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Constructing chiral effective field theory around unnatural leading-order interactions
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A momentum-dependent formulation based on a stationary spin-0 and isospin-1 dibaryon field is proposed
to improve convergence of chiral effective field theory in the 1S0 channel of NN scattering. Although the two-
parameter leading-order interaction appears to be unnatural, it nevertheless has the necessary features of an
effective field theory. A rapid order-by-order convergence is found in 1S0. As an application beyond the two-body
level, the triton binding energy is studied and compared to standard chiral effective field theory with partly
perturbative pions. The consistency of the chiral Lagrangian for the new formulation is examined by working
out the pionic radiative corrections, and consequences of nontrivial chiral-connection terms are discussed.
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I. INTRODUCTION

It is a lore about the nuclear force that it has attractive
long-range and repulsive short-range components. This can be
inferred phenomenologically from the 1S0 and 3S1 phase shifts,
both showing strong attraction near threshold and vanishing
around center-of-mass (c.m.) momentum k ∼ 350 MeV. But
nuclear forces derived from chiral effective field theory (EFT)
are characteristically different in the two channels at leading
order (LO): in 3S1 − 3D1, the tensor part of one-pion exchange
(OPE) is singularly attractive, providing sufficiently strong
attraction at long distances to generate the shallow deuteron
bound state. A contact term in 3S1 provides repulsion at short
distances to avoid a collapse of the two-nucleon system into
an infinitely deep bound state. This mechanism is well under-
stood to ensure renormalization [1,2]. In 1S0, however, OPE
turns out to be numerically weak, thus it can in principle be
treated as a perturbation [3–5]. This implies that in 1S0 the
short-range interaction alone needs to provide strong attrac-
tion at long distances and strong repulsion at short distances in
order to produce the phenomenological behavior of the phase
shift. A single 1S0 contact term at LO as proposed by Weinberg
[6,7] is too simple to generate both features simultaneously,
which is likely the reason why chiral forces have been found
to converge rather slowly in 1S0 [8–11], unless a soft cutoff is
carefully chosen [9].

As first calculated in Ref. [12] and then argued further
in Ref. [13], the slow convergence can be attributed to the
quite large value of the generalized effective range in 1S0,
which is defined in an expansion similar to the effective-range
expansion while incorporating iteration of OPE. To improve
the convergence, a power counting based on a spin-0 and
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isospin-1 auxiliary dibaryon field [14–16] was suggested in
Ref. [13], and subsequently developed in Ref. [17].

A mere reproduction of empirical phase shifts does not
bring much to the discussion of nuclear forces, as there ex-
ist several phenomenological models that fit nucleon-nucleon
scattering data very well [18–20]. We therefore use the follow-
ing requirements as guidelines to reformulate power counting
of chiral forces in order to address the slow 1S0 convergence.
First, as any other consistent EFT, the formulation sets up a
controlled expansion, allowing for a highly unnatural LO that
includes more than one low-energy constant (LEC) (two in
Ref. [13] and three in Ref. [17]) in the 1S0 channel. Second,
renormalization-group (RG) invariance is enforced at each
order. Third, the symmetries of the chiral Lagrangian are
observed, in particular the nonlinearly realized chiral sym-
metry. The dibaryon formalism has been shown to meet all
these requirements, and in particular it does not alter the well-
established hierarchy of long-range chiral forces that follows
from naive dimensional analysis (NDA) [6,7]: OPE is LO,
two-pion-exchange (TPE) contributions are two powers down
or more, and so on. This is in contrast to a recent proposal
that TPE should be promoted to LO in order to address the
convergence issue in 1S0 [21]; see also Ref. [22] for a related
discussion regarding the promotion of TPE.

Unfortunately, the resulting 1S0 potential is energy-
dependent, making it difficult to apply the overall interaction
in many-body calculations. For example, the dibaryon-
exchange potential, part of LO, is given by

Vφ (E ) = σ
y2

E + �
, (1)

where E is the center-of-mass (c.m.) energy, � the dibaryon
mass, y the dibaryon coupling constant, and σ = ±1. In order
to facilitate many-body calculations, we discuss in Sec. II a
separable, momentum-dependent force to replace the original
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(a) (b)

FIG. 1. Radiation-pion Feynman diagrams contributing to N2LO
potentials. The solid (dashed) lines represent nucleons (pions), and
the solid blobs are the φNN vertex function (10). (a) The pion line
connects both nucleons either in the initial or in the final states.
(b) The pion line connects one of the incoming nucleon lines to one
of the final nucleon legs. Other variants due to permuting the pion
line on different nucleon external lines are not shown.

dibaryon exchange potential in 1S0,

Vspr(p�, p) = − 4π

mN

λ
�

p�2 + mN�
�

p2 + mN�
, (2)

where p (p�) is the incoming (outgoing) c.m. momentum. The
potential (2) is clearly motivated by the energy-dependent
dibaryon potential (1), and the two potentials (1) and (2) have
the same functional dependence on the energy when the Born
approximation is taken and the nucleons are on the energy
shell, E = p�2/mN = p2/mN (while still featuring different
coupling constants).

Potentials of the same (or similar) form as in Eq. (2) were
investigated elsewhere in the literature. Reference [23] used
it to construct a model potential in the context of discussing
pionless EFT. More recently, Ref. [24] derived a potential with
similar square-root form factors based on the so-called UV/IR
symmetry of the S matrix, assuming a separable form as in
Eq. (2). An attempt to derive a similar potential from the Low
equation can be found in Ref. [25].

Radiative corrections to nucleon-nucleon contact terms
generated by pions (see Fig. 1) appear suppressed by Q2/M2

hi
relative to OPE in a given partial wave. If the contact vertex
has a single parameter, e.g., a constant in S waves, the radia-
tive corrections can be shown to generate only terms which
are polynomials in momenta or energies because the diagrams
are dominated by static intermediate nucleons. Owing to this
lack of nonanalytic structures, radiative pions are typically not
included in chiral nuclear forces unless chiral extrapolations
[26–28] or pion productions are concerned. This is still the
case with the energy-dependent dibaryon exchange. However,
as will be discussed in Sec. III, the pionic radiative corrections
to the momentum-dependent potential (2) can no longer be
trivially cast into pure contact form.

In Sec. IV we discuss two- and three-body observables
calculated with the momentum-dependent potential (plus ad-
ditional nucleon-nucleon channels) and compare our results
to other calculations. As a matter of fact, several nuclear-
structure calculations have already used potentials with a
similar form to various orders [29–31]. The results in Ref. [29]
suggest that some nuclei are not bound with the proposed
potentials up to NLO, based on which the authors argue that
some three-body forces need to be considered at LO. While
the role of three-body forces may continue to be debated,

we believe that efforts to improve the overall convergence
based on two-body and three-body forces can complement
each other.

The momentum-dependent dibaryon potential can alterna-
tively be thought of as a way to partially resum derivative-
coupled NNNN operators in the effective Lagrangian. With
the nonlinearly realized chiral symmetry, derivatives acting on
baryon fields must be “chiral-covariant” so that chiral symme-
try and its spontaneous breaking are properly implemented.
This results in, among other things, a nontrivial ππNNNN

vertex function. We discuss the construction of this vertex and
its phenomenological impacts in Sec. V. Finally, we summa-
rize and conclude in Sec. VI.

II. MOMENTUM-DEPENDENT DIBARYON POTENTIAL

We begin with the 1S0 power counting developed in
Ref. [8]. Thus, OPE is the LO long-range force, and its 1S0

projection reads

V1π (p�, p) = g2
A

4 f 2
π

�

1 − m2
π

q2 + m2
π

�

, (3)

where the momentum transfer �q = �p � − �p, the pion mass
mπ = 138.0 MeV, the pion decay constant fπ = 92.4 MeV,
and the axial coupling gA = 1.29. Counting external momenta
Q, mπ , and fπ collectively as the infrared mass scale Mlo, OPE
scales as

V1π (p�, p) ∼ 1

f 2
π

∼ 4π

mN

1

Mlo
, (4)

where mN ∼ 4π fπ is used. The contact term V
(0)

S = C0 enters
also at LO. As argued in Ref. [8], RG invariance requires
a nonvanishing NLO generated by a momentum-dependent
contact term, one order earlier than estimated from NDA,

V
(1)

S = C2

2

�

p�2 + p2
�

∼ 4π

mN

1

Mhi
. (5)

Even with this promotion, chiral EFT still converges slowly
in 1S0 (see, e.g., Ref. [8]). It was later proposed in Ref. [13]
that the mass scale embedded in C2 is actually quite small
and can be identified with the inverse of the so-called gener-
alized effective range � 130 MeV that was first extracted in
Ref. [12]. This light mass scale needs to enter the LO ampli-
tude, and promoting the C2 term to LO is a choice to achieve
this. The simplistic treatment of taking the sum of the C0 and
C2 terms as the LO short-range potential has several obstacles,
including satisfying RG invariance [23,32] and overcoming
the Wigner bound [23,33]. However, these constraints do not
necessarily mean that building a highly unnatural LO interac-
tion with two adjustable parameter is a no-go scenario. Indeed,
the dibaryon formalism used in Ref. [13] has been shown to
be a viable implementation, making use of the kinetic energy
of the dibaryon field to provide the much needed energy
dependence of the potential.

On the other hand, no principle states that implementa-
tion of a two-parameter LO potential is unique. As long
as a formulation incorporating both infrared scales satisfies
the criteria introduced in Sec. I, it is acceptable. In fact,
there is a clear practical motivation to search for other ways
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to improve the 1S0 convergence: one encounters difficulties
when applying the energy-dependent dibaryon potential (1) to
many-nucleon calculations. It is the goal of the present paper
to show that the separable, momentum-dependent alternative
(2) provides a satisfactory foundation to be expanded around
upon.

We find it useful to cast the separable potential (2) into the
form of a Lagrangian. An auxiliary dibaryon field φ with spin-
0 and isospin-1 is introduced, but φ is stationary, namely, it
does not have a kinetic term. The Lagrangian terms involving
φ are given by

Lφ = σ�φ† · φ −
�

4π

mN

3
�

m=1

∞
�

n=0

g2n

2

"

φ†
mNT

Pm

�

−←→∇ 2

4mN�

"n

N + H.c.

"

+ · · · , (6)

where

Pm = 1√
8
τ2τmσ2 (7)

is the spin and isospin projector to ensure that φ couples only

to the 1S0 channel and
←→∇ is defined so that

NT ←→∇ N ≡ NT (
←−∇ − −→∇ )N. (8)

Here, σ is normalized to ±1 by rescaling φ, and it will be
determined by fitting to scattering data. If g2n are correlated
by the binomial coefficients as

g2n

g
=

�− 1
2

n

�

, (9)

then we can obtain the φNN vertex function after summing
over all powers of relative momenta,

AφNN = −
√

4πg
�

p2/� + mN

Pm. (10)

The desired separable 1S0 potential then follows from the s-
channel exchange of φ,

V (0)
spr (p�, p) = − 4π

mN

λ
�

p�2 + mN�
�

p2 + mN�
, (11)

where λ ≡ σmN g2/4.
In order to justify summing the g2n terms, λ and � must be

identified as two independent infrared mass scales,
�

mN� ∼ λ ∼ Mlo, (12)

which in turn translates into

g ∼
�

Mlo

Mhi
. (13)

We will see that the expected scaling of λ and � is verified
once their values are obtained from fitting to the 1S0 empirical
phase shifts.

Summing an infinite sequence of derivative coupling terms
prompts concerns regarding chiral symmetry. Derivatives act-
ing on the nucleon field must be accompanied by so-called
chiral-connection operators involving the pion fields so that
chiral symmetry is nonlinearly realized by these hadronic de-
grees of freedom [34,35]. We will come back to this in Sec. V
to discuss chiral-connection operators of the φNN transition
vertex.

The LO 1S0 amplitude is the resummation of V (0)
spr and VY to

all orders by way of the partial-wave LS equation,

T (p�, p; E ) = VLO(p�, p) + 1

2π2

�

dl l2 VLO(p�, l )

× T (l, p; E )

E − l2/mN + i�
(14)

with

VLO(p�, p) = V (0)
spr (p�, p) + VY (p�, p), (15)

VY (p�, p) = − g2
A

4 f 2
π

m2
π

q2 + m2
π

. (16)

The LS equation is often schematically written as

T (0) = VLO + VLOG0T (0), (17)

where G0 is the nonrelativistic free-particle propagator. When
solving the LS equation, we regularize the ultraviolet part of
the potentials with a separable regulator to ensure that the
regularization in one partial wave does not interfere another:

V �( �p �, �p) = fR

�

p� 2

�2

�

V ( �p �, �p) fR

�

p2

�2

�

. (18)

In particular, a Gaussian regulator is used in our numerical
calculations:

fR(x) = e−x2

. (19)

Using the two-potential method [32], the LO 1S0 amplitude
can be rewritten to facilitate analysis. We start by defining the
off-shell Yukawa amplitude

TY = VY + VY G0TY , (20)

and the origin value of its scattering wave function, dressed
by the square-root dipole form factor of the φNN transition
vertex (10):

χ (p; E ) = 1
�

p2 + mN�
+

�

d3l

(2π )3
(l2 + mN�)−

1
2

× TY (l, p)

E − l2/mN + i�
. (21)

The LO amplitude is then given by

T (0)(k, k; E ) = TY (k, k) − 4π

mN

χ (k; E )2

λ−1(k2 + mN�) + I (E )
,

(22)
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TABLE I. Running of λ (MeV) and � (MeV) with � (MeV) at LO.

� �(0) λ(0)

600 27.1 270
1200 24.6 223
2400 24.1 209

where

I (E ) ≡ 4π

mN

�

d3l

(2π )3
(l2 + mN�)−

1
2

χ (l; E )

E − l2/mN + i�
. (23)

Compared with the energy-dependent dibaryon potential, the
factor (p2 + mN�)−

1
2 brings so much UV suppression that the

integral would be finite even without the regulator, and �(�)
and λ(�) approach finite values for � → ∞. Table I shows
their values as a function of �. The fitting to empirical 1S0

phase shifts will be explained in Sec. IV. Using these val-
ues, we have

√
mN� � 150 MeV and λ � 200 MeV, which

confirms the expected scaling given in Eq. (12). The inverse
of

√
mN� comes out close to the pion Compton wave length

� 1.4 fm, suggesting that the dibaryon potential has a range
similar to that of OPE.

Let us turn to higher orders. Although λ(�) and �(�) ap-
pear at LO, their running with � can be modified at subleading
orders:

λ(�) = λ(0)(�) + λ(1)(�) + λ(2)(�) + · · · , (24)

�(�) = �(0)(�) + �(1)(�) + �(2)(�) + · · · . (25)

The λ(ν) and �(ν) are formally smaller than their LO value
by Qν/Mν

hi. These modifications play a role at higher orders,
which can be constructed by the generating function

Fspr(p�, p; x) ≡ − 4π

mN

λ(x)
�

p�2 + mN�(x)
�

p2 + mN�(x)
,

(26)

where x is an auxiliary variable to generate the expansion and

λ(x) = λ(0) + xλ(1) + x2λ(2) + · · · , (27)

�(x) = �(0) + x�(1) + x2�(2) + · · · . (28)

From there, the dibaryon part at each order is generated by

Fspr(p�, p; x) = V (0)
spr (p�, p) + xV (1)

spr (p�, p)

+ x2V (2)
spr (p�, p) + · · · (29)

with the first two corrections explicitly given by

V (1)
spr (p�, p) = − 4π

mN

1
�

p2 + mN�(0)
�

p�2 + mN�(0)

�

λ(1) − mNλ(0)

2

�

1

p2 + mN�(0)
+ 1

p�2 + mN�(0)

�

�(1)

�

(30)

and

V (2)
spr (p�, p) = − 4π

mN

1
�

(p2 + mN�(0))
�

(p�2 + mN�(0))

×
�

λ(2) − mN

2

�

1

(p2 + mN�(0))
+ 1

(p�2 + mN�(0))

�

�

λ(0)�(2) + λ(1)�(1)
�

+ m2
Nλ(0)

8

�

3

(p2 + mN�(0))2
+ 2

(p2 + mN�(0))(p�2 + mN�(0))
+ 3

(p�2 + mN�(0))2

�

�(1)2

�

. (31)

If one expands the potential (11) in powers of momenta, a
series of 1S0 contact terms emerges. Therefore, the values of �

and λ span a surface in the parameter space of 1S0 contact cou-
plings. The deviation away from the surface can be described
by residual values of 1S0 contact terms. Reference [13] has
shown that higher-order short-range forces are parametrized
by conventional four-nucleon operators

VS =
∞

�

n=0

C2n

2
(p�2n + p2n) (32)

with the following scaling for C2n:

C2n ∼ 4π

mN

1

Mn
loMn+1

hi

. (33)

NLO and higher-orders amplitudes are built as perturba-
tions on top of LO, i.e., they are diagrammatically perturbative

insertions of VNLO, VN2LO (and so on) into the LO amplitude:

T (1) = (1 + T (0)G0)VNLO(G0T (0) + 1),

T (2) = (1 + T (0)G0)[VN2LO + VNLOG0(1 + T (0)G0)VNLO]

× (G0T (0) + 1).

· · · .

(34)

In particular, since there is no pion-exchanges at NLO, the 1S0

potential is given by

VNLO(p�, p) = C
(0)
0 + V (1)

spr (p�, p). (35)

III. RADIATIVE CORRECTIONS

The scaling (12) has so far led us to have the momentum-
dependent dibaryon potential (and its subleading corrections)
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simply substitute the energy-dependent one. But there is
an important difference at N2LO. Besides the leading two-
pion exchange VTPE0 [36], pionic radiative corrections to the
dibaryon potential, depicted in Fig. 1, appear at this order.
For a dynamically propagating dibaryon, the radiative cor-
rections are zero-range interactions (much like the radiative
corrections to pure NN contact operators [37,38]); therefore,
they do not change the form of the potentials in any nontrivial
way. For the momentum-dependent dibaryon vertex, this is no
longer the case because the vertex is finite-ranged.

In Fig. 1, �p ( �p �) is the incoming (outgoing) nucleon c.m.
momentum, and k, n, r, and s (a, b, c, and d) are spin (isospin)
indexes. While Fig. 1(a) contributes only to 1S0, the impact of
Fig. 1(b) is confined to the triplet channels, as will be shown
later in the section. Without the dibaryon field, the conver-
gence in the triplet channels is already quite good [39,40].
Thus, it is important for the purpose of validating the dibaryon
potential to examine how it affects the triplet channels through
radiative corrections. If Fig. 1(b) interferes with the triplet
channels so much that a satisfactory description of data is
spoiled, we will have to give up the momentum-dependent
dibaryon formalism even if it does improve 1S0. Fortunately,
it turns out that these radiative corrections for the most part
only renormalize the NN contact terms in 3S1 − 3D1 and do not
significantly change the on-shell amplitudes. Before turning
to the phase shifts, we discuss calculation of the Feynman
diagrams in Fig. 1.

As mentioned previously, the diagram of Fig. 1(a) is ex-
pected to contribute only to 1S0, for it can be broken by
cutting the dibaryon propagator. The NN reducible part of
the diagram is the contribution from picking up the nucleon
pole when integrating out the zeroth component of the loop
momentum, which is part of the LO amplitude and has been
accounted for when iterating VLO in Eq. (14). What is counted
as N2LO is the irreducible part of the diagram that results from
picking up the pion pole and is given by the three-dimensional
integral

A
(a)
rad = − 4π

mN

g2
A

4 f 2
π

λ(0)(�)
�

m

[(P†
m)rs,ab(Pm)kn,cd ]

×
�

d3l

(2π )3

l2

�

l2 + m2
π

�
3
2

R(| �p �|, | �p − �l |; �) (36)

with the scalar function

R(x, y; �) ≡ fR

�

x2

�2

�

fR

�

y2

�2

�

�

x2 + mN�(0)(�)
�

y2 + mN�(0)(�)
. (37)

λ(0)(�) and �(0)(�) are the LO values, determined by fitting
to empirical 1S0 phase shifts (see Table I). On the ground of
satisfying unitarity up to this order, one must use the same
regularization function adopted for the LO resummation (18).

The amplitude of the diagram in which the pion propagator
connects the outgoing nucleon lines (not shown in Fig. 1) can
be obtained by making the following replacements:

(a, b)(c, d ) → (c, d )(a, b) ; (r, s)(k, n) → (k, n)(r, s) ;

( �p, �p �) → (−�p �,−�p ). (38)

The integrals are calculated numerically, and the trace for-
malism of Ref. [41] is used to obtain partial-wave projected
amplitudes before the loop momentum is integrated over. With
a bit of spin-isospin algebra, the contribution of Fig. 1(a) and
its permutation to 1S0 is obtained by evaluating the following
integral:

V
1S0

rad = − π

mN

g2
A

4 f 2
π

λ(0)(�)

�

d3l

(2π )3

l2

�

l2 + m2
π

�
3
2

× [R(| �p �|, | �p − �l |; �) + R(| �p |, | �p � + �l |; �)]. (39)

The corrections to the triplet channels come from the dia-
grams in Fig. 1(b),

A
(b)
rad = 4π

mN

g2
A

16 f 2
π

λ(0)(�)
�

e,m,³,´

1

8
[(τeτ2τm)ba(τ2τeτm)cd

× (σ³σ2)rs(σ2σ´ )kn]

�

d3l

(2π )3

l³l´
�

l2 + m2
π

�
3
2

× R(| �p−|, | �p �
+|; �), (40)

where

�p± ≡ �p ±
�l
2
, �p �

± ≡ �p � ±
�l
2
. (41)

Projection of A
(b)
rad is again performed with the trace for-

malism. After taking all the variants due to permutations of
the pion line into account, the radiative corrections to the
3S1 − 3D1 potential is given by

V
3S1−3D1

rad = − π

mN

g2
A

16 f 2
π

λ(0)(�)

�

d3l

(2π )3

l2

�

l2 + m2
π

�
3
2

× T ( p̂, p̂�, l̂ )[R(| �p−|, | �p �
+|; �)

+ R(| �p−|, | �p �
−|; �)

+ R(| �p+|, | �p �
−|; �) + R(| �p+|, | �p �

−|; �)], (42)

where the 2 × 2 matrix T ( p̂, p̂�, l̂ ) is defined by

�3S1|T |3S1� = 1,

�3S1|T |3D1� = 3( p̂ · l̂ )2

√
2

− 1√
2
,

�3D1|T |3S1� = 3( p̂� · l̂ )2

√
2

− 1√
2
,

�3D1|T |3D1� = 9

2
( p̂ · l̂ )( p̂� · l̂ ) p̂ · p̂� − 3

2
[( p̂� · l̂ )2 + ( p̂ · l̂ )2]

+ 1

2
. (43)

IV. NUCLEON-NUCLEON PHASE SHIFTS AND TRITON

BINDING ENERGY

In this section we show how well the momentum-
dependent dibaryon potential agrees with empirical phase
shifts of NN scattering and its prediction for the triton binding
energy at LO and NLO.
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FIG. 2. The 1S0 phase shifts as a function of c.m. momentum k up to N2LO. The blue, orange and black bands represent LO, NLO, and
N2LO respectively, and the bands show the variation with � from 600 to 2400 MeV. The potentials used in (a), (b), and (c) are momentum-
dependent dibaryon potentials, MMW scheme and dynamic dibaryon potentials, respectively.

A. 1
S0 channel

Having computed the radiative corrections, we write the
NNLO 1S0 potential explicitly as follows:

VN2LO = C
(2)
0 + C

(0)
2

2
(p2 + p�2) + V (2)

spr (p�, p)

+ VTPE0 + V
1S0

rad (p�, p). (44)

The 1S0 phase shifts up to N2LO are shown in Fig. 2(a). The
bands represent the cutoff variation spanning from � = 600
MeV to 2400 MeV. The LECs are determined by fitting the
EFT amplitudes to the empirical phase shifts provided by the
partial-wave analysis (PWA) of the Nijmegen group [42,43]
by a least-square procedure. For LO and NLO, PWA points
with c.m. momentum k � 150 MeV are used, and at N2LO in-
puts from k = 150–300 MeV are added. For comparison, the
phase shifts up to N2LO obtained with the dynamic dibaryon
potentials of Ref. [13] and the power counting of Ref. [8]—
referred to as minimally modified Weinberg (MMW) in the
current paper—are shown in Fig. 2(b) and 2(c). The LECs for
this interaction were determined with the same set of PWA
inputs.

The rather mild sensitivity to the cutoff �, manifest in
the narrowness of the cutoff-variation bands, is somewhat
expected based on the ultraviolet suppression afforded by
the momentum-dependent φNN vertex. The rapid order-by-
order convergence is also retained from the energy-dependent
dibaryon potential, as illustrated in Ref. [13]. Moreover, the

radiative correction V
1S0

rad does not spoil the cutoff indepen-
dence or the convergence of the EFT expansion.

B. Spin-triplet channels

3S1 − 3D1 is the spin-triplet channel that is most likely
affected by the pion cloud because the centrifugal barrier in
higher waves tends to suppress the radiated pions. In cal-
culating the phase shifts of 3S1 − 3D1, we follow the power
counting of Ref. [39], with OPE and one S-wave counterterm
at LO, NLO vanishing, and two more counterterms, TPE0,

and V
3S1−3D1

rad (42) at N2LO.
The cutoff dependence has typically been more of a con-

cern for the triplet channels because the singular attraction of
OPE was a major source to upset NDA from the perspective of
RG invariance. We determine the values of LECs by demand-
ing that several PWA phase shifts are reproduced exactly.
Specifically, the following PWA phase shifts are used: the 3S1

phase shift δ3S1
at k = 118 MeV and 153 MeV and the mixing

angle �1 at 153 MeV. Shown in Fig. 3, 3S1 − 3D1 phase shifts
and mixing angles for representative momenta (k = 100 and
200 MeV) become insensitive to the cutoff value � when �

is sufficiently large.
Figure 4 compares the 3S1 − 3D1 phase shifts produced by

the radiatively corrected dibaryon potential and the MMW
scheme. The difference is minuscule: for the 3S1 phase shifts,
the discrepancy is no more than about one degree, whereas
the differences of the 3D1 phase shifts and the mixing angle is
smaller than one degree.
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FIG. 3. The 3S1 − 3D1 phase shifts and mixing angle at k = 100 MeV (red) and 200 MeV (blue), as functions of momentum cutoff �. The
dashed (solid) lines represent the LO (N2LO) result.

However, the values of 3S1 − 3D1 counterterms are renor-
malized by these radiative corrections, varying up to 50%
compared to their MMW values. Thus, the impact of the
radiative corrections on the triplet channels appears to be
almost entirely short-ranged. This is further confirmed by the
numerically tiny contributions to higher partial waves such
as 3P0, 3P1, and 3D2. We have computed the phase shifts of
these partial waves, using partially-perturbative-pion power
counting, Ref. [44] for 3P0 and Ref. [45] for 3P1 and 3D2.
Within numerical precision of our calculations, the differences
are found to be negligible.

C. Triton binding energy

The success of the momentum-dependent dibaryon poten-
tial in 1S0 was more or less expected because it is unitarily
equivalent to the energy-dependent version in 1S0, at least
at tree level. A third particle can assess its impact beyond
the two-nucleon system. The exchanged pion in the radiative
corrections considered in Sec. III plays the role of a third

particle, but it is virtual. We therefore now asses what the
theory predicts for the triton binding energy up to NLO.

The calculation is set up following the power counting of
partially perturbative pions. At LO, we iterate to all orders
the potential (11) plus OPE in 1S0, and one contact term plus
OPE in 3S1 − 3D1 and 3P0 [1]. This is done by solving the
Faddeev equations to obtain binding energies as LO. At NLO,
in addition to the NLO 1S0 force, OPE is included in channels
up to D waves (1P1, 3P1, 3P2 − 3F2, 1D2, 3D2, and 3D3 − 3G3).
Perturbative corrections to the binding energy are obtained by
evaluating the NLO potentials between LO wave functions,
obtained from the Faddeev equations along with the LO en-
ergies. For all calculations we include channels with angular
momentum up to jmax = 4 in the Faddeev equations.

The results for various cutoff are shown in Table II as
columns of labeled “SEP.” For comparison, we also show the
results for the MMW scheme. Since the triton is relatively
shallow, with an average binding momentum

√
2mN B3H/3 �

73 MeV, we do not expect the dibaryon potential to neces-
sarily perform much better in reproducing the triton binding

FIG. 4. The 3S1 − 3D1 phase shifts and mixing angle as functions of the c.m. momentum k, for cutoff � = 600 MeV (red) and 2400 MeV
(green). The solid lines represent the results with radiative corrections to the dibaryon potential, and the dashed lines correspond to the MMW
scheme. The circles are the PWA values. See the text for more detailed explanation.
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TABLE II. The binding energy of the triton (MeV). See the text
for more explanations.

SEP MMW

� (MeV) LO NLO LO NLO

400 −8.67 −8.50 −11.02 −7.68
600 −6.10 −6.10 −6.46 −6.90
800 −5.57 −5.58 −5.30 −6.64
1600 −5.37 −5.51 −4.89 −6.49

energy. In fact, the NLO of MMW has a smaller cutoff varia-
tion, and the large � limit is closer to the experimental value
of � 8.5 MeV. However, cutoff variation at best should be
taken as a lower bound for the full theoretical uncertainty.
The NLO correction of SEP is much smaller than MMW,
which might imply that the actual EFT truncation error is
smaller with SEP than with MMW. While a more systematic
comparison of the two schemes in few- or many-nucleon
is definitely interesting, it is beyond the scope of the pa-
per, as is a triton calculation involving the energy-dependent
dibaryon potential. We are for now content with finding that
the dibaryon potential gives a description of the three-nucleon
system that is comparable to the MMW scheme. Both the SEP
and MMW interactions yield the triton slightly more bound
compared to earlier calculations using a similar perturbative
power-counting scheme [46,47].

Nuclear-structure calculations using the dibaryon interac-
tion [29] or an interaction inspired by it [31] have been carried
out previously. In Ref. [31], some of the light nuclei with
A = 3–6 were investigated. A direct comparison between the
triton binding energy calculated in Ref. [31] and this work is
however difficult because different power-counting and regu-
larization schemes have been used. We only note that results
agree within 10%.

V. CHIRAL SYMMETRY

Nonlinear realization of spontaneously broken chiral sym-
metry requires derivatives acting on hadronic fields to be
chirally covariant. The chiral-covariant derivative Di for the
nucleon, which is an isospin-1/2 field, is given as [48]

DiN ≡
�

∇i + τ

2
· E i

�

N, (45)

where the so-called chiral connection E i is given by

E i ≡ i
π

fπ
× Di (46)

with

Di ≡ D−1 ∇iπ

2 fπ
and D ≡ 1 + π2

4 f 2
π

. (47)

The moral here is that derivatives acting on N must be accom-
panied by composite chiral-connection terms consisting of π

and N , with two types of operators sharing the same set of
LECs. Because the φNN vertex function (10) is constructed
out of an infinite series of derivative couplings acting on N ,

FIG. 5. The transition vertex of NNππ → φ.

it is less straightforward than usual to write down the cor-
responding chiral-connection operators. Furthermore, in light
of the proposed two-parameter fine-tuning at LO in 1S0, these
chiral-connection operators could be enhanced in comparison
with NDA.

Chiral-connection operators that include products of two
pion fields, the minimal number of pion fields such operators
expected to have, are normally the most phenomenologically
important for low-energy nuclear physics. We therefore focus
on the transition vertex of NNππ → φ, depicted in Fig. 5,
where ³1,2 denotes collectively the spin and isospin indices
of the incoming nucleons, �p ≡ ( �p1 − �p2)/2 their relative mo-
mentum, a, b, c the isospin indices of the pions and the
isovector dibaryon, and �k1,2 the momentum of the incoming
pions. Following the derivations in the Appendix, one finds
the vertex function of φNNππ to be

AφNNππ = ig

4 f 2
π

�

4π

mN

�

i(δbcPa − δacPb)³2³1
B+

+ 1√
8
�abc(σ2τ2)³2³1B−

�

, (48)

where we have defined

B± ≡ u(| �p + �k1/2|, | �p + �k2/2|)
± u(| �p − �k1/2|, | �p − �k2/2|),

u(x, y) ≡
�

1 + x2

mN�

�− 1
2

−
�

1 + y2

mN�

�− 1
2

.

(49)

Using the scalings (12) and (13), one has the vertex function
scale as follows:

AφNNππ ∼ 4π

mN

1√
Mhi

1

fπ
. (50)

Combining then the scaling (50) with the standard counting
rule for irreducible pion loops, we find that the φNNππ ver-
tex contributes to the two-nucleon force at N2LO, illustrated
in Fig. 6. However, the amplitude of this diagram vanishes,

FIG. 6. Irreducible NN diagram built out of a φNNππ vertex.
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FIG. 7. The Feynman diagrams contributing to three-body and
four-body forces with the φNNππ vertex.

which can be seen by evaluating the isospin factors of AφNNππ

under exchange of the pion isospin index a and b:

�aac = 0 and δacPa − δacPa = 0. (51)

As shown in Fig. 7, the φNNππ vertex (48) contributes
to three-nucleon forces and four-nucleon forces. If we fol-
low Weinberg’s counting for long-range few-nucleon forces,
these both enter at N4LO, four orders higher than the LO
two-nucleon forces. If one ever ventures to describe two-pion
production by nucleon-nucleon collision, the φNNππ will
become relevant. These contributions are either quite high-
order effects (3N or 4N forces) or become sizable only at
such high momenta (NN → NNππ ), where the applicability
of chiral EFT is questionable at best. In conclusion, the en-
hancement due to the momentum-dependent dibaryon vertex
does not give rise to particularly significant extraneous contri-
butions to nuclear structures or reactions.

VI. SUMMARY AND CONCLUSIONS

We have considered a new formulation of chiral EFT to
improve the slow convergence of the 1S0 phase shifts. The
key idea is to replace the energy-dependent dibaryon potential
proposed in Ref. [13] with a momentum-dependent formula-
tion that it is more amenable to many-body methods used for
nuclear-structure calculations.

The main ingredient is a transition form factor, from 1S0

NN states to the spin-0 and isospin-1 dibaryon:

AφNN = −
√

4πg
�

p2/� + mN

Pm (52)

with two parameters g and � characterizing, respectively, the
strength and momentum range of the transition. The vertex
function (52) is interpreted as the sum of an infinite sequence
of φNN derivative-coupling operators, correlated by g and
�, which in turn correspond to two independent low-energy
mass scales, as shown in Sec. II. With g and � varying, the
resulting momentum-dependent potential traces out a two-
dimensional surface in the EFT parameter space, in contrast
to the one-dimensional line for the more conventional 1S0 LO
chiral forces.

This phenomenologically inspired potential must demon-
strate its consistency with the chiral Lagrangian. For instance,
the φNN vertex can be radiatively corrected by the pion
and could contribute non-trivial force to 1S0 at N2LO [see
Fig. 1(a)]. When one of the incoming nucleons is connected
to one of the outgoing nucleons by a radiation pion, triplet-
channel amplitudes receive corrections as well [see Fig. 1(b)].
We examined these radiative corrections and found that they

turn out to modify the long-range chiral forces only modestly.
In particular, they leave the already satisfactory convergence
in the triplet channels intact.

We investigated further along this line, studying the case
where a third nucleon is present. More specifically, the triton
binding energy was calculated up to NLO using a power-
counting scheme with partially perturbative pions [39,45].

Since the φNN transition form factor is interpreted as an
infinite series of nucleonic derivative couplings, it is accompa-
nied by a φNNππ vertex in order to satisfy chiral symmetry.
We worked out the expression of this φNNππ vertex function
and discussed its phenomenological impacts, concluding that
it only modifies chiral nuclear forces at quite high orders.

Because of our practical motivation of nuclear-structure
studies, we did not touch the issue of chiral extrapolation,
analytical continuation of observables in the light quark mass
mu,d . The chiral symmetry-breaking parts of 1S0 contact terms
have been argued to defy NDA based on RG considerations
[4]. We conjecture here that the UV-suppressing dibaryon ver-
tex offers an intriguing opportunity to reduce the divergences
proportional to m2

π , and then this might change the degree to
which RG invariance modifies the NDA-based power count-
ing. However, it is unclear how this can be implemented in a
model-independent fashion.

In closing we note that likely further versions of a mul-
tiparameter LO in the 1S0 channel can be constructed with
yet another formulation. What was done in this paper for the
momentum-dependent 1S0 dibaryon potential provides guid-
ance for inspecting whether the specific choice of interaction
can be incorporated into chiral EFT.
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APPENDIX: VERTEX FUNCTION OF NNππ → φ

In order to satisfy chiral symmetry, there must be pion-
absorption vertices entering along with ANNφ defined in
Eq. (10). In this Appendix, we work out the vertex function
for the transition NNππ → φ, discussed in Sec. V.

A nonlinearly realized chiral transformation acts on the
nucleon field like an isospin rotation with an angle depending
on the local pion field. Let us focus on the axial sector SU (2)A

of chiral symmetry, parametrized by θA with stereographic
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coordinates:

δAN = −i

�

θA × π

2 fπ

�

· τ

2
N,

δAπ = fπθA

�

1 − π2

4 f 2
π

�

+
�

θA · π

2 fπ

�

π,

(δAφ)c =
��

θA × π

2 fπ

�

× φ

�

c

.

(A1)

We first seek the chiral-connection operator that has two pion
fields, the fewest number of pion fields required by chiral
symmetry, and then study its vertex function in momentum
space.

As an illustration of our approach, we first derive the chiral-
connection terms for the following operator:

�

m

φ†
m[NT

Pm

←→∇ 2N]. (A2)

Unless noted otherwise, derivatives here and in the follow-
ing act only on the fields within brackets. φ†

m in the above
equation, for instance, is not acted upon. The most straight-
forward way to account for chiral symmetry is to replace the

derivative
←→∇ with the chiral-covariant derivative

←→
D defined

in Eq. (45). Expanding in powers of π, we can read off the
corresponding chiral-connection terms up to O(π2/ f 2

π ):

�

b c d m

i�bcd

4 f 2
π

φ†
m

�

i

��

2(∇iN )T τ T
d Pmπb(∇iπc)N + NT τ T

d Pmπb(∇2πc)N − 2NT τ T
d Pmπb(∇iπc)(∇iN )

�

+ [2NT
Pmτdπb(∇iπc)(∇iN ) + NT

Pmτdπb(∇2πc)N − 2(∇iN )T
Pmτdπb(∇iπc)N

��

. (A3)

However, the expansion becomes cumbersome if we substitute the chiral-covariant derivatives in the following operator,
which is part of the Lagrangian (6), when n is large:

�

m

φ†
m[NT

Pm(−i
←→∇ )2nN]. (A4)

We therefore try a slightly different approach and consider the axial transform δA of the operator in Eq. (A2):

�

b c d m

φ†
m

�

NT
Pm(

←−∇ − −→∇ )2

�

−i�bcdθb

πc

4 fπ
τd N

�

+ NT

�

−i�bcdθb

πc

4 fπ

�

τ T
d Pm(

←−∇ − −→∇ )2N

�

. (A5)

Noticing that to the lowest order in π2/ f 2
π we have

δAπ = fπθA + O
�

π2/ f 2
π

�

, (A6)

we tentatively propose the following operator to cancel the preceding chiral-symmetry violation (A5):

�

b c d m

i

4 f 2
π

�bcdπbφ
†
m

�

[NT
Pmτd (

←−∇ − −→∇ )2πcN − NT
Pmτd

←−∇ 2πcN].

+
�

NT πcτ
T
d Pm(

←−∇ − −→∇ )2N − NT πcτ
T
d Pm

−→∇ 2N
��

. (A7)

It is straightforward to verify that the combination of the operators in Eqs. (A2) and (A7) is chiral invariant up to O(π2/ f 2
π ).

Coming back to the more general case, we expand Eq. (A4) as

�

m

φ†
m[NT

Pm(−i
←→∇ )2nN] =

�

m

�

k+l+q=n

C(k, l, q)φ†
m

⎡

£NT
Pm

�←−∇
i

"2k�

−
←−∇
i

·
−→∇
i

"l�−→∇
i

"2q

N

¤

⎦, (A8)

where C(k, l, q) are binomial coefficients,

(x + y)2n =
�

k+l+q=n

C(k, l, q)x2k (xy)l y2q, (A9)

satisfying

C(k, l, q) = C(q, l, k). (A10)

The chiral-connection operator for Eq. (A8), in analogy with Eq. (A7), is
�

k+l+q=n

C(k, l, q)[OB(k, l, q) + OC (k, l, q)], (A11)
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where

OB(k, l, q) ≡
�

b c d m

i

4 f 2
π

�bcdπbφ
†
m

⎡

£NT
Pmτd

�←−∇
i

"2k�

−
←−∇
i

·
−→∇
i

"l�−→∇
i

"2q

πcN

¤

⎦,

OC (k, l, q) ≡
�

b c d m

i

4 f 2
π

�bcdπbφ
†
m

⎡

£NT πcτ
T
d Pm

�←−∇
i

"2k�

−
←−∇
i

·
−→∇
i

"l�−→∇
i

"2q

N

¤

⎦. (A12)

For OB(k, l, q), either l or q must be positive so that there is at least one
−→∇ acting on πcN . Similarly, either l or k must be

positive for OC (k, l, q). Transposing the operator inside the square brackets, say, of OB and using PT
a = −Pa, we realize

OC (k, l, q) = OB(q, l, k). (A13)

Combining this with Eq. (A10), one concludes that Eq. (A11) reduces to

2
�

k+l+q=n

C(k, l, q)OB(k, l, q). (A14)

We then consider the following matrix element of OB(k, l, q) between the free-particle states whose quantum numbers are
specified in Fig. 5:

�

d4x�φc, p3|OB(k, l, q; x)|k1, a; k2, b; p1, ³1; p2, ³2�

= i

4 f 2
π

�

b� c� d � m

�b�c�d �

�

d4x�φc, p3|πb�φ†
m

⎡

£NT
Pmτd �

�←−∇
i

"2k�

−
←−∇
i

·
−→∇
i

"l�−→∇
i

"2q

(πc�N )

¤

⎦

x

|k1, a; k2, b; p1, ³1; p2, ³2�.

(A15)

Here, a, b, c are the isospin indexes of the external pions and intermediate dibaryon. After counting all contractions and stripping
the δ function that enforces momentum conservation we obtain

− i

4 f 2
π

�

�

1√
8
�abcσ2τ2 + i(δbcPa − δacPb)

�

³2,³1

�p2k
2 {[−�p2 · ( �p1 + �k1)]l ( �p1 + �k1)2q − [−�p2 · ( �p1 + �k2)]l ( �p1 + �k2)2q}

+
�

− 1√
8
�abcσ2τ2 + i(δbcPa − δacPb)

�

³2,³1

�p2k
1 {[−�p1 · ( �p2 + �k1)]l ( �p2 + �k1)2q − [−�p1 · ( �p2 + �k2)]l ( �p2 + �k2)2q}

�

. (A16)

The dibaryon momentum �p3 does not appear in the above equation because the derivatives in Eq. (A12) act only on the fields
inside the brackets.

To obtain the φNNππ vertex function AφNNππ (48), we need to carry out two summations of the above matrix elements. The
first is over all the combinations of (k, l, q) prescribed by Eq. (A14), using Eq. (A10). The second is given by summing n from
0 to ∞, as defined in the Lagrangian (6), using the identity

∞
�

n=0

g2nt2n = g

∞
�

n=0

�− 1
2

n

�

t2n = gW (t ) (A17)

with

W (t ) ≡ (1 + t2)−
1
2 . (A18)

We can apply these two summations to any individual term in the expression (A16). Take the following term as an example. The
first summation is given by

�

k+l+q=n

C(k, l, q) �p2k
2 [−�p2 · ( �p1 + �k1)]l ( �p1 + �k1)2q = ( �p1 − �p2 + �k1)2n, (A19)

followed by the second summation

∞
�

n=0

g2n

�

(2 �p + �k1)2

4mN�

�n

= gW

� |p + �k1/2|√
mN�

�

. (A20)

Adding up the contributions from every term in Eq. (A16), we eventually arrive at Eq. (48).
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