can pespedup by limiting the calculation of the second loop to N //(2*decimate),
where decimate is a positive integer.

o ANAM method. The ANAM estimator [30] is defined by taking the average of

the function
1/

GlO(®), e] = Liz/oedtl /OedtQIO(t+t1)—O(t—t2)|a (1)

on the data set, where a > 1 is an arbitrary parameter, i.e.,

AANAM () _ % /0 dtGlO(), €. (8)
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Equation (8) can be calculated as a discretized vector at the scales €:

N—k—1 1/

k
1 1
ANAM _ R e
Az N —2k ; (k+1)2 Z|OJ+Z ;| ; (9)

i,1=0

A simple numpy implementation returning the A*Y*™ vector with components
ARNAM g
import numpy as np
def ANAM(data):
N = len(data)
df = np.asarray([np.power (np.abs(data - datal[il),args.alpha) \
for i in np.arange(N)]).reshape(N,N)
A_anam = [(k+1)**x(-2/alpha)/(N-2*k)* \
np.sumn([np.power(np.sum([df [j+i,j-1] \
for i in np.arange(k+1) for 1 in np.arange(k+1)]),1/alpha) \
for j in np.arange(k,N-k)]) for k im np.arange(1,N//2)]
return A_anam

Similarly to the VAR estimator, the computation of the ANAM estimator can be
sped up by limiting the calculation of thelast loopto N // (2*decimate). Moreover,
it can be shown that the theoretical fractal dimension in Eq. (8) does not depend
on the value of o [36]. In the following we will set & = 1 to minimize the numerical
complexity of Eq. (9) and spéed up the numerical calculation.

Using either estimator and Eq@s (3), a numerical estimate of the fractal dimension is
obtained by computing the slope-ofthe curve traced by the points (In &, In Ay ). Although
the curve is expected to be linear, thisis only approximately true because of the finite
sampling rate and length of:the data, the numerical approximations used to compute
Ay, and machine computational errors. Therefore, the fractal dimension is estimated
by extracting the slope/of the,eurve with a linear fit.

3. Algorithm Performance Tests

We test the/petrformance of the estimators by evaluating Dr on a few real-valued
data sets withyknewn fractal dimension. The Takagi-Landsberg (TL) function and
the Weierstrass\function are two well-known fractal sets whose fractal dimension can be
computedranalytically. The TL function is defined as

T,(t) =) w's(2"t), (10)

where |w| < 1 is a real parameter and s(t) is the distance from ¢ to the nearest integer:

s(t) = min ;g (11)

neZ
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The fractal dimension of the TL function is
Drp(w) =2 + logy(w) . (12)

The Weierstrass function is defined as

0

Wal(t) =Y a Fsin(b't), (13)

k=1

where 1 < a < 2and b > 1 are real parameters. The fractal dimension'of the Weierstrass
function is

Dy (a,b) =2 —log,(a). (14)

Figures 1 and 2 show the percent errors of the fractal dimension calculated with the
VAR and ANAM methods for one second-long TL and Weierstrass time series sampled
at 4096 Hz, different function parameters and differentiwvalues of decimate, respectively.
Errors in the estimate of Dp are typically within a few percent with the largest values
occurring at the boundaries of the function eonvergence intervals (w = 1/2,1 for the
TL function and a = 0,1 for the Weierstrass,function). These tests also show that the
ANAM estimator is generally slightly more accurate than the VAR estimator. The price
one needs to pay for this better accuracy'is in a lower computational speed of the ANAM
estimator compared to the VAR estimator. The simple python implementation of the
ANAM method shown in the prewious section can be slower by as much as two orders
of magnitude than the VAR implementation, depending on the value of decimate. The
accuracy of the estimate dependsion the value of decimate, the region in the function’s
parameter space and the estimator. For example, percent errors with decimate=4 tend
to be smaller than the,corresponding errors with decimate=128 for the Weierstrass
function for most of itsiparameter space, irrespective of the estimator used. Since in
our study we are comeerned'with time variations of the fractal dimension rather than
its absolute valuey the main factor determining the choice of decimate is computational
speed.

Next we test the performance of the algorithms on time series which better resemble
the noise of GWhadetectors: white noise and Brownian noise [39]. Figure 3 shows the
distributions of\the fractal dimension for a set of one hundred, one second-long white
noise_seriesssaimpled at 4096 Hz calculated with the VAR and ANAM methods and
decimate=16. The percent error from the theoretical value Dp = 2 is about -3% for the
VARestimator and -0.9% for the ANAM estimator. Figure 4 shows the corresponding
results for Brownian noise. In this case, the percent errors from the theoretical value
Dr =1.5 are about -4% and -0.6% for the VAR and ANAM estimators, respectively.
Similarly to the TL and Weierstrass functions, the ANAM estimator seems to be slightly
more accurate than the VAR estimator.
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Figure 1. Percent errors for the fractal dimension of the TL function for different
values of the parameter w and decimate. Left: VAR estimator. Right: ANAM
estimator. Fits are done with the Gaussian Precess Regressor implementation
of sklearn [38] with kernel RBF(length_scale=10,length scale bounds=[1e-01,
10.01).
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Figure 2. Percent errors for the fractal dimension of the Weierstrass function for
different values_ef.the parameter ¢ and decimate. The parameter b is fixed as b =
int ((1.+1.5%np.pi)/a+1.). Left: VAR estimator. Right: ANAM estimator. Fits
are done with the Gaussian Process Regressor implementation of sklearn [38] with
kernel RBF (1ength_scale=10,length_scale_bounds=[1e-01, 10.0]).

4. Application'te LIGO data

To evaluate the performance of the algorithm on interferometer data, and show its
effectiveness in identifying noise transients and monitoring the stationarity of the
detector; .we apply the VAR method on two four-hour stretches of LIGO data from
the third LVK observing run [40]. In the first example, we choose a period of time
where the LIGO-Livingston (L1) interferometer noise was contaminated by a class of
radio frequency beat note noise transients, colloquially called whistles [1]. In the second
example, we consider a different period of time where data were corrupted by a different
¢lass of noise transients caused by stray scattered light in the interferometer optical
system [4]. In our analysis, we focus on the strain channel and one of the main auxiliary
channels that witness the noise transients. We will show that the fractal dimension
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Figure 3. Distribution of the fractal dimension for onerhundred, one second-long
white noise series sampled at 4096 Hz. The parameter decimate is 16. Left: VAR
estimator. Right: ANAM estimator. Fits are. Gaussian'curves with mean p and
standard deviation o.

14|/ — =1.437, 0=0.019 - 16 —;v'—T p:l_fgi‘h p’:o_oal"ww

Count
Count
®

f350 1.375 1.400 1.425 1.450 1.475 1.500 NS0 5 135 1.40 1.45 1.50 155 1.60

Figure 4. Distribution of the fractal dimension for one hundred, one second-long
Brownian noise series sampled at 4096 Hz. The parameter decimate is 16. The speed
of the Brewnian precéss is 2. Left: VAR estimator. Right: ANAM estimator. Fits are
Gaussian cutves with mean p and standard deviation o.

method allows for theridéntification of the noise transients for both channels and both
glitch classes!

Whistle glitches'are broadband noise transients with frequency ranging from less than
~ 100 Hz to several kHz with typical duration of the order of ~ 1 second. Their
timefrequeney representation shows the typical pattern of a frequency-decreasing arch
followed by a frequency-increasing arch. Whistle glitches are caused by beat notes
in thesinstrument Voltage Controlled Oscillators and are witnessed by a number of
auxiliary channels depending on their origin. For the stretches of data considered here,
the main witness channel identified by hveto [11] is one of the fast sensing control
auxiliary channels used to monitor the interferometer power recycling cavity (PRC),
L1:LSC-PRCL_OUT DQ. (For a list of LIGO abbreviations and acronyms, and naming
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conventions for auxiliary channel and data quality flags naming conventions, see 6.

Figure 5 shows the evolution of D over four hours of the L1:LSC-PRCL_QUT DQ channel
data sampled at 16,386 Hz. The fractal dimension is evaluated with the VAR method
and decimate=64, which allows for the computation of Dp in real time. The top
left panel shows one hour of data when the interferometer is in its nominal observing
mode (L1:DMT-ANALYSIS READY) at the start of the glitchy period. Mach point in the
plot represents the value of the fractal dimension for a second-long data segment. The
fractal dimension is stationary with most values ranging between»D r =ul(linear noise)
and Dp = 1.2. The plot’s shaded areas represent time segments where whistle glitches
were identified and flagged in the LVK Data Quality Segment Database [12]. Three
out of the four glitches flagged by the L1:DHC-WHISTLES data quality flag coincide
with anomalous values of Dp > 1.2. The Q-transform [13] plots (“Q-scans”) of these
anomalous segments are shown in Fig. 6. These Q-scans show that all four time segments
include whistle glitches. However, the glitch corresponding to the anomalous fractal
dimension with value just above 1.2 (top-right pamel) appears to be less loud than the
other three, possibly explaining why it is missed by/the L1 :DHC-WHISTLES data quality
flag. The corresponding Q-scans of the calibrated strain data used for astrophysical
searches (L1:DCS-CALIB_STRAIN CO1) are showmnin Fig. 7. As expected, the fainter
glitch is not visible in the Q-scan ofsthe calibrated strain.

The top-right panel of Fig. 5 shows the, fractal dimension for one hour of later data
which is characterized by a more severe, increasing rate of whistle glitches. In the initial
45-minute stretch, the anomalous points of the fractal dimension show a clear correlation
with the L1:DHC-WHISTLES data quality flag segments. During this time, the value of
Dr becomes as high as ~ 1.5 denoting the appearance of louder glitches compared to
the previous period. At @bout 15 minutes before the end of the segment, the glitch
rate and high signal-to-neise ratio (SNR) render the interferometer data practically
unusable for astrophysical searches. This is denoted with a new data quality flag,
L1:DHC-SEVERE WHISTLES FEB4. Eventually, the excess noise leads to the interferometer
dropping out of observing mode and losing lock. The bottom-left panel shows the fractal
dimension for a oneshour of data during this time. The plot starts with the detector
initially not locked. Loek,is regained at around ~ 30 minutes into the segment. The
fractal dimension exhibits’wild variations when the interferometer is unlocked with Dp
spanning'the whole range of possible values before settling down again in the range ~ 1
- 1.2 when lock/is regained. Note that the interferometer is still in non-observing mode
during this time while it is transitioning to its low-noise nominal state. Finally, the
bottom-right panel shows Dp for a later one-hour of data when the instrument is again
locked, in observing mode, and free of whistle glitches. The fractal dimension is now
stationary and well below Dp = 1.2.

The one-hour period shown in the top-left panel also shows two additional segments
flagged by L1:DHC-WHISTLES where apparently the fractal dimension is not anomalous.

Page 10 of 23
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32 L1:LSC-PRCL_QUT.DQ auxiliary channel (a witness of whistle glitches). The sampling
33 rate of the channelis 16,384 Hz. The fractal dimension is computed with the VAR
34 algorithm decimated at,64. Each point represents Dp for one second of data. The
35 interferometer is in{ observing mode (L1:DMT-ANALYSIS READY) during the periods
36 corresponding to thetop-left, top-right and bottom-right panels, and out of observing
37 mode during theperiod ¢orresponding to the bottom-left panel. Different color shades
gg denote different data quality flags.
40
41
42 It is worth digging alittle deeper into them. The left panels of Fig. 8 show the variation
22 of the fractal dimension of L1:LSC-PRCL_0UT_DQ for a period of 32 seconds around these
45 segments. Three seeond<long Q-scans centered on the flagged times are shown in the
46 right panels./ During the data quality segment starting at GPS time 1264833002, the
2; fractal dimension is‘around Dp = 1, a value typical of quiet times. In fact, the Q-scan
49 of this segment, does not show any visible excess noise and might have been wrongly
50 flagged. (The Q-scan of the calibrated strain channel at this time also does not show
g; any/visible glitch.) The data quality segment at GPS time 164833447 includes values of
53 the fractal/dimension as high as Drp ~ 1.1. The Q-scan to the right shows indeed that
>4 this segment contains whistle glitches, although not as loud as the other flagged whistle
gg glitches in the one-hour period. It is interesting to note that the fractal dimension
57 around this time shows a “wavy” behavior with its value fluctuating between Dp ~ 1
58 and Dp ~ 1.1 in a quasi-periodic fashion. This effect is due to the presence of whistle
59

glitches across the entire period. For example, a Q-scan of the first few seconds of
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Figure 6. Q-scans of the L1:LSC-PRCL_OUT.DQ. auxiliary channel centered on the
four anomalous points with Dp > 1.2 jnithe top-left panel of Fig. 5 showing the
presence of whistle glitches. The top-left panelieorresponds to the anomalous point
at ¢t = 482 seconds from the beéginning of the /one-hour time period. The top-right
panel corresponds to the anomalous peint with value closer to the Dp = 1.2 threshold
occurring at t = 1034 seconds from the beginning of the one-hour time period. The
bottom panels correspondite.the anomalous points occurring a few minutes before the
end of the one-hour period.
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Figure 7. Q-scans of the calibrated strain channel L1:DCS-CALIB STRAIN CO1 for the
four glitches of Fig. 6. The whistle glitch in the top-right panel is not visible due to its
lower SNR although it is apparent in the Q-scan of the L1:LSC-PRCL_QUT_DQ auxiliary
channel.
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the 32-second interval in the bottom panel, where Dp shows a “bump”, confirmssthat
(low-SNR) whistle glitches are also present at this time.

L1:LSC-PRCL_OUT_DQ

LIDMT-ANALYSIS_READY |
L1:DCH-WHISTLES

Q-transform: L1:DCS-CALIB_STRAIN_CO1,rds
ange: (32,72

0:45.25, tres: 0.000625, q-range: [4 00, 64.00], whitened, f-range: (32.74, 5164 24] arange [[0.479, 23.7]
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Figure 8. Variationsof the fractal dimension and corresponding Q-scans around the
two flagged segments in the top-left panel of Fig. 5 that do not appear to be coincident
with anomalous values.of Dp. The first period (GPS times 1264833002-1264833005)
is quiet, thus the L1:DHC-WHISTLES flag might have been incorrectly assigned. The
second period | (GPS time 1264833447) is characterized by whistles, although these are
not as loud as thesether flagged glitches in the one-hour period (see Fig. 6). In this
case, the 'value of fractal dimension does not pass the Dp = 1.2 threshold. Additional,
low-SNRwhistle glitches are present during these periods and can be identified by
values of Dp approaching 1.1.

In addition to glitch idengification, the fractal dimension can be used to characterize
the (non-) stationarity of the interferometer in the presence of noise transients. It is
straightforward, to note from Fig. 5 that the variation of Dp is larger when whistle
glitches oecur _than in their absence. This effect can be quantified by computing the
stationarity metric, defined as ratio of the rolling standard deviation of D to the rolling
average of Dp. When glitches are present, the metric shows higher values and vice versa.
The metric can then be used to determine whether a given period is characterized by
excessnoise. The left panel of Fig. 9 shows the stationarity metric for the three one-hour,
observing periods of Fig. 5 computed on a 60 second-long rolling window preceding each
value of Dp. The quiet time (bottom-right panel of Fig. 5 is characterized by a value
of the stationarity metric consistently smaller than 0.02 (darker area). The moderate
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(Fig. 5, top-left) and the severe (Fig. 5, top-right panel) periods exhibit higher wvalues
of the metric over their corresponding one-hour data stretches, with the severe period
characterized by a value of the metric as high as ~ 5 times the value for the modetate
case. The right panel of Fig. 9 shows the histogram distributions of the stationarity
metric for the three periods. A simple threshold of 0.02 captures allsthe 60-second
segments with elevated excess noise.
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=Y b I
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Seconds from start of period Stationarity metric

Figure 9. Stationarity metricfor the three observing mode data periods in Fig. 5
(L1:LSC-PRCL_OUTDQ channel). "Left: Ratio of the rolling standard deviation of Dp
to the rolling average of Dp computed en60.second-long segments (darker-filled area:
quiet time; medium dark-filled area: mild whistle glitchy time; darker-filled area: severe
whistle glitchy time). The first 60 seconds of data (grey area) are used to generate
the first value of the metric. Right: Histogram distribution of the stationarity metric
for the three different time segments’(blue: quiet time; green: mild glitchy time; red:
severe glitchy time).»Solid vertical lines indicate the mean values of the stationarity
metric. Dotted vertical lines denote standard deviations from the means.

To test the method on améther class of noise we repeat the above analysis for the
scattered light glitches. Excess noise transients due to unwanted scattered light in the
interferometer optical systemshave been one of the major sources of noise in LIGO data
during third observation run(O3) [14]. For that reason, a number of investigations to
determine its causes and develop mitigation strategies have been conducted over the
past few years [45, 46, 47 48]. Scattered light noise manifests itself as transients at low
and medium frequenciesin the interferometer sensitive band. It is commonly divided in
two sub-classes: slow and/fast scattering [14]. Slow scattering typically occurs during
periods of‘€levated ground motion due to earthquakes and microseismic noise in the sub-
Hz frequency band. The time-frequency representation of slow scattered light glitches
is thatrof stacked arches with duration of few seconds. Fast scattering occurs at higher
frequencies (a few Hz) due to anthropogenic noise. Fast scattered light glitches have
a smaller‘duration and SNR than slow scattered light glitches. Their time-frequency
representation is that of arches with duration of ~ 1 second. (See Figs. 4 and 5 in Ref.
[4] for Q-scans of scattering glitches.)

Figure 10 shows the variation of the fractal dimension for four, one-hour periods of
O3 calibrated strain L1 data on January 6th, 2020, during a time of elevated slow
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scattered light glitch activity [45]. The top-left plot shows Dp before the onset,of
the glitchy period. The value of the fractal dimension is stationary over this. period,
taking values between Dp = 1.6 and 1.8 with occasional, low-SNR isolated glitehes
identified by values of Dp ~ 1.6. The two bottom plots show the value of the. fractal
dimension over two hours with elevated scattered light noise (denoted by an active
L1:DHC-SEVERE SCATTERING data quality flag) following a drop out of observing mode
and a lock loss (top-right plot). The fractal dimension in the presenge of scattered light
glitches exhibits higher variability compared to the quiet time with,values as low as
Dr ~ 1.4. Figure 11 shows the Q-scans of the four anomalous fimes.with lowest value
of Dp in the bottom-left of Fig. 10.

L1:DCS-CALIB_STRAIN_CO01 1:DCS-CALIB_STRAIN_CO1

20 2.0
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Fractal dimension
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4 .
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Seconds from GPS time 1262304018 Seconds from GPS time 1262329218

L1:DCS-CALIB_STRAIN_CO1 20 L1:DCS-CALIB_STRAIN_CO1

20

[ L1DMT-ANALYSIS_READY
L1:DCH-SEVERE_SCATTERING

o LIDMTANALYSIS_READY
L1:DCH-SEVERE_SCATTERING

= =

] i

Fractal dimension
Fractal dimension

450 900 1350 1800, 2250 2700 3150 3600 ] 450 900 1350 1800 2250 2700 3150 3600
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Figure  10. Fractal dimension of the calibrated strain channel

L1:DCS~CALIB STRAIN CO1 for four, one-hour periods of L1 data with elevated
scattered light glitch activity. The sampling rate of the channel is 16,384 Hz. The
fractal dimension is computed with the VAR algorithm decimated at 64. FEach point
represents Dp for one second of data. The interferometer is in observing mode
(L1:DMT-ANALYSIS READY) during the entire period corresponding to the top-left
panel, and out of observing mode for the entire period corresponding to the top-right
panel and parts of the two bottom panel periods. The top-right panel corresponds
to a period of high noise with several lock losses denoted by the sudden drops of
Dp. Different color shades denote periods of observing mode and active status of the
L1:DHC-SEVERE SCATTERING data quality flag.

Figure 12 shows the variation of the fractal dimension of the length sensing and control
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Figure 11. Q-scans [13] of the calibrated straim.channel L1:DCS-CALIB_STRAIN_CO1
for the four anomalous times with lowest“¥alue of Dp in the bottom-left of Fig. 10.
The times with anomalous fractal.dimensions correspond to scattered light glitches [4].

auxiliary channel recording the output of the photodiode which observes the reflected
light from the PRC, L1:LSC-REFL A.LF 0UT DQ, for the same periods. The presence
of scattered light excess noise manifests, itself as an increased variability of Dp in
the witness channel. Similarly. to the whistle glitch analysis, the excess noise can be
quantified by comparing the stationarity metric in the different time periods. Figures
13 and 14 show the variation of the metric and its histogram distribution for the two
left panels of the calibrated straimwand the L1:LSC-REFL A LF OUT DQ auxiliary channel,
respectively. The stationarity metric during glitchy times (lighter red shaded area) is on
average higher by a factor %2 cempared to the metric during the quiet period (darker
blue area) with the witness channel displaying an overall higher variability than the
strain channel. A imple threshold of 0.02 (0.04) on the stationarity metric for the
strain (auxiliary)fehannel can be used to distinguish low- and high-noise periods.

5. Conclusions

Fractal analysis provides an effective method for characterizing the output of a physical
meaguring device. In this paper, we have applied this concept to GW detector data.
The fractal dimension of the interferometer’s strain and auxiliary channels can be used
to identify noise artifacts in the data, monitor the stationarity of the detector and
its status, as well as provide a measure of data quality. To illustrate the method we
have considered two known examples of noise transients that occurred during the latest
LVK observing run in one of the LIGO detectors (L1). These examples show that the
fractal dimension Dy is stationary and Gaussian distributed when the interferometer is
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29
30
31 Figure 12. Fractal dimension of the L1:LSC-REFL_A_LF _QUT DQ witness auxiliary
32 channel for the four periods in Fig. 10. The sampling rate of the channel is 16,384
33 Hz. The fractal /dimension is computed with the VAR algorithm decimated at
34 64. The witness chanmnel displays a higher variability than the calibrated strain
35 channel, denoting /& noiser, 1.1:LSC-REFL_A LF_QUTDQ data stream compared to
36 L1:DCS-CALIB_STRAIN_CO1.
37
38
39
40 operating in its nominal, low-neise mode. Non-astrophysical noise transients correlate
41 with anomalous values of D p: Periods of elevated glitchiness are characterized by an
42 . T . . . .
43 increased variability of the fractal dimension and/or non-stationarity. They can be
44 identified by comparing the degree of dispersion of Dp with respect to quiet times.
45 Periods of lockdess arerdenoted by extreme variations of the fractal dimension over the
46 :
47 whole range of possible values.
48 ; ; ; ; ;
e Algorithms for the calculation of the fractal dimension are computationally cheap. One
50 second of LIGO data channel at 16,384 Hz can be processed with a numba [19] decorator
51 on asingle GPU in ~ 0.6 seconds. Thus the method can be applied to GW data
52 5 o : : : : : . . .
z3 analysis in/real time. Identification of glitch times through identification of anomalous
54 fractal'dimension outliers is a safe procedure against vetoing astrophysical compact
55 binary. coalescence (CBC) signals. CBC signals are characterized by well-defined time-
g? frequency relations, i.e., in a sense they are “smooth” functions. The value of the fractal
58 dimension depends on the whole frequency content of the data. Therefore, adding a
59 smooth function to the background noise is not expected to change the fractal dimension.
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Figure 13. Stationarity metric for the fractal dimension corresponding to the left
panels of Fig. 10 (L1:DCS-CALIB_STRAIN_CO1 channel). »Left:¥Ratio of the rolling
standard deviation to the rolling average of D coniputed on 60 second-long segments
(darker-filled area: quiet time, light-filled area: scatteredilight glitchy time). The first
60 seconds of data (grey area) are used to generate the first value of the metric. Right:
Histogram distributions of the stationarity métric for thé'two time periods (blue: quiet
time; red: glitchy time). Solid vertical lines indicate the mean values of the stationarity
metric. Dotted vertical lines denote standardideviations from the means.
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Figure 14, Stationarity metric for the fractal dimension corresponding to the left
panels of Fig. 12°(L1:LSC-REFL_A LF_OUT_DQ channel). Left: Ratio of the rolling
standard deviation to the rolling average of Dy computed on 60 second-long segments
(darkér-filled, area: quiet time, light-filled area: glitchy time). The first 60 seconds of
datar(grey area) are used to generate the first value of the metric. Right: Histogram
distributions/of the stationarity metric for the two time periods (blue: quiet time;
red: scattered. light glitchy time). Solid vertical lines indicate the mean values of the
stationarity metric. Dotted vertical lines denote standard deviations from the means.

This_eenclusion may be different in the case of broadband, stochastic signals such as
GW from ‘core-collapse supernovae. Whether the fractal dimension could be used to
deteet, these signals is an intriguing possibility which remains to be seen.

Other-avenues for future investigations on the applicability of the method to real
data include development of anomaly detection algorithms in real-time (see, e.g, the
interesting proposal in Ref. [50]), a full study of the relation between the fractal
dimension and the characteristics of the instrument noise (non-linearity effects, multi-
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band analysis, correlations between the fractal dimension of the strain and auxiliary
channels, relation to glitch SNR, rate, frequency breadth or other features,...),
and a more extensive characterization of real data (follow-up of anomalous fractal
dimension times, fractal dimension-based differentiation of glitch classes, construction of
suitable data quality metrics, ...). Theoretical developments include exploring different
analytical models for the definition of the fractal dimension, such as_entropic. models
[51, 52|, and other choices of numerical approximants for even faster/and more accurate
estimations of Dp.
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