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Abstract. The goal of this paper is to prove theorems that elucidate the Cohen–Lenstra–Martinet
conjectures for the distributions of class groups of number fields, and further the understanding
of their implications. We start by giving a simpler statement of the conjectures. We show that the
probabilities that arise are inversely proportional to the number of automorphisms of structures
slightly larger than the class groups. We find the moments of the Cohen–Lenstra–Martinet
distributions and prove that the distributions are determined by their moments. In order to
apply these conjectures to class groups of non-Galois fields, we prove a new theorem on the
capitulation kernel (of ideal classes that become trivial in a larger field) to relate the class groups
of non-Galois fields to the class groups of Galois fields. We then construct an integral model
of the Hecke algebra of a finite group, show that it acts naturally on class groups of non-Galois
fields, and prove that the Cohen–Lenstra–Martinet conjectures predict a distribution for class
groups of non-Galois fields that involves the inverse of the number of automorphisms of the
class group as a Hecke-module.
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1. Introduction

In this paper we prove several results to help elucidate the Cohen–Lenstra–Martinet
conjectures [9,11] for the distributions of class groups of number fields, and to further
the understanding of their implications. In Section 3, we explain the statement of
the conjectures in the framework of probability theory. In Section 4, we prove a
result about the terms appearing in the Cohen–Lenstra–Martinet conjectures. In
particular, we prove certain expressions given by Cohen and Martinet are equal to
simpler expressions, which allows us to conclude the following. (See Conjecture 3.5
and Theorem 4.1 for precise statements.)

Theorem 1.1. For every finite group � and subgroup �1, among Galois number
fields K with isomorphism Gal.K=Q/ ' � (i.e. �-fields) and decomposition
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group �1 at1, the Cohen–Lenstra–Martinet conjectures predict that

Prob
�
ClK ˝ZZŒj�j�1� Š H

�
D

c

jH�1 jjAut�.H/j
;

whereClK is the class group ofK, and c is a constant, andH is any finiteZŒj�j�1; ��-
module withH� D 1.

The original philosophy of the Cohen–Lenstra–Martinet conjectures, going back
to Cohen and Lenstra [9], is that objects should appear with frequency inversely
proportional to their number of automorphisms. So we naturally ask why there is
an jH�1 j term in the above predictions. In Section 5, we slightly enlarge the class
group to the Galois group over Q of the Hilbert class field of K, with the data
of a decomposition group at 1. We consider, for the first time, the distributions
of these larger structures, which we call class triples. We show that a class triple
is determined by the class group and decomposition group at 1, and the number
of automorphisms of the class triple is exactly jH�1 jjAut�.H/j, explaining the
probabilities above. Bartel and Lenstra [2] have given a different approach to this
question by giving conjectures about the distribution of Arakelov class groups based
on those groups appearing with frequency inversely proportional to their number of
automorphisms (which takes some work to make precise, see [1]). Their predicted
distribution on Arakelov class groups then pushes forward to the Cohen–Lenstra–
Martinet distribution, over any base number field.

In Section 6, we determine the moments, which are important averages of the
Cohen–Lenstra–Martinet distributions on finite abelian �-modules.
Theorem1.2 (Moments). For every finite group� and subgroup�1, ifX is a random
ZŒj�j�1; ��-module with the Cohen–Lenstra–Martinet distribution for �-fields with
decomposition group �1 at 1, then for every finite ZŒj�j�1; ��-module H with
H� D 1, we have theH -moment of X is

E
�
jSur�.X;H/j

�
D jH�1 j

�1:

Here Sur�.X;H/ denotes the surjective �-module homomorphisms from X

toH . See Theorem 4.1 and Theorem 6.2 for precise statements. These moments are
the most important averages of the Cohen–Lenstra–Martinet distributions. (See [7,
Section 3.3] onwhy they are calledmoments.) The only non-trivial predicted averages
of the Cohen–Lenstra–Martinet conjectures that have been proven are the Z=3Z-
moment of the class groups of quadratic fields due to Davenport and Heilbronn [14]
(and Datskovsky and Wright [13] for quadratic extensions of general global fields)
and theZ=2Z-moment of the class groups of cubic fields due to Bhargava [3]. (There
is also more known on the 2-Sylow subgroup of the class groups of quadratic fields;
see [20, 44].) When working over Fq.t/ instead of Q, there are also results on the
H -moments of class groups, including of Ellenberg, Venkatesh, andWesterland [18]
and the second author [50] for quadratic extensions, and of Liu, the second author,
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and Zureick–Brown [34] for �-extensions, showing that as q ! 1 the moments
match those in Theorem 1.2. The paper [42] of Pierce, Turnage–Butterbaugh, and
the second author explains how the Cohen–Lenstra–Martinet conjectures for the
moments of class groups are related to other important conjectures in number theory,
including the `-torsion conjecture for class groups, the discriminant multiplicity
conjecture, generalized Malle’s conjecture, and the count of elliptic curves with fixed
conductor. So given the relative accessibility and the centrality of these moments,
Theorem 1.2 is useful because it tells us what moments the Cohen–Lenstra–Martinet
conjectures predict.

Moreover, we show that moments determine the Cohen–Lenstra–Martinet
distributions uniquely, which is particularly of interest because the moments are
the statistics of class groups about which we seem most likely to be able to prove
something.
Theorem 1.3 (Moments determine distribution). For every finite group � and
subgroup �1, if X is a random ZŒj�j�1; ��-module such that for every finite
ZŒj�j�1; ��-moduleH withH� D 1, we have

E
�
jSur�.X;H/j

�
D jH�1 j

�1:

ThenX has theCohen–Lenstra–Martinet distribution for�-fields with decomposition
group �1 at1.

See Theorems 6.12 and 6.13 for precise statements. When we restrict to groups
whose orders are only divisible by a finite set of primes, we also prove that a sequence
of random variables with these moments in the limit must have the Cohen–Lenstra–
Martinet distribution as its limit distribution. Theorem 1.3 is part of a long line
of work showing results in the same spirit for other categories of groups, including
work of Heath-Brown [27, Lemma 17] for elementary abelian p-groups, Ellenberg,
Venkatesh, and Westerland [18, Section 8] for finite abelian p-groups, the second
author for finite abelian groups [49, Section 8], and Boston and the second author
[5, Theorem 1.4] for pro-p groups with a Z=2Z action. See [16,19,24,50] for other
examples.

Next, we consider the implications of the Cohen–Martinet conjecture for class
groups of non-Galois fields. While these conjectures do not directly make claims
about class groups of non-Galois fields, when the class groups of non-Galois fields
can be given as a function of the class groups of Galois fields, then the Cohen–
Martinet conjectures make a prediction for their average. For example, let � be a
finite group and � 0 a subgroup of � . WhenL is a �-field andK is the fixed fieldL�0 ,
then, localizing away from primes dividing j�j, we have

ClK ˝ZZŒj�j�1� D .Cl�0L /˝Z ZŒj�j�1�

(where the � 0 exponent denotes taking the fixed part). So a conjecture about the
distribution of class groups of �-fields has a consequence for the distribution of class
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groups of their � 0-fixed fields. However, there is also the possibility of using the
Cohen–Martinet conjectures, for some primes p j j�j, to predict distributions of
p-Sylow subgroups ClK;p of ClK . In order to realize this possibility, we prove a new
result in algebraic number theory relating class groups of non-Galois fields to class
groups of Galois fields, in particular at primes dividing the order of the Galois group.
Theorem 1.4 (Determination of class groups of non-Galois fields from Galois). Let
L=K be an extension of number fields such that L=Q is Galois with Galois group �
and let � 0 D Gal.L=K/. Let e�=�0 be the central idempotent of QŒ�� for the
augmentation character for � acting on � 0 cosets, and p a prime not dividing the
denominator of e�=�0 and such that e�=�0Z.p/Œ�� is a maximal order. Then we have
an isomorphism

ClK;p
�
�!

�
e�=�0 ClL;p

��0
;

where the subscript p denotes taking the Sylow p-subgroup.
See Theorem 7.6 for a precise statement (for relative class groups over an arbitrary

base number field). In particular, we note the restriction on p is exactly the condition
on p for the Cohen–Martinet conjectures to say something about the distribution
of e�=�0 ClL;p . So Theorem 1.4 allows us to fully determine the implications of the
Cohen–Martinet conjectures for the class groups of non-Galois fields.

Moreover, for p;K;L as in Theorem 1.4, we have the immediate corollary that
the order of the kernel of the capitulation map ClK ! ClL is not divisible by p.
The capitulation kernel is very long-studied, but its structure is not well-known.
Hilbert’s Theorem 94 [28] proves that when L=K is finite, cyclic, and unramified,
then the degree ŒL W K� divides the order of the capitulation kernel. Hilbert then
conjectured the Principal Ideal Theorem of class field theory, eventually proved by
Artin and Fürtwangler, that every ideal class in K capitulates in the Hilbert class
field. Suzuki [46] and Gruenberg and Weiss [26] proved further generalizations
showing that the capitulation kernel for unramified abelian extensions is large. Our
theorem above is in the other direction, proving in some cases there is no p-part of
the capitulation kernel.

Theorem 1.4 implies that the Cohen–Martinet conjectures in principle give a
prediction for the distribution of class groups of fields K as above, but the predicted
distribution for a finite abelian p-group H is then the sum over e�=�0Z.p/Œ��-
modules G such that G�0 ' H (as groups) of the probability for G in the Galois
predictions (see Equation (7.1)). This prediction does not have the appearance
of objects appearing with frequency inversely proportional to their number of
automorphisms. However, in Section 8, we prove new theorems to give such a
perspective on these probabilities, which we now outline.

Of course when L=Q is Galois, we have that Gal.L=Q/ acts on ClL. However,
whenK=Q has no automorphisms, one might at first guess that ClK has no particular
structure other than that of a finite abelian group. We prove, however, that there is
always a natural action of a certain ring o on ClK (depending on the Galois groups of



Vol. 96 (2021) Moments and interpretations of the Cohen–Lenstra–Martinet heuristics 343

the Galois closure over Q andK). Given a representation V of finite group � over Q
and a subgroup � 0 of � , the Hecke algebra QŒ� 0n�=� 0� naturally acts on V �0 . We
construct an integral model o of the Hecke algebra so that the class group ClK;p
(for K;p; �; � 0 as in Theorem 1.4) is naturally an o-module (see Lemma 8.4) and
prove that our constructed o is a maximal order (Corollary 8.10). This definition
of o is particularly delicate at the primes p j j� 0j, but the proofs require similar
work at all p. Note that o can be bigger than Z even when the field K has no
automorphisms; see Example 8.20 on degree 10 fields with Galois closure with
group A5 and Proposition 8.16 in which we prove o is trivial if and only if the
augmentation character for � acting on � 0 cosets is absolutely irreducible.

Moreover, Theorem 1.4 and the results in Section 8 show that the p-Sylow
subgroup of the �-module ClL;p of a Galois field L containing K determines the
o-module structure of ClK;p . That shows that the Cohen–Martinet conjectures imply
some prediction for the distribution of the o-modules ClK;p , and we further prove a
simple expression for the prediction in terms of jAuto.H/j�1 by way of the following
result.

Theorem 1.5 (Cohen–Martinet predicts jAuto.H/j�1 for non-Galois fields). Given
a finite group � and subgroup � 0, for every prime p satisfying the condition of
Theorem 1.4, and every p-group o-moduleH , there is a unique finite e�=�0Z.p/Œ��-
module G such that G�0 Š H as o-modules. We also have

Aute�=�0Z.p/.G/ ' Auto.H/:

See Theorem 8.14 for a related statement precisely on the implications of the
Cohen–Martinet conjecture. The key result we prove that allows us to prove
Theorem1.5 is Theorem8.9, which gives aMorita equivalence between the categories
of e�=�0Z.p/Œ��-modules and o-modules. This is the fundamental algebraic property
of our integral model o of the Hecke algebra.

Note that Theorem 1.4 does not require L to be the Galois closure of K.
So actually, the Cohen–Lenstra–Martinet heuristics give infinitely many different
predictions for the distribution of non-Galois (or Galois) class groups, by taking
fixed fields of larger and larger fields. In Section 9, we prove that all of the
predicted distributions agree, which is an important internal consistency check on
the conjectures.

Theorems 1.1, 1.2, 1.3, and 1.5 are theorems in the theory of finite �-modules,
including in the probability theory of random finite �-modules. Even though we have
proven them to specifically elucidate conjectures about class groups, we expect them,
especially Theorems 1.2 and 1.3 to have applications in other contexts. Distributions
related to the Cohen–Lenstra distribution have arisen for predicting the distribution
of Tate–Shafarevich groups of elliptic curves [4, 15], and so in order to generalize
the predictions of [41] on the asymptotics of elliptic curves of a given rank over Q
to other base global fields, one will need to use an analog of the Cohen–Martinet
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distributions. Also, beyond number theory, the Cohen–Lenstra distributions on
finite abelian groups, and related distributions, have many interesting connections
in algebraic combinatorics; see the recent work of Fulman and Kaplan [24] and
also [6–8,21–23,25,31,32,38,45,47]. Further, the theorems that moments determine
the distribution have been used for determining distributions arising in the theory of
random graphs, such as the sandpile groups of Erdös–Rényi and random regular
graphs [30,37,49]. These theorems on the moments have also been used to show that
certain randommatrices have cokernels in theCohen–Lenstra distribution [39,40,51],
and as an application determine the probability that a random 0=1 rectangular matrix
gives a surjective map to Zn. The Cohen–Lenstra and related distributions have
also arisen in questions about random topological spaces [17,29]. The more general
Cohen–Lenstra–Martinet distributions may be relevant in many of these contexts.

2. Notation

Throughout the whole paper, � is always a finite group and S is always a set of
(possibly infinitely many) rational primes.
Definition 2.1. Let K be a number field and K0=Q be a subextension of K. We
write ClK for the class group of K. Then we define the relative class group ClK=K0
to be the subgroup of ClK consisting of ideal classes ˛ with trivial norm NmK=K0 ˛
in ClK0 . Also, let IK be the group of fractional ideals and PK the group of principal
fractional ideals of K.
Definition 2.2. For a fieldK0, by a�-extension ofK0, wemean an isomorphism class
of pairs .K; �/, where K is a Galois extension of K0, and � WGal.K=K0/ ' � is an
isomorphism. An isomorphismof pairs .K; �/, .K 0; � 0/ is an isomorphism˛WK!K 0

such that the mapm˛WGal.K=K0/! Gal.K 0=K0/ sending � to ˛ ı� ı˛�1 satisfies
� 0 ım˛ D � . We sometimes leave the � implicit, but this is always what we mean by
a �-extension. We also call �-extensions of Q �-fields.
Definition 2.3. Define ZS to be the localization of Z by the subset of non-zero
integers not divisible by any primes in S , so the maximal ideals of ZS are given by
the primes in S . For any finite abelian groupG, define its S partGS as the subgroup
generated by all p-Sylow subgroups with p 2 S . (Note that our definition for S -part
of G is the opposite of GS in [11].) We will also use the usual notation Z.p/ for ZS
when S D fpg.
Definition 2.4. If f is a measurable function on a probability space, we let P denote
the probability measure and E.f / denote the expected value of f . In this paper, our
probability spaces will always be discrete and countable and

E.f / D
1X
iD1

f .Gi /P .Gi /:
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Throughout the paper, we often have a ring R, a central idempotent e of R, and
then consider the ring eR. The reader is warned that eR is not a subring of R in the
usual sense, asR and eR do not share an identity. One could consider eR as notation
for the quotient R=.1 � e/R.

3. Explanation of the Cohen–Lenstra–Martinet heuristics in the Galois case

The goal of this section is to state Cohen, Lenstra, and Martinet’s conjectures on the
distribution of relative class groups of Galois extensions. This requires introducing
many pieces of notation.

3.1. Notations for semisimple Q-algebras. Let A be a finite dimensional semi-
simple Q-algebra; we denote by feig1�i�m its irreducible central idempotents, and
Ai D eiA its simple factors. The algebraA is thus identified with a product

Qm
iD1Ai ,

where each algebra Ai is isomorphic to an algebra of matricesMli .Di /; whereDi is
a division algebra of finite rank over Q of which the center is a number fieldKi . We
let h2i D dimKi Ai : Let O be a maximal order in A and G a finite O-module. For
any u 2 Qm, we define

jGju WD

mY
iD1

jeiGj
ui :

(See [43, §10] for basic results on semisimple Q-algebras and maximal orders.)

3.2. Notations for the heuristics. In the rest of this section, we let A D QŒ��, and
continue with the notation above. In particular, we let

e1 D
1

j�j

X
�2�

�:

Each ei corresponds to a distinct irreducible Q-representation of � with character �i .
We choose a fixed absolutely irreducible character 'i contained in �i .

Now letK0 be a number field, andK=K0 a Galois extension with Galois group � .
If v is an infinite place v of K0, then let �v be the decomposition group at v. We
also define

�K D �1C
X
vj1

Ind��v 1�v ;

which is a character of � associated to K=K0.
Definition 3.1. We define the rank ofK=K0 to be anm� 1-tuple in Qm�1 given by
the formula

u D .u2; : : : ; um/; ui D
1

hi
h�K ; 'i i 8i D 2; : : : ; m: (3.1)
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Remark 3.2. For the original definition of rank ofK, see [11, Definition 6.4]. These
two definitions are equivalent by [11, Theorem 6.7].

Let S be a finite set of primes. We will next define a randommodule to model the
class groups ClSK , which are naturally .1 � e1/ZS Œ��-modules. Cohen and Martinet
did not directly consider the distribution that we will define below. However, as we
will prove in this paper, building on tools from [11], the distributions we will now
define turn out to be equivalent to the ones considered in [11]. We think there are
advantages of viewing the conjecture in multiple equivalent but differently presented
forms.
Definition 3.3. If p 2 S implies that p − j�j, then for u D .u2; : : : ; um/ 2 Qm�1,
we define a random variable

X D X
�
.1 � e1/QŒ��; u; .1 � e1/ZS Œ��

�
to be a random .1� e1/ZS Œ��-module such that for all finite .1� e1/ZS Œ��-modules
G1; G2, we have

P .X Š G1/

P .X Š G2/
D
jG2j

ujAut�.G2/j
jG1j

ujAut�.G1/j
(where, of course, we order the irreducible central idempotents of .1 � e1/QŒ�� by
the order in QŒ��).
Remark 3.4. It follows from [11, Theorem 3.6] (with their u as 1 and their s as
our u) that this definition is well-defined, i.e. the seriesX

G

1

jGjujAut�.G/j
;

is convergent, whereG runs through all isomorphism classes of finite .1�e1/ZS Œ��-
modules. Even when jS j D 1, the series is still convergent as long as ui > 0 for all
i D 1; : : : ; m. So the above definition can be extended to the case jS j D 1 as long
as all the ui ’s are positive.

3.3. Statement of the conjecture. The conjecture of Cohen–Martinet [11, Hyp-
othesis 6.6] says the following.
Conjecture 3.5 (Cohen and Martinet [11]). Let S be a finite set of prime numbers
such that the primes in S are relatively prime to j�j, and u 2 Qm�1, and

X D X
�
.1 � e1/QŒ��; u; .1 � e1/ZS Œ��

�
the random module defined above. Then, for every “reasonable” non-negative
function f defined on the set of isomorphism classes of finite .1�e1/ZS Œ��-modules,
we have

lim
x!1

P
jDiscKj�x f

�
.1 � e1/ClSK

�P
jDiscKj�x 1

D E.f .X//;

where the sum is over all �-extensions K=K0 and the rank of K=K0 is u (and no
conjecture is made if the sums are empty).
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The cases whenK0 D Q and either � is abelian andK is totally real, or j�j D 2,
are the earlier conjecture of Cohen–Lenstra [9, Fundamental Assumptions 8.1].
Remark 3.6. In [11], a quantityMS

u .f / appears in place of E.f .X//. The identity
MS
u .f / D E.f .X// is proved in Proposition 6.6. Also the S -part of the relative

class group ClSK=K0 appears in place of .1 � e1/ClSK . In Lemma 7.12, we show that
these are actually the same. Note that e1 ClSK D ClSK0 . Therefore we only consider
the .1 � e1/-part as a random object.

Cohen and Martinet actually make further conjectures for some primes
dividing j�j and for infinite S . We will give the conjecture for p j j�j in
Conjecture 7.2.
Remark 3.7. In Conjecture 3.5, we give the conjecture made by Cohen andMartinet,
with the addition of the hypotheses that p − j�j and S is finite, except that we have
replaced some mathematical expressions in the original conjecture with equivalent
mathematical expressions. In particular, we have replaced them with equivalent
expressions that we think shed more light on the nature of the conjecture. However,
there are several problems with the content of the conjecture that we briefly mention
here, and are mostly orthogonal to the work in this paper. First, given the example of
Bartel and Lenstra [2, Theorem 1.1], it is probably best to keep the conjecture to finite
sets S . Second, the ordering of the fields needs to be changed in the conjecture, given
the example of [2, Theorem 1.2] of Bartel and Lenstra, who suggest ordering fields
by the radical of their discriminant based on work on the second author [48] that
shows this ordering has nice statistical properties for abelian Galois groups. Third,
Malle’s work [35, 36] suggests that we should also require that S does not contain
any primes dividing the order of the roots of unity of K0. The function field results
in [34] suggest that these are all the corrections that need to be made. Finally, we
need to find an appropriate meaning of “reasonable” for the conjecture (which is
never specified by Cohen and Martinet). See [4, Section 5.6] and [2, Section 7] for
some possible notions of “reasonable.”

Even though the conjectures of Cohen, Lenstra, and Martinet do not include the
cases of function fields, as mentioned in the introduction there has been significant
recent work in proving partial results towards their function field analogs. In this
analogy the u D 0 distribution provides the conjectural distribution for Pic0 of
random �-covers of P1Fq , and when one wants to consider some points of the curve
at infinity and the distribution of the class groups of the corresponding affine curves,
then distributions with u ¤ 0 arise. See [50, Section 1] and [33, Section 3.5] for
specific discussion of this aspect of the analogy.

4. The jG ju in Cohen–Martinet

In this section, we will find a simpler expression for the jGju term that appears in the
conjecture of Cohen and Martinet. We continue the notation from Section 3.
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Theorem 4.1. LetK=K0 be a�-extension of number fields. For each infinite prime v
ofK0, let �v be a decomposition group at v. We assume that the set S only contains
primes not dividing j�j. IfH is a finite .1 � e1/ZS Œ��-module, then

jH ju D
Y
vj1

jH�v j;

where v runs over all infinite primes of K0.

Proof. By the definition of jH ju, the theorem reduces to the case of a ZS Œ��-
module H such that H D eiH for some i > 1. Let e ¤ e1 be a central irreducible
idempotent ofQŒ�� associated to theQ-irreducible character � and rank u, and letH
be a finite eZS Œ��-module. We first show the following identity

jH�v j D jH j
h�;a�=�v

i

h�;a� i

for each infinite place v of K0, where for a subgroup � � � we define

a�=� WD �1C Ind�� 1�

to be the augmentation character of � and a� WD a�=1. By [11, Theorem 7.3], for
each v, there exists some abelian group Gv such that, as abelian groups, we have

H D eH Š Gh�;a� iv and H�v D .eH/�v Š G
h�;a�=�v i
v ;

hence the identity.
Note that �K D �1 C

P
vj1.a�=�v C 1/, and that h�; 1i D 0. We then know

that Y
vj1

jH�v j D

Y
vj1

jH j
h�;a�=�v

i

h�;a� i D jH j
h�;�K i

h�;a� i :

If we denote by ' a fixed absolutely irreducible character contained in � and let
f'1; : : : ; 'j g be the set of all the distinct conjugates of ', then

� D d

jX
iD1

'i ;

where d is the Schur index. So we have

h�; �Ki D d

jX
iD1

h'i ; �Ki D dj h'; �Ki:

On the other hand, since the character ' is absolutely irreducible,

h�; a�i D d

jX
iD1

h'i ; a�i D dj'.1/ D djh;
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where h is the hi of Section 3.1, and one can check h D dim'. We then know thatY
vj1

jH�v j D jH j
h�;�K i

h�;a� i D jH j
1
h
h';�Ki D jH ju D jH ju

completing the proof.

Remark 4.2. Actually the statement of Theorem 4.1 can be extended to some primes
dividing j�j. Let e be a central idempotent in QŒ�� such that e1 � e D 0 and S be a
set of primes such that e 2 ZS Œ�� and eZS Œ�� is a maximal order in eQŒ�� (i.e. S
only contains good primes for e, see the definition in Section 7). If H is a finite
eZS Œ��-module, then

jH ju D
Y
vj1

jH�v j:

The proof is the same as above because Theorem 7.3 in [11] still holds in this case.

5. Probabilities inversely proportional to automorphisms

Since the Cohen–Lenstra and Cohen–Martinet conjectures are rooted in the
philosophy that objects appear inversely proportional as often as their number of
automorphisms, it is natural to ask why there is a term jGju in the conjectures at
all. One answer is that it was necessary to match computational evidence, and other
heuristic explanations are given in [9, Section 8]. In this section, we give another
perspective, over the base field Q, in which we see class groups as a part of a
larger structure where jGjujAut.G/j is the number of automorphisms of the larger
structure. Bartel and Lenstra [2] have given a different perspective on interpreting
these probabilities, over a general number field, as inversely proportional to the
automorphisms of a larger object, in their case, the Arakelov class groups. In
contrast, our larger objects below are only slightly larger than the class groups, and
in particular, finite.

Let � be a fixed finite group. We choose an embedding xQ � C so that Gal.xQ=Q/
has a canonical decomposition groupGal.C=R/ at1.We fix a map sWGal.C=R/!�,
let K � xQ be a Galois extension of Q with an isomorphism Gal.K=Q/ ' � , and
let the decomposition group at1 given by s (under the isomorphism). LetK 0 be the
maximal unramified abelian extension ofK in xQ of order prime to j�j. The structure
we consider is the finite group G WD Gal.K 0=Q/ with given maps

cWGal.C=R/! G and � WG ! Gal.K=Q/ D �;

where � is a surjection with abelian kernel. Of course, ker.�/ D ClSK (where S is
the set of primes not dividing j�j) is naturally a �-module, but the data .G; c; �/ is
a little more. In fact, it is a class triple as defined below.
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Definition 5.1. For a given map sWGal.C=R/ ! � , we call .G; c; �/ a class triple
(for s) if G is a finite group satisfying the following conditions:

(i) � WG ! � is a surjective homomorphism such that ker� is an abelian group
whose order is coprime to j�j;

(ii) cWGal.C=R/! G is a homomorphism such that � ı c D s;
(iii) ker�� D 1 (where � acts by conjugation by preimages in G);
(iv) im c \ ker� D 1.

Then for two class triples .G1; c1; �1/ and .G2; c2; �2/, a morphism � is a group
homomorphism G1 ! G2 such that �1 D �2 ı � and that � ı c1 D c2.
Theorem 5.2. For a given map sWGal.C=R/ ! � and a class triple .G; c; �/, we
have

jAut.G; c; �/j D jker� im.s/
jjAut�.ker�/j:

Further, given a finite �-module H of order relatively prime to j�j with H� D 1,
there is a unique isomorphism class of class triples for s with ker� isomorphic toH
as a �-module.

Proof. Let A be the group of automorphisms of .G; c; �/, and since each such
automorphism preserves ker� (set-wise) and respects � , we have a homomorphism

A! Aut�.ker�/:

By the Schur–Zassenhaus theorem, we can write G D ker� Ì � (non-canonically),
and so in this notation an element � 2 A is determined by where it sends ker� and � .
Further, since � D � ı � , it follows that � sends � to another splitting ofG ! � . By
Schur–Zassenhaus all the splittings of G ! � are conjugate by elements of ker� .

This gives a map from ker� to the set of splittings of G ! � . We claim this
gives j ker�j distinct splittings. In ker� Ì � , we have

.n; 1/.1; 
/.n; 1/�1 D
�
n.n�1/


�1

; 

�
:

Suppose that .n1; 1/ and .n2; 1/ give the same splitting for some n1; n2 2 ker� .
Then for all 
 2 � we have

n1.n
�1
1 /


�1
D n2.n

�1
2 /


�1 ;

i.e. n�12 n1 D .n�12 n1/

�1 . By the definition of class triple, this implies n1 D n2.

Thus we have j ker�j splittings.
Any element Aut�.ker�/ and any splitting � ! H combine to give an

automorphism of .G; �/ by the definition of semi-direct product. We next determine
which of these automorphisms preserves c. LetK � G beK WD ��1.im� ı c/. So
we have

1! ker� ! K ! im� ı c ! 1:
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Since im c \ ker� D 1, one splitting of the above is im� ı c ! im c: Another
splitting is im� ı c ! 1 � im� ı c � ker� Ì � according to our chosen splitting
above. By Schur–Zassenhaus, these two splittings are conjugate by an element .n; 1/
for some n 2 ker� .

So let I D im� ı c. Then the elements of im c are

.n; 1/.1; 
/.n�1; 1/ D
�
n.n�1/


�1

; 

�

for 
 2 I . These elements are fixed by the element of Aut.G; �/ that comes from
 2 Aut�.ker�/ and conjugation of � by .m; 1/ if and only if for all 
 2 I ,

.m; 1/
�
 
�
n.n�1/


�1�
; 

�
.m�1; 1/ D

�
n.n�1/


�1

; 

�

i.e.
n�1m .n/ D

�
n�1m .n/

�
�1
i.e. n�1m .n/ is fixed by I , i.e. m 2 n�1.ker�/I .n/. Thus, we conclude that
exactly jAut�.ker�/jj.ker�/I j elements of Aut.H; �/ preserve c. This gives the
first statement of the theorem.

For the second statement of the theorem, by Schur–Zassenhaus, any class triple
giving H has G ' H Ì � . Choosing c to be s composed with the trivial splitting
� ! H Ì � gives at least one class triple giving H . As we saw above, any other
choice of c differs by conjugation by an element ofH , i.e. differs by an automorphism
ofH Ì � fixing the map to � .

Corollary 5.3. Let K � xQ be a Galois extension of Q with Galois group � and de-
composition group �1 at1 and map sWGal.C=R/!�1�� . LetG WDGal.K 0=Q/
with given maps

cWGal.C=R/! G and � WG ! Gal.K=Q/ D �;

Let S be the set of primes not dividing j�j. Then,

jAut.G; c; �/j D j.ClSK/
�1 jjAut�.ClSK/j:

So, combining with Theorem 4.1, we see that the probabilities in the Cohen–
Lenstra and Cohen–Martinet conjectures are inversely proportional to the number of
automorphisms of the class triples associated to the fields (which are determined up
to isomorphism by their class groups and decomposition groups but have a different
number of automorphisms from their class groups).

6. Moments of the Cohen–Lenstra–Martinet random groups

In this section, we will find the moments of the Cohen–Lenstra–Martinet random
�-modules, and moreover show that their distributions are determined by their
moments.
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6.1. Moments for Galois extensions. We keep the notation from Section 3.1. How-
ever, in this section, we will take the set S of prime to be not necessarily finite. We
will also define a slightly more general notion of random modules.

Definition 6.1 (Random O-modules). Let A be any finite dimensional semisimple
Q-algebra with m simple factors. Let S be a set of prime numbers, O be a ZS -
maximal order of A, and u 2 Qm be a fixed m-tuple. If either S contains finitely
many primes or ui > 0 for all i D 1; : : : ; m, then we define X D X.A; u;O/ to be a
random finite O-module such that for all finite O-module G1 and G2, we have

P .X Š G1/

P .X Š G2/
D
jG2j

ujAutO.G2/j
jG1j

ujAutO.G1/j
:

When S does not contain any primes dividing j�j, then ZS Œ�� is a maximal order
in QŒ�� (and so .1�e1/ZS Œ�� is a maximal order in .1�e1/QŒ��), and our previous
definition of X is a special case of the above. As in Remark 3.4, X is well-defined.

Now given H a finite O-module, consider the function jSurO.G;H/j counting
the number of surjective O-morphisms from G to H . Then we have the following
formula to compute the moments of X .

Theorem 6.2. Given a finite O-moduleH , we have

E
�
jSurO.X;H/j

�
D

1

jH ju
:

Proof. In this proof a summation over G=� always means the sum is over all
isomorphism classes of finite O-modules, with G a representative from each class.
For finite O-modules G;H , we have

jSurO.G;H/j D #fG0 � G j G=G0 Š H g � jAutO.H/j;

where G0 � G denotes G0 a sub-O-module of G. For G1 and G2 finite O-modules,
[11, Proposition 3.3] gives

X
G=�

jAutO.G/j�1#fH � G W H Š G1 and G=H Š G2g

D jAutO.G1/j�1jAutO.G2/j�1:

Let

Z.u/ D
X
G=�

1

jGjujAutO.G/j
: (6.1)
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Then we deduce that

E
�
jSurO.X;H/j

�
D

X
G=�

P .X Š G/jSurO.G;H/j

D

X
G=�

1

jGjujAutO.G/jZ.u/
jAutO.H/j

X
G1=�

#fG0 � G j G0 Š G1; G=G0 Š H g

D
jAutO.H/j
Z.u/

X
G1=�

1

jG1j
ujH ju

X
G=�

1

jAutO.G/j
#fG0 � G j G0 Š G1; G=G0 Š H g

D jAutO.H/j
X
G1=�

1

jAutO.G1/j � jG1juZ.u/
1

jAutO.H/j � jH ju

D
1

jH ju

X
G1=�

P .X Š G1/ D
1

jH ju
:

When applying the results to class groups, it is always the case that we only
consider the e-component of QŒ�� where e is some central idempotent. Suppose
that e is some central idempotent inA D QŒ��, then eA � QŒ�� is also a semisimple
Q-algebra and eO is a maximal order in eA. We could build a random module
directly from eO, or we could multiply our original random module by e. The
following shows these two constructions are the same.
Lemma 6.3. Let e D e2 C � � � C ek be some central idempotent of A, and let

X1 D X
�
A; u D .u1; : : : ; um/;O

�
and X2 D X

�
eA; v D .v2; : : : ; vk/; eO

�
be the random modules defined in Section 2 such that ui D vi for all i D 2; : : : ; k.
Then eX1 and X2 have the same probability distribution, i.e. for all finite eO-
modules G, we have

P .eX1 Š G/ D P .X2 Š G/:

Proof. Let S be the set of isomorphism classes of finite .1 � e/O-modules. For all
finite eO-modules G1; G2, we have

P .eX1 Š G1/

P .eX1 Š G2/
D

P
H2S P .X1 Š G1 ˚H/P
H2S P .X1 Š G2 ˚H/

:

Since all the terms defining the probabilities factor over Gi and H , we conclude the
lemma.

Therefore, Theorem 6.2 can be applied to eX directly.
Corollary 6.4. Let e 2 O be any central idempotent. Given a finite O-module H ,
we have

E
�
jSurO.eX;H/j

�
D

˚
1

jH ju
if eH D H;

0 otherwise:
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Proof. If eH ¤ H , then there is no surjective homomorphism from any eO-module
to H . If eH D H , then O-morphisms from eG to H are the same as eO-module
homomorphisms from eG to H . So the corollary follows from Lemma 6.3 and
Theorem 6.2.

Now we will show that the expected values of functions of X agree with the
averages that appear in the conjectures of [11].
Remark 6.5. The original definition of MS

u .f /, the average appearing the the
conjectures in [11], is given by their Definition 5.1 and Conjecture 6.6. However, note
that in the original paper, the definition of MS

u .f / must be corrected to involve e,
e.g.MS

u .f / should be defined with the implicit algebra eQŒ�� instead of QŒ��.
Proposition 6.6. Let jS j <1, and let f be a non-negative function defined on the
isomorphism classes of finite O-modules. For X D X.A; u;O/, we have

E
�
f .X/

�
D lim
x!1

P
jGj�x jGj

�u
P
'2Hom.P;G/jAutO.G/j�1f .G= Im'/P

jGj�x jGj
�u
P
'2Hom.P;G/jAutO.G/j�1

;

where the sum is over finiteO-modules G and P is a projectiveO-module of rank u
(as defined in [11, Definition 3.1]). Here x 2 Zm, and jGj � x means that for
every i , we have jeiGj � xi , and the limit means all xi !1.

Proof. In this proof a summation over G=� always means the sum is over all
isomorphism classes of finite O-modules, with G a representative from each class.
By [11, Theorem 4.6 (ii)] with  .G/ D jAutO.G/j�1 and s D u, if

gG1.G/ D #f' 2 HomO.P;G/ W G= im' Š G1g

and P is projective of rank u, thenX
G=�

gG1.G/

jAutO.G/jjGju
D

Z.0/

jAutO.G1/jjG1juZ.u/
;

where Z is defined in (6.1) (and see Remark 3.4 for the convergence). Then we haveX
G=�

jGj�u
X

'2HomO.P;G/

jAutO.G/j�1f .G= im'/

D

X
G1=�

f .G1/
X
G=�

gG1.G/

jAutO.G/jjGju

D

X
G1=�

f .G1/
Z.0/

jAutO.G1/jjG1juZ.u/
D Z.0/E

�
f .X/

�
:

Wecan also apply this to the constant function f .G/ D 1, and deduce the proposition.
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6.2. Moments determine the distribution. So the random O-module X has H -
moment jH j�u for every finite O-module H . Now we ask: given a random finite
O-module Y with H -moment jH j�u for all H , does Y have the same probability
distribution as X? In this section, we will see the answer is yes.

Recall the notations from Section 3.1: A D
Qm
iD1Ai and Ki is the center of Ai .

Now for each pair .i; p/, where i D 1; : : : ; m and p is a prime ofKi , we can consider
the completion Ai;p Š Mli;p.Di;p/ of Ai at p (where Di;p is the completion of Di
at p and li;p is some positive integer). Note that in this notation that the choices of p
depend on i . If O is a maximal ZS -order in A, then eiO also admits a completion

Oi;p D eiO˝ZKi
ZKi;p

(where ZKi is the ring of integers of Ki and ZKi;p is the valuation ring of Ki;p). In
particular, Oi;p is a maximal order in Ai;p. Then in this case (unlike in the global
case), there always exists an isomorphism

Oi;p ŠMli;p.Oi;p/;

where Oi;p is the maximal order inDi;p, which is given by a valuation.
IfG is a finiteO-module, and .i; p/ some prime ideal ofO (i.e. p is a prime ideal

of Ki ), then let Gp denote the part of G annihilated by a power of p and we know
that Gp is naturally a finite Oi;p-module. For any two finite O-modules G1 and G2,
we have

jAutO.G1/j D
Y
.i;p/

jAutOi;p.G1;p/j

and jSurO.G1; G2/j D
Y
.i;p/

jSurOi;p.G1;p; G2;p/j:

Moreover, the category ofOi;p-modules is equivalent to the category ofOi;p-modules,
because they are bothmatrix algebras over Oi;p. So the question of counting surjective
morphisms is then reduced to the following case: letD be a division algebra over Qp

with themaximalZp-orderO andwe consider the category of finiteO-modules. Given
any (finite) partition �W�1 � �2 � : : : , there exists a unique (up to isomorphism)
finite O-module G such that

G Š
M
i

O=p�i ;

where p is the unique maximal ideal of O, see, e.g. [11, Lemma 2.7]. Then we write
G D G� and call it the O-module of type �. Also let q D jO=pj be the cardinality of
the simple O-module.
Definition 6.7. Given a partition �W�1 � �2 � � � � � �n, it can be represented by a
Young diagramwhose number of boxes in the i th row represents the number �i . Then
the transpose �0 of � is the partition such that �0j equals to the number of boxes in the
j th column in the diagram of �. We have a partial ordering on partitions as follows,
Given two partitions �; �, we say that � � � when �i � �i for each i D 1; 2; : : : .
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Lemma 6.8. LetD be a division algebra over Qp with maximal Zp-order O. Given
two O-modules G�; G� of type � and �. Then

jHomO.G�; G�/j D q
P1
iD1 �

0
i
�0
i :

Proof. By Lemma 2.7 (and more generally §2) in [11], we only need to check the
formula for the case when G�; G� are both cyclic, which is clear, i.e.

jHomO.O=p
m;O=pn/j D qmin.m;n/

D q�
0
1
�0
1 :

Lemma 6.9. Let G D G� be a O-module of type �. If � � �, then the number of
submodules of type �, denoted by ˛�.�I q/, satisfies

˛�.�I q/ �
Y
j�1

1

.1 � 2�j /�1
� q

P�1
iD1

�0
i
�0
i
�.�0

i
/2 :

Proof. First we claim

˛�.�I q/ �
jHomO.G�; G�/j

jAutO.G�/j
:

i.e. if f WG� ! G� happens to be an injective map, then f ıg where g 2 AutO.G�/
clearly gives us the same subgroup inG�. Then byTheorem2.11 in [11], if�1; : : : ; �t
are the distinct (nonzero) values of f�ig with multiplicities k1; : : : ; kt , then

jAutO.G�/j D q
P
i .�
0
i
/2

tY
iD1

.ki /q

� q
P
i .�
0
i
/2

tY
iD1

.1/q � q
P
.�0
i
/2
1Y
jD1

.1 � q�j /�1 ;

where the notion .k/q means
Qk
iD1.1 � q

�i / if k > 0. Since �1 � �1, we have

˛�.�I q/ �
jHomO.G�; G�/j

jAutO.G�/j
�

1Y
jD1

1

.1 � q�j /�1
q
P
�0
i
�0
i
�.�0

i
/2

�

Y
j

1

.1 � 2�j /�1
� q

P
�0
i
�0
i
�.�0

i
/2 :

Lemma 6.10. For any given O-module G of type �, there exists a constant C such
that

#fH � Gg � C �1q
1
4

P
.�0
i
/2 :

Proof. To prove this lemma, we sum the result in Lemma 6.9 over all � � �, and a
bound for this sum is given in [49, Lemma 7.5].
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Now using the lemmas above and results from [49], we can prove that the Cohen–
Lenstra–Martinet distributions are determined by their moments, and in fact even a
sequence of random variables with moments converging to moments described in
Theorem 6.2 must converge to the Cohen–Lenstra–Martinet distribution.
Theorem 6.11. Take A;O; m as in Section 3.1 and let u 2 Qm be an m-tuple.
Assume that either that jS j < 1 and u � 0, or, that jS j D 1 and ui > 0 for
all i . Let Ki be the center of each component Ai and Ri the integral closure of ZS
inKi . Then R WD

L
Ri is the center ofO and eachOi is a maximal Ri -order in Ai

(see [43, Theorem 10.5]).
Let fXng be a sequence of random variables taking values in finite O-modules.

For each prime p of O, let np � 0 such that np D 0 for almost all p. Let S be the
set of all finiteO-modulesH such that the annihilator ofHp divides pnp . Moreover,
let N be the O-module such that Np is of type .np; 0; 0; : : : /.

Suppose that for every G 2 S, we have

lim
n!1

E
�
jSurO.Xn; G/j

�
D

1

jGju
:

Then for everyH 2 S, the limit

lim
n!1

P .Xn ˝R N Š H/

exists and for all G 2 S we haveX
H2S

lim
n!1

P .Xn ˝R N Š H/jSurO.H;G/j D
1

jGju
:

Suppose fYng is another sequence of random variables taking values in finite
O-modules such that for every G 2 S, we have

lim
n!1

E
�
jSur.Yn; G/j

�
D

1

jGju
:

Then for everyH 2 A, we have

lim
n!1

P .Xn ˝R N Š H/ D lim
n!1

P .Yn ˝R N Š H/:

Proof. The proof is very similar to [49, Theorem 8.3], so we only present a sketch
and highlight the differences. First we suppose that the limit

lim
n!1

P .Xn ˝R N Š H/

exists for allH 2 S and we are going to show that for all G 2 S we haveX
H2S

lim
n!1

P .Xn ˝R N Š H/jSurO.H;G/j D
1

jGju
:
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By Lemma 6.8 and the same argument as in [49, Theorem 8.3], for eachG 2 S, there
exists G0 2 S such that X

H2S

jHomO.H;G/j

jHomO.H;G0/j
<1:

Then the same argument as in in [49, Theorem 8.3] using the LebesgueDominated
Convergence Theorem concludes thatX
H2S

lim
n!1

P .Xn ˝R N Š H/jSur.H;G/j

D lim
n!1

X
H2S

P .Xn ˝R N Š H/jSur.H;G/j D
1

jGju

i.e. if for all H 2 S the limit limn!1 P .Xn ˝R N Š H/ exists, then the moments
agree with E

�
jSur.X;G/j

�
for all G 2 S.

Next we show that if the limits

lim
n!1

P .Xn ˝R N Š H/ and lim
n!1

P .Yn ˝R N Š H/

exist for allH , thenX
H2S

lim
n!1

P .Yn ˝R N Š H/jSur.H;G/j

D

X
H2S

lim
n!1

P .Xn ˝R N Š H/jSur.H;G/j D
1

jGju

implies
lim
n!1

P .Yn ˝R N Š H/ D lim
n!1

P .Xn ˝R N Š H/:

Note that the averages jHomO.X;H/j and jSurO.X;H/j over allH , are determined
fromone another byfinitelymany steps of addition and subtraction. Wewill apply [49,
Theorem 8.2] with distinct primes pi ’s in the assumption replaced by not necessarily
distinct real numbers qi ’s. The proof of the theorem actually proves the statement in
this generality.

Now letM be the set defined in [49, Theorem 8.2] where the choice of qi comes
from the following: there are only finitely many primes pij � ZKi such that npij > 0
for all i D 1; : : : ; m, so we can let qk D jOk=p0kj where Ok � Di;pk is the maximal
order in Di;pk and p0

k
is the unique maximal ideal. We say that an O-module

G 2 S corresponds to � 2 M if the type of G is exactly �0 where �0 is obtained
by .�0/k D .�k/0. We then define

x� D lim
n!1

P .Xn ˝R N Š G�0/

for all � 2 M . And similarly for y�. If we let C� denote the expected value of the
number of homomorphisms intoG�0 , then by Lemma 6.10, we know thatC� satisfies
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the condition in [49, Theorem 8.2]. Then [49, Theorem 8.2] tells us that x� and y�
are determined by C�.

Finally, the same diagonal argument at the end of the proof [49, Theorem 8.3]
shows that when the limit moments are jGj�u, the limit limn!1 P .Xn˝RN Š H/
exists for allH 2 S.

The above theorem is the most flexible for applications, but we will state now
simpler versions to emphasize the main point.
Theorem 6.12. Keep the notations in Theorem 6.11. Assume that jS j <1. If fXng
is a sequence of random variables taking values in finite O-modules such that

lim
n!1

E
�
jSurO.Xn; G/j

�
D

1

jGju

for all finite O-module G, then

lim
n!1

P .Xn Š G/ D
1

jAutO.G/jjGjuZ.u/
;

i.e. the limit of the random variables exists and has the same probability distribution
as the random variable X D X.A; u;O/.

Proof. If jS j < 1, we can take into account all the prime ideals of O at one time.
Provided that G is a finite module such that Gi;p is of type �i;p where �i;p is a
partition, then in Theorem 6.11 we take ni;p D .�i;p/01 C 1. If H is any O-module
such that

H ˝R N Š G;

then H has to be isomorphic to G, i.e. P .Xn Š G/ D P .Xn ˝ N Š G/, and it is
determined by the limit moments.

Theorem 6.13. Assume that jS j D 1 and ui > 0 for all i D 1; : : : ; m, and
X D X.A; u;O/ is the random variable we’ve defined. If Y is a random variable
taking values in finite O-modules such that

E
�
jSurO.Y;G/j

�
D

1

jGju
D E

�
jSurO.X;G/j

�
:

Then,
P .Y Š G/ D P .X Š G/

for all finite O-modules G.

Proof. We let pi be the primes of O: By Theorem 6.12, for every n we have

P .Ypi Š Gpi j i D 0; 1; : : : ; n/ D P .Xpi Š Gpi j i D 0; 1; : : : ; n/:
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Then by basic properties of measures, we have

P .Y Š G/ D P .Ypi Š Gpi j i D 0; 1; 2; : : : /

D lim
n!1

P .Ypi Š Gpi j i D 0; 1; : : : ; n/

D lim
n!1

P .Xpi Š Gpi j i D 0; 1; : : : ; n/

D P .Xpi Š Gpi j i D 0; 1; 2; : : : / D P .X Š G/:

However, the statement on limit moments determining the limit distributions does
not hold if S contains infinitely many primes.
Example 6.14. Let S contain infinitely many prime numbers which are relatively
prime to j�j (so thatO D ZS Œ��) and ui > 0 for all i . LetH be any finiteO-module.
Then P .X Š H/ > 0.

For every rational prime p, there is a O-module Gp whose underlying abelian
group is a p-group, say .ZS=pZS /n Š .Z=pZ/n which is a representation of � over
the finite field Fp . Let Yp be a random O-module such that

P .Yp Š G/ D

�
P .X Š G/ 8G ¤ H orH �GpI
0 if G D H I
P .X Š H/C P .X Š H �Gp/ if G D H �Gp:

Since jSurO.H;G/jDj SurO.H�Gp; G/jwheneverp> jGj, for everyO-moduleG,
we have

lim
p!1

E
�
jSurO.Yp; G/j

�
D E

�
jSurO.X;G/j

�
:

However, limp!1 P .Yp Š H/ D 0. This shows there is no analog of Theorem 6.12
for infinite S .

7. Explanation of the Cohen–Martinet heuristics in the non-Galois case

Cohen and Martinet [11] do not specifically make a conjecture about the distribution
of class groups of non-Galois fields. However, they do show that by expressing class
groups of non-Galois fields in terms of Galois fields, such conjectures can be obtained
as consequences of their conjectures in some cases. The goal of this section is to
deduce the entire consequence of the Cohen–Martinet conjectures for class groups of
non-Galois fields. Interestingly, in the non-Galois case, one can sometimes also say
something about the p-Sylow subgroup of the class group for p dividing the order
of the Galois group of the Galois closure. So first, we must state a more complete
version of the conjecture of [11] that includes these primes.

In this section we continue the notations introduced in Section 3.1 and Section 3.2.
In particular, � is a fixed finite group.
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Definition 7.1. Let e be any central idempotent of QŒ��. We say that a prime
number p is good for e if e 2 Z.p/Œ�� and eZ.p/Œ�� is a maximal Z.p/-order
in eQŒ��, and it is bad for e otherwise.

This definition is stated slightly different from the original one in [11, 6.1], but
they are equivalent (see [43, Theorem 10.5]). A prime p such that p − j�j is good for
any central idempotents e, including e D 1. For a central idempotent e inQŒ��, andS
a set of primes good for e, [11, Hypothesis 6.6] is a conjecture for the distribution
of e ClSK . Proposition 6.6 and Lemma 7.12 show that this conjecture is equivalent to
the following.
Conjecture 7.2 (Cohen and Martinet [11]). Let e be a fixed central idempotent
in .1 � e1/QŒ��, such that e D e2 C � � � C ek , where the ei are irreducible central
idempotents. Let S be a set of prime numbers such that if p 2 S then p is a good
prime for e, and u 2 Qk�1. Let

X D X
�
e.1 � e1/QŒ��; u; eZS Œ��

�
:

Then, for every “reasonable” non-negative function f defined on the set of isomorph-
ism classes of finite eZS Œ��-modules, we have:

lim
x!1

P
jDiscLj�x f .e Cl

S
L/P

jDiscLj�x 1
D E

�
f .X/

�
;

where L runs through all �-extensions of K0 such that jDiscLj � x and the rank
of L=K0 restricted to the coordinates 2; : : : ; k is u.

Note that all of the caveats of Remark 3.7 still apply, including the fact that the
term “reasonable” is left undefined.

For a field extension L=K of number fields with groups of fractional ideals IL
and IK , the embedding i W IK ! IL defined on fractional ideals induce, by passing
to the classes, the homomorphism:

i�WClK ! ClL :

For this homomorphism, we have the following.
Theorem 7.3 ([11, Theorem 7.6]). LetL=K be a � 0-extension of number fields. The
kernel (resp. the cokernel) of

i�WClK ! Cl�0L is annihilated by j� 0j (resp. j� 0j2):

The direct corollary is the following.
Corollary 7.4 ([11, Corollary 7.7]). Let K0 � K � L be a tower of number fields
such thatL=K0 is a �-extension and thatK is the fixed field of the subgroup � 0 of � .
If every prime in S is not a prime divisor of j� 0j, the homomorphism

i�WClSK=K0 !
�
ClSL=K0

��0 is an isomorphism.
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When p − j�j, the above results mean that Conjecture 7.2 implies a distribution
on the class group of the fields K=Q with Galois closure LjQ (ordered by the
discriminant of the Galois closure).

Now consider the primesp j j�j. We’ll see below (Lemma 7.14) that ifp is a good
prime for e�=�0 which is defined below, thenp j j� 0j, which implies that Corollary 7.4
is not useful if we want to make predictions on the distribution of p-Sylow subgroups
of class groups of non-Galois fields for p j j�j. However, in this section we will
prove Theorem 7.6 that allows us to deduce consequences Conjecture 7.2 forp-Sylow
subgroups of class groups of non-Galois fields and p j j�j.

Definition 7.5. Let 1�0 be the unit character of � 0, and

r�=�0 D Ind��0 1�0 and a�=�0 D r�=�0 � 1� :

Then define e�=�0 to be the central idempotent associated to a�=�0 , i.e. if V is a
representation of � over Q with character a�=�0 , then e�=�0 is the minimal central
idempotent of QŒ�� that acts on V as identity.

Theorem 7.6. Let K0 � K � L be a tower of number fields such that L=K0 is
Galois with Galois group � and that K is the fixed field of the subgroup � 0 of � . If
every prime p 2 S is a good prime for e�=�0 , then

(i) p − ŒK W K0� for all p 2 S , and we have the following split short exact sequence

1 �! ClSK=K0 �! ClSK
Nm
�! ClSK0 �! 1:

Hence, ClSK D ClSK0 �Cl
S
K=K0

, where we view ClSK0 as a subgroup of ClSK;

(ii) the induced homomorphism i�WClSK=K0 ! ClSL is injective with image�
e�=�0 ClSL

��0
� ClSL;

i.e.
i�WClSK=K0

�
�!

�
e�=�0 ClSL

��0
is an isomorphism.

Remark 7.7. Cohen and Martinet give another result [11, Theorem 7.8] that could
be used to relate the class groups of non-Galois fields to Galois fields, but [11,
Theorem 7.8] is incorrect as stated. Their result instead should require that � 0 has a
normal complement� such that � 0 acts on� (by conjugation) with trivial stabilizers
on each non-identity orbit. For example, this hypothesis and the theorem fails for
the example � D S4 and � 0 D S3, which is an example that appears in [10].
However, our Theorem 7.6 can be applied in this case and in every case in which the
Cohen–Martinet heuristics make a prediction.
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Note that Theorem 7.4, applied in the case K0 D Q, has the following corollary.
Corollary 7.8. Let L=Q be a �-field and K be the fixed field of � 0. If p is good
for e�=�0 , then the order of the capitulation kernel

ker i� D ker.ClK ! ClL/

is not divisible by p.
For many pairs .�; � 0/, there is at least one prime p j j� 0j that is good for e�=�0 ,

e.g. p is good for .SpC1; Sp/, and 2 is good for .A5; A4/, and 5 is good for S5 or A5
with a certain subgroup of index 6 (a stabilizer of the action on P1F5). For these
primes, Corollary 7.8 appears to be a new result on the capitulation kernel.

From Theorem 7.6, we see that Conjecture 7.2 implies a conjecture on averages
of functions on class groups of non-Galois fields, in which the finite abelian groupH
appears with weight proportional toX

G=�

G�
0
ŠH

1

jGjujAut�.G/j
; (7.1)

where G runs through all finite e�=�0ZS Œ��-modules, up to isomorphism, such that
G�
0

Š H as abelian groups. We’ll spend the rest of this section proving Theorem 7.6.
In the next section we will give a simple expression for (7.1) and an interpretation
of the values appearing in (7.1). We start with a useful statement that we will use
repeatedly.
Lemma7.9. Let e be a central idempotent inQŒ�� such that e2ZS Œ��and that eZS Œ��
is a maximal order in eQŒ��. Then any eZS Œ��-moduleG is cohomologically trivial
as a �-module, i.e. for every subgroup ƒ of � and every integer n 2 Z, we have

yHn.ƒ;G/ D 0;

where yH denotes Tate cohomology.

Proof. Note that via the ring homomorphism eWZS Œ��! eZS Œ�� given by x 7! ex,
all eZS Œ��-modules are also �-modules.

Let G be any eZS Œ��-module. We can find a projective eZS Œ��-module P with
surjective homomorphism 'WP ! G. Then we have a short exact sequence of
eZS Œ��-modules

0! L! P ! G ! 0;

where L is the kernel of '. Since maximal orders are hereditary (e.g. see [43,
Theorem 21.4]) the submodule L of P is also a projective eZS Œ��-module. Since
e 2 ZS Œ��, we know that, as �-modules, eZS Œ�� is a direct summand of ZS Œ��.
Therefore, P and L, as summands of the module .eZS Œ��/m for some m, are
summands of the module .ZS Œ��/m. Note that ZS Œ�� is an induced �-module
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and hence cohomologically trivial. So P and L, as summands of some induced
�-module, are both cohomologically trivial. Then the short exact sequence implies
that G is also cohomologically trivial.

Next, we note the following property of the central idempotent e�=�0 and its
relationship to

e01 D
1

j� 0j

X
�2�0

�:

Lemma 7.10. If V is any Q-representation of � of character �, then

dimQ V
�0
D h1�0 ;Res��0 �i�0 D hr�=�0 ; �i� :

In particular, if �1; : : : ; �m are all the Q-irreducible characters of � such that ei is
associated to �i for all i D 1; : : : ; m, then for all i D 1; : : : ; m we have

eie
0
1 ¤ 0 ” ei D e1 or ei � e�=�0 D ei :

Proof. The first identity is exactly given by Frobenius reciprocity. For the second
statement, note that eiQŒ�� is a representation of character ni�i for some ni � 1,
and that .eiQŒ��/�

0

D e01eiQŒ��:

Remark 7.11. We let e1; e2; : : : ; ek be all the distinct irreducible central idempotents
of QŒ�� such that e � e01 ¤ 0. By the above lemma,

e�=�0 D e2 C � � � C ek;

which could be taken as an alternative definition for e�=�0 .
Lemma 7.12. Let L=K0 be a �-extension of number fields. If e is a central
idempotent of QŒ�� such that e1 � e D 0 and p is a prime number that is good
for e, then

e ClLŒp1� D e ClL=K0 Œp
1�:

Remark 7.13. This lemma shows that taking the relative class group has no effect if
one only cares about good primes for some central idempotent e 2 QŒ��. Therefore
in the statement of the Cohen–Lenstra–Martinet conjectures (see Conjecture 3.5
and 7.2) we do not need to use the concept of relative class group.

Proof. First of all let’s introduce some notations. For a number field k, let Ik be the
group of fractional ideals andPk the group of principal ideals. Then for any prime p,
let Ik;p WD Z.p/ ˝Z Ik and Pk;p WD Z.p/ ˝Z Pk . Note that we have a short exact
sequence

1! Pk;p ! Ik;p ! ClkŒp1�! 1:

Since e 2 Z.p/Œ��, the notion e ClLŒp1� and e ClL=K0 Œp1� are well-defined. It is
clear that

e ClL=K0 Œp
1� � e ClLŒp1�:
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Our goal is to show that NmL=K0.I / is indeed a principal ideal of K0 for all ideals
I 2 IL such that the ideal class ŒI � is contained in e ClLŒp1�.

For any x 2 ClLŒp1�, we have

NmL=K0.ex/ D
X

2�


ex D
�
j�je1

�
e � x D 0 � x D 0:

Therefore,
NmL=K0 W e ClLŒp

1�! e ClLŒp1�

is actually the zero map.
Claim. .ePL;p/� D PK0;p \ ePL;p .

Proof of the claim. Recall that if eZ.p/Œ�� is a maximal order then any eZ.p/Œ��-
module is cohomologically trivial by Lemma 7.9. In particular,

1 D yH 0.�; ePL;p/ D .ePL;p/
�=NmL=K ePL;p:

This shows that if a “principal ideal” I 2 ePL;p is fixed by � , then it is represented
by a “principal ideal” of K0, hence the claim.

By cohomological triviality again, we know that e ClLŒp1�; eIL;p; ePL;p are all
cohomologically trivial, so�

e ClLŒp1�
��
D .eIL;p/

�=.ePL;p/
�
D .eIL;p/

�=.PK;p \ eIL;p/:

This implies that for any ex 2 .e ClLŒp1�/� , we have ex D 1 if and only if it is
represented by a “principal ideal” of K (an element in PK;p). Hence, e ClLŒp1� is
indeed generated by ideals whose norm in ClK0 is 0, i.e.

e ClLŒp1� D e ClL=K0 Œp
1�:

We need one more lemma for the proof of the theorem.

Lemma7.14. Ifp is a prime such that e�=�0 2Z.p/Œ��, thenp does not divide j�=� 0j.
In particular, if p j j�=� 0j, then p is bad.

Proof. Let
P WD Z.p/Œ��e

0
1 D fxe

0
1 j x 2 Z.p/Œ��g

be a left Z.p/Œ��-module. We know that e�=�0e01 is contained in P , because e�=�0 is
already contained in Z.p/Œ��. This implies that e1 D e1 � e

0
1 is also contained in P ,

for the idempotent e01 is contained in P and could be written as

e01 D 1 � e
0
1 D .e1 C � � � C em/ � e

0
1 D e1 C e2e

0
1 C � � � C eke

0
1 D e1 C e�=�0e

0
1:
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Let f�1; : : : ; �qg be a fixed set of representatives of left cosets �=� 0. Then every
element x 2 P can be written uniquely as

x D

qX
iD1

ai�ie
0
1;

where ai 2 Z.p/. If in addition, x is fixed by � , then all the ai must be the same,
which implies that if we let

x0 WD

sX
iD1

1 � �ie
0
1 D j�=�

0
j � e1;

then P � D Z.p/x0. Since e1 2 P � , we know that there exists some a 2 Z.p/ such
that ax0 D e1, i.e.

a � j�=� 0j D 1:

So j�=� 0j is a unit in Z.p/, i.e. p does not divide j�=� 0j.

Finally let’s prove Theorem 7.6.

Proof of Theorem 7.6. It is clear that we can reduce to the case where the set S is the
singleton fpg with p a good prime for e�=�0 .

For (i), by Lemma 7.14, we know that p − j�=� 0j D ŒK W K0�. Then let us view
ClK0 Œp1� as a subgroup of ClK Œp1� via the induced map i�WClK0 ! ClK . We have
the following short exact sequence

1! ClK=K0 Œp
1�! ClK Œp1�

n�
! ClK0 Œp

1�! 1;

where n� is induced by the norm map NmK=K0 , because

n�
�
ClK0 Œp

1�
�
D ŒK W K0� � ClK0 Œp

1� D ClK0 Œp
1�:

Then, by i� ı n� D ŒK W K0�, we see that 1
ŒKWK0�

i� is well-defined for ClSK0 and
splits n�. This shows (i).

Next, let us prove (ii). For a number field k, let Ik denote the group of fractional
ideals, and Pk the group of principal ideals. Then for k, we have the short exact
sequence

1! Pk ! Ik ! Clk ! 1:

Tensoring with Z.p/ gives us a short exact sequence

1! Z.p/ ˝Z Pk ! Z.p/ ˝Z Ik ! ClkŒp1�! 1:

Let Pk;p WD Z.p/ ˝Z Pk and Ik;p WD Z.p/ ˝Z Ik . And for an element xk 2 Ik;p ,
we let Œxk� denote its image in the class group.

Recall the set-up in the statement: Let K0 � K � L be a tower of extensions
such that Gal.L=K0/ D � and that Gal.L=K/ D � 0 � � .
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Claim 1. By viewing IK;p as a subgroup of IL;p via the embedding i W IK ! IL, we
have an exact sequence

IK;p \ I
�
L;p ! ClK Œp1�! ClK=K0 Œp

1�! 1; (7.2)

where the map ClK Œp1�! ClK=K0 Œp1� D ClK Œp1�=ClK0 Œ1� is the quotient map
given by (i).

Proof of Claim 1. First of all IK0;p � I�L;p , therefore the image of IK;p \ I�L;p
in ClK Œp1� must contain ClK0 Œp1�. If x 2 IK;p \ I�L;p gives an ideal class Œx�,
then by (i), we can write

Œx� D Œy� � Œz�

with Œy� 2 ClK0 Œp1� and Œz� 2 ClK=K0 Œp1�. The computation

Œx�ŒKWK0� D NmK=K0 Œx� D NmK=K0 Œy� � NmK=K0 Œz� D Œy�
ŒKWK0�

shows that Œz� D 1 and Œx� 2 ClK0 Œp1�. Therefore, the image of IK;p \ I�L;p is
exactly ClK0 Œp1�, the kernel of ClK Œp1�! ClK=K0 Œp1�.

Claim 2. We have a short exact sequence

1! PK;p \ e�=�0PL;p ! IK;p \ e�=�0IL;p ! ClK=K0 Œp
1�! 1: (7.3)

Proof of Claim 2. First of all, the ideal classes given by IK;p \ e�=�0IL;p are
contained in the relative class group ClK=K0 Œp1�, because

NmK=K0 Œy� D NmK=K0 e�=�0 Œy� D
X

�2�=�0

�.er�=�0 � e1/ � Œy�

D j�=� 0j.e1er�=�0 � e1/ � Œy� D 1:

We then only need to show the surjectivity. As a Z.p/Œ��-module, IL;p admits the
following decomposition

IL;p D e�=�0IL;p � .1 � e�=�0/IL;p:

Consequently,

I�
0

L;p D
�
e�=�0IL;p

��0
�
�
.1 � e�=�0/IL;p

��0
:

By IL;p ,! V WD Q˝Z.p/ IL;p , we know that x 2 IL;p is fixed by � 0 if and only
if e01 � x D x, where the action happens in V . Since

e01 � .1 � e�=�0/ D e
0
1 � .e1 C ekC1 C � � � C em/ D e

0
1 � e1 D e1;

for any element z 2 .1 � e�=�0/V , it is fixed by � 0 if and only if it is fixed by � .
Therefore, if x 2 I�0L;p , then

x D y � z
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with y 2 .e�=�0IL;p/�
0 and z 2 I�L;p . By Lemma 7.9, the e�=�0Z.p/Œ��-module

e�=�0IL;p is cohomologically trivial. Hence,

.e�=�0IL;p/
�0=NmL=K e�=�0IL;p D yH 0.� 0; e�=�0IL;p/ D 1:

Therefore, y is always an element in IK;p . If the element above x D y �z is contained
in IK;p , then z is also contained in IK;p , i.e.

IK;p D
�
IK;p \ e�=�0IL;p

�
�
�
IK;p \ I

�
L;p

�
;

where the direct product is the direct product as abelian groups. Then by (7.2),
Œz� 2 ClK0 Œp1�, and Œx� � Œy� in the relative class group

ClK=K0 Œp
1� D ClK Œp1�=ClK0 Œp

1�;

which proves Claim 2.

Moreover, the claim also tells us that

i�
�
ClK=K0 Œp

1�
�
� e�=�0 ClL=K0 Œp

1�:

Final step. Since p is a good prime for e�=�0 , we know that e�=�0 2 Z.p/Œ�� and
e�=�0Z.p/Œ�� is a maximal order of e�=�0QŒ��, hence obtain the following short
exact sequence

1! e�=�0PL;p ! e�=�0IL;p ! e�=�0 ClLŒp1�! 1;

where every object showing up is an e�=�0Z.p/Œ��-module. Then by Lemma 7.9, we
know that e�=�0PL;p , e�=�0IL;p and e�=�0 ClLŒp1� are all cohomologically trivial
as �-modules. So the identity�

e�=�0 ClLŒp1�
��0
=NmL=K e�=�0 ClLŒp1� D yH 0

�
� 0; e�=�0 ClLŒp1�

�
D 1

holds. This immediately implies that if Œx� 2
�
e�=�0 ClLŒp1�

��0 , then Œx� is repre-
sented by an ideal coming from K, and

i�WClK=K0 Œp
1�!

�
e�=�0 ClLŒp1�

��0
is surjective. Similarly, by

yH 0.� 0; e�=�0IL;p/ D 1 and yH 0.� 0; e�=�0PL;p/ D 1;

we know that

.e�=�0IL;p/
�0
D IK;p \ e�=�0IL;p and .e�=�0PL;p/

�0
D PK;p \ e�=�0PL;p:
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Also by yH 1.� 0; e�=�0PL;p/ D 1, we have the short exact sequence

1! .e�=�0PL;p/
�0
! .e�=�0IL;p/

�0
!
�
e�=�0 ClLŒp1�

��0
! 1:

Then these identities together with the short exact sequence (7.3) gives the following
commutative diagram which concludes the proof:

1 PK;p \ e�=�0PL;p IK;p \ e�=�0IL;p ClK=K0 Œp1� 1

1 .e�=�0PL;p/
�0 .e�=�0IL;p/

�0
�
e�=�0 ClLŒp1�

��0
1:

i�

8. Reinterpretation of the Cohen–Martinet heuristics in the non-Galois case

In this section, we reinterpret the distribution on abelian groups from (7.1) that we
have shown are predicted by the Cohen–Martinet heuristics to be the distribution
of class groups of non-Galois fields. Returning to the principle that objects should
appear inversely as often as their number of automorphisms, we will see that these
class groups of non-Galois fields have certain structure and the distribution is given
as inverse to the number of automorphisms of that structure. We end the sections
with several examples for different groups � .

We first define some notation used in this section. Let � 0 be a fixed subgroup
of � . We have defined the trivial idempotent e1 in Section 3.2, the augmentation
character a�=�0 and the central idempotent e�=�0 ofQŒ�� associated to it in Section 6.
Let er�=�0 D e1C e�=�0 be the central idempotent associated to the character r�=�0 ,
and e01 be the irreducible central idempotent associated to the unit character 1�0 of � 0
inQŒ� 0�. Note that e01 is naturally an idempotent inQŒ�� via the embedding� 0 ,! � ,
but it is not necessarily central. Throughout this section, let S be a fixed finite
set of good primes for e�=�0 (see definition in Section 7), and O � QŒ�� be a
maximal ZS -order containing the group ring ZS Œ��. By our assumption, e�=�0O is
exactly e�=�0ZS Œ��.
Definition 8.1. For any .�; �/-bimodule M and any subgroup ƒ of � , let ƒM be
the subgroup ofM fixed by the action ofƒ on the left. SimilarlyMƒ is the subgroup
fixed by the action of ƒ on the right.
Caution. The notation Mƒ is different from the use in previous sections, as before
we only considered left actions. The reason for these two notations is that objects
like O are .�; �/-bimodules and we have to distinguish left and right � 0-invariant
parts.

8.1. Integral model for the Hecke algebra and Morita equivalence. First of all,
QŒ�� is a .�; �/-bimodule, we can consider the subspace �0QŒ���0 , which is also
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called the Hecke algebra, written as QŒ� 0n�=� 0�, and which we will write as
e01QŒ��e

0
1. Note that e01QŒ��e01 is a Q-algebra, but its identity e01 is not the identity

of QŒ��. If V is any left QŒ��-module, then �0V is naturally a left e01QŒ��e01-module.
Let e01xe01 2 e01QŒ��e01 and v 2 �

0

V , then for all � 2 � 0, we have

� � .e01xe
0
1 � v/ D .�e

0
1xe
0
1/ � v D e

0
1xe
0
1 � v:

This shows that e01xe01v is still fixed by � 0, hence e01xe01 � �
0

V � �0V . Also for a left
QŒ��-module V , we always have

�0V D �0.er�=�0V /:

So we see that for QŒ��-module V , the invariants �0V are naturally a e01QŒ��e01-
module. Our goal is now to construct an integral version of this kind of structure.
Given a finiteO-moduleG, one has a natural action of P WD �0O�0 D O\e01QŒ��e

0
1

on �0G by reasoning as above. However, in general P is not even a ring, because if S
contains any primes dividing j� 0j, then P does not contain a multiplicative identity.
Even if S does not contain any primes dividing j� 0j, it is not clear what kind of
ring P is. We will construct a ring o, agreeing with P when S does not contain
primes dividing j�j and larger than P otherwise, and show that this larger ring o still
acts on �0G. After proving several results, in Corollary 8.10, we will see that o is
actually a maximal order.
Definition 8.2. We define

o D �0.e�=�0Oe
0
1/:

We include the factor e�=�0 because of our intended application to (relative) class
groups. When � D Sn and � 0 D Sn�1 is the stabilizer of an element, then we have

e�=�0O DMn�1.ZS / and o D ZS

(see Example 8.18). When � D D4 and � 0 is a non-central order 2 subgroup, we
have

e�=�0O D ZS �M2.ZS / and o D Z2S

(see Example 8.19). When � D A5, we let � act on f1; 2; 3; 4; 5g in the usual way
and let � 0 be the subgroup fixing 1. Then,

e�=�0O DM4.ZS / and o D ZS :

As suggested by these examples, wewill show in general that e�=�0O and o areMorita
equivalent in Theorem 8.9, even though in general in they can have more complicated
structures as arbitrary maximal orders in sums of matrix algebras over division
algebras. This Morita equivalence will play a central role in our reinterpretation of
the prediction of the Cohen–Martinet heuristics in the non-Galois case.

We start by showing that o is an order of the semisimpleQ-algebra e01e�=�0QŒ��e01.
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Proposition 8.3. Let e1; : : : ; em be the distinct irreducible central idempotents
of QŒ�� and e�=�0 D e2 C � � � C ek . The Q-algebra e01QŒ��e

0
1 D

�0QŒ���
0 is

a semisimple Q-algebra whose decomposition into simple components is given by

e01QŒ��e
0
1 D

kY
iD1

e01eiQŒ��e
0
1:

The category of e01QŒ��e
0
1-modules is equivalent to the category of er�=�0QŒ��-

modules. The subgroup �0.Oe01/ is a ZS -order of e01QŒ��e
0
1, and o is a ZS -order

of e01e�=�0QŒ��e
0
1.

Proof. In the proof, let A D QŒ�� and A0 D e01e�=�0QŒ��e01. Note that

e01QŒ��e1e
0
1 D e1A and �0

�
.1 � e�=�0/Oe

0
1

�
D
�O;

c.f. Lemma 7.10. We can focus on e�=�0A, A0 and o (the “nontrivial parts”) in the
rest of the proof.

The irreducible central idempotents of A give a decomposition of A0

A0 D e2e
0
1A
0
� � � � � eme

0
1A
0;

with each component a Q-algebra because eie01 is central in A0. Note that e01 � ei ¤ 0
if and only if ei D e1 or ei � e�=�0 ¤ 0 by Lemma 7.10. So we have

A0 D e2e
0
1A
0
� � � � � eke

0
1A
0:

For any simple Q-algebra B Š Ml.D/ where D is a division algebra and any
idempotent f 2 B , we have fBf Š Ml 0.D/ for some l 0 � l . This can be
shown using the decomposition of the identity into mutually orthogonal primitive
idempotents by the Krull–Schmidt–Azumaya theorem, see e.g. [12, 6.12].

We apply this result to eie01 for each i D 2; : : : ; k as follows. The Q-algebra eiA
is simple, and eie01 is an idempotent in eiA. Therefore, if eiA ŠMli .Di /, whereDi
is some division algebra, then there exists some integer 0 < l 0i < l , such that

eie
0
1A
0
D eie

0
1Aeie

0
1 ŠMl 0

i
.Di /:

Hence, e01eiA0 is a simple Q-algebra for all i D 1; : : : ; k. Since A0 is the direct sum
of finitely many simple Q-algebras, it is a semisimple Q-algebra.

The equivalence of the category of e01eiA0-modules and the category of eiA-
modules follows from the fact that they are both matrix algebras over Di , hence A0
is Morita equivalent to e�=�0A. Finally, by e01e1QŒ��e01 D e1A Š Q, the statements
on e01QŒ��e01 are all proved.

We now check that o is indeed a subring ofA0. By definition, o, as the� 0-invariant
part of an �-module, is an additive abelian group. For all x; y 2 e�=�0O such
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that xe01; ye01 2 o, since �xe01 D xe01 for all � 2 � 0, we know that e01xe01 D xe01,
i.e. xe01 2 A0 and o � A0 is an additive subgroup. For xe01; ye01 2 o, we have

xe01ye
0
1 D x.e

0
1ye
0
1/ D xye

0
1;

which is still an element in o because xy 2 e�=�0O and .xe01/ye01 is fixed by � 0 on
the left. In particular, e01e�=�0 is contained in o and is the identity for A0, hence o is
indeed a subring of A0.

Then let’s show that o is a ZS -order in A0. We’ve already showed that o is a
subring of A0. Then we check that Q ˝ZS o D A0. Let x 2 e�=�0A, then we can
write it as

x D
1

n
y

with some n 2 Z and y 2 j� 0j2e�=�0O because Q˝ e�=�0O D e�=�0A. Therefore,

e01xe
0
1 D

1

n
˝ e01ye

0
1;

where e01ye01 2 �
0

.e�=�0O/
�0 � o by our construction. This shows that Q˝ o D A0.

Finally we show that o is finitely generated as a ZS -module. Since e�=�0O is
finitely generated as a ZS -module, say e�=�0O D ZS � x1 C � � � C ZS � xN , then

o � Oe01 D ZS � x1e
0
1 C � � � C ZS � xN e

0
1;

is a submodule of a finitely generated ZS -module, hence itself finitely generated
over ZS .

Now we will show that the � 0-invariant part of an e�=�0O-module is naturally an
o-module.
Lemma 8.4. For any finitely generated e�=�0O-moduleG, its � 0-invariant part �0G
is an o-module via the action

.�e01/ � g WD � � g;

where the right-hand side is the action of e�=�0O onG, for all g 2 �0G and �e01 2 o
with � 2 e�=�0O.

Remark 8.5. As the identity of o, the element e�=�0e01 acts as identity on �0G for
any e�=�0O-module G despite the fact that e�=�0e01 is not even contained e�=�0O in
general.
Remark 8.6. We can immediately see from Theorem 7.6 that ClSK=K0 is naturally an
o-module. This will be the key to our interpretation of (7.1).

Proof. If �e01 D �e01 with �; � 2 e�=�0O, then the sum of the coefficients of elements
in the same left coset of � 0 must be the same, hence � �g D � �g for all g 2 �0G. This
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shows that the definition does not depend on the choice of � 2 e�=�0O. Moreover,
since �e01 is fixed by � 0 on the left, we know that �e01g 2 �0G. So we have shown
that

�e01 � g D �g

gives a well-defined map.
Note that

e01 � �e
0
1 D �e

0
1

for all �e01 2 o by definition. If �1e01; �2e01 2 o with �1; �2 2 e�=�0O, then

�1e
0
1�2e

0
1 D �1�2e

0
1;

which shows that the action is associative. Finally,

�1e
0
1g C �2e

0
1g D .�1 C �2/g D .�1 C �2/e

0
1g D .�1e

0
1 C �2e

0
1/g:

So this definition turns �0G into an o-module.

We then prove the equivalence of the category of e�=�0O-modules and the
category of o-modules in the rest of this subsection.

Lemma 8.7. Given a finitely generated left e�=�0O-module G, the left o-module
�0.e�=�0O/˝e�=�0O G is isomorphic to �0G as o-modules.

Proof. It suffices to prove this for each component of G, for eG is a left �-module
via the composition

ZS Œ��! O! eO

for each irreducible central idempotent e of e�=�0QŒ��. We then fix e and assume
eG D G. There is a natural eO-isomorphism

'W eO˝eO G
�
! G

given by � ˝ g D � � g. Note that �g 2 �0G for all � 2 �0.eO/. We then obtain an
ee01o-morphism

 W �
0

.eO/˝eO G !
�0G

by restricting ' on the subgroup �0.eO/˝eO G. Because, for all �e01 2 ee01o where
� 2 eO, we have

�e01'.� ˝ g/ D �e
0
1.�g/ D ��g; '

�
�e01.� ˝ g/

�
D '.�� ˝ g/ D ��g:

Claim.  W �0.eO/˝eO G ! �0G is an ee01o-isomorphism.
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The morphism  is injective because ' is. For the proof of surjectivity, we first
recall that a morphism f WH1 ! H2 of abelian groups is surjective if and only if

fpWH1;p ! H2;p

is surjective for all prime p where fp and Hi;p denote the localization at p. In
addition, fp is surjective if and only if

yfpW yH1;p ! yH2;p

is surjective where yfp and yHi;p denote the completion at p.
Since yO WD O ˝ZS Zp is a maximal Zp-order in QpŒ�� (see [43, 11.6]) and

yo WD o˝ZS Zp is the same as �0.e�=�0 yOe01/, the results above go through similarly.
In particular, the additive subgroup �0.e�=�0 yO/ of e�=�0 yO is a left yo-module by the
analogue of Lemma 8.4, hence an .yo; e�=�0 yO/-bimodule. So we can reduce the
problem to proving

y pW
�0.e yO/˝e yO

yG ! �0 yG

is surjective for all p 2 S .
By abuse of notation, letO be a maximal Zp-order in QpŒ��with p a good prime

for e�=�0 , and let o WD �0.e�=�0Oe
0
1/ just like above. Let eQpŒ�� Š Ml.D/ be an

isomorphism such that eO Š Ml.O/ where D is a division algebra over Qp and
O � D is the unique maximal Zp-order in D with the unique two-sided maximal
ideal p, c.f. [43, (12.8), (17.3)]. Then the finitely generated eO-moduleG admits the
following matrix representation:

G Š

0BBB@
O � � � O

O � � � O

:::
:::

:::

O � � � O

1CCCA
l�m

˚

0BBB@
O=pr1 O=pr2 � � � O=prn

O=pr1 O=pr2 � � � O=prn

:::
:::

:::
:::

O=pr1 O=pr2 � � � O=prn

1CCCA
l�n

D
�
Ml�1.O/

�m
˚Ml�1.O=p

r1/˚ � � � ˚Ml�1.O=p
rn/;

such that the action of eO Š Ml.O/ on G is exactly the left matrix multiplication.
We may therefore assume without loss of generality that G is indecomposable,
i.e. G ŠMl�1.O/ if G is projective or G ŠMl�1.O=p

r/ with r � 1 if G is torsion.
Let f be the primitive idempotent such that

f 7!

0BBB@
1 0 : : : 0

0 0 : : : 0
:::

:::
:::

:::

0 0 : : : 0

1CCCA
via eQpŒ�� ŠMl.D/. There exists a surjective morphism � W eO! G given by the
composition of eO ! Of defined by x 7! xf and the quotient map O ! O=pr .
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Since eO is projective, by Lemma 7.9, the induced map �0.eO/ ! �0G is also
surjective. For any g 2 �0G, there exists �e 2 �0.eO/ such that �.�e/ D g. In
particular, by definition of � , we may assume that �e D �f 2 Of , hence

 
�
�f ˝ �.f /

�
D �f � �.f / D �.�f / D g:

This proves the surjectivity of  , hence the lemma.

Lemma 8.8. If e is a central irreducible idempotent contained in e�=�0 , then the
subgroup eOe01 of eQŒ�� consisting of elements of the form exe01 with x 2 O is an
.eO; ee01o/-bimodule, where the right ee01o-action is given by right multiplication
in QŒ��. Then the .eO; eO/-bimodule homomorphism

eOe01 ˝ee01o
�0.eO/! eO

defined by exe01 ˝ y 7! exe01y, where the right-hand side is the multiplication
in QŒ��, is surjective.

Proof. The map is well-defined because e01 � y D y by multiplication in the group
algebra QpŒ��, hence the product is actually exy which is contained in eO.

Just like in the proof of Lemma 8.7, we will check the surjectivity locally and use
the same abuse of notations for O and o. Let eQpŒ�� ŠMl.D/ be an isomorphism
of Qp-algebras withD a division algebra over Qp such that eO ŠMl.O/ under the
isomorphism where O � D is the unique maximal Zp-order of D with the unique
maximal two-sided ideal p generated by a prime element � .

Since O is given by the valuation onD extended from the valuation on Qp , there
exists a smallest integer n 2 Z such that e01�n 2 eO. In particular, there exists at
least one unit element in the matrix representation of e01�n.
Claim. e01�n can generate the whole of eO DMl.O/ as a .eO; eO/-bimodule. This
can be shown by constructing the usual basis fEij g from e01�

n via finitely many
row/column operations.

Since e01�n is contained in the image, the claim shows that

eOe01 ˝ee01o
�0.eO/! eO

is surjective, and we prove the lemma.

We finally have the following.
Theorem 8.9. The category of e�=�0O-modules and the category of o-modules are
Morita equivalent via the functors:

�0.e�=�0O/˝e�=�0O �W e�=�0O�Mod! o�Mod;
e�=�0Oe

0
1 ˝o �W o�Mod! e�=�0O�Mod:
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Proof. Let’s denote by . ; / the e�=�0O-balanced bilinear map
�0.e�=�0O/ � e�=�0Oe

0
1 ! o

defined by .x; ye01/ 7! xye01. This map is well-defined because xye01 2 Oe01 and
e01xye

0
1 D xye

0
1 is contained in the � 0-invariant part.

Similarly let Œ ; � denote the o-balanced bilinear map

e�=�0Oe
0
1 �

�0.e�=�0O/! e�=�0O

given by Œxe01; y� 7! xe01y D xy. Since these bilinear maps are defined using the
multiplication in QpŒ��, they satisfy the condition for a Morita context, i.e.

ze01 � .x; ye
0
1/ D Œze

0
1; x� � ye

0
1 and z � Œxe01; y� D .z; xe

0
1/ � y:

Then, ˚
e�=�0O; o; o

�
�0.e�=�0O/

�
e�=�0O

; e�=�0O
�
e�=�0Oe

0
1

�
o
; . ; /; Œ ; �

	
forms a Morita context.

The map
e�=�0Oe

0
1 ˝

�0O! e�=�0O

is surjective by Lemma 8.8. The other map is also surjective because we have
�0.e�=�0O/˝e�=�0O e�=�0Oe

0
1 D

�0.e�=�0Oe
0
1/ D o

by Lemma 8.7. Then the equivalence and the functors are given by Morita theorem
(see [12, Theorem 3.54]) directly.

Corollary 8.10. The ZS -order o in e01e�=�0QŒ��e
0
1 is a maximal order.

Proof. By [43, 11.6], it suffices to show that yop D o˝ZS Zp is a maximal Zp-order
in e01e�=�0QpŒ��e

0
1 for each p 2 S .

Let A D QpŒ�� and A0 D e01e�=�0QŒ��e
0
1. We use the same abuse of notation

for O and o as in the proof of Lemma 8.7 (i.e. O WD yO and o WD yo).
First of all o is Morita equivalent to e�=�0O. Since e�=�0O is hereditary and

this property is preserved by Morita equivalence, we know that o is also a hereditary
ring. Let e ¤ e1 be an irreducible central idempotent in A such that e � e01 ¤ 0,
and eA Š Ml.D/, where D is a division algebra over Qp and ee01A0 Š Ml 0.D/

for some l 0 < l (see Proposition 8.3). By [43, 39.14], if ee01o is a hereditary order
in ee01A0, then it is of the form

ee01o Š

0BBBBB@
.O/ .p/ .p/ � � � .p/
.O/ .O/ .p/ � � � .p/
.O/ .O/ .O/ � � � .p/
:::

:::
:::

:::
:::

.O/ .O/ .O/ � � � .O/

1CCCCCA
.n1;:::;nr /

;
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where O � D is the maximal order in D and p its unique maximal ideal and
n1 C � � � C nr D l

0 gives the size of the block along the diagonal.
Assume for contradiction that ee01o is not maximal. By [43, 17.3], we know

that r � 2 and there exists at least two non-isomorphic indecomposable projective
modules, because a column in the above matrix representation is exactly an
indecomposable projective module. But this is already contradiction, for eO only
admits one indecomposable projective module up to isomorphism.

Therefore, ee01o must be of the formMl 0.O/, and it is a maximal order of ee01A0
again by [43, 17.3]. The argument holds for all ee01, hence o is a maximal order
of A0.

8.2. Random o-module. From (7.1), we were led to wanting to understand the
distribution of the abelian groups �0X for our random e�=�0O-modules X . Now, we
realize that �0X is naturally an o-module, so we will instead consider the distribution
of o-modules �0X .

On one hand, the random e�=�0O-module

X D X
�
e�=�0QŒ��; u; e�=�0O

�
defined in Section 3.2withuD.u2; : : : ; uk/2Qk�1 gives us a random o-module �0X .
On the other hand, since o is a maximal order in the semisimple Q-algebra
e01e�=�0QŒ��e

0
1, we can also define a random o-module

Y D
�
e01e�=�0QŒ��e

0
1; v; o

�
with v D .v2; : : : ; vk/ 2 Qk�1. We are going to show that for suitably chosen
u 2 Qk�1 and v 2 Qk�1, the random o-modules �0X and Y have the same distribu-
tion. For simplicity, let

X 0 D �0X:

Theorem8.11. Let e1; : : : ; em be the distinct irreducible central idempotents of QŒ��
and e�=�0 D e2 C � � � C ek . Let �i be the Q-irreducible character associated
to ei and 'i be any fixed absolutely irreducible character contained in �i for
all i D 2; : : : ; k. Let

X D X
�
e�=�0QŒ��; u; e�=�0O

�
and Y D Y

�
e01e�=�0QŒ��e

0
1; v; o

�
with u; v 2 Qk�1 so that ui corresponds to ei and vi corresponds to eie01 for all
i D 2; : : : ; k. The random o-modules X 0 D �0X and Y give the same probability
distribution if and only if

vi D
h'i ; a�i

h'i ; a�=�0i
ui

for all i D 2; : : : ; k, where a� D a�=1 WD �1CInd�1 1 is the augmentation character
of the trivial subgroup.
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Proof. We will start by obtaining the formula for the probability distribution of X 0.
For any finite o-moduleH , we have X 0 Š H if and only if

X Š e�=�0Oe
0
1 ˝o H;

by Theorem 8.9. Therefore, for any two finite o-modulesH1;H2, let

Gi WD e�=�0Oe
0
1 ˝o Hi

for i D 1; 2, and we have

P .X 0 Š H1/

P .X 0 Š H2/
D
jG2j

ujAute�=�0O.G2/j
jG1j

ujAute�=�0O.G1/j
D
jG2j

ujAuto.H2/j
jG1j

ujAuto.H1/j
:

Given any finite o-module H , let G WD e�=�0Oe
0
1 ˝ H be the finite e�=�0O-

module such that �0G Š H . By [11, Theorem 7.3], for each i D 2; : : : ; k, there
exists some finite ZS -module Gi such that

eiG Š G
h�i ;a� i
i and eie

0
1H D

�0.eiG/ Š G
h�i ;a�=�0 i

i ; (8.1)

where the isomorphisms are isomorphisms as abelian groups. We then know that

jeiGj D jeie
0
1H j

h�i ;a� i=h�i ;a�=�0 i: (8.2)

Therefore, if

vi D
h'i ; a�i

h'i ; a�=�0i
ui

for all i D 2; : : : ; k, then jGju D jH jv , hence X 0 is defined the same way as Y and
they give the same probability distribution.

Conversely, if X 0 and Y give the same distribution, then

jG2j
u

jG1j
u
D
jH2j

v

jH1j
v

for all finite e�=�0O-modules G1; G2 such that Hi WD �0Gi with i D 1; 2. Then the
identities (8.1) tell us that this condition forces

vi D
h'i ; a�i

h'i ; a�=�0i
ui

for all i D 2; : : : ; k.

Definition 8.12. LetL=K0 be a�-extension and u 2 Qm be the rank ofL=K0. Then
define v 2 Qk�1 given by the formula in Theorem 8.11 to be the rank of L�0=K0.
(In Section 9 we show this does not depend on L, but only L�0 .)
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Just like in Section 4, we can express jH jv in terms of the decomposition groups�v
at infinite places vj1.
Corollary 8.13. If u is given by the rank of a �-extension L=K0 and v the rank
of L�0=K0 (as given in the definition just above), then for any finite o-module H ,
we have

jH jv D je�=�0Oe
0
1 ˝o H j

u
D

Y
vj1

j.e�=�0Oe
0
1 ˝o H/

�v j;

where v runs over all infinite places of K0.

Proof. This is the combination of Theorem 8.11 and Theorem 4.1.

By Theorem 8.11, we can always identify the random o-module �0X with some
random o-module Y D Y.e01e�=�0QŒ��e01; v; o/ and the Cohen–Martinet conjecture
predicts ClSK are distributed as random o-modules.
Theorem 8.14. Let � be a finite group and � 0 � � a subgroup. Assume that S only
contains good primes for e�=�0 . If u is the rank of some �-extension L=K0, then
let v be the rank of L�0=K0 (as given in the definition just above) and

Y D Y
�
e01e�=�0QŒ��e

0
1; v; o

�
be the random finite o-module. For a non-negative function f defined on the
class of isomorphism classes of finite o-modules, the Cohen–Martinet conjecture
(Conjecture 7.2 for f .�0�/ and e D e�=�0) implies that

lim
x!1

P
jdLj�x

f .ClS
L�
0
=K0

/P
jdLj�x

1
D E

�
f .Y /

�
;

where the sums are over �-extensions L=K0 and the discriminant jdLj � x and the
rank of L=K0 is u.

In particular, the results of Section 6 all apply here to give the moments of the
predicted distributions and see that the distributions are determined by their moments.
Remark 8.15. The probabilities in Theorem 8.14 are

c

jH jvjAuto.H/j

for each finite o-moduleH . We also see that if we want the probability of obtaining
some finite abelian groupH , then the desired probability in (7.1) can be rewritten as a
sum over o-module structures on the finite abelian groupH of the above probabilities.
One could also apply the class triples approach of Section 5 to obtain probabilities
that are purely inversely proportional to automorphisms of some object. Perhaps the
simplest way to do this to make a class triple from e�=�0 ClSL.
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8.3. Examples. In this section, we give some examples of specific � and � 0 to see
what o is in that case. Given a finite group � and subgroup � 0, we define ei ; �i ; 'i as
in Theorem 8.11. We have that eiQŒ�� ' Mli .Di /; where Di is a division algebra
with centerKi , andKi is the field generated by the values of 'i . We can decompose

a�=�0 D

kX
iD2

ai�i :

for positive integers ai : Then we can see from the proof of Proposition 8.3 and a
dimension calculation using Frobenius reciprocity that

e01e�=�0QŒ��e
0
1 '

kM
iD2

Mai .Di /:

From this we conclude the following about the cases in which there is really no
additional structure by realizing the class group is an o-module.
Proposition 8.16. The maximal ZS -order o in e01e�=�0QŒ��e

0
1 is isomorphic to ZS

if and only if a�=�0 is absolutely irreducible.
Example 8.17 (a�=�0 multiplicity 1). So if all the ai are 1 and Di D Ki (i.e. all
the Schur indices are 1), or equivalently, every absolutely irreducible character that
appears in a�=�0 appears with multiplicity 1, then by Corollary 8.10, we have that

o '

kM
iD2

ZKi ;

whereZKi is the localization of the ring of algebraic integers ofKi at by the non-zero
rational integers not in S:

If in addition, all the decomposition groups �v are trivial for a Galois �-extension
L=K0, then for the associated vi for L�

0 , we can compute using Theorem 8.11
that vi D rK li ; where rK is the number of infinite places of K.
Example 8.18 (An example on Sn). Even more specifically, we consider the case
where K=Q is a non-Galois extension whose Galois closure L=Q is a � D Sn-field
such that K is the fixed field of � 0 D Sn�1 where Sn�1 ,! Sn in the usual way.
Moreover, assume that L=Q is totally real, so u D 1 by Theorem 4.1. Since a�=�0 is
absolutely irreducible with a�=�0.23 � � � .n � 1// D 1, we have

a�=�0 D
a�=�0.1/

j�j

�
.23 � � � .n � 1//�1 C � � �

�
D
n � 1

nŠ

�
.23 � � � .n � 1//�1 C � � �

�
:

Also, for p − nŠ=.n � 1/, one can explicitly compute e�=�0Z.p/Œ�� D Mn�1.Z.p//:
Therefore, p is a good prime if and only if p − nŠ=.n � 1/. Let S be the set of good
primes for e�=�0 .
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By Theorem 8.11 we have

jH jv D jH jn�1;

where n D j�=� 0j, i.e. v D n � 1. In this case, o is just ZS . Hence we expect ClSK
to behave like a random abelian group without any additional structure coming from
the o action, and the predictions have each finite abelian ZS -module H appearing
with probability jH j�.n�1/jAut.H/j�1 as ClSK .
Example 8.19 (An example onD4). Let� D D4, the dihedral group of order 8 andS
only contain odd primes. Write � D h�; �i with �2 D �4 D 1 and ����1 D ��1.
LetK=Q be a degree 4 extension with Galois closure LjQ a totally real �-field such
that K is the fixed field of the subgroup � 0 D f1; �g (so u D 1 by Theorem 4.1).

The character a�=�0 is of degree 3, the sum of two absolutely irreducible
characters ' of degree 1, and � of degree 2. Let e' , resp. e�, be the irreducible
central idempotent in QŒ�� associated to ', resp. �. The idempotents are given by

e� D
1

8
.1C �2 � � � �3 C � C �2� � �� � �3�/ and e' D

1

2
.1 � �2/

and 2 is the only bad prime number for e�=�0 .
Since ' is an absolutely irreducible character of degree 1 and e01 � e' D e' , we

then know that e'e01o Š ZS . On the other hand, Frobenius reciprocity shows that
dimQ e

0
1e�QŒ��e01 D 1, hence e�e01o, as a maximal order in e01e�QŒ��e01, is also

isomorphic to ZS . So o D Z2S as an algebra.
On the other hand, the normalizer of � 0 is f1; �; �2; �2�g, i.e. there exists 2

automorphisms of K=Q. In particular, the class group ClSK is not only an abelian
group but an abelian groupwith an order 2 automorphism, i.e. ClSK is aZS Œt �=.t2�1/-
module with t � x D �2 � x. Moreover, one can check that the ring homomorphism

e�=�0e
0
1o! ZS Œt �=.t

2
� 1/

given by

e'e
0
1 7!

1

2
.1C t / and e�e

0
1 7!

1

2
.1 � t /

is an isomorphism which is compatible with the actions on class groups. So in this
example, considering the o-module structure on ClSK and the structure on ClSK from
the automorphisms of K=Q are equivalent.

We will also work out the predicted moments explicitly in this case. Let

X D
�
e�=�0QŒ��; 1; e�=�0O

�
;

and let G be a finite e�=�0O-module, andH D �0G. Then,

E
�
jSuro

�
�0X;H

�
j
�
D E

�
jSure�=�0O.X;G/j

�
D

1

jGju
D

1

je'Gj

1

je�Gj
:
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Then using (8.2), we have

E
�
jSuro

�
�0X;H

�
j
�
D

1

j
1Ct
2
H jj1�t

2
H j2

:

Example 8.20 (An Example on A5). This is an example where the non-Galois
extension admits no “automorphism” but the ring o is nontrivial.

Let � D A5. The subgroup � 0 generated by .123/ and .12/.45/ is called the
twisted S3 in A5 because this subgroup is isomorphic to S3. It is a maximal proper
subgroup of A5. Since � is simple, this says that the normalizer of � 0 is itself.

Nowassume thatK=Q is a non-Galois extensionwithGalois closure a�-fieldLjQ
such that K D L�

0 . Since automorphisms of K over Q correspond to � 0 cosets of
elements � 2 � such that �� 0��1 D � 0, then we can see thatK admits no nontrivial
automorphism.

The character r�=�0 is given by a Q-representation of dimension 10. By checking
the character table, � has 4 characters over Q. Note that there is a unit character
contained in r�=�0 . The character r�=�0 contains three different absolutely irreducible
characters, say r�=�0 D �1C�2C�3where�1 is the unit character,�2 is the character
of degree 4 and �3 is the character of degree 5. By Theorem 8.9, this implies that o
admits two orthogonal irreducible idempotents, hence cannot be isomorphic to ZS .
By computations using Frobenius reciprocity, we can see that e01eiQŒ��e01 is a one-
dimensional Q-vector space where ei is the irreducible central idempotent associated
to �i , for i D 2; 3. Therefore the ring o is isomorphic toZ2S . Moreover, we can check
that a prime number p is good for e�=�0 if and only if p ¤ 2; 3; 5, i.e. p − j�j. So
for a set S of good primes, the class group ClSK has a natural order 2 automorphism
(from .1;�1/ 2 Z2S ) and the conjectures reflect this structure.

9. Independence of Galois fields

Though we imagine the reader was thinking of L as the Galois closure of K in the
last two sections, that was never strictly required. It could have also been a larger
Galois extension. In fact, we could have even considered� 0 normal so thatK=K0 was
Galois. With this realization, we see that the Cohen–Martinet heuristics make several
(infinitely many) predictions for the averages of the the same class groups (though
each prediction is with a different ordering of the fields, since the conjectures as
worded are always ordered by the discriminants of the Galois fields). In this section,
we show that all those predictions agree.

We start by showing that v does not depend on the choice of the Galois
extension L=K0 containing K=K0 (see the explicit statement below). We start
with a lemma, whose proof is straightforward.
Lemma 9.1. If � 0 � � is a normal subgroup, then e01 is central in QŒ�� and

.e1 C e�=�0/QŒ�� Š e
0
1QŒ�� Š QŒ�=� 0�:
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In particular, if we let xe1 be the irreducible central idempotent inQŒ�=� 0� associated
to the unit character of �=� 0, then the maximal order o of e01e�=�0QŒ�� is isomorphic
to a maximal order in .1 � xe1/QŒ�=� 0�.
Theorem 9.2. Let K=K0 be any finite extension with Galois closure a �-extension
L=K0 of rank u 2 Qm�1 such that Gal.L=K/ Š � . LetM jK0 be a †-extension of
rank w 2 Qn�1 such that L �M with Gal.M jL/ Š �, and Gal.M jK/ Š †0.

If S only contains good primes for e�=�0 2 QŒ�� and e†=†0 2 QŒ†�, then the
rank v of L�0=K0 and the rank zv of M†0 jK0 are the same. Moreover, �0.e�=�0O/
is isomorphic to †0.e†=†0 zO/ where O, resp. zO, is a maximal ZS -order in QŒ��,
resp. in QŒ†� provided that the embedding QŒ��! QŒ†� defined by


 7! �
X
ı2�

ı;

where 
 is the image of ı under the surjective map †! � , maps O into zO.

Proof. We use E for central idempotents in QŒ†� and e for the ones in QŒ��. For
example let

e01 WD
1

j� 0j

X

2�0


; E 01 WD
1

j†0j

X
�2†0

�:

Moreover, let
F1 WD

1

j�j

X
ı2�

ı:

Note that E 01 � F1 D F1 �E 01 D E 01. By Lemma 9.1, we have

E 01QŒ†�E
0
1 D E

0
1F1QŒ†�E

0
1 D

1

j†0j

X
�2†0

� �QŒ†=��E 01

D
1

j†0=�j

X
��2†0=�

�� �QŒ†=��E 01 Š e
0
1QŒ��e

0
1:

This computation shows that �0.e�=�0O/ is equivalent to †
0

.e†=†0 zO/, because they
are both maximal orders in e01QŒ��e01. Moreover, if the embedding QŒ�� ,! QŒ†�

sends O into zO, then by the isomorphism in Lemma 9.1,

QŒ�� Š .E1 CE†=�/QŒ†�;

which is induced by the embedding, we know that

O Š .E1 CE†=�/ zO:

Hence, the isomorphism �0.e�=�0O/ Š
†0.e†=†0 zO/.
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Note that by Lemma 9.1,

E†=�QŒ†� Š .1 � e1/QŒ��;

and they have same number of irreducible components whose correspondence is
given by E 7! EF1 for all irreducible central idempotents E 2 QŒ†�. Assume
without loss of generality that

E†=� D E2 C � � � CEm

in QŒ†� and EiF1 D ei for all i D 2; : : : ; m.

Claim. wi D ui for all i D 2; : : : ; m.

Proof of the claim. Let †v � † be any decomposition group of some infinite
place vj1 of K0 defined up to conjugacy. Note that the ranks u and w do not
depend on the choice of the maximal orders. We may assume without loss of
generality that

E†=� zO Š .1 � e1/O:

Let G be any finite E†=� zO-module and H the corresponding .1 � e1/O-module
under the isomorphism of maximal orders. Since G is fixed by �, hence a †=�-
module, and we can take �v to be the image of†v under the surjective map†! � ,
and obtain

j
†vGj D j†v�Gj D j�vH j:

By Theorem 4.1, we know that the claim is true.

Then by the interpretation of v for non-Galois case and the fact that we can choose
the maximal orders such that E†=� zO Š .1 � e1/O, we know that the computation
of the rank v of K=K0 can always be reduced to its Galois closure L=K0, i.e. the
rank v of K=K0 is a property of K and the distribution of the random o-module

Y D
�
e01e�=�0QŒ��e

0
1; v; o

�
does not depend on the choice of the Galois extensionM jK0 containing K.
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