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Moments and interpretations of
the Cohen-Lenstra—Martinet heuristics
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Abstract. The goal of this paper is to prove theorems that elucidate the Cohen—Lenstra—Martinet
conjectures for the distributions of class groups of number fields, and further the understanding
of their implications. We start by giving a simpler statement of the conjectures. We show that the
probabilities that arise are inversely proportional to the number of automorphisms of structures
slightly larger than the class groups. We find the moments of the Cohen—Lenstra—Martinet
distributions and prove that the distributions are determined by their moments. In order to
apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the
capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups
of non-Galois fields to the class groups of Galois fields. We then construct an integral model
of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois
fields, and prove that the Cohen—Lenstra—Martinet conjectures predict a distribution for class
groups of non-Galois fields that involves the inverse of the number of automorphisms of the
class group as a Hecke-module.
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1. Introduction

In this paper we prove several results to help elucidate the Cohen—Lenstra—Martinet
conjectures [9, 11] for the distributions of class groups of number fields, and to further
the understanding of their implications. In Section 3, we explain the statement of
the conjectures in the framework of probability theory. In Section 4, we prove a
result about the terms appearing in the Cohen—Lenstra—Martinet conjectures. In
particular, we prove certain expressions given by Cohen and Martinet are equal to
simpler expressions, which allows us to conclude the following. (See Conjecture 3.5
and Theorem 4.1 for precise statements.)

Theorem 1.1. For every finite group I" and subgroup ', among Galois number
fields K with isomorphism Gal(K/Q) ~ T (i.e. I'-fields) and decomposition
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group T at 0o, the Cohen—Lenstra—Martinet conjectures predict that

c

Prob (Clx ®zZ[|I|™"] = H) = ’
rob (Clg ®zZ[|T|™'] = H) |HTeo || Autr (H)|

where Clg is the class group of K, and c is a constant, and H is any finite Z[|T'| ™!, T']-
module with H' = 1.

The original philosophy of the Cohen—Lenstra—Martinet conjectures, going back
to Cohen and Lenstra [9], is that objects should appear with frequency inversely
proportional to their number of automorphisms. So we naturally ask why there is
an |H">| term in the above predictions. In Section 5, we slightly enlarge the class
group to the Galois group over QQ of the Hilbert class field of K, with the data
of a decomposition group at co. We consider, for the first time, the distributions
of these larger structures, which we call class triples. We show that a class triple
is determined by the class group and decomposition group at oo, and the number
of automorphisms of the class triple is exactly |H || Autr(H)|, explaining the
probabilities above. Bartel and Lenstra [2] have given a different approach to this
question by giving conjectures about the distribution of Arakelov class groups based
on those groups appearing with frequency inversely proportional to their number of
automorphisms (which takes some work to make precise, see [1]). Their predicted
distribution on Arakelov class groups then pushes forward to the Cohen—-Lenstra—
Martinet distribution, over any base number field.

In Section 6, we determine the moments, which are important averages of the
Cohen-Lenstra—Martinet distributions on finite abelian I"-modules.

Theorem 1.2 (Moments). Forevery finite group I" and subgroup I, if X is a random
Z[|T|~Y, T']-module with the Cohen—Lenstra—Martinet distribution for T -fields with
decomposition group Ty at oo, then for every finite Z[|T'|~!, I'-module H with
HT = 1, we have the H-moment of X is

E(|Surr(X, H)|) = |[H ™.

Here Surr(X, H) denotes the surjective I'-module homomorphisms from X
to H. See Theorem 4.1 and Theorem 6.2 for precise statements. These moments are
the most important averages of the Cohen—Lenstra—Martinet distributions. (See [7,
Section 3.3] on why they are called moments.) The only non-trivial predicted averages
of the Cohen—Lenstra—Martinet conjectures that have been proven are the Z/3Z-
moment of the class groups of quadratic fields due to Davenport and Heilbronn [14]
(and Datskovsky and Wright [13] for quadratic extensions of general global fields)
and the Z /27Z-moment of the class groups of cubic fields due to Bhargava [3]. (There
is also more known on the 2-Sylow subgroup of the class groups of quadratic fields;
see [20,44].) When working over [F,(¢) instead of Q, there are also results on the
H-moments of class groups, including of Ellenberg, Venkatesh, and Westerland [18]
and the second author [50] for quadratic extensions, and of Liu, the second author,
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and Zureick—Brown [34] for I"-extensions, showing that as ¢ — oo the moments
match those in Theorem 1.2. The paper [42] of Pierce, Turnage—Butterbaugh, and
the second author explains how the Cohen-Lenstra—Martinet conjectures for the
moments of class groups are related to other important conjectures in number theory,
including the {-torsion conjecture for class groups, the discriminant multiplicity
conjecture, generalized Malle’s conjecture, and the count of elliptic curves with fixed
conductor. So given the relative accessibility and the centrality of these moments,
Theorem 1.2 is useful because it tells us what moments the Cohen—Lenstra—Martinet
conjectures predict.

Moreover, we show that moments determine the Cohen—Lenstra—Martinet
distributions uniquely, which is particularly of interest because the moments are
the statistics of class groups about which we seem most likely to be able to prove
something.

Theorem 1.3 (Moments determine distribution). For every finite group I' and
subgroup Too, if X is a random Z[|T'|™', T')-module such that for every finite
Z[|IT |71, T)-module H with H' = 1, we have

E(|Surp(X, H)|) = |[H ™"

Then X has the Cohen—Lenstra—Martinet distribution for T -fields with decomposition
group I'sg at o0.

See Theorems 6.12 and 6.13 for precise statements. When we restrict to groups
whose orders are only divisible by a finite set of primes, we also prove that a sequence
of random variables with these moments in the limit must have the Cohen—Lenstra—
Martinet distribution as its limit distribution. Theorem 1.3 is part of a long line
of work showing results in the same spirit for other categories of groups, including
work of Heath-Brown [27, Lemma 17] for elementary abelian p-groups, Ellenberg,
Venkatesh, and Westerland [18, Section 8] for finite abelian p-groups, the second
author for finite abelian groups [49, Section 8], and Boston and the second author
[5, Theorem 1.4] for pro- p groups with a Z /27 action. See [16, 19,24, 50] for other
examples.

Next, we consider the implications of the Cohen—Martinet conjecture for class
groups of non-Galois fields. While these conjectures do not directly make claims
about class groups of non-Galois fields, when the class groups of non-Galois fields
can be given as a function of the class groups of Galois fields, then the Cohen—
Martinet conjectures make a prediction for their average. For example, let I" be a
finite group and I'” a subgroup of I'. When L is a I'-field and K is the fixed field LT ’,
then, localizing away from primes dividing |I"|, we have

Clx ®zZ[|T|] = (CIY) ®z Z[|T|71]

(where the T exponent denotes taking the fixed part). So a conjecture about the
distribution of class groups of I'-fields has a consequence for the distribution of class
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groups of their I''-fixed fields. However, there is also the possibility of using the
Cohen—Martinet conjectures, for some primes p | |I'|, to predict distributions of
p-Sylow subgroups Clk_ , of Clk. In order to realize this possibility, we prove a new
result in algebraic number theory relating class groups of non-Galois fields to class
groups of Galois fields, in particular at primes dividing the order of the Galois group.

Theorem 1.4 (Determination of class groups of non-Galois fields from Galois). Let
L/K be an extension of number fields such that L/Q is Galois with Galois group T
and let T = Gal(L/K). Let er;r be the central idempotent of Q[I'] for the
augmentation character for T acting on T cosets, and p a prime not dividing the
denominator of er1+ and such that er ' Zp[I'] is a maximal order. Then we have
an isomorphism

~ F/
ClK,p e (ep/p/ CILJ,) R
where the subscript p denotes taking the Sylow p-subgroup.

See Theorem 7.6 for a precise statement (for relative class groups over an arbitrary
base number field). In particular, we note the restriction on p is exactly the condition
on p for the Cohen—Martinet conjectures to say something about the distribution
of er/r’ Clg,p. So Theorem 1.4 allows us to fully determine the implications of the
Cohen—Martinet conjectures for the class groups of non-Galois fields.

Moreover, for p, K, L as in Theorem 1.4, we have the immediate corollary that
the order of the kernel of the capitulation map Clxy — Cly, is not divisible by p.
The capitulation kernel is very long-studied, but its structure is not well-known.
Hilbert’s Theorem 94 [28] proves that when L /K is finite, cyclic, and unramified,
then the degree [L : K] divides the order of the capitulation kernel. Hilbert then
conjectured the Principal Ideal Theorem of class field theory, eventually proved by
Artin and Fiirtwangler, that every ideal class in K capitulates in the Hilbert class
field. Suzuki [46] and Gruenberg and Weiss [26] proved further generalizations
showing that the capitulation kernel for unramified abelian extensions is large. Our
theorem above is in the other direction, proving in some cases there is no p-part of
the capitulation kernel.

Theorem 1.4 implies that the Cohen—Martinet conjectures in principle give a
prediction for the distribution of class groups of fields K as above, but the predicted
distribution for a finite abelian p-group H is then the sum over er;rZp)[I']-
modules G such that GT" ~ H (as groups) of the probability for G in the Galois
predictions (see Equation (7.1)). This prediction does not have the appearance
of objects appearing with frequency inversely proportional to their number of
automorphisms. However, in Section 8, we prove new theorems to give such a
perspective on these probabilities, which we now outline.

Of course when L/Q is Galois, we have that Gal(L/Q) acts on Clz. However,
when K /Q has no automorphisms, one might at first guess that Cl g has no particular
structure other than that of a finite abelian group. We prove, however, that there is
always a natural action of a certain ring o on Clg (depending on the Galois groups of
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the Galois closure over QQ and K). Given a representation V of finite group I" over Q
and a subgroup I'" of T, the Hecke algebra Q[I\I'/I”"] naturally acts on VI'. We
construct an integral model o of the Hecke algebra so that the class group Clg,,
(for K, p, I, T’ as in Theorem 1.4) is naturally an o-module (see Lemma 8.4) and
prove that our constructed o is a maximal order (Corollary 8.10). This definition
of o is particularly delicate at the primes p | ||, but the proofs require similar
work at all p. Note that o can be bigger than Z even when the field K has no
automorphisms; see Example 8.20 on degree 10 fields with Galois closure with
group As and Proposition 8.16 in which we prove o is trivial if and only if the
augmentation character for I acting on T/ cosets is absolutely irreducible.

Moreover, Theorem 1.4 and the results in Section 8 show that the p-Sylow
subgroup of the I'-module Cly , of a Galois field L containing K determines the
o-module structure of Clg, ,. That shows that the Cohen—Martinet conjectures imply
some prediction for the distribution of the o-modules Clg, ,, and we further prove a
simple expression for the prediction in terms of | Aut, (H)|~! by way of the following
result.

Theorem 1.5 (Cohen—Martinet predicts | Aut,(H)|™! for non-Galois fields). Given
a finite group T and subgroup T, for every prime p satisfying the condition of
Theorem 1.4, and every p-group o-module H, there is a unique finite e 1 Z,)[I']-
module G such that G¥' = H as o-modules. We also have

Auter, 1z, (G) > Aut, (H).

See Theorem 8.14 for a related statement precisely on the implications of the
Cohen—Martinet conjecture. The key result we prove that allows us to prove
Theorem 1.5 is Theorem 8.9, which gives a Morita equivalence between the categories
of er/r'Z(p)[I']-modules and o-modules. This is the fundamental algebraic property
of our integral model o of the Hecke algebra.

Note that Theorem 1.4 does not require L to be the Galois closure of K.
So actually, the Cohen—Lenstra—Martinet heuristics give infinitely many different
predictions for the distribution of non-Galois (or Galois) class groups, by taking
fixed fields of larger and larger fields. In Section 9, we prove that all of the
predicted distributions agree, which is an important internal consistency check on
the conjectures.

Theorems 1.1, 1.2, 1.3, and 1.5 are theorems in the theory of finite I"'-modules,
including in the probability theory of random finite I'-modules. Even though we have
proven them to specifically elucidate conjectures about class groups, we expect them,
especially Theorems 1.2 and 1.3 to have applications in other contexts. Distributions
related to the Cohen—Lenstra distribution have arisen for predicting the distribution
of Tate—Shafarevich groups of elliptic curves [4, 15], and so in order to generalize
the predictions of [41] on the asymptotics of elliptic curves of a given rank over QQ
to other base global fields, one will need to use an analog of the Cohen—Martinet



344 W. Wang and M. M. Wood CMH

distributions. Also, beyond number theory, the Cohen—Lenstra distributions on
finite abelian groups, and related distributions, have many interesting connections
in algebraic combinatorics; see the recent work of Fulman and Kaplan [24] and
also [6-8,21-23,25,31,32,38,45,47]. Further, the theorems that moments determine
the distribution have been used for determining distributions arising in the theory of
random graphs, such as the sandpile groups of Erdos—Rényi and random regular
graphs [30,37,49]. These theorems on the moments have also been used to show that
certain random matrices have cokernels in the Cohen—Lenstra distribution [39,40,51],
and as an application determine the probability that a random 0/1 rectangular matrix
gives a surjective map to Z". The Cohen—Lenstra and related distributions have
also arisen in questions about random topological spaces [17,29]. The more general
Cohen-Lenstra—Martinet distributions may be relevant in many of these contexts.

2. Notation

Throughout the whole paper, I' is always a finite group and S is always a set of
(possibly infinitely many) rational primes.

Definition 2.1. Let K be a number field and Ky/Q be a subextension of K. We
write Clg for the class group of K. Then we define the relative class group Clg g,
to be the subgroup of Clg consisting of ideal classes o with trivial norm Nmg, g, o
in Clg,. Also, let I ¢ be the group of fractional ideals and P the group of principal
fractional ideals of K.

Definition 2.2. Forafield Ky, by a I'-extension of K, we mean an isomorphism class
of pairs (K, 7), where K is a Galois extension of Ky, and t: Gal(K/Kp) ~ T is an
isomorphism. Anisomorphism of pairs (K, 7), (K’, t’) is anisomorphism«: K — K’
such that the map my: Gal(K/Ko) — Gal(K’/K,) sending ¢ to o o p oo™ ! satisfies
v’ omy = 1. We sometimes leave the t implicit, but this is always what we mean by
a I'-extension. We also call I"-extensions of Q I'-fields.

Definition 2.3. Define Zg to be the localization of Z by the subset of non-zero
integers not divisible by any primes in S, so the maximal ideals of Z s are given by
the primes in S. For any finite abelian group G, define its S part G5 as the subgroup
generated by all p-Sylow subgroups with p € S. (Note that our definition for S-part
of G is the opposite of GS in [11].) We will also use the usual notation Lp) for Zg
when § = {p}.

Definition 2.4. If f is a measurable function on a probability space, we let P denote
the probability measure and [E( /) denote the expected value of f. In this paper, our
probability spaces will always be discrete and countable and

E(f) =) f(G)P(G)).

i=1
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Throughout the paper, we often have a ring R, a central idempotent e of R, and
then consider the ring eR. The reader is warned that eR is not a subring of R in the
usual sense, as R and eR do not share an identity. One could consider eR as notation
for the quotient R/(1 —e)R.

3. Explanation of the Cohen-Lenstra—Martinet heuristics in the Galois case

The goal of this section is to state Cohen, Lenstra, and Martinet’s conjectures on the
distribution of relative class groups of Galois extensions. This requires introducing
many pieces of notation.

3.1. Notations for semisimple Q-algebras. Let A be a finite dimensional semi-
simple (Q-algebra; we denote by {e; }1<i<m its irreducible central idempotents, and
A; = e; Aits simple factors. The algebra A is thus identified with a product ]_[;-"=1 A;,
where each algebra A; is isomorphic to an algebra of matrices M, (D;), where D; is
a division algebra of finite rank over Q of which the center is a number field K;. We
let hl-2 = dimg, A;. Let O be a maximal order in 4 and G a finite O-module. For
any u € Q™, we define

m
Gl == []leGI".
i=1

(See [43, §10] for basic results on semisimple (Q-algebras and maximal orders.)

3.2. Notations for the heuristics. In the rest of this section, we let A = Q[I'], and
continue with the notation above. In particular, we let

1
€1=m20.

Each e; corresponds to a distinct irreducible Q-representation of I with character y;.
We choose a fixed absolutely irreducible character ¢; contained in y;.
Now let K be a number field, and K/ K¢ a Galois extension with Galois group I'.
If v is an infinite place v of Ky, then let ', be the decomposition group at v. We
also define
Xk =—1+ Zlndll:v Ir,,

v|oo
which is a character of I" associated to K /K.

Definition 3.1. We define the rank of K/Kj to be an m — 1-tuple in Q! given by
the formula

1 .
u= Uz, ...,u;m), U= F(XK,(ﬂj) Vi=2,...,m. (3.1
14
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Remark 3.2. For the original definition of rank of K, see [11, Definition 6.4]. These
two definitions are equivalent by [11, Theorem 6.7].

Let S be a finite set of primes. We will next define a random module to model the
class groups C15, which are naturally (1 — e;)Zg[I']-modules. Cohen and Martinet
did not directly consider the distribution that we will define below. However, as we
will prove in this paper, building on tools from [11], the distributions we will now
define turn out to be equivalent to the ones considered in [11]. We think there are
advantages of viewing the conjecture in multiple equivalent but differently presented
forms.

Definition 3.3. If p € S implies that p } |T'|, then for u = (us,...,u,) € Q™1
we define a random variable

X = X((1-e)Q[T],u, (1 —e)Zs[T])

to be arandom (1 — e;)Z s [I"]-module such that for all finite (1 —e1)Z s[I"]-modules

G, G,, we have
P(X = G1) _ |Ga2f*| Autr (G2)|

P(X =G2)  |Gi*] Autr(Gy)]
(where, of course, we order the irreducible central idempotents of (1 — e1)Q[I'] by
the order in Q[I']).

Remark 3.4. It follows from [11, Theorem 3.6] (with their u as oo and their s as
our u) that this definition is well-defined, i.e. the series

1
; G Autr ()]

is convergent, where G runs through all isomorphism classes of finite (1 —e1)Zg[I']-
modules. Even when |S| = oo, the series is still convergent as long as u; > 0 for all
i =1,...,m. So the above definition can be extended to the case |S| = oo as long
as all the u;’s are positive.

3.3. Statement of the conjecture. The conjecture of Cohen—Martinet [11, Hyp-
othesis 6.6] says the following.

Conjecture 3.5 (Cohen and Martinet [11]). Let S be a finite set of prime numbers
such that the primes in S are relatively prime to |T'|, and u € Q™! and
X = X((1 —e)Q[T].u, (1 —e1)Zs[T])

the random module defined above. Then, for every ‘“reasonable” non-negative
function f defined on the set of isomorphism classes of finite (1 —e1)Z s [']-modules,

we have s
) 1—ep)Cl
X—>00 ZlDiscKlsx 1

where the sum is over all T'-extensions K /Ky and the rank of K /Ky is u (and no
conjecture is made if the sums are empty).
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The cases when Ko = Q and either I' is abelian and K is totally real, or || = 2,
are the earlier conjecture of Cohen—Lenstra [9, Fundamental Assumptions 8.1].

Remark 3.6. In [11], a quantity M, ( f) appears in place of E( f(X)). The identity
Mf (f) = E(f(X)) is proved in Proposition 6.6. Also the S-part of the relative
class group le( /K, appears in place of (1—-e1) Cl}g(. In Lemma 7.12, we show that

these are actually the same. Note that e; Cl}q( = Cl}q( o- Therefore we only consider
the (1 — e )-part as a random object.

Cohen and Martinet actually make further conjectures for some primes
dividing |I'| and for infinite S. We will give the conjecture for p | |I'| in
Conjecture 7.2.

Remark 3.7. In Conjecture 3.5, we give the conjecture made by Cohen and Martinet,
with the addition of the hypotheses that p 4 |I"| and S is finite, except that we have
replaced some mathematical expressions in the original conjecture with equivalent
mathematical expressions. In particular, we have replaced them with equivalent
expressions that we think shed more light on the nature of the conjecture. However,
there are several problems with the content of the conjecture that we briefly mention
here, and are mostly orthogonal to the work in this paper. First, given the example of
Bartel and Lenstra [2, Theorem 1.1], it is probably best to keep the conjecture to finite
sets S. Second, the ordering of the fields needs to be changed in the conjecture, given
the example of [2, Theorem 1.2] of Bartel and Lenstra, who suggest ordering fields
by the radical of their discriminant based on work on the second author [48] that
shows this ordering has nice statistical properties for abelian Galois groups. Third,
Malle’s work [35,36] suggests that we should also require that S does not contain
any primes dividing the order of the roots of unity of Ky. The function field results
in [34] suggest that these are all the corrections that need to be made. Finally, we
need to find an appropriate meaning of “reasonable” for the conjecture (which is
never specified by Cohen and Martinet). See [4, Section 5.6] and [2, Section 7] for
some possible notions of “reasonable.”

Even though the conjectures of Cohen, Lenstra, and Martinet do not include the
cases of function fields, as mentioned in the introduction there has been significant
recent work in proving partial results towards their function field analogs. In this
analogy the u = 0 distribution provides the conjectural distribution for Pic® of
random I'-covers of Pmlq, and when one wants to consider some points of the curve
at infinity and the distribution of the class groups of the corresponding affine curves,
then distributions with u # 0 arise. See [50, Section 1] and [33, Section 3.5] for
specific discussion of this aspect of the analogy.

4. The |G |“ in Cohen-Martinet

In this section, we will find a simpler expression for the |G |¥ term that appears in the
conjecture of Cohen and Martinet. We continue the notation from Section 3.
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Theorem 4.1. Let K/ K¢ be a I'-extension of number fields. For each infinite prime v
of Ky, let Ty be a decomposition group at v. We assume that the set S only contains
primes not dividing |U|. If H is a finite (1 — e1)Z s [I']-module, then

[HI* = ]TI1H"™].
v|oo
where v runs over all infinite primes of K.
Proof. By the definition of |H |¥, the theorem reduces to the case of a Zg[I']-
module H such that H = ¢; H for some i > 1. Let e # e; be a central irreducible

idempotent of Q[I'] associated to the QQ-irreducible character y and rank u, and let H
be a finite eZ g[I"]-module. We first show the following identity

ar/my)
[H| = |H| Far)
for each infinite place v of Ky, where for a subgroup A C I" we define

arja :=—1+Ind} 15

to be the augmentation character of A and ar := ar,;. By [11, Theorem 7.3], for
each v, there exists some abelian group G, such that, as abelian groups, we have

H=eH=GW" and H™ = (eH)™ = G/™),

hence the identity.
Note that yx = —1 + }_,(ar/r, + 1), and that (x, 1) = 0. We then know

that
/Ty (X.xK)

ar/ry
1_[|HFU|:1_[|H| Oeard = |H | Geary

v|oo v|oo

If we denote by ¢ a fixed absolutely irreducible character contained in y and let
{@1....,¢;} be the set of all the distinct conjugates of ¢, then

J
X:dzfpi,

i=1

where d is the Schur index. So we have

J
(x> xx) sz,)uc = dj{p. 1x)-

On the other hand, since the character ¢ is absolutely irreducible,

J

(x.ar) Z @i ar) = dje(1) = djh,
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where 4 is the h; of Section 3.1, and one can check 4 = dim ¢. We then know that

Ty — TEKy Yoxk) — 1o — 17
[[I1H™ | =|H| ) = |H|n = |H|" = |H|

v|oo
completing the proof. O

Remark 4.2. Actually the statement of Theorem 4.1 can be extended to some primes
dividing |T"|. Let e be a central idempotent in Q[I'] such that e; - ¢ = 0 and S be a
set of primes such that e € Zg[I'] and eZg[I'] is a maximal order in eQ[I'] (i.e. S
only contains good primes for e, see the definition in Section 7). If H is a finite

eZs[I']-module, then
=TT 1H"™.

v|oo

The proof is the same as above because Theorem 7.3 in [11] still holds in this case.

5. Probabilities inversely proportional to automorphisms

Since the Cohen-Lenstra and Cohen—Martinet conjectures are rooted in the
philosophy that objects appear inversely proportional as often as their number of
automorphisms, it is natural to ask why there is a term |G |[¥ in the conjectures at
all. One answer is that it was necessary to match computational evidence, and other
heuristic explanations are given in [9, Section 8]. In this section, we give another
perspective, over the base field Q, in which we see class groups as a part of a
larger structure where |G |¥| Aut(G)| is the number of automorphisms of the larger
structure. Bartel and Lenstra [2] have given a different perspective on interpreting
these probabilities, over a general number field, as inversely proportional to the
automorphisms of a larger object, in their case, the Arakelov class groups. In
contrast, our larger objects below are only slightly larger than the class groups, and
in particular, finite.

Let T be a fixed finite group. We choose an embedding Q C C so that Gal(Q/Q)
has a canonical decomposition group Gal(C /R) at co. We fix a map s:Gal(C /R) — T,
let K C Q be a Galois extension of Q with an isomorphism Gal(K/Q) ~ T, and
let the decomposition group at oo given by s (under the isomorphism). Let K’ be the
maximal unramified abelian extension of K in Q of order prime to |I"|. The structure
we consider is the finite group G := Gal(K’/Q) with given maps

c:Gal(C/R) - G and n:G — Gal(K/Q) =T,

where 7 is a surjection with abelian kernel. Of course, ker(7) = le( (where S is
the set of primes not dividing |I"|) is naturally a I"-module, but the data (G, c, ) is
a little more. In fact, it is a class triple as defined below.



350 W. Wang and M. M. Wood CMH

Definition 5.1. For a given map s: Gal(C/R) — I', we call (G, c, ) a class triple
(for s) if G is a finite group satisfying the following conditions:

(i) m: G — T is a surjective homomorphism such that ker 7 is an abelian group
whose order is coprime to |I'[;

(ii) c¢:Gal(C/R) — G is a homomorphism such that ¥ o ¢ = s;
(iii) ker 7T = 1 (where I" acts by conjugation by preimages in G);
@iv) imc Nkerw = 1.

Then for two class triples (G, ¢1, 1) and (G3, ¢, 2), @ morphism t is a group
homomorphism G; — G5 such that 71 = 7, o T and that T o ¢; = ¢5.

Theorem 5.2. For a given map s: Gal(C/R) — T and a class triple (G, c, ), we
have _
|Aut(G, ¢, )| = |ker 7™ || Autp (ker ).

Further, given a finite T-module H of order relatively prime to |T'| with HT = 1,
there is a unique isomorphism class of class triples for s with ker r isomorphic to H
as a I'-module.

Proof. Let A be the group of automorphisms of (G, c, ), and since each such
automorphism preserves ker 7 (set-wise) and respects 7, we have a homomorphism

A — Autr(ker 7).

By the Schur—Zassenhaus theorem, we can write G = ker & x I (non-canonically),
and so in this notation an element t € A is determined by where it sends ker 7 and I'.
Further, since w = 7 o 7, it follows that t sends I" to another splitting of G — I'. By
Schur-Zassenhaus all the splittings of G — I" are conjugate by elements of ker 7.

This gives a map from ker 7 to the set of splittings of G — I'. We claim this
gives | ker 77| distinct splittings. In ker 7w x I", we have

(n, DAy, D™ = (nn=H7 7 y).

Suppose that (11, 1) and (n5, 1) give the same splitting for some nq,n, € kerm.
Then for all y € I" we have

mer) T =m0z
ie.nylng = (n;lnl)”_l. By the definition of class triple, this implies n; = n,.
Thus we have | ker 7| splittings.

Any element Autr(kersw) and any splitting ' — H combine to give an
automorphism of (G, i) by the definition of semi-direct product. We next determine
which of these automorphisms preserves c. Let K C G be K := n~!(imz o). So
we have

1 —>kerm - K —>immoc — 1.
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Since imc N kerwr = 1, one splitting of the above is imm o ¢ — imc. Another
splitting isimmw o ¢ — 1 ximmw o ¢ C kerm x I' according to our chosen splitting
above. By Schur-Zassenhaus, these two splittings are conjugate by an element (7, 1)
for some n € ker .

Solet I = imm o c. Then the elements of im ¢ are

(L yY)e 1) = (e y)

for y € I. These elements are fixed by the element of Aut(G, 7) that comes from
¥ € Autr(ker ) and conjugation of " by (m, 1) if and only if forall y € I,

_ —1 _ _ —1
(m. D ()" ). y)m™H 1) = (n(™ ) y)
ie. .
n~tmy(n) = (n_lmW(n))y

ie. n”\my (n) is fixed by I, i.e. m € n~!(ker w)!y(n). Thus, we conclude that
exactly | Autr (ker 7)||(ker 7)?| elements of Aut(H, ) preserve c¢. This gives the
first statement of the theorem.

For the second statement of the theorem, by Schur—Zassenhaus, any class triple
giving H has G ~ H »x I'". Choosing ¢ to be s composed with the trivial splitting
I' — H x T gives at least one class triple giving H. As we saw above, any other

choice of ¢ differs by conjugation by an element of H, i.e. differs by an automorphism
of H x T fixing the map to T". 0

Corollary 5.3. Let K C Q be a Galois extension of Q with Galois group T and de-
composition group Teo at 00 and map s: Gal(C /R) — T CT. Let G :=Gal(K’'/Q)
with given maps

c:Gal(C/R) > G and n:G — Gal(K/Q) =T,
Let S be the set of primes not dividing |T'|. Then,
| Aut(G, ¢, m)| = |(CI) || Autr (CIF)|.

So, combining with Theorem 4.1, we see that the probabilities in the Cohen—
Lenstra and Cohen—Martinet conjectures are inversely proportional to the number of
automorphisms of the class triples associated to the fields (which are determined up
to isomorphism by their class groups and decomposition groups but have a different
number of automorphisms from their class groups).

6. Moments of the Cohen—Lenstra—Martinet random groups

In this section, we will find the moments of the Cohen—Lenstra—Martinet random
I'-modules, and moreover show that their distributions are determined by their
moments.
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6.1. Moments for Galois extensions. We keep the notation from Section 3.1. How-
ever, in this section, we will take the set S' of prime to be not necessarily finite. We
will also define a slightly more general notion of random modules.

Definition 6.1 (Random -modules). Let A be any finite dimensional semisimple
QQ-algebra with m simple factors. Let S be a set of prime numbers, O be a Zg-
maximal order of 4, and u € Q™ be a fixed m-tuple. If either S contains finitely
many primes or u; > 0 foralli = 1,...,m, then we define X = X(A4,u,D)tobea
random finite ©-module such that for all finite 9-module G; and G5, we have

P(X = G1) _ |G2[*Auto(Gy)|
P(X = G2)  |G1[*] Auto(Gr)|

When S does not contain any primes dividing |I'|, then Z s[I'] is a maximal order
in Q[I"] (and so (1 —e1)Zs[I'] is a maximal order in (1 —e1)Q[I']), and our previous
definition of X is a special case of the above. As in Remark 3.4, X is well-defined.

Now given H a finite -module, consider the function | Sury (G, H)| counting
the number of surjective O-morphisms from G to H. Then we have the following
formula to compute the moments of X.

Theorem 6.2. Given a finite O-module H, we have

E(|Suro (X, H)|) = Vi

Proof. In this proof a summation over G/~ always means the sum is over all
isomorphism classes of finite D-modules, with G a representative from each class.
For finite O-modules G, H, we have

Surp (G, H)| = #{G' C G | G/G' =~ H} - |Autp (H)|,

where G’ C G denotes G’ a sub-O-module of G. For G; and G, finite O-modules,
[11, Proposition 3.3] gives

> |Auto (G)|T'#{H € G : H = Gy and G/H = G}

G/~ - -
= |AutD(G1)| llAUtD(G2)| .

Let

1

Z(E)=G/sz- (6.1)
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Then we deduce that

E(|Suro (X, H)|) = > P(X = G)|Suro (G, H)|
G/~
1
B ;; |G[¥|Auto (G)| Z ()

|Auto (H)| Y~ #{(G' S G |G’ =Gy, G/G' =~ H}

G/~
|Auto (H)| ! : / / ’
_ #G' CG|G =G,G/G'~H
Z(u) Z |Gy [*|H |* Z |Auto (G)] - n o }
Gi/~ G/~
1 1
= |Auty (H
|Auto ( )Igw |Auto (G1)| - |G1|4Z (u) |Auty (H)| - |H |
1 1
— P(X =2G1) = ——. -
|H|EGZ/ =00 = T
e

When applying the results to class groups, it is always the case that we only
consider the e-component of Q[I'] where e is some central idempotent. Suppose
that e is some central idempotentin A = Q[I'], theneA C Q[I'] is also a semisimple
Q-algebra and e$ is a maximal order in eA. We could build a random module
directly from e, or we could multiply our original random module by e. The
following shows these two constructions are the same.

Lemma 6.3. Let e = e; + -+ + ey be some central idempotent of A, and let
X, = X(A,y = (ul,...,um),D) and X, = X(eA,y = (vz,...,vk),eD)

be the random modules defined in Section 2 such that u; = v; foralli =2,... k.
Then eX and X, have the same probability distribution, i.e. for all finite e9-

modules G, we have
PleX; = G) = P(X, = G).

Proof. Let 8 be the set of isomorphism classes of finite (1 — ¢)©D-modules. For all
finite eO-modules G1, G5, we have

PleX; = Gy) _ ZHGS P(X; =G, @ H)

PleX; = Gy) ZHGSP(XlgGZGBH).

Since all the terms defining the probabilities factor over G; and H, we conclude the
lemma. O

Therefore, Theorem 6.2 can be applied to eX directly.

Corollary 6.4. Let e € O be any central idempotent. Given a finite O-module H,
we have

ifeH = H,
E(|Suro (X, H))) = {JHE 7°

0 otherwise.
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Proof. If eH # H, then there is no surjective homomorphism from any e©D-module
to H. If eH = H, then O-morphisms from eG to H are the same as e©D-module
homomorphisms from eG to H. So the corollary follows from Lemma 6.3 and
Theorem 6.2. O

Now we will show that the expected values of functions of X agree with the
averages that appear in the conjectures of [11].

Remark 6.5. The original definition of M,f (f), the average appearing the the
conjectures in [11], is given by their Definition 5.1 and Conjecture 6.6. However, note
that in the original paper, the definition of M,f (f) must be corrected to involve e,

e.g. M3 (f) should be defined with the implicit algebra eQ[I'] instead of Q[T'].
Propo;ition 6.6. Let |S| < oo, and let f be a non-negative function defined on the
isomorphism classes of finite D-modules. For X = X(A, u, 9O), we have
E(f(X)) = lim ZlGlﬂ o Z(D_EHom(P’G)lAutD (G)|_1f(Ci/ Im(p),
Lo Z|G|sz G| Z(peHom(P,G)lAutD G|
where the sum is over finite D-modules G and P is a projective O-module of rank u

(as defined in [11, Definition 3.1]). Here x € Z™, and |G| < x means that for
every i, we have |e; G| < x;, and the limit means all x; — oc.

Proof. In this proof a summation over G/~ always means the sum is over all
isomorphism classes of finite O-modules, with G a representative from each class.
By [11, Theorem 4.6 (ii)] with ¥ (G) = | Auty(G)|~! and 5 = u, if

86,(G) =#¢p € Homy (P, G) : G/im¢ = G}

and P is projective of rank u, then

Z gGl(G) _ Z(0)
|Auto (G)[|G[* |Auto (G)I|G1[¥Z(u)’

where Z is defined in (6.1) (and see Remark 3.4 for the convergence). Then we have

YIGITE YT |Aus(G)[7 f(G/ime)

G/~ p€Homyp (P,G)

_ g6,(G)
=2 /@ 1)Z|At G|GPE

G/~
= A0) -
) c§~ H O R GlGEzam — 2R ).

We can also apply this to the constant function f(G) = 1, and deduce the proposition.
O
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6.2. Moments determine the distribution. So the random ©-module X has H -
moment | H | 7% for every finite O-module H. Now we ask: given a random finite
D-module Y with H-moment |H|™¥ for all H, does Y have the same probability
distribution as X ? In this section, we will see the answer is yes.

Recall the notations from Section 3.1: 4 = ]_[l'-"=1 A; and K; is the center of A4;.
Now for each pair (i, p), wherei = 1,...,m and p is a prime of K;, we can consider
the completion A;, = Mj, (Di,) of A; at p (where D is the completion of D;
at p and /; , is some positive integer). Note that in this notation that the choices of p
depend on i. If O is a maximal Z g-order in A, then ¢; O also admits a completion

Oip =69 Rz, ZKi,p

(where Zk; is the ring of integers of K; and Zg; . is the valuation ring of K; ;). In
particular, O; , is a maximal order in A; ;. Then in this case (unlike in the global
case), there always exists an isomorphism

Di,p = Mli.p (Oi,p),

where 0; , is the maximal order in D; j, which is given by a valuation.

If G is a finite D-module, and (i, p) some prime ideal of O (i.e. p is a prime ideal
of K;), then let G, denote the part of G annihilated by a power of p and we know
that G, is naturally a finite ©O; ,-module. For any two finite O-modules G and G,
we have

| Auto (G1)| = 1_[ | Autp; , (G1,p)]
@.p)

and |Suro (G1.Go)| = [ ISuro, , (G1p. Gap)l.
@p)
Moreover, the category of ; ,-modules is equivalent to the category of ©; ,-modules,
because they are both matrix algebras over 0; ,. So the question of counting surjective
morphisms is then reduced to the following case: let D be a division algebra over Q ,
with the maximal Z ,-order © and we consider the category of finite ©-modules. Given
any (finite) partition A: Ay > A, > ..., there exists a unique (up to isomorphism)
finite ©-module G such that
G=Po/pt.

i
where p is the unique maximal ideal of 0, see, e.g. [11, Lemma 2.7]. Then we write
G = G, and call it the ©-module of type A. Also let ¢ = |0/p| be the cardinality of
the simple ©-module.

Definition 6.7. Given a partition A:A; > A, > --- > A,, it can be represented by a
Young diagram whose number of boxes in the i th row represents the number A;. Then
the transpose A" of A is the partition such that A’; equals to the number of boxes in the
jth column in the diagram of A. We have a partial ordering on partitions as follows,
Given two partitions j, A, we say that © < A when u; < A; foreachi =1,2,....
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Lemma 6.8. Let D be a division algebra over Q , with maximal Z ,-order 0. Given
two ©-modules G, G, of type A and . Then

| Home (G, Gp)| = gXi=1 ik,

Proof. By Lemma 2.7 (and more generally §2) in [11], we only need to check the
formula for the case when G, G, are both cyclic, which is clear, i.e.

| Home (0/p™, 0/p™)| = g™ = g1k, 0

Lemma 6.9. Let G = G be a ©-module of type A. If @ < A, then the number of
submodules of type |, denoted by oy (i; q), satisfies

1 AL g 72
) L gXim miA W)
om(u,q)fl_[(l_z_j)Al g :
Jj=1
Proof. First we claim
| Homo (G, G1)
(1 q) < ——
| Auto (G )|

i.e.if f: G, — G, happens to be an injective map, then f o g where g € Auto(G,)
clearly gives us the same subgroupin G . Then by Theorem2.11in[11],if 7y, ..., 7,
are the distinct (nonzero) values of {u; } with multiplicities k1, .. ., k;, then

t
|Auto (G| = ¢=i B T (k)

i=1

t 00
. 72 AY .
> qu(M,) | |(oo)q > qZ(M,) | |(1 — gy,
i=1 j=1

where the notion (k), means ]_[f-;l(l — g7 ifk > 0. Since 1 < A, we have

o0
o (usq) < omo(Gn G| I] —E L
|Auto (G| = (1—g=7)
1 IS N2
- Zﬂill’_(ﬂi)
S1—.[(1—2—1)11 1 - B
j

Lemma 6.10. For any given O-module G of type A, there exists a constant C such
that .
#{H C G} = Ch1gd 0D’

Proof. To prove this lemma, we sum the result in Lemma 6.9 over all u < A, and a
bound for this sum is given in [49, Lemma 7.5]. ]
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Now using the lemmas above and results from [49], we can prove that the Cohen—
Lenstra—Martinet distributions are determined by their moments, and in fact even a
sequence of random variables with moments converging to moments described in
Theorem 6.2 must converge to the Cohen—Lenstra—Martinet distribution.

Theorem 6.11. Take A, O, m as in Section 3.1 and let u € Q™ be an m-tuple.
Assume that either that |S| < oo and u > 0, or, that |S| = oo and u; > 0 for
alli. Let K; be the center of each component A; and R; the integral closure of Z g
in K;. Then R := @ R; is the center of O and each O; is a maximal R;-order in A;
(see [43, Theorem 10.5]).

Let { X, } be a sequence of random variables taking values in finite O-modules.
For each prime p of O, let n, > 0 such that n, = 0 for almost all p. Let 8 be the
set of all finite O-modules H such that the annihilator of H, divides p"». Moreover,
let N be the O-module such that Ny is of type (n;,0,0,...).

Suppose that for every G € 8, we have

nll)ngoE(|Surg(Xn,G)|) = G

Then for every H € 8, the limit
lim P(X, ®r N = H)
n—>oo

exists and for all G € 8 we have

1
E lim P(X, g N = H)|Suro(H, G)| = v
HeSn_)oo |G|_

Suppose {Yy} is another sequence of random variables taking values in finite
D-modules such that for every G € 8, we have

nli)rrgoIE(|Sur(Yn,G)|) = GE'

Then for every H € A, we have

lim P(X, ®g N =~ H) = lim P(Y, ®r N = H).
n—>oo n—>oo

Proof. The proof is very similar to [49, Theorem 8.3], so we only present a sketch
and highlight the differences. First we suppose that the limit

lim P(X, ®g N =~ H)
n—>oo

exists for all H € 8 and we are going to show that for all G € § we have

Z lim P(X, ®g N = H)|Suro(H,G)| = —.
Hesn_)Oo |G|_
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By Lemma 6.8 and the same argument as in [49, Theorem 8.3], for each G € 8, there
exists G’ € 8 such that
Z |H0mD (H.G)| <
|Homg (H, G')|

Then the same argument as in in [49, Theorem 8.3] using the Lebesgue Dominated
Convergence Theorem concludes that

> lim P(X, ®& N = H)|Sur(H.G)]

Hesn—)oo 1
= lim_ Y P(X, ®r N = H)|Sur(H,G)| = Gl

He8

i.e. if for all H € 8 the limit lim, o P(X, ® g N =~ H) exists, then the moments
agree with IE(|Sur(X, G)|) forall G € 8.
Next we show that if the limits

lim P(X, g N xH) and lim P(Y,®r N =~ H)
n—>00 n—>oo
exist for all H, then

> lim P(Y, ®& N = H)|Sur(H.G)]
Hesn <

= E lim P(X, g N = H)|Sur(H,G)| =
n—00 |G|E
He8

implies
lim P(Y, @ N 2 H) = lim P(X, ®g N = H).
n—oo n—>oo

Note that the averages | Homg (X, H)| and | Surp (X, H)| over all H, are determined
from one another by finitely many steps of addition and subtraction. We will apply [49,
Theorem 8.2] with distinct primes p;’s in the assumption replaced by not necessarily
distinct real numbers ¢;’s. The proof of the theorem actually proves the statement in
this generality.

Now let M be the set defined in [49, Theorem 8.2] where the choice of g; comes
from the following: there are only finitely many primes p;; € Zg; such thatny,,. > 0
foralli = 1,...,m, so we can let gy = |0y /p) | where 0x C D; , is the max1mal
order in D;p, and p;{ is the unique maximal ideal. We say that an ©-module
G € 8 corresponds to i € M if the type of G is exactly u’ where u' is obtained
by () = (ux)’. We then define

xu = lim P(Xy @& N = Gy)

for all © € M. And similarly for y,. If we let C, denote the expected value of the
number of homomorphisms into G-, then by Lemma 6.10, we know that C), satisfies
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the condition in [49, Theorem 8.2]. Then [49, Theorem 8.2] tells us that x,, and y,,
are determined by Cj.

Finally, the same diagonal argument at the end of the proof [49, Theorem 8.3]
shows that when the limit moments are |G| ™%, the limit lim,_,oc P(X, g N = H)
exists for all H € 8. O

The above theorem is the most flexible for applications, but we will state now
simpler versions to emphasize the main point.

Theorem 6.12. Keep the notations in Theorem 6.11. Assume that |S| < oco. If { X, }
is a sequence of random variables taking values in finite O-modules such that

Jim B Suro (X, O)l) = 1o

for all finite D-module G, then

1
| Auto (G)[|GI*Z (u)’

lim P(X, =~ G) =
n—>00

i.e. the limit of the random variables exists and has the same probability distribution
as the random variable X = X(A, u, O).

Proof. If |S| < oo, we can take into account all the prime ideals of © at one time.
Provided that G is a finite module such that G; ,, is of type A"*? where A" is a
partition, then in Theorem 6.11 we take n;, = (A"*)} + 1. If H is any 9-module
such that

H®r N =G,
then H has to be isomorphic to G, i.e. P(X, = G) = P(X,, ® N = G), and it is
determined by the limit moments. O
Theorem 6.13. Assume that |S| = oo and u; > 0 for alli = 1,...,m, and

X = X(A,u, O) is the random variable we’ve defined. If Y is a random variable
taking values in finite O-modules such that

E(|Suro (Y, G)|) = |G1|y = E(| Surp (X. G)|).

Then,
P(Y 2G)=P(X = G)

Sor all finite O-modules G.

Proof. We let p; be the primes of O. By Theorem 6.12, for every n we have

P(Ypl ’EGPI |l:0,1,...,l’l):P(Xpl ngl |i:O,1,...,n).
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Then by basic properties of measures, we have

P(Y =G)=P(Y,, =G, |i=01.2....)
= lim P(Y,, = Gy, |i =0,1,....n)
n—-oo
= 1im ]P)(Xpl gGPI |i=0,1,..,n)
n—00

= P(Xp, =Gy, | i =0,1,2,...) = P(X = G). m

However, the statement on limit moments determining the limit distributions does
not hold if S contains infinitely many primes.

Example 6.14. Let S contain infinitely many prime numbers which are relatively
prime to || (so that O = Zg[I']) and u; > O foralli. Let H be any finite O-module.
Then P(X = H) > 0.

For every rational prime p, there is a O-module G, whose underlying abelian
group is a p-group, say (Zs/pZs)" = (Z/ pZ)" which is a representation of I" over
the finite field F,. Let Y, be a random ©-module such that

P(X = G) VG # Hor HxGp;
P(Y, =G)= {0 ifG = H;
P(X 2H)+P(X = HxGp,) itG=HxG,.

Since | Surp (H, G)|=|Surp (H xGp, G)| whenever p > |G|, for every O-module G,
we have

pan;oEﬂ Surp (Y, G)|) = E(| Suro (X, G)|).

However, lim, . P(Y, = H) = 0. This shows there is no analog of Theorem 6.12
for infinite S.

7. Explanation of the Cohen—Martinet heuristics in the non-Galois case

Cohen and Martinet [11] do not specifically make a conjecture about the distribution
of class groups of non-Galois fields. However, they do show that by expressing class
groups of non-Galois fields in terms of Galois fields, such conjectures can be obtained
as consequences of their conjectures in some cases. The goal of this section is to
deduce the entire consequence of the Cohen—Martinet conjectures for class groups of
non-Galois fields. Interestingly, in the non-Galois case, one can sometimes also say
something about the p-Sylow subgroup of the class group for p dividing the order
of the Galois group of the Galois closure. So first, we must state a more complete
version of the conjecture of [11] that includes these primes.

In this section we continue the notations introduced in Section 3.1 and Section 3.2.
In particular, T is a fixed finite group.
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Definition 7.1. Let e be any central idempotent of Q[I']. We say that a prime
number p is good for e if e € Z)[I'] and eZp)[I'] is a maximal Z,)-order
in eQ[I'], and it is bad for e otherwise.

This definition is stated slightly different from the original one in [11, 6.1], but
they are equivalent (see [43, Theorem 10.5]). A prime p such that p 4 |I'| is good for
any central idempotents e, including e = 1. For a central idempotent e in Q[I'], and S
a set of primes good for e, [11, Hypothesis 6.6] is a conjecture for the distribution
of e Cl‘,%. Proposition 6.6 and Lemma 7.12 show that this conjecture is equivalent to
the following.

Conjecture 7.2 (Cohen and Martinet [11]). Let e be a fixed central idempotent
in (1 —e1)QII], such that e = e; + -+ + eg, where the e; are irreducible central
idempotents. Let S be a set of prime numbers such that if p € S then p is a good
prime for e, andu € QK. Let

X = X(e(1 —e)QIT). u. eZs[T)).

Then, for every “reasonable” non-negative function f defined on the set of isomorph-
ism classes of finite eZ s [I']-modules, we have:

. eClY
lim ZlDlscL\fx f( L) -FK

X—>00 Z\DiscL\sx 1

(f(X)).

where L runs through all T -extensions of K¢ such that |Disc L| < x and the rank
of L/ Ky restricted to the coordinates 2, . ..,k is u.

Note that all of the caveats of Remark 3.7 still apply, including the fact that the
term “reasonable” is left undefined.

For a field extension L /K of number fields with groups of fractional ideals /.
and /g, the embedding i: Ix — [ defined on fractional ideals induce, by passing
to the classes, the homomorphism:

i*ZCIK —> ClL .

For this homomorphism, we have the following.
Theorem 7.3 ([11, Theorem 7.6]). Let L/ K be a I''-extension of number fields. The
kernel (resp. the cokernel) of

ix:Clg — CIY' is annihilated by |T"| (resp. |T'|?).

The direct corollary is the following.

Corollary 7.4 ([11, Corollary 7.7]). Let Ko € K C L be a tower of number fields
such that L/ Ky is a T -extension and that K is the fixed field of the subgroup T’ of T'.
If every prime in S is not a prime divisor of |I'’|, the homomorphism

Is: Cl‘lg</K0 — (Cli/KO )F is an isomorphism.
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When p } |T'|, the above results mean that Conjecture 7.2 implies a distribution
on the class group of the fields K/Q with Galois closure L|Q (ordered by the
discriminant of the Galois closure).

Now consider the primes p | |I'|. We’ll see below (Lemma 7.14) that if p isa good
prime for er/r which is defined below, then p | ||, which implies that Corollary 7.4
is not useful if we want to make predictions on the distribution of p-Sylow subgroups
of class groups of non-Galois fields for p | |I'|. However, in this section we will
prove Theorem 7.6 that allows us to deduce consequences Conjecture 7.2 for p-Sylow
subgroups of class groups of non-Galois fields and p | |T'].

Definition 7.5. Let 11/ be the unit character of I/, and
/T = Indll:, 1[‘/ and ar/r’ = It/ — Ir.

Then define e, to be the central idempotent associated to ar,rs, i.e. if V is a
representation of I' over Q with character ar,r/, then er,r is the minimal central
idempotent of Q[I'] that acts on V as identity.

Theorem 7.6. Let Ko € K C L be a tower of number fields such that L/ Ky is
Galois with Galois group T and that K is the fixed field of the subgroup T of T. If
every prime p € S is a good prime for ey, then

(1) p 4K : Ko]forall p € S, and we have the following split short exact sequence
1 —CIY p, — Cly 5 C1f, — 1.

Hence, C1%, = Cl‘lg<0 X le(/KO, where we view Cl%0 as a subgroup of Cly;

(ii) the induced homomorphism i: Cl}g( /Ko Cli is injective with image

(er,r C15)" c 1S,

ie.
.18 ~ sy
l*’ClK/KO — (er*/rv CIL)

is an isomorphism.

Remark 7.7. Cohen and Martinet give another result [11, Theorem 7.8] that could
be used to relate the class groups of non-Galois fields to Galois fields, but [11,
Theorem 7.8] is incorrect as stated. Their result instead should require that I'” has a
normal complement A such that I'” acts on A (by conjugation) with trivial stabilizers
on each non-identity orbit. For example, this hypothesis and the theorem fails for
the example ' = S4 and 'Y = S35, which is an example that appears in [10].
However, our Theorem 7.6 can be applied in this case and in every case in which the
Cohen—Martinet heuristics make a prediction.
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Note that Theorem 7.4, applied in the case Ky = Q, has the following corollary.

Corollary 7.8. Let L/Q be a T-field and K be the fixed field of T'. If p is good
for er,r, then the order of the capitulation kernel

keri, = ker(Clg — Cly)

is not divisible by p.

For many pairs (I", I'), there is at least one prime p | |I'/| that is good for er, v,
e.g. p is good for (Sp+1, Sp), and 2 is good for (As, A4), and 5 is good for S5 or As
with a certain subgroup of index 6 (a stabilizer of the action on P]%S). For these
primes, Corollary 7.8 appears to be a new result on the capitulation kernel.

From Theorem 7.6, we see that Conjecture 7.2 implies a conjecture on averages
of functions on class groups of non-Galois fields, in which the finite abelian group H
appears with weight proportional to

1
2GR G) oD
GU'=H
where G runs through all finite er,r/Zs[I']-modules, up to isomorphism, such that
G =~ H asabelian groups. We’ll spend the rest of this section proving Theorem 7.6.
In the next section we will give a simple expression for (7.1) and an interpretation
of the values appearing in (7.1). We start with a useful statement that we will use
repeatedly.

Lemma7.9. Lete be a central idempotent in Q[I'] such that e € Zs[I') and that e Z 5[]
is a maximal order in eQ[I']. Then any eZ s[I']-module G is cohomologically trivial
as a I'-module, i.e. for every subgroup A of I and every integer n € 7, we have

H"(A,G) =0,
where H denotes Tate cohomology.

Proof. Note that via the ring homomorphism e: Z [I'] — eZgs[I'] givenby x > ex,
all eZ g[I']-modules are also I'-modules.

Let G be any eZs[I']-module. We can find a projective eZ g[I']-module P with
surjective homomorphism ¢: P — G. Then we have a short exact sequence of
eZs[I']-modules

0O0—-L—->P—>G—0,

where L is the kernel of ¢. Since maximal orders are hereditary (e.g. see [43,
Theorem 21.4]) the submodule L of P is also a projective eZ g[I']-module. Since
e € Zg[I'], we know that, as I"-modules, eZg[I'] is a direct summand of Zg[I'].
Therefore, P and L, as summands of the module (eZs[I'])™ for some m, are
summands of the module (Zg[I'])™. Note that Zg[I'] is an induced I'-module



364 W. Wang and M. M. Wood CMH

and hence cohomologically trivial. So P and L, as summands of some induced
I"'-module, are both cohomologically trivial. Then the short exact sequence implies
that G is also cohomologically trivial. O

Next, we note the following property of the central idempotent er;r- and its
relationship to
>

el

1

/

e, =
|

Lemma 7.10. If V is any Q-representation of I of character y, then
dimg vl = (lrf,ReSF/ xr = {rr/r, x)r.

In particular, if x1, ..., xm are all the Q-irreducible characters of I such that e; is
associated to y; foralli = 1,...,m, then foralli = 1,...,m we have

e,-e/l 750 — ¢ =ejore;-er/rv = ¢;.

Proof. The first identity is exactly given by Frobenius reciprocity. For the second
statement, note that e; Q[I'] is a representation of character n; y; for some n; > 1,
and that (e; Q[T = e/ e; Q[T]. O

Remark 7.11. Weletey, e, ..., e be all the distinct irreducible central idempotents
of Q[I'] such that e - ¢} # 0. By the above lemma,

er/r = ez + -+ e,

which could be taken as an alternative definition for er,rv.

Lemma 7.12. Let L/Ky be a T-extension of number fields. If e is a central
idempotent of Q[I'] such that e; - e = 0 and p is a prime number that is good
for e, then

e ClL[p™] = e Clpk, [p™]-

Remark 7.13. This lemma shows that taking the relative class group has no effect if
one only cares about good primes for some central idempotent e € Q[I']. Therefore
in the statement of the Cohen—Lenstra—Martinet conjectures (see Conjecture 3.5
and 7.2) we do not need to use the concept of relative class group.

Proof. First of all let’s introduce some notations. For a number field &, let I be the
group of fractional ideals and Py the group of principal ideals. Then for any prime p,
let Iy, := Z(p) ®z Ix and Py , := Z(p) ®z Pk. Note that we have a short exact
sequence

1 — Prp— Ix,p = Clg[p™] — 1.

Since e € Zp)[I'], the notion e Clz[p*°] and e Cl /g, [p°] are well-defined. It is
clear that

eClp /g, [p™] S eClL[p™].
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Our goal is to show that Nmy g, (/) is indeed a principal ideal of K for all ideals
I € Iy, such that the ideal class [/] is contained in e Cl[p®°].
For any x € Cl[p°°], we have

Nmy /g, (ex) = yex = ([Tler)e-x =0-x =0.
yel

Therefore,
Nmyz,g,:e Clp[p™] = e ClL[p™]

is actually the zero map.

Claim. (ePr )T = Pk,., NePL p.

Proof of the claim. Recall that if eZ,)[I'] is a maximal order then any eZ,)[I']-
module is cohomologically trivial by Lemma 7.9. In particular,

1= H°T.ePLp) = (ePL )" /Nmyk ePpL p.

This shows that if a “principal ideal” I € ePy, , is fixed by I, then it is represented
by a “principal ideal” of Ky, hence the claim. O

By cohomological triviality again, we know that e Cl.[p*°], el p.ePL,, are all
cohomologically trivial, so

(eCl[p™))" = (eI p) /(P p)" = (eIr, ) /(Px.p Nelr p).

This implies that for any ex € (e Clz[p*™])F, we have ex = 1 if and only if it is
represented by a “principal ideal” of K (an element in Pk ,). Hence, e Clz[p] is
indeed generated by ideals whose norm in Clg, is 0, i.e.

eClp[p™] = eCl/k,[P™]. O

We need one more lemma for the proof of the theorem.
Lemma7.14. If p is a prime such that er 1 € Z)[I'], then p does not divide |T'/ T"'|.
In particular, if p | |T'/T|, then p is bad.
Proof. Let
P :=Zp[Tle; = {xe| | x € Z)[T']}

be a left Z(,)[I']-module. We know that er,ve] is contained in P, because er, v is
already contained in Z)[I']. This implies that e; = e; - e} is also contained in P,
for the idempotent e} is contained in P and could be written as

ef=1-ef=(e14+ - +em) e =e1+ee] +---+ere] =er +er/re;.
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Let {01, ...,04} be a fixed set of representatives of left cosets I'/ I"". Then every
element x € P can be written uniquely as

q
X = E ajoiey,

i=1

where a; € Z(p). If in addition, x is fixed by I, then all the a; must be the same,
which implies that if we let

S
X0 := Z 1-0iey =|T/T'| ey,
i=1
then PT = ZipyXo. Since e] € PT we know that there exists some a € Z(py such
that axg = ey, i.e.
a-T/T'| = 1.
So [I'/T| is a unit in Zp), i.e. p does not divide |/ T"'|. O
Finally let’s prove Theorem 7.6.

Proof of Theorem 7.6. 1t is clear that we can reduce to the case where the set S is the
singleton {p} with p a good prime for er ;.

For (i), by Lemma 7.14, we know that p } |[T'/T’| = [K : Ko]. Then let us view
Clg,[p®°] as a subgroup of Clx [p°] via the induced map i: Clg, — Clg. We have
the following short exact sequence

N
1 — Clg/k,[p™°] = Clg[p™] — Clk,[p™°] — 1.
where n, is induced by the norm map Nmg k., because

na( Cli [p™) = [K : Kol - Cliy[p] = Clgy [p™].

Then, by ix o nx, = [K : Kp], we see that ;i* is well-defined for Cl}g{o and

[K:Ko]
splits 7. This shows (i).

Next, let us prove (ii). For a number field k, let /; denote the group of fractional
ideals, and Py the group of principal ideals. Then for k, we have the short exact
sequence

1— P, —> I, > Cl — 1.

Tensoring with Z,) gives us a short exact sequence
1 = Zp) @z Px = Z(p) @z I — Clg[p™°] — 1.

Let Pk,p = Z(p) ®z Pr and Ik,p = Z(p) ®z Ir. And for an element x; € Ik,p,
we let [x;] denote its image in the class group.

Recall the set-up in the statement: Let Ky € K C L be a tower of extensions
such that Gal(L/Ky) = T and that Gal(L/K) =T’ C T.
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Claim 1. By viewing Ik , as a subgroup of I, via the embeddingi: Ix — I, we
have an exact sequence

Ixp NI, — Clg[p™] — Clg,/k,[p™] — 1. (1.2)

where the map Clg [p*°] — Clk,k,[p>°] = Clx[p*°]/ Clk,[*°] is the quotient map
given by (i).

Proof of Claim 1. First of all I, , € I} p» therefore the image of Ix,, N I b »

in Clg[p®°] must contain Clg,[p™]. If x € Ik, N I{p gives an ideal class [x],
then by (i), we can write

[x] = [y]-[z]
with [y] € Clg,[p*] and [z] € Clg,k,[p*>°]. The computation

[x][K:Ko] — [K:Ko]

Nmg, g, [x] = Nmg, g, [y] - Nmg, g, [z] = [¥]

shows that [z] = 1 and [x] € Clg,[p*>°]. Therefore, the image of /x , N IEP is
exactly Clg,[p®°], the kernel of Clg[p*>°] — Clg,x,[p*].

Claim 2. We have a short exact sequence
1 —> PK,[, N ep/p/PL,p — IK,p N ep/rvIL,p — C]K/Ko[poo] — 1. (7.3)
Proof of Claim 2. First of all, the ideal classes given by Ik , N er/r1L,, are

contained in the relative class group Clg,k,[p*°], because

Nmg, g, [y] = Nmg,x, er/r[y] = Z o(erp, v —e1) - [y]
oel'/T/
= |r/F/|(elerr/r‘/ - el) : [y] =1
We then only need to show the surjectivity. As a Z,)[I']-module, I, , admits the
following decomposition

IL,p = E‘F/I‘/IL,p X (1 —eF/F/)IL,P'

Consequently,
’ T/ I
17, = (er/riLp) x (1 —er/r)iL,p)
By ILp =V :=Q®z,, IL.p, we know that x € I, , is fixed by I'" if and only
if e - x = x, where the action happens in V. Since

el -(I—erjr) =¢€)-(e1 +exp1+ - +em) =€) -e1 =ey,
for any element z € (1 —er/r/)V, it is fixed by I'" if and only if it is fixed by T'.

Therefore, if x € 1 { /p, then

X=y-z
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with y € (eF/F/IL,p)F/ and z € IEP. By Lemma 7.9, the er,rZp)[I']-module
er,r/IL,p is cohomologically trivial. Hence,

(el"/I"IL,p)F//NmL/K eryrln,, = HO(T eryr L p) = 1.

Therefore, y is always an elementin /g ,. If the element above x = y -z is contained
in I, p, then z is also contained in /g p, i.e.

Ikp = (Ikp Neryrle,p) x (Ix,p N 1{’1)),

where the direct product is the direct product as abelian groups. Then by (7.2),
[z] € Clg,[p*°], and [x] = [y] in the relative class group

Clk/k,[p™] = Clx [p™]/ Clk,[p™].
which proves Claim 2. O
Moreover, the claim also tells us that
ix(Clg/ko[P™]) € eryr Clk, [p™].

Final step. Since p is a good prime for er/r/, we know that er;r/ € Z(p)[I'] and
er/r'Zp[I'] is a maximal order of er,rQ[I'], hence obtain the following short
exact sequence

1 —> eF/F’PL,p — ep/p/lL,p — eF/F/ ClL[poo] — ],

where every object showing up is an er; v Zp)[I']-module. Then by Lemma 7.9, we
know that er/r/ P, p, er/r/11,p and er;1’ Clp[p®°] are all cohomologically trivial
as ['-modules. So the identity

v ~
(er/r ClL[p™]) /Nmy k er/r Clp[p™] = H*(T', er;r Cl [p™]) = 1

holds. This immediately implies that if [x] € (er;r Clz[ p°°])F/, then [x] is repre-
sented by an ideal coming from K, and

ix:Clg ko [P™] = (er/1 CIL[POO])F/
is surjective. Similarly, by
HO(Ierjrdp ) =1 and HO(I,er/rPrL,) =1,
we know that

(er/r/IL,p)F/ = IK,p n el"/l"’IL,p and (er/rvPL’p)F/ = PK,p n er/r/PL,p.
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Also by ﬁl(F’, er,;r Pr,p) = 1, we have the short exact sequence

’ ’ T/
1 — (eryrPrp)" — (erjr L p)" — (eryr ClL[p™]) — 1.

Then these identities together with the short exact sequence (7.3) gives the following
commutative diagram which concludes the proof:

1 — PK,p ﬂep/p/PL,p — IK,p ﬂep/p/IL,p E— CIK/KO[[?OO] — 1

| | L+

’ / T/
1 — (eryr Prp)T — (eryrlL, )7 — (eryr ClL[p™]) — 1. O

8. Reinterpretation of the Cohen—Martinet heuristics in the non-Galois case

In this section, we reinterpret the distribution on abelian groups from (7.1) that we
have shown are predicted by the Cohen—Martinet heuristics to be the distribution
of class groups of non-Galois fields. Returning to the principle that objects should
appear inversely as often as their number of automorphisms, we will see that these
class groups of non-Galois fields have certain structure and the distribution is given
as inverse to the number of automorphisms of that structure. We end the sections
with several examples for different groups I'.

We first define some notation used in this section. Let I'” be a fixed subgroup
of I'. We have defined the trivial idempotent e; in Section 3.2, the augmentation
character ar, r and the central idempotent e - of Q[I'] associated to it in Section 6.
Let ey v =e1+er/r be the central idempotent associated to the character rr; v,
and e} be the irreducible central idempotent associated to the unit character 11 of I'/
in Q[I"']. Note that e} is naturally an idempotent in Q[I'] via the embedding I'" < T,
but it is not necessarily central. Throughout this section, let S be a fixed finite
set of good primes for er;r/ (see definition in Section 7), and © € QI[I'] be a
maximal Z gs-order containing the group ring Zg[I']. By our assumption, er,; 9 is
exactly e/ Zs[I'].

Definition 8.1. For any (T, T")-bimodule M and any subgroup A of T, let M be

the subgroup of M fixed by the action of A on the left. Similarly M is the subgroup
fixed by the action of A on the right.

Caution. The notation M2 is different from the use in previous sections, as before
we only considered left actions. The reason for these two notations is that objects
like O are (T, I')-bimodules and we have to distinguish left and right I'’-invariant
parts.

8.1. Integral model for the Hecke algebra and Morita equivalence. First of all,
Q[I'] is a (T, T')-bimodule, we can consider the subspace I Q[I']F’, which is also
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called the Hecke algebra, written as Q[I''\I'/T”], and which we will write as
e1Q[I']e]. Note that ¢ Q[I']e] is a Q—algebr/a, but its identity e} is not the identity
of Q[T']. If V is any left Q[I"]-module, then I" V" is naturally a left ¢} Q[I']e}-module.
Let ¢} xe!, € ¢/ Q[Te, and v € 'V, then for all z € I, we have

T-(ejxe; - v) = (tejxe]) - v = ejxe] - v.
This shows that e} xe v is still fixed by I'”, hence e} xe] - 'y < 'y, Also for a left

Q[I']-module V, we always have
"V =" (er, V).

So we see that for Q[T']-module V, the invariants IV are naturally a e1Q[Ie]-
module. Our goal is now to construct an integral version of this kind of structure.
Given a finite O-module G, one has a natural action of ® := I'OT" = On e1Q[I'e}
on!'G by reasoning as above. However, in general ® is not even a ring, because if S
contains any primes dividing |I"’|, then ® does not contain a multiplicative identity.
Even if S does not contain any primes dividing |T/|, it is not clear what kind of
ring @ is. We will construct a ring o, agreeing with ® when S does not contain
primes dividing |I"| and larger than ® otherwise, and show that this larger ring o still
acts on I'G. After proving several results, in Corollary 8.10, we will see that o is
actually a maximal order.

Definition 8.2. We define
o =T (er;mDe)).

We include the factor er, - because of our intended application to (relative) class
groups. When I' = S, and IV = S,,_; is the stabilizer of an element, then we have

ep/er = Mn—l(ZS) and o= ZS

(see Example 8.18). When I' = D4 and I is a non-central order 2 subgroup, we
have
er/m'O =Zs x My(Zs) and o= Z?g

(see Example 8.19). When I' = As, we let I act on {1, 2, 3,4, 5} in the usual way
and let '/ be the subgroup fixing 1. Then,

ep/p/D = M4(Zs) and o= Zs.

As suggested by these examples, we will show in general that e, /O and o are Morita
equivalent in Theorem 8.9, even though in general in they can have more complicated
structures as arbitrary maximal orders in sums of matrix algebras over division
algebras. This Morita equivalence will play a central role in our reinterpretation of
the prediction of the Cohen—Martinet heuristics in the non-Galois case.

We start by showing that o is an order of the semisimple Q-algebra e} er/r Q[T']e].
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Proposition 8.3. Let eq,...,ey, be the distinct irreducible central idempotents
of Q[T'] and er/r» = e, + -+ + ex. The Q-algebra ¢\ Q[I'le] = QI is
a semisimple Q-algebra whose decomposition into simple components is given by

k
¢;Q[Ie; = [ eleiQ[Ile;.
i=1

The category of e}Q[I'le}-modules is equivalent to the category of err, QI

modules. The subgroup 1w(ﬁf)ei) is a Zs-order of e]Q[I']e}, and o is a Zs-order
of ejer;rQ[I]e;.

Proof. In the proof, let A = Q[I'] and A" = e{er;rQ[I']e]. Note that
e1Q[ere; = e1 A and F/((l —er/)Dey) = To,

c.f. Lemma 7.10. We can focus on er,r/A4, A’ and o (the “nontrivial parts”) in the
rest of the proof.
The irreducible central idempotents of A give a decomposition of A’

A" = ezej A x - x epmer A,

with each component a Q-algebra because e; e is central in A’. Note thate] -e; # 0
if and only if e; = e ore; - er;rv # 0 by Lemma 7.10. So we have

/ Ay Ay
A" =eze]A" x - xerel A

For any simple Q-algebra B =~ M;(D) where D is a division algebra and any
idempotent /' € B, we have fBf =~ M/ (D) for some [’ < [. This can be
shown using the decomposition of the identity into mutually orthogonal primitive
idempotents by the Krull-Schmidt—-Azumaya theorem, see e.g. [12, 6.12].

We apply this result to e;e] foreachi = 2, ...,k as follows. The Q-algebra e; A
is simple, and ;] is an idempotent in e; A. Therefore, if e; 4 = M, (D;), where D;
is some division algebra, then there exists some integer 0 < I/ < [, such that

eie1 A = eje Aeie) =~ My (D;).
1

Hence, e} e; A’ is a simple Q-algebra forall i =1, ..., k. Since A’ is the direct sum
of finitely many simple Q-algebras, it is a semisimple Q-algebra.

The equivalence of the category of eje; A’-modules and the category of e; A-
modules follows from the fact that they are both matrix algebras over D;, hence A’
is Morita equivalent to er/ v A. Finally, by e]e1Q[I']e] = e A = Q, the statements
on e Q[I']e] are all proved.

We now check that o is indeed a subring of A’. By definition, o, as the I"'-invariant
part of an I"-module, is an additive abelian group. For all x,y € er,r© such
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that xe}, ye] € o, since oxe] = xe] for all 0 € I'/, we know that e xe; = xe],
i.e. xe] € A and o C A’ is an additive subgroup. For xe], ye] € o, we have

ANV roIN /
xejyey = x(ejyey) = xyey,

which is still an element in o because xy € er;rO and (xe})ye] is fixed by I'” on
the left. In particular, ejer, - is contained in o and is the identity for A’, hence o is
indeed a subring of A’.

Then let’s show that o is a Zg-order in A’. We’ve already showed that o is a
subring of A’. Then we check that Q ®z¢ 0 = A’. Let x € er;vA, then we can

write it as |
X =-y
n

with somen € Z and y € |F/|zeF/F/D because Q ® er; O = er;r’A. Therefore,
ro 1 /A
el xe; = - ®ejyeq,

where e} ye| € F/(ep/ O) C o by our construction. This shows that Q ® 0 = A’.
Finally we show that o is finitely generated as a Zg-module. Since er,rO is
finitely generated as a Z g-module, say er) /O = Zg - x1 + -+ + Zg - xn, then

0 C Ve =Zs-x1€]+---+ ZLs - xnej,

is a submodule of a finitely generated Zgs-module, hence itself finitely generated
over Zg. O

Now we will show that the I'’-invariant part of an ep;r»O-module is naturally an
o-module.

Lemma 8.4. For any finitely generated errO-module G, its I''-invariant part G
is an o-module via the action

(0€}))-g:=0-g.
where the right-hand side is the action of er;rO on G, forall g € G and ogej €0
witho € ep/p/D.

Remark 8.5. As the identity of o, the element er, e acts as identity on TG for
any er,rvO-module G despite the fact that er, e is not even contained er,; /O in
general.

Remark 8.6. We can immediately see from Theorem 7.6 that le( /K, is naturally an
o-module. This will be the key to our interpretation of (7.1).

Proof. If oej = te| witho, T € ep/r/O, then the sum of the coefficients of elements
in the same left coset of I'” must be the same, henceo-g = t-g forall g € I"G. This
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shows that the definition does not depend on the choice of o € er, /9. Moreover,
since e/ is fixed by I on the left, we know that oe|g € I'G. So we have shown
that

oej-g=0g

gives a well-defined map.
Note that

e -oe] =oe]
for all e} € o by definition. If oje], 02¢] € 0 with 01,02 € er;/ O, then
/ / /
01€,02¢1 = 0102€7,
which shows that the action is associative. Finally,
01618 + 0218 = (01 + 02)g = (01 + 02)ej g = (01€] + 02€))g.
So this definition turns I’ G into an o-module. O

We then prove the equivalence of the category of er,r/©-modules and the
category of o-modules in the rest of this subsection.

Lemma 8.7. Given a finitely generated left ey r'O-module G, the left o-module
I (er/mO) Qer, o G is isomorphic to TG as o-modules.

Proof. 1t suffices to prove this for each component of G, for eG is a left I'-module
via the composition

Zs[l] = O — e

for each irreducible central idempotent e of er,Q[I']. We then fix e and assume
eG = G. There is a natural e$D-isomorphism

Qe Qe G =G

givenby o ® g = o0 - g. Note thatog € "G for all o € T'(eD). We then obtain an
ee o-morphism
v F/(‘5'53) ®eo G > 1'G

by restricting ¢ on the subgroup F/(eD) ®eo G. Because, for all te] € ee}o where
T € e$, we have

tejp(0 ® g) = té|(08) = 10g. ¢(tej(0 ® g)) = ¢(10 ® g) = T0g.

Claim. ¥:7 (eD) ®ep G — G isan ee’ o-isomorphism.
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The morphism 1 is injective because ¢ is. For the proof of surjectivity, we first
recall that a morphism f: Hy — H, of abelian groups is surjective if and only if

fp:Hl,p —> Hz,p

is surjective for all prime p where f, and H; , denote the localization at p. In
addition, f), is surjective if and only if

SpiHi,p = Hap

is surjective where fp and I;(,-, p denote the completion at p.

Since O := O ®zs Zp is a maximal Z p-order in Q,[I'] (see [43, 11.6]) and
0:=0®zg Zpisthe same as T (e, p/ﬁe/l), the results above go through similarly.
In particular, the additive subgroup T (er /Ivﬁ) of er/ 1“/55 is a left 6-module by the
analogue of Lemma 8.4, hence an (0, ep/pxﬁ)—bimodule. So we can reduce the
problem to proving R

@F:F/(eD) ®,.5 G->TG6
is surjective for all p € §.

By abuse of notation, let O be a maximal Z ,-order in Q ,[I'] with p a good prime
for er/1v, and let 0 := F/(ep/p/De’l) just like above. Let eQ ,[I'] = M;(D) be an
isomorphism such that eD = M;(0) where D is a division algebra over Q, and
© C D is the unique maximal Z ,-order in D with the unique two-sided maximal
ideal p, c.f. [43, (12.8), (17.3)]. Then the finitely generated e£D-module G admits the
following matrix representation:

© -+ O o/p"l o/p"Z O/prn

O -+ O o/p"l o/prz o/prn
G=|. . . ® i i ) )

O -+ O Ixm (g/prl o/prz O/]Jr” Ixn

= (Mix1(0))" & Myx1(0/p™) @ -+ & Myxi(0/p™),

such that the action of e =~ M;(0) on G is exactly the left matrix multiplication.
We may therefore assume without loss of generality that G is indecomposable,
ie. G = Mjx,1(0) if G is projective or G = My ;(0/p") with r > 1if G is torsion.
Let f be the primitive idempotent such that

1 0 ... 0

00 ... 0
f—

00 ... 0

via eQ,[I'] = M;(D). There exists a surjective morphism 77: e — G given by the
composition of e — O f defined by x — xf and the quotient map © — o/p".
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Since e9 is projective, by Lemma 7.9, the induced map I (e9) — TG is also
surjective. For any g € I'G, there exists oe € ' (e9) such that w(ce) = g. In
particular, by definition of 77, we may assume that ce = of € O f, hence

v(of ®n(f)) =of -n(f) =nlof) =g
This proves the surjectivity of ¥, hence the lemma. O

Lemma 8.8. If e is a central irreducible idempotent contained in er,r, then the
subgroup eDe] of eQ[T'] consisting of elements of the form exe| with x € O is an
(eD, eej0)-bimodule, where the right ee}o-action is given by right multiplication
in Q[T']. Then the (e9, eD)-bimodule homomorphism

eDe] ®eero ! (€D) > D

defined by exe| @ y > exe|y, where the right-hand side is the multiplication
in Q[T), is surjective.

Proof. The map is well-defined because e} - y = y by multiplication in the group
algebra Q ,[I"], hence the product is actually exy which is contained in e©O.

Just like in the proof of Lemma 8.7, we will check the surjectivity locally and use
the same abuse of notations for O and 0. Let eQ ,[I'] = M;(D) be an isomorphism
of Q ,-algebras with D a division algebra over QQ, such that eO = M;(0) under the
isomorphism where © € D is the unique maximal Z ,-order of D with the unique
maximal two-sided ideal p generated by a prime element 7.

Since 0 is given by the valuation on D extended from the valuation on Q ,, there
exists a smallest integer n € Z such that ej7” € eO. In particular, there exists at
least one unit element in the matrix representation of e} 7”.

Claim. ejm" can generate the whole of eD = M;(0) as a (eD, eD)-bimodule. This
can be shown by constructing the usual basis {E;;} from e{n” via finitely many
row/column operations.

Since e} ™ is contained in the image, the claim shows that
eDe| Bt o TeD) —» e
is surjective, and we prove the lemma. L

We finally have the following.
Theorem 8.9. The category of et r/O-modules and the category of o-modules are
Morita equivalent via the functors:
F/(el'*/r/f)) ®er/r"9 — er/r/D—MOd — 0—Mod,
eF/F/De/l ®o — 0—Mod — eF/F/D—MOd.
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Proof. Let’s denote by (, ) the er,r/©O-balanced bilinear map
F/(er/p/D) X 61"/[‘/96/1 — 0
defined by (x, ye}) — xyej. This map is well-defined because xye; € Oe} and

ejxye; = xye; is contained in the I'’-invariant part.
Similarly let [, ] denote the o-balanced bilinear map

eryrOe; x T (er;r9) — eryrO

given by [xe], y] = xejy = xy. Since these bilinear maps are defined using the
multiplication in Q ,[I'], they satisfy the condition for a Morita context, i.e.

zel - (x,ye}) = [ze],x]-ye] and z-[xe],y] = (z,xe})-y.
Then,
{er/r9.0,0(" (er/r/D))eF/r/D,er/r/o(er/r/gell)o,(, ). [ 1}

forms a Morita context.
The map
eF/F/De'l ® r O — er/F/D

is surjective by Lemma 8.8. The other map is also surjective because we have
F/ F/
(er/19D) ey 0 eryrOe) = (er/rey) = o

by Lemma 8.7. Then the equivalence and the functors are given by Morita theorem
(see [12, Theorem 3.54]) directly. O

Corollary 8.10. The Zgs-order o in e\ er;rQ[I']e] is a maximal order.

Proof. By [43, 11.6], it suffices to show that ﬁp = 0Q®zg Zp is amaximal Z ,-order
in ejer;vQp[I']e] foreach p € S.

Let A = Qp['] and A" = eler;rQ[I'le]. We use the same abuse of notation
for © and o as in the proof of Lemma 8.7 (i.e. O := Oando:= 0).

First of all o is Morita equivalent to er;r/O. Since er;O is hereditary and
this property is preserved by Morita equivalence, we know that o is also a hereditary
ring. Let e # e; be an irreducible central idempotent in A such that e - e] # 0,
and eA = M;(D), where D is a division algebra over Q, and eej A" = M;/(D)
for some /" < [ (see Proposition 8.3). By [43, 39.14], if ee]o is a hereditary order
in ee] A’, then it is of the form

© ® ®» - » (n1,00nr)
eclo=|(© (© (© - (p)

© (© (© - (©
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where © C D is the maximal order in D and p its unique maximal ideal and
ny + .-+ + n, = I’ gives the size of the block along the diagonal.

Assume for contradiction that ee{o is not maximal. By [43, 17.3], we know
that » > 2 and there exists at least two non-isomorphic indecomposable projective
modules, because a column in the above matrix representation is exactly an
indecomposable projective module. But this is already contradiction, for e only
admits one indecomposable projective module up to isomorphism.

Therefore, ee’lo must be of the form M;/(0), and it is a maximal order of ee’lA/
again by [43, 17.3]. The argument holds for all ee}, hence o is a maximal order
of A’. O

8.2. Random o-module. From (7.1), we were led to wanting to understand the
distribution of the abelian groups I "X for our random er sr9O-modules X. Now, we
realize that T X is naturally an o-module, so we will instead consider the distribution
of o-modules T X .

On one hand, the random e, r/O-module

X = X(ep/p/Q[F],g, eF/F/D)

defined in Section 3.2 withu = (u2, . . . , ux) € Q¥ gives us arandom o-module .
On the other hand, since o is a maximal order in the semisimple Q-algebra
eler;rQ[I']e}, we can also define a random o-module

Y = (ejer;rQ[Ie}, v, 0)

with v = (v2,...,vx) € QK. We are going to show that for suitably chosen
u € Q¥ 1and v € Q*¥~!, the random o-modules "X and Y have the same distribu-
tion. For simplicity, let

X' ="x
Theorem 8.11. Letey, ..., ey, be the distinct irreducible central idempotents of Q[I]
and erjrr = ey + -+ + er. Let x;i be the Q-irreducible character associated

to e; and @; be any fixed absolutely irreducible character contained in y; for
alli =2,...,k. Let

X = X(er/rQIT)u,er/rO) and Y =Y (ejer;rQ[llej. v, 0)

with u,v € Qk_l so that u; corresponds to e; and v; corresponds to e;e for all
i =2,....k. The random o-modules X' = T'X and Y give the same probability
distribution if and only if

(@i.ar)
Vi = ———— Ui
(@i.ar/r)
foralli =2,... k, wherear = ar;; 1= —1 +Ind¥ 1 is the augmentation character

of the trivial subgroup.
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Proof. We will start by obtaining the formula for the probability distribution of X".
For any finite o-module H, we have X’ =~ H if and only if

X = er/rOe] Q, H,

by Theorem 8.9. Therefore, for any two finite o-modules Hy, H>, let
G :=erypOe] ®, H;

fori = 1,2, and we have

P(X' = Hy) |Gaf*|Aute, 1, 0(G2)|  |Ga[*|Aut, (H>)|
P(X' = Hy)  [G1[*|Aute., ., 0(G1)|  [G1[*|Aut,(H1)|

Given any finite o-module H, let G := er;r/Oe] ® H be the finite e,/ O-
module such that I'G =~ H. By [11, Theorem 7.3], for each i = 2,...,k, there
exists some finite Z g-module G; such that

eiG = GX) and el H = (e;G) = GFTIT 8.1)

where the isomorphisms are isomorphisms as abelian groups. We then know that
leiG| = |eie/1H|(Xiaal")/(xirar/l—")‘ (8.2)
Therefore, if
{¢i.ar)
(pi.ar/r)

foralli =2,...,k, then |G|¥ = |H |2, hence X' is defined the same way as Y and
they give the same probability distribution.
Conversely, if X’ and Y give the same distribution, then

i =

|G| _ |H>|®
|G1[¥  [Hq|®

for all finite er/O-modules Gy, G, such that H; := F/Gi with i = 1,2. Then the
identities (8.1) tell us that this condition forces

(@i ar)

;= —m————
" Agiarr)

foralli =2,....,k. O

Definition 8.12. Let L/ K, be a I'-extension and u € Q™ be the rank of L/ K. Then
define v € Q1 given by the formula in Theorem 8.11 to be the rank of LY /Kop.
(In Section 9 we show this does not depend on L, but only LY)



Vol. 96 (2021) Moments and interpretations of the Cohen—Lenstra—Martinet heuristics 379

Justlike in Section 4, we can express | H |¥ in terms of the decomposition groups I,
at infinite places v|co.

Corollary 8.13. If u is given by the rank of a I'-extension L/ Ky and v the rank
of LY /Ko (as given in the definition just above), then for any finite o-module H,
we have

|HI? = ler/rDe} @ HI = [I(er/rDe} @0 H)™|,

v|oo
where v runs over all infinite places of K.
Proof. This is the combination of Theorem 8.11 and Theorem 4.1. O

By Theorem 8.11, we can always identify the random o-module I X with some
random o-module Y = Y(ejer;rQ[I']e], v, 0) and the Cohen—Martinet conjecture
predicts Cl}% are distributed as random o-modules.

Theorem 8.14. Let T be a finite group and I'' C T a subgroup. Assume that S only
contains good primes for er;r. If u is the rank of some I'-extension L/Ky, then
let v be the rank of LY / Ko (as given in the definition just above) and

Y =Y (ejer;rQ[Ilel, v, 0)

be the random finite o-module. For a non-negative function f defined on the
class of isomorphism classes of finite o-modules, the Cohen—Martinet conjecture
(Conjecture 7.2 for f(r/—) and e = er /) implies that

<x Clsr"
T AE AT =E(f(Y)).

x00 2y |<x |

where the sums are over I -extensions L /Ko and the discriminant |dy| < x and the
rank of L/ Ky is u.

In particular, the results of Section 6 all apply here to give the moments of the
predicted distributions and see that the distributions are determined by their moments.

Remark 8.15. The probabilities in Theorem 8.14 are

C
|H[?| Auto (H)|

for each finite o-module H. We also see that if we want the probability of obtaining
some finite abelian group H, then the desired probability in (7.1) can be rewritten as a
sum over o-module structures on the finite abelian group H of the above probabilities.
One could also apply the class triples approach of Section 5 to obtain probabilities
that are purely inversely proportional to automorphisms of some object. Perhaps the
simplest way to do this to make a class triple from er - Cl{.
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8.3. Examples. In this section, we give some examples of specific I" and I'/ to see
what o is in that case. Given a finite group I" and subgroup I"/, we define e;, y;, ¢; as
in Theorem 8.11. We have that e; Q[I'] ~ M, (D;), where D; is a division algebra
with center K;, and K; is the field generated by the values of ¢;. We can decompose

k
ar/rv = Zai)(i-
i=2

for positive integers a;. Then we can see from the proof of Proposition 8.3 and a
dimension calculation using Frobenius reciprocity that

k
eler/rQ[Te} ~ @D Mq, (D).
i=2

From this we conclude the following about the cases in which there is really no
additional structure by realizing the class group is an o-module.

Proposition 8.16. The maximal Z s-order o in e\ er;rQ[I']e] is isomorphic to Zg
if and only if ar v is absolutely irreducible.

Example 8.17 (ar,rs multiplicity 1). So if all the a; are 1 and D; = K; (i.e. all
the Schur indices are 1), or equivalently, every absolutely irreducible character that
appears in ar, s appears with multiplicity 1, then by Corollary 8.10, we have that

k
0 2@2]@,
i=2

where Z g; is the localization of the ring of algebraic integers of Kj; at by the non-zero
rational integers not in S.

If in addition, all the decomposition groups I', are trivial for a Galois I"-extension
L/Ky, then for the associated v; for LT ", we can compute using Theorem 8.11
that v; = rgl;, where rg is the number of infinite places of K.

Example 8.18 (An example on S,). Even more specifically, we consider the case
where K/Q is a non-Galois extension whose Galois closure L/Q isa I' = S,-field
such that K is the fixed field of I = S,—; where S,,—; < S, in the usual way.
Moreover, assume that L /Q is totally real, sou = 1 by Theorem 4.1. Since ar, - is
absolutely irreducible with ar,r/(23---(n — 1)) = 1, we have

ar/r (1)

-1 s 1) e
T (@3--n—=1) ' +-) = py (@3- (mn=1)""+---).

ar/rr =
Also, for p 4 n!/(n — 1), one can explicitly compute er;r'Zp)[I'] = Mp—1(Z(p)).
Therefore, p is a good prime if and only if p } n!/(n — 1). Let S be the set of good
primes for er, .
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By Theorem 8.11 we have
|H|" = |H[""",

where n = |I'/T”|,i.e. v = n — 1. In this case, o is just Zgs. Hence we expect lef
to behave like a random abelian group without any additional structure coming from
the o action, and the predictions have each finite abelian Zg-module H appearing
with probability |H |~V | Aut(H)| ™! as Cli.
Example 8.19 (An example on D4). LetI" = Dy, the dihedral group of order 8 and S
only contain odd primes. Write I' = (0, 7) with 72 = 0* = l and tot™! = 071,
Let K/Q be a degree 4 extension with Galois closure L|Q a totally real I"-field such
that K is the fixed field of the subgroup IV = {1, 7} (so u = 1 by Theorem 4.1).
The character ar,r is of degree 3, the sum of two absolutely irreducible
characters ¢ of degree 1, and y of degree 2. Let ey, resp. e, be the irreducible
central idempotent in Q[I'] associated to ¢, resp. x. The idempotents are given by

1 1
eX:§(1+02—0—03+‘L’+O‘2‘E—UT—U3‘C) and e(pzz(l—az)

and 2 is the only bad prime number for er, .

Since ¢ is an absolutely irreducible character of degree 1 and e} - e, = e,, we
then know that eyej0 = Zg. On the other hand, Frobenius reciprocity shows that
dimg e}e,Q[I'le} = 1, hence eyejo, as a maximal order in e}e,Q[I']e}, is also
isomorphic to Zs. So o = Z% as an algebra.

On the other hand, the normalizer of T is {I, 7,0 ,021}, i.e. there exists 2
automorphisms of K/Q. In particular, the class group Cl}q< is not only an abelian
group but an abelian group with an order 2 automorphism, i.e. Cli isaZg[t]/(t?—1)-
module with 7 - x = o2 - x. Moreover, one can check that the ring homomorphism

2

€F/I~/€/10 — Zs[l]/(lz -1
given by
1 1
epey > 5(1 +1) and eye] — 5(1 —1)

is an isomorphism which is compatible with the actions on class groups. So in this
example, considering the 0-module structure on Cl§< and the structure on Cl‘};< from
the automorphisms of K/Q are equivalent.

We will also work out the predicted moments explicitly in this case. Let

X = (eryrQ[T]. 1, er; D),
and let G be a finite er, rO-module, and H = 'a. Then,

3 R
G lepGllex Gl

E(|Sur, ("X, H)) = E(Surep., 10 (X, G)|)
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Then using (8.2), we have
1

E(|Sur, (V' X, H)|) = ————.
i [SEH |5 H P

Example 8.20 (An Example on As). This is an example where the non-Galois
extension admits no “automorphism” but the ring o is nontrivial.

Let ' = As. The subgroup I' generated by (123) and (12)(45) is called the
twisted S3 in A5 because this subgroup is isomorphic to Ss. It is a maximal proper
subgroup of As. Since T is simple, this says that the normalizer of T is itself.

Now assume that K /Q is a non-Galois extension with Galois closure a I"-field L|Q
such that K = LT, Since automorphisms of K over Q correspond to I' cosets of
elements o € I' such that 6o ~! = I, then we can see that K admits no nontrivial
automorphism.

The character rr, 1 is given by a Q-representation of dimension 10. By checking
the character table, I" has 4 characters over Q. Note that there is a unit character
contained in rr, . The character rr, - contains three different absolutely irreducible
characters, say rr/rr = x1+ 2+ x3 where 1 is the unit character, x» is the character
of degree 4 and y3 is the character of degree 5. By Theorem 8.9, this implies that o
admits two orthogonal irreducible idempotents, hence cannot be isomorphic to Zg.
By computations using Frobenius reciprocity, we can see that e e; Q[I']e] is a one-
dimensional Q-vector space where ¢; is the irreducible central idempotent associated
to x;, fori = 2, 3. Therefore the ring o is isomorphic to Zé. Moreover, we can check
that a prime number p is good for ey, if and only if p # 2,3,5,ie. p t [T'|. So
for a set S of good primes, the class group le( has a natural order 2 automorphism
(from (1,—1) € Z%) and the conjectures reflect this structure.

9. Independence of Galois fields

Though we imagine the reader was thinking of L as the Galois closure of K in the
last two sections, that was never strictly required. It could have also been a larger
Galois extension. In fact, we could have even considered I'" normal so that K/ Ko was
Galois. With this realization, we see that the Cohen—Martinet heuristics make several
(infinitely many) predictions for the averages of the the same class groups (though
each prediction is with a different ordering of the fields, since the conjectures as
worded are always ordered by the discriminants of the Galois fields). In this section,
we show that all those predictions agree.

We start by showing that v does not depend on the choice of the Galois
extension L/K, containing K/K, (see the explicit statement below). We start
with a lemma, whose proof is straightforward.

Lemma 9.1. If T C T is a normal subgroup, then e’ is central in Q[I'] and

(e1 + er/r)QII'] = €1 Q[I'] = Q[I'/T].
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In particular, if we let ey be the irreducible central idempotent in Q[I"/ T''] associated
to the unit character of T'/ T, then the maximal order o of e]er;r Q[T'] is isomorphic
to a maximal order in (1 —e)Q[I'/T"].

Theorem 9.2. Let K /Ky be any finite extension with Galois closure a T -extension
L/Kq of rank u € Q™1 such that Gal(L/K) = I'. Let M |Kg be a -extension of
rank w € Q" such that L € M with Gal(M |L) = A, and Gal(M |K) = %'

If S only contains good primes for er/r € Q[I'] and ex;s € Q[X], then the
rank v of LY /Ko and the rank T of M='| K are the same. Moreover, T’ (er/rO)

is isomorphic to = (62/2/9) where O, resp. O, is a maximal Zg-order in Q[T,
resp. in Q[X] provided that the embedding Q[I'] — Q[X] defined by

Yo Z S,
where y is the image of § under the surjective map ¥ — I, maps £ into O.
Proof. We use E for central idempotents in Q[X] and e for the ones in Q[I']. For

example let
Z v Epi= |2/| Z

yel” oex/

Fii= g Lo

JeA
Note that E| - F; = F; - E{ = E]. By Lemma 9.1, we have

e} =
' IF/I

Moreover, let

E\QIEIE; = E{RQIE)E] = = Y o-Q[T/AlE]

oex’

IE’

Y oA-Q[Z/AJE] = ¢ Q[Tej.

/
|E/ |0AEE’/A

This computation shows that I (er /1) is equivalent to T (ex / 2/55), because they
are both maxiinal orders in €] Q[I']e]. Moreover, if the embedding Q[I'] — Q[X]
sends O into O, then by the isomorphism in Lemma 9.1,

Q[I'] = (E1 + Ex/a)Q[Z],
which is induced by the embedding, we know that
O~ (E+ EZ/A)ﬁ-

Hence, the isomorphism F’(ep/p/D) o~ El(@z/g/ﬁ).
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Note that by Lemma 9.1,

Es/aQ[X] = (1 —e)QII'],

and they have same number of irreducible components whose correspondence is
given by E +— EF; for all irreducible central idempotents £ € Q[X]. Assume
without loss of generality that

Es/jn =Ex+--+ Ep

inQ[X]and E; F; = e¢; foralli =2,...,m.

Claim. w; = u; foralli =2,...,m.

Proof of the claim. Let ¥, € X be any decomposition group of some infinite
place v|oo of Ky defined up to conjugacy. Note that the ranks u and w do not
depend on the choice of the maximal orders. We may assume without loss of
generality that

EZ/A55 >~ (1 —e1)D.

Let G be any finite Ex, AD-module and H the corresponding (1 — e7)D-module
under the isomorphism of maximal orders. Since G is fixed by A, hence a X/A-
module, and we can take I';, to be the image of X, under the surjective map ¥ — T,
and obtain

|®vG| = |®2G| = |"MH]|.

By Theorem 4.1, we know that the claim is true. O

Then by the interpretation of v for non-Galois case and the fact that we can choose
the maximal orders such that Ey, A)S =~ (1 — e1)D, we know that the computation
of the rank v of K/Ky can always be reduced to its Galois closure L/Ky, i.e. the
rank v of K/Kj is a property of K and the distribution of the random o-module

Y = (erer/rQ[ley, v, 0)

does not depend on the choice of the Galois extension M | K¢ containing K. O
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