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ABSTRACT

The main result of this paper concerns the positivity of the Hodge bundles of
abelian varieties over global function fields. As applications, we obtain some partial
results on the Tate-Shafarevich group and the Tate conjecture of surfaces over finite
fields.

1. Introduction

Given an abelian variety A over the rational function field K = k(t) of a finite field k, we prove
the following results:

(1) the abelian variety A is isogenous to the product of a constant abelian variety over
K and an abelian variety over K whose Néron model over IP’}g has an ample Hodge
bundle;

(2) finite generation of the abelian group A(KP) if A has semi-abelian reduction over P}, as
part of the ‘full’ Mordell-Lang conjecture for A over K;

(3) finiteness of the abelian group III(A)[F°], the subgroup of elements of the Tate—Shafarevich
group HI(A) annihilated by iterations of the relative Frobenius homomorphisms, if A has
semi-abelian reduction over IP’,%;;

(4) the Tate conjecture for all projective and smooth surfaces X over finite fields with
HY(X,0Ox) =0 implies the Tate conjecture for all projective and smooth surfaces over
finite fields.

Result (1) is the main theorem of this paper, which implies the other results listed above. Results
(2) and (3) are inspired by the paper [Rosl5] of Damian Réssler; our proof of result (1) uses a
quotient construction which is independently introduced by Damian Roéssler in his more recent
paper [Ros20].

1.1 Positivity of Hodge bundle

Let S be a projective and smooth curve over a field k, and K = k(S) be the function field of S.
Let A be an abelian variety over K, and A be the Néron model of A over S (cf. [BLR90, §1.2,
Definition 1]). The Hodge bundle of A over K (or more precisely, of A over S) is defined to be
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the locally free Og-module
QA = QA/S = 6*934/5,

where 9}4 /s the relative differential sheaf, and e : S — A denotes the identity section of A.

The height h(A) of A, defined to be deg(Q24), has significant applications in Diophantine
geometry. In fact, it was used by Parshin and Zarhin to treat the Mordell conjecture over function
fields and the Tate conjecture for abelian varieties over function fields. The number field analogue,
called the Faltings height, was introduced by Faltings and plays a major role in his proof of these
conjectures over number fields.

By the results of Moret-Bailly, we have h(A) > 0, or equivalently the determinant line bundle
det(Q4) is nef over S. Moreover, the equality h(A) = 0 holds if and only if A is isotrivial over S;
see Theorem 2.6 of the current paper. However, as we show, the positivity of the whole vector
bundle Q4 is more delicate (especially in positive characteristics). The goal of this paper is to
study this positivity, and gives some arithmetic applications of it. We follow Hartshorne’s notion
of ample vector bundles and nef vector bundles, as in [Har66] and [Laz04, Chapter 6]. Namely, a
vector bundle & over a scheme is ample (respectively, nef) if the tautological bundle O(1) over
the projective space bundle P(€) is an ample (respectively, nef) line bundle.

If k has characteristic zero, it is well known that €4 is nef over S. This is a consequence of
an analytic result of Griffiths; see also Bost [Bos04, Corollary 2.7] for an algebraic proof of this
fact.

If k has a positive characteristic, Q4 can easily fail to be nef, as shown by the example of
Moret-Bailly [Mor81, Proposition 3.1]. The example is obtained as the quotient of (E; Xy Fo) i
by a local subgroup scheme over K, where E; and FEs are supersingular elliptic curves over k.
The quotient abelian surface has a proper Néron model over S.

To ensure the ampleness or nefness of the Hodge bundle, one needs to impose some strong
conditions. In this direction, Rossler [Ros15, Theorem 1.2] proved that 4 is nef if A is an
ordinary abelian variety over K, and that Q4 is ample if, moreover, there is a place of K at
which A has good reduction with p-rank 0.

In another direction, we look for positivity by varying the abelian variety in its isogeny class.
The main theorem of this paper is as follows.

THEOREM 1.1. Denote K = k(t) for a finite field k, and let A be an abelian variety over K.
Then there is an isogeny A — B x i C over K, where C' is an abelian variety over k, and B is
an abelian variety over K whose Hodge bundle is ample over IP’}C.

To understand the theorem, we can take advantage of the simplicity of the theory of vector
bundles on the projective line. By the Birkhoff-Grothendieck theorem (cf. [HL97, Theorem
1.3.1]), any nonzero vector bundle £ on S = P}, (for any base field k) can be decomposed as

E~0(d) @ O(dp) ® -+ @ O(d,),

with uniquely determined integers dy > do > --- > d,. Under this decomposition, £ is ample if
and only if d,. > 0; £ is nef if and only if d, > 0.

Let us return to Theorem 1.1. It explains that by passing to isogenous abelian varieties, the
Hodge bundle becomes nef, and the non-ample part of the nef Hodge bundle actually comes from
a constant abelian variety.

In § 3.3, we discuss the possibility of generalizing Theorem 1.1 to more general K/k. First, we
conjecture that the theorem holds for K = k(t) with k being any field of positive characteristic.
At least, in this case, our proof implies that A has a purely inseparable isogeny to an abelian
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variety over K with a nef Hodge bundle; see Proposition 2.5. Second, we construct an abelian
variety of p-rank 0 that proves that the theorem fails if K /k is an arbitrary global function field.

1.2 Purely inseparable points
For a field K of characteristic p > 0, the perfect closure of K is the union

Ko = | KU
n

in the algebraic closure of K. The first consequence of our main theorem is the following result.

THEOREM 1.2. Denote K = k(t) for a finite field k. Let A be an abelian variety over K with
everywhere semi-abelian reduction over Pi. Then A(KP®") is a finitely generated abelian group.

By the Lang—Néron theorem, which is the function field analogue of the Mordell-Weil
theorem, the theorem is equivalent to the equality A(KP®) = A(KYP") for sufficiently
large n.

For a general global function field K, the theorem is proved by Ghioca [Ghil0] for non-
isotrivial elliptic curves, and by Rdssler [Ros15, Theorem 1.1] assuming that the Hodge bundle
Q4 is ample. By Rossler’s result, Theorem 1.2 is a consequence of Theorem 1.1. In fact, it suffices
to note the fact that any k-morphism from IE’)}€ to an abelian variety C over k is constant, i.e. its
image is a single k-point of C.

Finally, we remark that Theorem 1.2 is related to the so-called full Mordell-Lang conjec-
ture in positive characteristic. Recall that the Mordell-Lang conjecture, which concerns rational
points of subvarieties of abelian varieties, was proved by Faltings over number fields. A positive
characteristic analogue was obtained by Hrushovski. However, including consideration of the
p-part, the full Mordell-Lang conjecture in positive characteristics, formulated by Abramovich
and Voloch, requires an extra result like Theorem 1.2. We refer to [Sca05, GMO06] for more details.
We also refer to Rossler [Ros20] for some more recent works on this subject.

1.3 Partial finiteness of Tate—Shafarevich group
Let A be an abelian variety over a global function field K of characteristic p. Recall that the
Tate—Shafarevich group of A is defined by

m(4) = ker (B (K, 4) — [ 2 (K. 4)),

where the product is over all places v of K. The prestigious Tate—Shafarevich conjecture asserts

that III(A) is finite. By the works of Artin and Tate [Tat95], Milne [Mil75], Schneider [Sch82],

Bauer [Bau92|, and Kato and Trihan [KT03], the Birch and Swinnerton-Dyer (BSD) conjecture

for A is equivalent to the finiteness of III(A)[¢*°] for some prime ¢ (which is allowed to be p).
Denote by F™ : A — A®") the relative p"-Frobenius morphism over K. Define

I(A)[F"] = ker(ITI(F™) : TI(A) — II(A®P"))
and
m(A)[F>] = | m(A)[F"].

n>1

Both are subgroups of III(A). Note that F™ : A — A®") is a factor of the multiplication [p"] :
A — A, so HI(A)[F] is a subgroup of III(A)[p>°]. These definitions generalize to the function
field K of a curve over any field k of characteristic p > 0.
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THEOREM 1.3. Let S be a projective and smooth curve over a perfect field k of characteristic
p > 0, and K be the function field of S. Let A be an abelian variety over K. Then the following
are true.

(1) If S = IP’}C, the abelian variety A has everywhere good reduction over S, and the Hodge
bundle of A is nef over S, then III(A)[F*] = 0.

(2) If A has everywhere semi-abelian reduction over S and the Hodge bundle of A is ample over
S, then II(A)[F*>°] = LI(A)[F"°] for some positive integer ng.

Similar to Theorem 1.2, the proof of Theorem 1.3 is also inspired by that of Réssler [Ros15,
Theorem 1.1]. One consequence of Theorems 1.1 and 1.3 is the following result.

COROLLARY 1.4. Let S be a projective and smooth curve over a finite field k of characteristic
p > 0, and K be the function field of S. Let A be an abelian variety over K. Then II(A)[F°] is
finite in each of the following cases:

(1) A is an elliptic curve over K;

(2) S =P} and A has everywhere semi-abelian reduction over }P’,lc;

(3) A is an ordinary abelian variety over K, and there is a place of K at which A has good
reduction with p-rank 0.

In case (1), after a finite base change, A has semi-abelian reduction, and the line bundle 4
is ample unless A is isotrivial. In case (2), by Theorem 1.1, it is reduced to two finiteness results
corresponding to the two cases of Theorem 1.3 exactly. In case (3), after a finite base change, A
has semi-abelian reduction, and the line bundle Q4 is ample by Rossler [Ros15, Theorem 1.2].
A detailed proof of the corollary will be given in §3.2.

We remark that case (2) of the corollary naturally arises when taking the Jacobian variety
of the generic fiber of a Lefschetz fibration of a projective and smooth surface over k. This
standard construction was initiated by Artin and Tate [Tat95] to treat the equivalence between
the Tate conjecture (for the surface) and the BSD conjecture (for the Jacobian variety). We refer
to Theorem 4.3 for a quick review of the equivalence.

Toward the BSD conjecture, we come to the question of how far III(A)[F*°] is from the whole
group II(A)[p*]. This is a very difficult question in general. However, if A is an abelian variety
of p-rank 0, then we actually have III(A)[F>°] = LI(A)[p*]; see Proposition 3.10.

1.4 Variation of the Tate conjecture
One version of the prestigious Tate conjecture for divisors is as follows.

CONJECTURE 1.5 (Conjecture T'(X)). Let X be a projective and smooth variety over a finite
field k of characteristic p. Then for any prime { # p, the cycle class map

Pic(X) ©2 Qp — H2(Xg, Qu(1)) %/
is surjective.

The Tate conjecture is confirmed in many cases. It is proved by Tate [Tat66] for arbitrary
products of curves and abelian varieties. If X is a K3 surface and p > 2, the conjecture is proved
by the works of Nygaard [Nyg83], Nygaard and Ogus [NO85], Artin and Swinnerton-Dyer [AS73],
Maulik [Maul4], Charles [Chal3], and Madapusi Pera [Madl5]. Moreover, by the recent work
of Morrow [Mor19], conjecture T*(X) for all projective and smooth surfaces X over k implies
conjecture T*(X) for all projective and smooth varieties X over k.

In this section, we have the following reduction of the Tate conjecture.
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THEOREM 1.6. Let k be a fixed finite field. Conjecture T'(X) for all projective and smooth
surfaces X over k satisfying H'(X,Ox) = 0 implies conjecture T*(X) for all projective and
smooth surfaces X over k.

For a projective and smooth surface X over a field k of any characteristic, the condition
H'(X,Ox) = 0 implies the following properties:

(1) H' (X5, Q) = 0;
(2) the identity component Pic /i of the Picard functor Picy . is trivial;
(3) the cycle class map Pic(X) ®z Qp — H?(Xj,Qy(1)) is injective.

In fact, property (2) holds because H!(X, Ox) is the tangent space of Pic y /k- Property (3) holds
because the kernel of the cycle class map is Pic% Ji(k) ®z Q. Property (1) holds because X has

the same first Betti number as @g( Ik

1.5 Idea of the proofs
Here we explain our proofs of the theorems.

Positivity of Hodge bundle. Theorem 1.1 is the main theorem, and its proof takes up the
whole of § 2. The proof consists of three major steps.

The first step is to construct an infinite chain of abelian varieties. Namely, if the Hodge bundle
Oy = QA/S of A is not ample, then the dual Lie(,A/S) has a nonzero mazimal nef subbundle
Lie(A/S)nef- We prove that it is always a p-Lie algebra. Applying the Lie theory of finite and
flat group schemes developed in [SGA3|, we can lift Lie(A/S)ner to a finite and flat subgroup
scheme A[F]yer of A of height one. Then we form the quotient A} = A/A[F]pef, and let A; be
the Néron model of the generic fiber of A]. If the Hodge bundle of A; is still not ample, repeat
the construction to get A, and Ay. Keep repeating the process, we obtain an infinite sequence

A AL AL Ay, Ay, Al As,

The second step is to use heights to force the sequence to be stationary in some sense. In
fact, the height of the sequence is decreasing, which is a key property proved by the construction.
As mentioned previously, the heights are non-negative integers, so the sequence of the heights
is eventually constant. This implies, in particular, that there is ng such that for any n > ng,
Lie(A,,/S)net is the base change of a p-Lie algebra from the base k, and A,,[Fyef is eventually
the base change of a group scheme from the base k. We say such group schemes over S are of
constant type. As a consequence, the kernels of A,, — A, as n varies give a direct systems of
group schemes over .S of constant type. With some argument, we can convert this direct system
into a p-divisible subgroup H of A, [p™] of constant type. For simplicity of notation, we assume
Ay, is just A in the following.

The third step is to ‘lift’ the p-divisible subgroup H of A[p°°] to an abelian subscheme of A
of constant type. By passing to a finite extension of k, we can find a point s € S(k) such that the
fiber C' = Ay is an abelian variety over k. As Ho is of constant type, it is also a p-divisible sub-
group of Cg[p™]. It follows that A and Cg ‘share’ the same p-divisible subgroup Ho.. This would
eventually imply that A has a non-trivial (K /k)-trace by some fundamental theorems. In fact,
C[p®] is semisimple (up to isogeny) as the p-adic version of Tate’s isogeny theorem and, thus,
Hoo, i is a direct summand of C[p™] up to isogeny. This implies that Hom(Cx [p>], A[p>°]) # 0.
By a theorem of de Jong [Jon98]|, this implies that Hom(Cx, A) # 0. Then A has a non-trivial
(K /k)-trace. The proof is finished by applying the same process to the quotient of A by the
image of the (K/k)-trace map.

1968

https://doi.org/10.1112/50010437X21007430 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007430

PosiTiviTy oF HODGE BUNDLES OF ABELIAN VARIETIES OVER SOME FUNCTION FIELDS

Note that the proof is in a spirit similar to that of [Bos04, Theorem 2.6 and Corollary 2.7],
but the current situation is more difficult due to the fact that in characteristic p > 0, integrating
a p-Lie algebra only gives a radicial group scheme (of relative dimension 0), instead of a smooth
group scheme (of the expected relative dimension). The idea above is to form a p-divisible group
by integrating infinitely many times, and algebraize it by the theorems of Tate and de Jong.

Partial finiteness. Theorem 1.2 is an easy consequence of Theorem 1.1 and Rossler [Ros15,
Theorem 1.1], as mentioned above. Theorem 1.3 will be proved in §3. The proof is inspired by
that of Rossler [Ros15, Theorem 1.1], which is, in turn, derived from an idea of Kim [Kim97].

To illustrate the idea, we first assume that A is an elliptic curve with semi-abelian reduction
over S. Take an element X € III(A)[F°], viewed as an A-torsor over K. Take a closed point
P € X which is purely inseparable over K. It exists because X is annihilated by a power of the
relative Frobenius. Denote by p™ the degree of the structure map g : P — Spec K. Assume
that n > 1. It suffices to bound n in terms of A.

Consider the canonical composition

Vica — Q/lp — Qpje — Qpi

The first map is induced by the torsor isomorphism X xx P — A xXg P, and it is an iso-
morphism. The second map is surjective. The third map is bijective because P is purely
inseparable of degree p™ over K. We are going to extend the maps to integral models.

Denote by P the unique projective and smooth curve over k£ with generic point P, and let
¥ : P — S be the natural map derived from 1 g. Abstractly P is isomorphic to .S because 9 is
purely inseparable. By considering the minimal regular projective models of X and A over S,
one can prove that the above composition extends to a morphism

U Qays — Qp i (E).

Here A is the Néron model of A over S, E is the reduced structure of ¢ ~!(Ep), and Ej is the
set of closed points of S at which A has bad reduction. The morphism is a nonzero morphism of
line bundles over P, so it is necessarily injective. The degrees on P give

p" - deg(Qu/s) = deg(*Q4ys) < deg(Qp 1, (E)) = deg(Eo) + 29 — 2.

Here g is the genus of S. If deg(QA/S) > 0, then n is bounded. It proves the theorem in this case.

The proof for general dimensions is based on the above strategy with two new ingredients.
First, there is no minimal regular model for A. The solution is to use the compactification of
Faltings and Chai [FC90]. This is the major technical part of the proof. Second, the Hodge
bundle is a vector bundle, and we require the ampleness of the whole vector bundle.

Variation of the Tate conjecture. Theorem 1.6 will be proved in § 4. One key idea is to repeat-
edly apply the Artin—Tate theorem, which asserts that for a reasonable fibered surface 7 : X — S,
the Tate conjecture 71 (X) is equivalent to the BSD conjecture for the Jacobian variety J of the
generic fiber of w. By this, we can switch between projective and smooth surfaces over finite
fields and abelian varieties over global function fields.

As we can see from §4.2, the major part of the proof consists of four steps. We describe them
briefly in the following.

Step 1: Make a fibration. Take a Lefschetz pencil over X, whose existence (over a finite base
field) is proved by Nguyen [Ngu05]. By blowing-up X, we get a Lefschetz fibration 7 : X’ — S
with S = ]P’,lg. Denote by J the Jacobian variety of the generic fiber of 7 : X’ — S, which is

1969

https://doi.org/10.1112/50010437X21007430 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007430

X. YuAN

an abelian variety over K = k(t) with everywhere semi-abelian reduction over S. In particular,
T(X) is equivalent to T (X’), and T (X’) is equivalent to BSD(.J).

Step 2: Make the Hodge bundle positive. Apply Theorem 1.1 to J. Then J is isogenous to
A x g Cg, where C is an abelian variety over k, and A is an abelian variety over K with an
ample Hodge bundle over S. It is easy to check that BSD(Ck) holds unconditionally. Therefore,
BSD(J) is equivalent to BSD(A).

Step 3: Take a projective reqular model. We need nice projective integral models of abelian
varieties over global function fields. This is solved by the powerful theory of Mumford [Mum?72]
and Faltings and Chai [FC90] with some refinement by Kiinnemann [Kun98]. As a result, there
is a projective, flat, and regular integral model ¢ : P — S of AY — Spec K with a canonical
isomorphism R'4,Op — QY. This forces H°(S, R'4,Op) = 0 by the ampleness of Q4. By the
Leray spectral sequence, we have H'(P, Op) = 0. This is the very reason why the positivity of
the Hodge bundle is related to the vanishing of H!.

Step 4: Take a surface in the reqular model. By successively applying the Bertini-type theorem
of Poonen [Poo04], we can find a projective and smooth k-surface ) in P satisfying the following
conditions:

(1) H'(Y,0y) = 0;

2) the canonical map H'(P,,Op, ) — H'(Y,, Oy ) is injective;
n n n Yn

(3) the generic fiber ), of JJ — S is smooth.

Here 1 = Spec K denotes the generic point of S. Denote by B the Jacobian variety of ), over .
Consider the homomorphism A — B induced by the natural homomorphism Epn n = Eyn In-
The kernel of A — B is finite by condition (2). It follows that BSD(A) is implied by BSD(B).
By the Artin-Tate theorem again, BSD(B) is equivalent to T%()). Note that H(Y, Oy) = 0.
This finishes the proof of Theorem 1.6.

1.6 Notation and terminology
For any field k, denote by k*® (respectively, k) the algebraic closure (respectively, separable
closure).

By a wariety over a field, we mean a scheme that is geometrically integral, separated and of
finite type over the field. By a surface (respectively, curve), we mean a variety of dimension two
(respectively, one).

We use the following basic notation:

e [k denotes a field of characteristic p;

e S usually denotes a projective, smooth, and geometrically integral curve over k, which is
often ]P’k;

e K = k(S) usually denotes the function field of S, which is often k(t);

e 7 = Spec K denotes the generic point of S.

Occasionally, we allow K and S to be more general.

Frobenius morphisms. Let X be a scheme over IF,. Denote by F¢ : X — X the absolute
Frobenius morphism whose induced map on the structure sheaves is given by a — a?". To avoid
confusion, we often write F'y : X — X as F'y : X;, — X, so X, is just a notation for X. We also

write I = F'y if no confusion will result.
Let m: X — S be a morphism of schemes over F,,. Denote by

X0 = X xg8 = (X,7) xg (S, F),
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the fiber product of 7 : X — S with the absolute Frobenius morphism Fg : S — S. Then X (®")
is viewed as a scheme over S by the projection to the second factor, and the universal property
of fiber products gives an S-morphism

Flg=Fys: X — X,
which is the relative p™-Frobenius morphism of X over S. See the following diagram.

X — . Fr

We sometimes also write F"* for Fiy /S if there is no confusion.
Relative Tate—Shafarevich group. Let K be a global function field, let f: A — B be a
homomorphism of abelian varieties over K. Denote
II(A)[f] = ker(II(f) : III(A) — LI(B)).
In the case of the relative Frobenius morphism,
T (A)[F"] = ker(ITI(F™) : TII(A) — TI(A®)Y).

Denote

(A [F] = | m(A)[F"]

as a subgroup of III(A).
In the setting of f: A — B, we also denote

Alf] =ker(f : A— B),

viewed as a group scheme over K. It is often non-reduced in this paper.

Radicial morphisms. By [EGA, I, §3.5], a morphism f : X — Y of schemes is called radicial
if one of the following equivalent conditions holds:

(1) the induced map X (L) — Y (L) is injective for any field L;

(2) f is universally injective; i.e. any base change of f is injective on the underlying topological
spaces;

(3) f isinjective on the underlying topological spaces, and for any x € X, the induced extension
k(x)/k(f(z)) of the residue fields is purely inseparable.

Such properties are stable under compositions, products, and base changes.

Vector bundles. By a vector bundle on a scheme, we mean a locally free sheaf of finite rank.
By a line bundle on a scheme, we mean a locally free sheaf of rank one.

Cohomology. Most cohomologies in this paper are étale cohomology, if there are no specific
explanations. We may move between different cohomology theories, and the situation will be
explained from time to time.
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2. Positivity of a Hodge bundle

The goal of this section is to prove Theorem 1.1. As sketched in §1.5, the proof consists of
three major steps. Each of these steps takes a subsection in §§2.2, 2.3, and 2.4. Before them, we
introduce some basic results about group schemes of constant types in §2.1.

2.1 Group schemes of constant type
Here we collect some basic results about group schemes to be used later.

p-Lie algebras and group schemes. Here we recall the infinitesimal Lie theory of [SGA3, VII4].
For simplicity, we only restrict to the commutative case here. Let S be a noetherian scheme over
F,. Recall that a commutative p-Lie algebra over S is a coherent sheaf g on S, endowed with an
additive morphism

g—g9g, O0r— 5@}

which is p-linear in the sense that
(aé)[p} =P, ae0g, e

The additive morphism is called the p-th power map on g. We say that g is locally free if it is
locally free as an Og-module.

We can interpret the p-th power map on g as an Og-linear map as follows. Recall the absolute
Frobenius morphism Fg : § — S. The pull-back Fgg is still a vector bundle on S. The additive
map

F§:9— Fig

is p-linear in that F¢(ad) = aPF§é. It follows that we have a well-defined Og-linear map given
by
Fig — g, Fi6— ol

For a commutative group scheme G over S, the Og-module Lie(G/S) of invariant deriva-
tions on G is a natural commutative p-Lie algebra over S. By [SGA3, VII4, Theorems 7.2
and 7.4, Remark 7.5], the functor G — Lie(G/S) is an equivalence between the following two
categories:

(1) the category of finite and flat commutative group schemes of height one over S;
(2) the category of locally free commutative p-Lie algebras over S.

Here a group scheme G over S is of height one if the relative Frobenius morphism Fg/g: G — G (®)
is zero. Furthermore, if G is in the first category, then {)g,g = €*Q)g,g and Lie(G/S) are locally
free and canonically dual to each other. Here e : S — G is the identity section. See [SGA3, VII4,
Proposition 5.5.3].

For some treatments in special cases, see [Mum?74, §15] for the case that S is the spectrum
of an algebraically closed field, and [CGP10, § A.7] for the case that S is affine.

Group schemes of constant type. The following results, except Lemma 2.1(1), also hold in
characteristic zero. We restrict to positive characteristics for simplicity.

Let S be a scheme over a field k of characteristic p > 0. A group scheme (respectively, scheme,
coherent sheaf, p-Lie algebra, p-divisible group) G over S is called of constant type over S if it
is isomorphic to the base change (respectively, base change, pull-back, pull-back, base change)
Gg by S — Speck of some group scheme (respectively, scheme, coherent sheaf, p-Lie algebra,
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p-divisible group) G over k. Note that a finite flat group scheme of height one over S is of
constant type if and only if its p-Lie algebra is of constant type.

It is also reasonable to use the term ‘constant’ instead of ‘of constant type’ in the above
definition. However, a ‘constant group scheme’ usually means a group scheme associated to an
abelian group in the literature, so we choose the current terminology to avoid confusion.

LEMMA 2.1. Let S be a Noetherian scheme over a field k of characteristic p > 0 with
I'(S,0g) = k.

(1) Let m: G — S be a finite and flat commutative group scheme of height one over S. If the
p-Lie algebra of G is of constant type as a coherent sheaf over S, then G is of constant type
as a group scheme over S.

(2) Let m:G — S be a finite and flat commutative group scheme over S. If Qg is of constant
type as a coherent sheaf over S, then G is of constant type as a group scheme over S.

(3) Let my : G1 — S and w3 : Go — S be finite and flat commutative group schemes of constant
type over S. Then any S-homomorphism between Gy and Gs is of constant type, i.e. equal
to the base change of a unique k-homomorphism between the corresponding group schemes
over k.

Proof. We first prove part (1). Denote g = Lie(G/S) and gy =I'(S,g). By assumption, the
canonical morphism

90 ®r Os — ¢
is an isomorphism of Og-modules. It suffices to prove that the p-th power map of g comes from a
p-th power map of go. Note that gy has a canonical p-th power map coming from global sections
of g, but we do not need this fact.

Note that the p-th power map of g is equivalent to an Og-linear map Fég — g. It is an
element of

Homo, (F3g,9) = T'(S, F5(g") ®o 9)
= T'(S, (Fi(g0) @k 80) @k Os) = Fj: (g) @k g0 = Homy(Fy go, 9o)-
In other words, it is the base change of a p-th power map of go. This proves part (1).

The proof of part (2) is similar. In fact, denote F = m,Og and Fy =TI'(5,m1.0Og). The
canonical morphism

Fo®r Og — F

is an isomorphism of Og-modules. Note that the structure of G as a group scheme over S is
equivalent to a structure of F as a Hopf Og-algebra. For these, the extra data on F consist of
an identity map Og — F, a multiplication map F ®oy F — F, a co-identity map F — Og, a
co-multiplication map F — F ®pg F, and an inverse map 7 — F. There are many compatibility
conditions on these maps. All these maps are Og-linear. We claim that all these maps are coming
from similar maps on Fy. For example, the co-multiplication map is an element of

Homos(]:v}—@Os "T) = F(Svj:v ®OSF®OS ‘7:)
=T(S, (Fy @k Fo @k Fo) @ Os)
= Fy @k Fo @ Fo = Homy,(Fo, Fo @ Fo)-

This makes Fy a Hopf k-algebra, because the compatibility conditions hold by Fy = I'(S, F).
Finally, the Hopf algebra F is the base change of the Hopf algebra Fy. Then the group scheme
G is the base change of the group scheme corresponding to the Hopf algebra Fy.
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The proof of part (3) is similar by looking at Hompg ((72)+Og,, (71)+«Og, ) with compatibility
conditions. m

The following result will be used for several times.
LEMMA 2.2. Denote S = Pk for any field k of characteristic p > 0. Let
0—G —G—G—0
be an exact sequence of finite and flat commutative group schemes over S. If G; and Gs are of

constant type, then G is of constant type.

Proof. By Lemma 2.1(2), it suffices to prove that m.Og is of constant type as a coherent
Og-module. Here 7 : G — S is the structure morphism. We can assume that k is algebraically
closed. In fact, the property that the canonical map

'S, m.0g) @ Og — m.Og

is an isomorphism can be descended from the algebraic closure of k£ to k.
Once k is algebraically closed, any finite group scheme over k is a successive extension of
group schemes in the following list:

L)L, Z[pZL, pp, .

Here ¢ # p is any prime, and Z/¢Z is isomorphic to z.

For i = 1,2, write G; = G; X S for a finite group scheme G; over k. By induction, we can
assume that Gy is one of the four group schemes over k in the list. View G as a GG1-torsor over
Go. Then G corresponds to a cohomology class in the fppf cohomology group Hflppf(gg, G1). We
first claim that the natural map

Hflppf(G27 Gl) — Hflppf(g27 Gl)

is an isomorphism. If this holds, then G is a trivial torsor, and thus isomorphic to G1 X G2 as a
Go-scheme. In particular, it is a scheme of constant type over S.
It remains to prove the claim that the natural map

Hi, o (Ga, Gh) — Hio(Go, Gh)

is an isomorphism. Note the basic exact sequences

O—>oap—>Gai>Ga—>0,

O—>Z/pZ—>GaﬂGaHO,
[

0— pup — G, — G, — 0.

In the last one, £ = p is allowed. Then the claim is a consequence of explicit expressions on the
relevant cohomology groups of G, and G,, over Go and Go.

Now we compute the cohomology groups of G, and G,, over Gy and Giy. Write
R =T(G2,0¢,). We first have

Hfippf(QQ7Ga) = H%ar(g% OQQ) = H%ar(su R X, OS) = R X H%ar(sa OS)
This gives
Hp (G2, Ga) = R, Hpypi(G2,Ga) =0,  Hp (G, Gr) = R

To compute Hflppf(gg,Gm) = HL(G2,G,,), denote by I =ker(R — Ryeq) the nilradical ideal
of R, and by Z =ker(Og, — O(g,),.,) the nilradical ideal sheaf of Go. We have 7 = I ®j, Og.
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There is an exact sequence of étale sheaves over Gs by
0—1+7 — Gmg, — Gugy)a — 0
Moreover, 1 + Z has a filtration
1+ZI21+T7*>1413> -,
whose m-th quotient admits an isomorphism given by
1+Z™)/A+I™ —2m/T™ T 14t t.
Those quotients are coherent sheaves over Go. Then we have
Hy(Go I [T™Y) = Hyor(Go, I /T )
= Hyor(Go, (I /1) @4 Og) = (I™/I™H1) @, Hyor (S, Os).
This vanishes for i > 0. As a consequence, H(G2,1+ Z) = 0 for i > 0. Therefore,
HY(G2,Gpn) = H' (G2, G (63),00) = Pic((G2)rea) = Z7,

where r is the number of connected components of Go. For the cohomology over G, similar
computations give

Hy 1(G2,Ga) = R, Hp 1(G2,Ga) =0,  Hp (G2, Gp) = R*,  Hg 1(Ga,Gy) =0.
By these, it is easy to verify the claim. O

2.2 The quotient process
The key to the proof of Theorem 1.1 is a quotient process. This quotient process is also introduced
by Réssler [Ros20].

Roughly speaking, if the Hodge bundle 4 of A is not ample, then we take the maximal nef
subbundle of Lie(A4/S) = QX, ‘lift’ it to a local subgroup scheme of A, and take the quotient A;
of A by this subgroup scheme. If the Hodge bundle Q4, of A; is still not ample, then we perform
the quotient process on A;. Repeat this process. We obtain a sequence A, Aq, Ao, ... of abelian
varieties over K. The goal here is to introduce this quotient process. We start with some basic
notions of vector bundles, Hodge bundles, and Lie algebras.

Vector bundles over a curve. Here we review some basic terminologies about stability and
positivity of vector bundles over curves. We first introduce them for general curves, and then
consider the case of the projective line. A basic reference is [Laz04, §6.4].

Let S be a projective and smooth curve over a field k. Let £ be a vector bundle over S, i.e.
a locally free sheaf of finite rank. The slope of £ is defined as

~deg(€)  deg(det&)
He) = rank(§)  rank(€)

Let F be a coherent subsheaf of £, which is automatically a vector bundle on S. We say
that F is saturated in £ if the quotient £/F is torsion-free. Then £/F is also a vector bundle on
S. (In the literature, a saturated subsheaf is also called a subbundle.) Denote by 7 the generic
point of S. The functor F +— F, is an equivalence of categories from the category of saturated
subsheaves of £ to the category of linear subspaces of &,. The inverse of the functor is F' +— F'N &,
an intersection taken in &,.

We say that & is stable (respectively, semistable) if for any coherent subsheaf of F C &, one
has u(F) < pu(€) (respectively, p(F) < u(€)).
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The Harder—Narasimhan filtration of £ is the unique filtration
0= cé&E c---céEn=E
of saturated subsheaves of £ such that each quotient &;/&;_1 is semistable and

w(&i/&) > pu(&/Er) > -+ > N(Em/gm_l).

The maximal slope and the minimal slope of £ are defined as

:umax(g) = M(81/50)> ,Umin(g) = :u(gm/gm—l)'

As in [Har66] and [Laz04, Chapter 6], the vector bundle £ over S is said to be ample (respec-
tively, nef) if the tautological bundle O(1) over the projective space bundle P(£) is an ample
(respectively, nef) line bundle.

If k has characteristic 0, then & is ample (respectively, nef) if and only if pmin(E) >0
(respectively, pmin(€) > 0). This is essentially Hartshorne [Har71, Theorem 2.4]; see also [Laz04,
Theorem 6.4.15].

If k has characteristic p > 0, this property fails but can be remedied as follows. Define

fimax(E) = Wm p™" pmax ((F")"E),
,amin(g) = nh_{glop_nﬂmm((Fn)*g)

Here F™ : S — S") is the relative Frobenius morphism. Note that (F™)* may not preserve the
Harder—Narasimhan filtration, but the sequences in both limits are eventually constant by Langer
[Lan04, Theorem 2.7, p. 259].

We say that € is strongly stable (respectively, strongly semistable) if for any coherent subsheaf
of F C &, one has u(F) < u(€) (respectively, u(F) < u(E)).

Finally, by Barton [Bar71, Theorem 2.1], the vector bundle £ is ample (respectively, nef) if
and only if fimin(€) > 0 (respectively, fimin(€) > 0).

Vector bundles on P'. Now we consider the above terminologies over P!, which turns out
to be very concrete. By the Birkhoff-Grothendieck theorem (cf. [HL97, Theorem 1.3.1]), any
nonzero vector bundle £ on S = P! (over any base field k) can be decomposed as

with uniquely determined integers di > do > -+ - > d,..
The slope of £ is defined as

_ deg(é)
we) = rank(&)

1
— S(dy 4+ dy).
T(1+ + d;)

We also have the maximal slope and the minimal slope

Nmax(g) = di, Mmin(f‘:) =d,.

The bundle £ is semistable if pmax(E) = pimin(E).

We easily see that [imax = fmax and [Imin = fmin if k£ has a positive characteristic.

Under the decomposition, £ is ample if and only if d, > 0; £ is nef if and only if d, > 0.
As we are mainly concerned with vector bundles on P!, these can serve as our definitions of
ampleness and nefness.
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For any nonzero vector bundle £ on S = P!, define the maximal nef subbundle (or just the
nef part) of € to be

Enet = Im(I(S,E) @) Og — ).
In terms of the above decomposition, we simply have
Enet = Ba;>00(d;).
Note that Eper = 0 if and only fmax(€) < 0.

Hodge bundles. Let G be a group scheme over a scheme S. The Hodge bundle of G over S is
the Og-module

Qg = Qg/s = 6*95/87

where Qé /s the relative differential sheaf, and e : S — G denotes the identity section of G.

Recall that if G is a finite and flat commutative group scheme of height one over S, then Qg
and Lie(G/S) are locally free and canonically dual to each other; see [SGA3, VII4, Proposition
5.5.3].

The definition particularly applies to Néron models of abelian varieties. Let S be a connected
Dedekind scheme, and K be its function field. Let A be an abelian variety over K. Then we write

Qa=Qu=Qus.

Here A is the Néron model of A over S.

For Hodge bundles of smooth integral models of abelian varieties, we have the following
well-known interpretation as the sheaf of global differentials. We sketch the idea for lack of a
complete reference.

LEMMA 2.3. Let S be an integral scheme. Let w: A — S be a smooth connected group scheme
whose generic fiber is an abelian variety. There are canonical isomorphisms

Proof. The first isomorphism follows from [BLR90, § 4.2, Proposition 2]. For the second map, it
is well-defined using the first isomorphism. To see that it is an isomorphism, it suffices to note
the following three facts:

(1) it is an isomorphism at the generic point of S;

(2) both Q4,5 and 7,04 /s are torsion-free sheaves over S; .

(3) the map is a direct summand, where a projection W*Q}Ll /s Q45 is given by applying .
to the natural map 934/5 — e*QA/S. O

Mazximal nef subalgebra. The following result gives the notion of a maximal nef p-Lie sub-
algebra of a locally free commutative p-Lie algebra. It is a special case of [Ros20, Lemma 4.4],
which works for general projective and smooth curves S in the stability setting.

LEMMA 2.4. Let S = IE”,lC for a field k of characteristic p > 0. Let g be a locally free commutative
p-Lie algebra over S. Then the maximal nef subbundle gt of g is closed under the p-th power
map of the Lie algebra g.

Proof. Recall that the p-th power map on g corresponds to an Og-linear map Fgg — g. Denote
by N the image of F§(gner) under this map, which gives an Og-linear surjection F§(gner) — N.
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By definition, gper is globally generated, so A is also globally generated. We have N C gper by
the maximality of gner. Then we have a well-defined Og-linear map F§(gner) — @ner- This finishes
the proof. 0O

Quotient by subgroup scheme. Here we describe the quotient construction in the proof of
Theorem 1.1.
Go back to the setting to Theorem 1.1. Namely, k is a finite field of characteristic p, and
A is an abelian variety over K = k(t). The p-Lie algebra Lie(.A/S) of the Néron model A of A
is a vector bundle over S, canonically dual to the Hodge bundle € 4 /s- We also have a natural
identity
Lie(A[F]/S) = Lie(A/S),

where A[F] = ker(F : A — A®P)) is the kernel of the relative Frobenius morphism.

For the sake of Theorem 1.1, assume that €4 /s 1s not ample, or equivalently
tmax(Lie(A/S)) > 0. Then the maximal nef subbundle Lie(A/S)es of Lie(A/S) is a nonzero
p-Lie subalgebra of Lie(/A/S) by Lemma 2.4. By the correspondence between p-Lie algebras and
group schemes, Lie(A/S) et corresponds to a finite and flat group scheme A[F)y,e of height one
over S, which is a closed subgroup scheme of A[F] with p-Lie algebra isomorphic to Lie(A/.S)yef-
Form the quotient

Ap = A/ (A[Flner),

which is a smooth group scheme of finite type over S. We have a description of this quotient
process in Theorem 2.8.
Denote by A; and A[F]ye the generic fibers of A; and A[F|yef. It follows that

A= A/(A[F]nef)

is an abelian variety over K. In general, A} may fail to be the Néron model of A;, or even fail
to be an open subgroup scheme of the Néron model. Therefore, take A; to be the Néron model
of A1 over S.

We see that there is a natural exact sequence

0 — Lie(A/S)net — Lie(A/S) — Lie(A}/S).

It follows that the nef part of Lie(A/S) becomes zero in Lie(.A}/S) and Lie(.A;/S). However,
Lie(A;/S) may obtain some new nef part. Thus, the quotient process does not solve Theorem 1.1
immediately. Our idea is that if Lie(A;/S)ner # 0, then we can further form the quotient

AIQ = -Al/(Al[F]nef)

and let Az be the Néron model of the generic fiber of A). Repeat the process, we obtain a
sequence

AZAOa /17 Ab A/27 -'42’ é, A37

of smooth group schemes of finite type over S, whose generic fibers are abelian varieties isogenous
to A.

To get more information from the sequence, the key is to consider the height of the above
sequence. We see that the height sequence is decreasing. As each term is a non-negative integer,
the height sequence is eventually constant, and thus Lie(.A,,/S) et is eventually a direct sum of
the trivial bundle Og.

An intermediate result that the quotient process will give us is as follows. The proof is given
in the next subsection.
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PROPOSITION 2.5. Denote K = k(t) and S =P}, for a field k of characteristic p > 0. Let A be
an abelian variety over K. Then there is an abelian variety B over K, with a purely inseparable
isogeny A — B, satisfying one of the following two conditions.

(1) The Hodge bundle Qg is ample.
(2) The Hodge bundle Qp is nef. Moreover, there is an infinite sequence {G,}n>1 of closed
subgroup schemes of the Néron model B of B satisfying the following conditions:
(a) for any n > 1, G, is a finite and radicial group scheme of constant type over S;
(b) for any n > 1, G, is a closed subgroup scheme of G,,11;
(¢c) the order of G, over S goes to infinity.

The proposition is philosophically very similar to [Ros20, Proposition 2.6]. These two results
are proved independently, but their proofs use similar ideas. For example, the ‘maximal nef
subalgebra’ appears in [Ros20, Lemma 4.8], the ‘quotient process’ is used in the proof of [Ros20,
Proposition 2.6] in pp. 1145-1146 of the paper, and the ‘control by height’, to be introduced in
the following by us, is also used in the proof.

2.3 Control by heights
In this subsection, we prove Proposition 2.5. The main tool is the height of a group scheme over
a projective curve.

Heights of smooth group schemes. Let S be a projective and smooth curve over a field k,
and let K be the function field of S. Let G be a smooth group scheme of finite type over .S. The
height of G is defined to be

h(G) = deg(Qg/s) = deg(det Qg /).

Here the Hodge bundle Qg /s 1s the pull-back of the relative differential sheaf Qé /s to the identity
section of G as before.

Let A be an abelian variety over K, and let A be the Néron model of A over S. The height
of A is defined to be

h(A) = deg(Q4) = deg(Q4/5) = deg(det Q 4/5).

If k is finite, this definition was originally used by Parshin and Zarhin to prove the Tate con-
jecture of abelian varieties over global function fields. A number field analogue, introduced by
Faltings [Fal83] and called the Faltings height, was a key ingredient in his proof of the Mordell
conjecture.

THEOREM 2.6. Let S be the projective and smooth curve over a field k. Let G be a smooth group
scheme of finite type over S whose generic fiber A is an abelian variety. Then h(G) > h(A) > 0.
Moreover, the following hold:

(1) h(G) = h(A) if and only if G is an open subgroup of the Néron model of A over S;
(2) h(G) =0 if and only if G is isotrivial over S, i.e. for some finite étale morphism S’ — S, the
base change G xg S’ is constant over S’.

Proof. We first treat the inequality h(G) > h(A). Denote by A the Néron model of A over S. By
the Néron mapping property, there is a homomorphism 7 : G — A which is the identity map on
the generic fiber. It induces morphisms Q 4,5 — €Qg/g and det(Q4/5) — det(Qg/s) of locally free
Og-modules. The morphisms are isomorphisms at the generic point of S, and thus are injective
over S. Taking degrees, we have h(A) < h(G).
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If h(A) = h(G), then det(€4/5) — det(€Qg/s) is an isomorphism, and thus Q4,5 — Qg/g is
also an isomorphism. By Lemma 2.3, the natural map 7€ 4,5 — 2g/g is also an isomorphism.
Consequently, 7: G — A is étale. Then it is an open immersion because it is an isomorphism
between the generic fibers.

Part (2) is essentially due to Moret-Bailly. We first check h(A) > 0. If A is semi-abelian,
then h(A) >0 by [Mor85, IX, Theorem 2.1] or [FC90, § V.2, Proposition 2.2]. In general, by
the semistable reduction theorem, there is a finite extension K’ of K = k(S) such that A
has everywhere semi-abelian reduction over the normalization S’ of S in K’. It follows that
h(Ag) > h(Ag+) > 0, and thus h(A) > 0.

If h(G) = 0, the above arguments already imply that G is an open subgroup scheme of the
Néron model of A, and A has everywhere semi-abelian reduction. Now the result follows from
[Mor85, XI, Theorem 4.5] or [FC90, § V.2, Proposition 2.2]. This finishes the proof. O

Remark 2.7. If k is finite, then there is a Northcott property for the height of abelian varieties,
as an analogue of [FC90, Chapter V, Proposition 4.6] over global function fields. This is the
crucial property which makes the height a powerful tool in diophantine geometry, but we do not
use this property here.

Height under purely inseparable isogenies. Here we prove a formula on the change of height
under purely inseparable isogenies of smooth group schemes. We start with the following result
about a general quotient process.

THEOREM 2.8. Let G be a smooth group scheme of finite type over a Dedekind scheme S, and
let H be a closed subgroup scheme of G which is flat over S. Then the fppf quotient G' = G/H
is a smooth group scheme of finite type over S, and the quotient morphism G — G’ is faithfully
flat.

Proof. The essential part follows from [Ana73, Theorem 4.C], which implies that the quotient
G’ is a group scheme over S. It is easy to check that G’ is flat over S. In fact, because G is
flat over S, the sheaf Og contains no Og-torsion. As G — G’ is an epimorphism, O¢ injects
into Og, and thus contains no Og-torsion either. Then G’ is flat over S. To check that G’ is
smooth over S, it suffices to check that for any geometric point s of S, the fiber G. is smooth.
As Gs is reduced and Gs — G/ is an epimorphism, G. is reduced. Then G is smooth because
it is a reduced group scheme over an algebraically closed field. This checks that G’ is smooth
over S. Moreover, G, — G is flat as G, is an H-torsor over G.. It follows that G — G’ is flat by
[EGA, IV-3, Theorem 11.3.10]. This finishes the proof. O

Now we introduce a theorem to track the change of heights of abelian varieties under the
quotient process. The result is similar to [Ros20, Lemma 4.12].

THEOREM 2.9. Let S be a Dedekind scheme over F, for a prime p. Let A be a smooth group
scheme of finite type over S. Let G be a closed subgroup scheme of A[F] which is flat over S,
and denote by B = A/G the quotient group scheme over S. Then the following hold.

(1) There is a canonical exact sequence
0 — Lie(G/S) — Lie(A/S) — Lie(B/S) — F¢Lie(G/S) — 0

of coherent sheaves over S. Here Fg : S — S is the absolute Frobenius morphism.
(2) If S is a projective and smooth curve over a field k of characteristic p > 0, then

h(B) = h(A) — (p — 1) deg(Lie(G/5)).
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Proof. Part (2) is a direct consequence of part (1) by Q4,5 = Lie(A/S)Y. The major problem is
to prove part (1). Consider the following commutative diagram.

A

| | 1}

0 e g(ﬁp) — A(p) -

0 — ¢

HO

- 0
Both rows are exact. The relative Frobenius F : G — G® is zero as G has height one. By the
snake lemma, we have an exact sequence

0 — G — A[F]| — B[F] — g 0.

The Lie algebra of this sequence is exactly the sequence of the theorem.

It suffices to check the general fact that the Lie functor from the category of finite and flat
commutative group schemes of height one over S to the category of p-Lie algebras is exact.
In fact, if

00— H —H—Hyg—0
is an exact sequence in the first category, then we first get a complex
0 — Lie(H1/S) — Lie(H/S)—Lie(H2/S) — 0

of locally free sheaves over S. By the canonical duality between the Lie algebra and the Hodge
bundle, the Lie functor commutes with base change. For any point s € .S, consider the fiber of
the complex of Lie algebras above s. It is exact by counting dimensions, because dim Lie(Hs/s)
equals the order of H, and the order is additive under short exact sequences. This shows that
the complex is fiber-wise exact. Then the complex is exact. This finishes the proof. O

Stationary height. Now we prove Proposition 2.5. Let A = Aj be as in the proposition. By
the quotient process, we obtain a sequence

A0> Allv -Ab /25 -’427
of abelian varieties over K. Here for any n > 0,
/n+1 = An/An[F]nef

and A, 41 is the Néron model of the generic fiber of A7, , ;. We know that Aj, is a smooth group
scheme of finite type over S by Theorem 2.8.
By Theorem 2.6, h(A,) < h(A}). By Theorem 2.9(2),

h( A1) = h(Ag) = (p — 1) deg(Lie(An/S)net) < h(An).
It follows that the sequence
h(Ao), h(A}), h(A1), h(A3), h(A2), ...

is decreasing. Note that each term of the sequence is a non-negative integer by Theorem 2.6.
Therefore, there is an integer ng > 0 such that

h(-"%) = h(An) = h(An,), ¥ n>no.
It follows that for any n > ng, A}, is an open subgroup scheme of A,, and

deg(Lie(Apn/S)net) = deg(Lie( Al /S)net) = 0.

1981

https://doi.org/10.1112/50010437X21007430 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007430

X. YuAN

As a consequence, for any n > ng, Lie(A,/S)nef is a direct sum of copies of the trivial bundle
Os, and Q4 /g = Lie(A,/S)Y is nef. Moreover, Q 4, /g is ample if and only if A, — Ay, 41 is an
isomorphism.

For Proposition 2.5, if none of Q 4, /s is ample, take B = A;,. The group scheme ker (A, —
A,) has a degree going to infinity. It is of constant type over S, as an easy consequence of
Lemmas 2.1(1) and 2.2. This proves Proposition 2.5.

2.4 Lifting p-divisible groups
In this subsection, we prove Theorem 1.1. Note that we have already proved Proposition 2.5. To
finish the proof, it suffices to prove the following result.

PROPOSITION 2.10. Denote K = k(t) and S = P} for a finite field k of characteristic p. Let A be
a smooth group scheme of finite type over S whose generic fiber A is an abelian variety over K.
Assume that there is an infinite sequence {G,}n>1 of closed subgroup schemes of A satisfying
the following conditions:

(a) for any n > 1, G, is a finite group scheme of constant type over S;
(b) for any n > 1, G, is a subgroup scheme of G, 11;
(c) the order of G, over S is a power of p and goes to infinity.

Then the (K /k)-trace of A is non-trivial.

We refer to Conrad [Con06] for Chow’s theory of (K/k)-traces. Before proving Proposition
2.10, let us see how Propositions 2.5 and 2.10 imply Theorem 1.1. Let A be as in Theorem
1.1. Apply Proposition 2.5 to A, which gives an abelian variety B over K with a purely insep-
arable isogeny A — B. If B satisfies Proposition 2.5(1), the result already holds. If B satisfies
Proposition 2.5(2), apply Proposition 2.10 to the Néron model B of B. Then B has a non-trivial
(K /k)-trace, and thus A also has a non-trivial (K/k)-trace Ap, which is an abelian variety over
k with a homomorphism Ay g — A. By [Con06, Theorem 6.4], the homomorphism Ay x — A is
an isogeny to its image A’. Note that A is isogenous to Ag x X i (A/A’). Apply the same process
to the abelian variety A/A’ over K. Note that the dimension of A/A" is strictly smaller than
that of A. The process eventually terminates. This proves Theorem 1.1.

The p-divisible group. To prove Proposition 2.10, the first step is to change the direct system
{Gn }n to anonzero p-divisible group. For the basics of p-divisible groups, we refer to Tate [Tat67].

Let S be any scheme. A direct system {Gp,}n>1 of flat group schemes over S is called an
increasing system if the transition homomorphisms are closed immersions. A subsystem of the
increasing system {Gj, }n>1 is an increasing system {Hp}n>1 over S endowed with an injection
h_r)an — li_n}Gn as fppf sheaves over S.

There is a description of subsystem in terms of group schemes without going to the
limit sheaves. In fact, an injection lim H,, — liL>nGn as fppf sheaves over S is equivalent to a
sequence {¢y, : H, — GT(n)}n21 of injections, compatible with the transition maps H, — H, 1
and G;(,) — Gr(n41) for each n > 1, where {7(n)}n>1 is an increasing sequence of positive inte-
gers. For each n > 1, to find 7(n), it suffices to note that the identity map i, : H, — H, is an
element of Hy(H,) C Hoo(Hp,) C Goo(Hy), and thus it is contained in some G.(,)(H,). This
gives a morphism H,, — G, ().

We have the following basic result.

LEMMA 2.11. Let k be any field of characteristic p > 0. Let {G,,},,>1 be an increasing system of
finite commutative group schemes of p-power order over k. Assume that the order of G,, goes to
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infinity as n — oo, but the order of G, [p] is bounded as n — oo. Then {G,,},>1 has a subsystem
{Hpy}n>1 which is a nonzero p-divisible group over k.

Proof. The idea can be easily illustrated in terms of abelian groups. Assume for the moment
that {G,, }n>1 is an increasing system of abelian groups satisfying similar conditions. Let G be
the direct limit of {Gy}n>1. By definition, G is an infinite torsion group whose element has
p-power orders, but G[p| is finite. A structure theorem asserts that Goo >~ (Qp/Zy)" & F for
some positive integer r and some finite group F. Then Ho, = (Qp/Z,)" is the subgroup of G
that gives us a p-divisible group. This subgroup consists of exactly the infinitely divisible elements
of G, and thus can be extracted as Hoo = Ng>1pGoo. Then Hyy, = Hoo[p™] = Na>1 (%G oo ) [P
for any m > 1.

Go back to the group schemes G,, in the lemma. By assumption, the order of G,,[p] is bounded
by some integer p”. For any m, the order of G, [p™] is bounded by p™", which can be checked by
induction using the exact sequence

0 — Gulp] — Gulp™] 2. G, ™).

As the order of G, goes to infinity, the exact exponent of G,, which is the smallest pos-
itive integer N, such that the multiplication [N,]: G, — G, is the zero map, also goes to
infinity.

Now we construct the p-divisible group. Denote Goo = lim Gy, as an fppf sheaf over Spec(k).
Denote Hoo = Ng>1p*Goo as a subsheaf of Go. Denote H,,, = Hoo[p™] as a subsheaf of Hy, for
any m > 1. We claim that the system {H,,},,>1, where the transition maps are injections as
subsheaves of H, is a nonzero p-divisible group over k.

First, every H,, is representable by a finite group scheme over k. In fact, H,, is the inter-
section of the decreasing sequence {(p®Goo)[p™]}a>1. As the order of {G,,[p™]}, is bounded, the
increasing sequence {(p®G,)[p™]}n of finite group schemes is eventually stationary. This sta-
tionary term is exactly (p®*Goo)[p™]. The sequence {(p*Goo)[p™]}a>1 of finite group schemes is
decreasing, and thus eventually stationary. This stationary term is exactly H,,.

Second, Hj # 0. Otherwise, (p°Goo)[p] =0 for some a > 1. Then p®Gs =0 and, thus,
p*G, =0 for all n. This contradicts the fact that the exponent of GG, goes to infinity. Thus,
Hy #0.

By definition, the map [p™]: Hoo — Hy is surjective with kernel H,,. It follows that the
morphism [p™] : Hy, 41 — Hpp4q has kernel Hy, and image Hy. This implies that {Hy, }pm>1 is a
p-divisible group. This finishes the proof. O

Remark 2.12. If k is perfect, one can prove the lemma by Dieudonné modules. In fact, take the
covariant Dieudonné module of the sequence {G,,},>1, apply the above construction of abelian
groups to the Dieudonné modules, and transfer the result back to obtain a p-divisible group by
the equivalence between finite group schemes and Dieudonné modules.

Algebraicity. Now we prove Proposition 2.10. Recall that we have an increasing system {G, },,
of finite and flat closed subgroup schemes of A of constant type. The transition maps are nec-
essarily of constant type by Lemma 2.1(3). Thus, {G,}, is the base change of an increasing
system {Gp}, of finite group schemes over k. By Lemma 2.11, the system {G)}, has a sub-
system Ho, = {Hp}n, which is a nonzero p-divisible group over k. Denote by Hoo = {Hy }n the
base change of {Hy}, to S, which is a p-divisible group over S, and also a subsystem of {G,},.
Then Hoo = {Hn}n is a subsystem of A[p*>] = {A[p"]},. We are going to ‘lift’ Hoe = {Hp}n to
an abelian scheme over S of constant type.
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By [Con06, Theorem 6.6], the (K/k)-trace of A is nonzero if and only if the (Kk'/k’)-trace
of Ak is nonzero for any extension k’/k. Therefore, in the proposition, we can replace k by any
finite extension. In particular, we can assume that there is a point s € S(k) such that A has
good reduction at s. The fiber C' = Ay is an abelian variety over k, and the p-divisible group
C[p™] has a p-divisible subgroup Hs s, which is canonically isomorphic to Hy,. We prove that
Hom(Ck, A) # 0 from the fact that they share the same p-divisible subgroup Hu k-

To proceed, we need two fundamental theorems on p-divisible groups of abelian varieties over
finitely generated fields.

THEOREM 2.13. Let K be a finitely generated field over a finite field F,,. Let A and B be abelian
varieties over K. Then the canonical map

Hom(A, B) ®z Z,, — Hom(A[p*], B[p*])
is an isomorphism.

THEOREM 2.14. Let A be an abelian variety over a finite field k of characteristic p > 0. Then
the p-divisible group A[p™] is semisimple, i.e. isogenous to a direct sum of simple p-divisible
groups over k.

The more classical /-adic analogues of theorems are the Tate conjectures and the semisim-
plicity conjecture proved by Tate and Zarhin. For the current p-adic version, Theorem 2.13 for
a finite field K and Theorem 2.14 can be proved by an easy modification of the /-adic argument
of Tate [Tat66]. For general K, Theorem 2.13 is proved by de Jong [Jon98]. For convenience
readers, we sketch a proof of Theorem 2.14 later.

Return to the proof of Proposition 2.10. By Theorem 2.14, the injection Ho, — C[p™]
implies the existence of a surjection C[p™] — H,,. Take a base change to K and compose with
Hoo g — A[p™]. We have a nonzero element of Hom(Cx [p*>], A[p*°]). By Theorem 2.13, we have
Hom(Cg, A) # 0. This proves the proposition.

Now we sketch a proof of Theorem 2.14. We refer to [Mil16, IV, Theorem 2.5] for a modern
treatment of the ¢-adic version, which we modify to the current p-adic version.

Proof of Theorem 2.14. The key is still the fact that there are only finitely abelian varieties
(up to isomorphism) of a fixed dimension over a fixed finite field. This essentially follows from
Zarhin’s trick. See [Mill6, I, Corollary 3.13] for example.

Let G be a p-divisible subgroup of A[p>], and we are going to prove that G has a complement
in A[p*>] up to isogeny. Denote A,, = A/G[p"], and denote by f, : A — A, the quotient map. By
the finiteness, there is an abelian variety B over k£ and an infinite set 3 of positive integers such
that A, is isomorphic to B for any n € 3. By the isomorphism, we obtain an isogeny f, : A — B
with ker(f,) = G[p"] for any n € X.

By compactness, replacing 3 by an infinite subset if necessary, we can assume that f, con-
verges to f € Hom(A, B) ®z Z, for n € ¥. By definition, the kernel of f[p>]: A[p>] — B[p™>] is
exactly G. This result corresponds to [Mill6, IV, Lemma 2.4].

The rest of the proof is similar to [Mill6, IV, Theorem 2.5(a)]. In fact, composed with an
isogeny B — A, the element f gives an element g € End(A) ®z Z,. The algebra R = End(A) ®z
Qp is semisimple over Q,, so the left ideal Rg is generated by an idempotent e € R. Then
ker(e[p™]) is isogenous to G. Now we have a decomposition

Alp™] = ker(e[p™]) ® ker((1 — €)[p>]),

which is understood up to isogeny. This finishes the proof. O
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Alternative proof. In the following, we sketch an alternative proof of a weaker result of
Proposition 2.10, which is kindly suggested by an anonymous referee.

The weaker result is obtained from Proposition 2.10 by adding the extra assumptions that
A is simple over K and that A is semi-abelian over S. The weaker result implies Theorem 1.1
under the extra assumption that A has semi-abelian reduction over S, but this is sufficient for
the applications to the other theorems listed in the introduction.

Denote by G,, = (Gn)k the generic fiber over K in the following.

First, the sequence h(A/Gy) is constant by Theorem 2.9. Then the Northcott’s theorem
described in Remark 2.7 implies that A/G,, is isomorphic to an abelian scheme A’ over K
for infinitely many n. Assume that this holds for all n > 1 by taking a subsequence. Denote
G, = G, /G1. Then A'/G], is isomorphic to A’ for all n.

Replacing (A4, G,,) by (A’,G),), we can assume that A/G,, is isomorphic to A for all n.

Second, we claim that the result holds if the order of (G, )req is not bounded as n — oo. In
fact, because k is perfect, the reduced structure of a group scheme over k is again a group scheme;
see [Mill7, p. 157, Theorem 10.25]. As G, is of constant type, we have a closed subgroup scheme
(Gn)red of G, which is the maximal étale subgroup scheme of G,, over S. If the order of (Gy)red
is not bounded, then there are infinitely many Kk-points of A. This implies the (K /k)-trace of
A is non-trivial by the Lang—Néron theorem (cf. [Con06, Theorem 2.1]).

Third, if the order of (G, )req is not bounded as n — oo, then the result also holds. In fact,
it suffices to note that G is a closed subgroup scheme of AY. Apply the above argument to AY.

By these two steps, we can assume that both the orders of (G, )req and (G, )req are bounded.
Then we can further assume that both (G, );eq and (G, )req are trivial by taking subgroup schemes.
In other words, G, is of local-local type in the sense that both G, and G are supported at the
identity sections.

Fourth, we prove that A is an abelian scheme over S. Otherwise, let s € S be a closed point
such that A is not proper over s. By assumption, A is semi-abelian over S, so As contains
a non-trivial maximal torus T over k(s). Denote by ¢ : A — A an endomorphism with kernel
G, and assume that G, is non-trivial. As G,, is of local-local type, the induced endomorphism
¢r : T — T is injective, and thus an isomorphism. Denote by P(t) the characteristic polynomial
of @|r over the character group Homy (T, Gy,), which is a free Z-module of finite rank. Then
P(0) = £1 and P(¢|r) = 0. Consider the endomorphism P(¢): A — A. Take a prime ¢ # p.
There is a canonical injection T[¢"](k(s)) — A[("](K*). The image of this injection is annihilated
by P(¢). Thus, P(¢) : A — A annihilates infinitely many points of A(K*). By assumption, A is
simple and, thus, P(¢) = 0. By P(0) = 41, we see that ¢ is invertible. This is a contradiction,
because ker(¢) is non-trivial.

The above step is the core of the argument, which appears in the proof of [Ros20,
Theorem 2.10].

Fifth, A has a non-trivial (K/k)-trace. Take a prime ¢ # p as above. The scheme A[¢("] is
étale over S, because A is an abelian scheme over S. Since Si = ]P’/,lC has no non-trivial finite
étale coverings, A[¢"]; is a disjoint union of finitely many }P’}C. Each copy of IF’]% gives a K k-point
of A. There are infinitely many such points by varying n. This implies the (K/k)-trace of A is
non-trivial by the Lang—Néron theorem again.

3. Purely inseparable points on torsors

The goal of this section is to prove Theorem 1.3. In § 3.1, we review some basic results on torsors.
In §3.2, we prove Theorem 1.3. In §3.3, we discuss the possibility of generalizing Theorem 1.1
to more general base field K.
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3.1 Preliminary results on torsors

Néron model of locally trivial torsor. Let S be a Dedekind scheme and K be its function
field. Let X be a smooth and separated scheme of finite type over K. Recall from [BLR90, §1.2,
Definition 1] that a Néron model X of X is a smooth and separated S-scheme of finite type
with a K-isomorphism X — Xk satisfying the Néron mapping property that, for any smooth
S-scheme ) and any K-morphism Ygx — X, there is a unique S-morphism ) — X extending
the morphism Vg — X. It is immediate that a Néron model is unique if it exists.

The main goal of [BLRI0] is a complete and modern proof of the statement that any abelian
variety over K admits a Néron model. Implicitly, the book contains the following result for locally
trivial torsors of abelian varieties.

THEOREM 3.1. Let A be an abelian variety over K and X be an A-torsor over K. Assume that
X is trivial over the completion K, of K with respect to the discrete valuation induced by any
closed point v € S. Then X (respectively, A) admits a unique Néron model X (respectively, A)
over S. Moreover, the torsor structure A x g X — X extends uniquely to an S-morphism A X g
X — X, which makes X an A-torsor.

Proof. We sketch a proof for the X-part in the following.

(1) The local Néron model exists. Namely, for any closed point v € S, the Néron model Xo,
of X over the local ring Og,, exists. Moreover, Xog, 1s a natural Aosvv—torsor over Og,. It is
a consequence of [BLR90, §6.5, Remark 5] by taking R = Og, and R’ to be the completion
of Ogyp.

(2) The global Néron model X over S exists by patching the local ones. This follows from
[BLR90, §1.4, Proposition 1].

(3) The torsor structure extends to (A, X). By the Néron mapping property, the torsor
structure map A x g X — X extends uniquely to a morphism A xg X — X. To see the later gives
a torsor structure, we need to verify that the induced map A xg X — X xg X' is an isomorphism.
This is true because it is true over Og, for every v. O]

We can also define Hodge bundles of Néron models of torsors. In fact, in the setting of
Theorem 3.1, define the Hodge bundle associated to X to be

QX = QX/S = WLQEY/S

Here 7’ : X — S is the structure morphism. If X = A, this agrees with the definition of Hodge
bundles of abelian varieties in §2.2 by viewing A as an abelian variety by Lemma 2.3.
Similar to Lemma 2.3, the natural morphism

W,*QX/S - Q}v/s

is an isomorphism. In fact, take a faithfully flat base change S’ — S trivializing X. Then the
map becomes an isomorphism after the base change, and it is an isomorphism before the base
change by the flat descent.

The following result asserts that Qx is a vector bundle on S which has very similar numerical
property as Q A-

LEMMA 3.2. Let ¢ : S’ — S be a morphism such that the S-torsor X is trivial over S’. Then
there is a natural isomorphism

P Qxjs — P Qs

of Og-modules, depending on the choice of an S-morphism S’ — X,
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Proof. Take the base change ¢ : S — S which trivializes X. Denote
X/:XXSS/, A/:.AXSS/.

The base change gives a canonical section S’ < X’ lifting S’ — X. Using this section, we can
view the A’-torsor X’ as a group scheme over S’. It follows that

O*Qxss = (Qyse)ls = (Qyrys)ls = (U js)ls = 9" Qs
The result follows. O

Functoriality and base change. We first present a basic result on the relative Frobenius
morphism of abelian varieties. Let A be an abelian variety over a field K of characteristic p.
Consider the following two maps.

(1) (Functoriality map) The map
HY(F™): HY(K,A) — H'(K, A®")
induced by the relative Frobenius morphism F" : A — A®") via functoriality. It sends an
A-torsor X to the A®")-torsor X/(A[F"]), where A[F™] is the kernel of F™ : A — A®"),
(2) (Base change map) The map
(FR)*: HY(K, A) — H'(K, AP")

induced by the morphism F} : Spec K — Spec K of schemes, where A®P") is viewed as the
pull-back of the étale sheaf A via F7. It sends an A-torsor X to the AP")_torsor X#") =
X xg (K, Fp).

LEMMA 3.3. The above maps H'(F") and (F)* are equal.

Proof. We first present a geometric interpretation, which can be turned to a rigorous proof.
Recall the relative Frobenius morphism X — X ®"). The action of A on X induces an action of
A[F™] on X. The quotient map of the latter action is exactly X — X @),

We can also prove the result in terms of cocycles for Galois cohomology. In fact, for any
torsor X € H'(K, A), take a point P € X (K*%P). By definition, X is represented by the cocycle

Gal(K*P/K) — A(K*®), o+— P° — P.
Then F™(P) is a point in X®"). This point gives a cocycle representing X *") by
o — F"(P)° — F"(P) = F"(P° — P) € AP")(K>P),
which is exactly the image of H'(F™). This proves that the maps are equal. ]
3.2 Purely inseparable points

In this subsection, we prove Theorem 1.3 and Corollary 1.4. For convenience, we duplicate
Theorem 1.3 in the following.

THEOREM 3.4 (Theorem 1.3). Let S be a projective and smooth curve over a perfect field k of
characteristic p > 0, and K be the function field of S. Let A be an abelian variety over K. Then
the following are true.

(1) If S =P}, A has everywhere good reduction over S, and the Hodge bundle of A is nef over
S, then II(A)[F*>] = 0.

(2) If A has everywhere semi-abelian reduction over S and the Hodge bundle of A is ample over
S, then HI(A)[F>°] = I(A)[F™] for some positive integer ny.
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The corollary. Now we deduce Corollary 1.4 from Theorems 1.1 and 1.3, which is duplicated
below.

COROLLARY 3.5 (Corollary 1.4). Let S be a projective and smooth curve over a finite field k,
and K be the function field of S. Let A be an abelian variety over K. Then II(A)[F°] is finite
in each of the following cases:

(1) A is an elliptic curve over K;

(2) S =P} and A has everywhere semi-abelian reduction over P};

(3) A is an ordinary abelian variety over K, and there is a place of K at which A has good
reduction with p-rank 0.

We first prove part (1). Let K’ be a finite Galois extension of K. By the inflation-restriction
exact sequence, we see that the kernel of III(A) — II(Ag/) is annihilated by [K’: K|. This
kernel is actually finite by Milne [Mil70]. Consequently, we can replace K by any finite Galois
extension, and we can particularly assume that A has everywhere semi-abelian reduction over S.
Note that Q4 is a line bundle over S. The height h(A) = deg(24) > 0, where the equality holds
only if A is isotrivial. This is a classical fact for elliptic curves, but we also refer to [FC90, § V.2,
Propostion 2.2] (and Theorem 2.6 below) for the case of abelian varieties. If h(A) > 0, we can
apply Theorem 1.3 to finish the proof. If h(A) = 0, then A is isotrivial, and we can assume that
A is constant by a finite extension. Then the whole III(A) is finite by Milne [Mil68].

For part (3), by the above argument, we can assume that A has everywhere semi-abelian
reduction over S. Then the Hodge bundle 24 is ample by Rossler [Ros15, Theorem 1.2].

Now we prove part (2). Let A be as in Corollary 1.4. The goal is to prove that II1(A)[F*]
is finite. By Theorem 1.1, there is an isogeny f: A — A’ with A’ = B xi Ckg, where C is an
abelian variety over k, and B is an abelian variety over K with an ample Hodge bundle over IP’,lﬁ.

By Theorem 1.3, HI(Ck)[F*°] = 0 and II(B)[F°] has a finite exponent. Then HI(A’)[F°]
is annihilated by p™° for some ng. Taking Galois cohomology on the exact sequence

0 — ker(f)[K°] — A(K®) — A/(K*) — 0,

we see that the kernel of III(A)[F*°] — HI(A’)[F°] is annihilated by deg(f). Thus, II(A)[F]
is annihilated by p" deg(f). It is finite by Milne [Mil70] again. This proves Corollary 1.4.

Map of differentials. In the following, we prove Theorem 1.3. Our proof is inspired by an
idea of Rossler [Ros15], which in turn comes from an idea of Kim [Kim97]. We refer back to §1.5
for a quick idea of our proof.

We first introduce some common notation for parts (1) and (2). Fix an element X €
1I(A) [Fof] Then X € II(A)[F"] for some n > 1. We need to bound n to some extent. Denote

K, = K»", viewed as an extension of K. By Lemma 3.3, the base change X, is a trivial
Ag, -torsor. Therefore, the set X (K,) is non-empty.

Take a point of X (K,), which gives a closed point P of X. Denote by X the Néron model
of X over S. Let Py be the Zariski closure of P in X. Let P be the normalization of Py. By
definition, P and Py are integral curves over k, endowed with quasi-finite morphisms to S.

If X is non-trivial in III(A), then P is not a rational point over K. It follows that the
morphism v : P — S is a non-trivial purely inseparable quasi-finite morphism over k. We are
going to bound the degree of this morphism.

Start with the canonical surjection

70 (U s5)lPo — Dy /s
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As Py is purely inseparable over S, we have a canonical isomorphism
1 1
Qpy /i = Opyys-
Then we rewrite 79 as
1 1
70 - (QX/S)‘PO — Qpy 1
By pull-back to the normalization P — Py, we obtain a nonzero morphism
1 1
T (Qys)lp — Qp
Here the restrictions to P really mean pull-backs, because P — X may not be an immersion but

a quasi-finite morphism.
Denote by v : P — S the natural morphism. By Lemma 3.2, we have a canonical isomorphism

(Qx/s)lp — ¥*Quys.

Therefore, the nonzero map 7 becomes
A 1
T Q/J*QA/S — QP/k-

It is a morphism of vector bundles on P.

Proof of part (1). With the above map 7, it is very easy to prove part (1).

In fact, by the assumption in part (1), A is an abelian scheme over S, so X’ is proper and
smooth over S. Then Py and P are proper curves over k. In particular, P is a proper and regular
curve over (the perfect field) k with a finite, flat, and radicial morphism ¢ to S = P}. Thus, P
is isomorphic to IP’}C, under which 1 becomes a relative Frobenius morphism.

The nonzero map 7 gives

fmin (V*Q4)5) < deg (Q”}?/k) =-2.

By assumption, {4 /s 1s nef, so the left-hand side is non-negative. This is a contradiction, which
is originally caused by the assumption that X is non-trivial. Part (1) is proved.

Proof of part (2). For part (2) of Theorem 1.3, we do not have the assumption that .4 — S is
proper, and thus we lose the properness of Py and its normalization P. To resolve the problem,
we use a result of Rossler [Rosl5] to ‘compactify’ 7, which is, in turn, a consequence of the
degeneration theory of Faltings and Chai [FC90].

Resume the above notation. We still have a nonzero map

TP Qs — Q%,/k.
Here P is still a smooth curve over k. Denote by P¢ the unique smooth compactification of P over
k. We obtain a finite, flat, and radicial morphism ¢ : P¢ — S. This is still a relative Frobenius
morphism.
Denote by Ej the reduced closed subscheme of S consisting of v € S such that A is not proper

above v. Denote by E the reduced structure of the preimage of Ey under the map P¢ — S. We
have the following extension.

ProprosITION 3.6. The map 7 : w*QA/S — Q%)/k extends uniquely to a nonzero map
7 (W) Quys — Qpe i (B).
It is easy to see how the proposition finishes proving part (2) of Theorem 1.3. As S is not

assumed to be P!, we need to use Hmin Teplacing pmin for the ampleness. See the beginning of
§2.2 for a quick review of the terminology.
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The proof is still similar to [Ros15]. In fact, the existence of the map 7¢ gives
fiin ()0 5) < dlog (Vb (E)).
This is just
deg(¢°) - ﬂmin(QA/S) <29 — 2+ deg(Ep) — 2.

Here ¢ is the genus of S. Note that deg(y°) = [K(P) : K|. It follows that K(P) is contained in
K,,, where ng is the largest integer satisfying

P - fimin(Qays) < 29 — 2 + deg(Ep) — 2.

By Barton [Bar71, Theorem 2.1], ﬂmin(QA/s) > 0 since QA/S is ample. This gives an upper
bound of ny. This gives part (2) of the theorem.

Proof of the extension. Now we prove Proposition 3.6. The uniqueness is trivial. For the
existence, note that the map can be extended as

(V) Qays — Qpej(mE)
for sufficiently large integers m. The multiplicity m represents the order of poles allowed along
FE, and the case m =1 is exactly the case of log-differentials. Our proof takes a lot of steps of
reductions.

To control the poles, it suffices to verify the result locally, i.e. we can replace S by its
completion at a point in F, and replace everything else in the maps by its corresponding base
change. To avoid overwhelming notation, we still use the original notation, but note that we are
in the local situation. As a consequence (of assuming this local situation), X is a trivial torsor,

so we assume that X = A and X = A. As we have the trivial torsor, our situation is very similar
to the situation of Réssler [Ros15].

LEMMA 3.7 (Réssler). Assume further that A has a principal polarization and A(K)[n] C A(K)
for some n > 2 coprime to p. Then the map v extends to a map
7 (W) Qs — Qe (B).

Proof. This is essentially [Rosl5, Lemma 2.1], except that we are in the local case, but it
does not make any essential difference in the proof. The extension is obtained by applying
the compactification result of [FC90]. For the convenience of readers, we sketch the proof here.

Denote U = S — Ey. Then A is proper over U. As S is the spectrum of a complete discrete
valuation ring by our assumption, the essential case is that Ejy is the closed point of S and U is
the generic point of S. The key is that the abelian scheme 7y : Ay — U has a compactification
over .S, which consists of a regular integral scheme V containing Ay as an open subscheme and a
proper morphism 7 : V — S extending nyy : Ay — U. The complement D =V — Ay is a divisor
with normal crossings with respect to k. Moreover, the log-differential sheaf

0,/ 5(log D/ Ey) =, . (log D) /7* Qg . (log Eo)
is locally free on V and satisfies
Q%//S(log D/EO) = ﬁ*QAa ﬁ*Q%;/S(IOg D/Eo) = Q.A'

This result is a consequence of [FC90, Chapter VI, Theorem 1.1], which actually constructs
a compactification A, n of the moduli space A,y of principally polarized abelian varieties of
dimensions g with full N-level structures and its universal abelian variety. The pull-back of the
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compactification of the universal abelian variety via the map S — 2197 ~ (representing the family
A — S) gives the compactification V in our notation.

With the compactification, take R to be the closure of P in V. There is a natural finite map
0 : P¢ — R, which is just the normalization of R. Then, we have well-defined maps

5*(911//S|R) - 5*9713/k - Q%?C/k'

Note that the pull-back of a log-differential is still a log-differential. The log-version of the above
composition give a map

*(y5(log D/ Eo)|r) — Qpe 1, (log E).

By the above property of Q]l}/s(log D/E)p), it becomes

(¥°)*Qu — Qpe 4 (log E).

This is exactly the extension we want. O

Polarization and level structure. We return to the proof of Proposition 3.6. It remains to
add a polarization and a level structure to A.

We first take care of the polarization. By Zarhin’s trick, A* = (A x A")* has a principal
polarization (cf. [Zar77] or [Mor85, IX, Lemma 1.1]). Write A* = A x A3 x (A")%. Extend the
closed point P € A to be the point P* = (P,03,0%) in A*. Note that Qa4+ = Q4 & (24)3 & (Q4¢)*,
and that A* has the same set of places of bad reduction as A. The solution of the analogous
problem for the version (A*, P*) implies that of (A, P). Hence, we can assume that A is principally
polarized.

In order to get a level structure, we need a descent argument. Let S’ — S be a finite, flat,
and tamely ramified Galois morphism. Take this morphism to do a base change, and denote by
(S’,P',¢") the base changes of (S, P,v). Denote by E’ the reduced structure of the preimage of
E in P’¢, which is just a point in the local setting. Suppose that we have a well-defined extension
over S’ of the corresponding map 7/, which should take the form

V(W) U — Qe ().

Note that the pull-back of Q1. /k(E) to P’ is exactly Q. /k(E’ ) by considering the ramification
index. Taking the Galois invariants on both sides of /¢, we get exactly the desired map ¢ on P°.

Finally, we can put a level structure on A. Take a prime ¢4 (2p). Let K’ = K(A[{]) be the
field of definition of all /-torsions of A. Let S’ be the integral closure of S in K'. We are going
to take the base change S’ — S. The only thing left to check is that K’ is tamely ramified over
K. This is a well-known result proved by Grothendieck under the conditions that p # ¢ and A
has semi-abelian reduction. In fact, the wild inertia group IV C Gal(K*P/K) is a pro-p group.
By [SGAT7, Exp. IX, Proposition 3.5.2], the action of I on the Tate module Ty(A) is trivial. In
other words, any point of A(K®P)[¢>°] is defined over the maximal tamely ramified extension of
K. This finishes the proof of Proposition 3.6.

3.3 More general base fields
This subsection consists of some discussions about whether Theorem 1.1 and other related results
hold for more general base fields K/k. The results are as follows.

(1) If K = k(t) and k is any field of positive characteristic, we conjecture that the theorem still
holds. We reduce it to a question about p-divisible groups.
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(2) If K/k is a general global function field, we come up with counterexamples of the theorem
using abelian varieties of p-rank 0.

Case of K = k(t) with general k

Our proof of Theorem 1.1 relies on the assumption that & is a finite field. Now we speculate a little
to see what is needed to generalize the proof to K = k(t) for a general field k of characteristic
p > 0.

Suppose k is any field of characteristic p > 0 in Theorem 1.1. At the beginning, apply the
Lefschetz principle to A/K/k, so we can assume that k is finitely generated over F),. The argu-
ments in §§ 2.1, 2.2, and 2.3 work well for general k (and, thus, for finitely generated k). To finish
the proof, we hope that Proposition 2.10 holds for any finitely generated field & of characteristic
p. The same argument still gives a nonzero p-divisible group H, over k, such that

Homy(Hoo, C[p™]) # 0, Hompg(Hoo i, A[p™]) # 0.

Here C = Ay is an abelian variety over k as before. Therefore, the proof will be complete if we
have a positive answer to the following question.

QUESTION 3.8. Let K be a finitely generated field over a finite field IF,,. Let A and B be abelian
varieties over K. Assume that there is a nonzero p-divisible group H over K such that

Hompg (H, A[p™]) #0, Homg(H,B[p™]) # 0.

Do we always have

Hompg (A, B) # 07

If k£ is a finite field, the problem is solved by Theorems 2.14 and 2.13. However, Theorem
2.14 fails for finitely generated fields k. In fact, one can check that, for an ordinary elliptic curve
A over a global function field K with a place of multiplicative reduction, the local-étale exact
sequence

0 — A[poo]o . A[poo] N A[poo]et — 50
does not split up to isogeny.

Case of global function field K

For an abelian variety A over a field K of characteristic p > 0, the integer r = dimg, (A(K)[p])
is called the p-rank of A. It is known that 0 < r < dim(A), and we are concerned with the case
r = 0. The goal here is the following result.

THEOREM 3.9. Let S be a projective and smooth curve over a finite field k of characteristic
p >0, and K be the function field of S. Let A be an abelian over K with p-rank 0, trivial
(K/k)-trace, and semi-abelian reduction over S. Then, the Hodge bundle of A is not ample
over S.

As the property of having p-rank 0, trivial (K/k)-trace, and semi-abelian reduction is
preserved under isogeny, we see that A/K does not satisfy Theorem 1.1.

An interesting fact is that abelian varieties with p-rank 0 over a global function field (or the
fraction field of a DVR containing F,,) always have potentially good reduction. This fact can be
seen in the proof of [Oor74, Theorem 1.1(a)]. Thus, the ‘semi-abelian reduction’ in the theorem
is actually ‘good reduction’.

Before proving the theorem, let us note that there are ‘plenty of’ A/K satisfying the condi-
tions of the theorem. In fact, denote by A, x the moduli space of principally polarized abelian
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varieties over I, with a level-N structure. Here N > 3 is not divisible by p. It is well-known
that dim(A, n) = g(g + 1)/2. Denote by V, n the subset of points of A, y representing abelian
varieties of p-rank 0. It is known that V, y is a projective and geometrically irreducible closed
subscheme of A, y with codimension g. This is a combination of [Oor74, Theorem 1.1], [Kob75,
IV, Theorem 7], [Cha05, Remark 4.7], and [Oor03, Theorem 1.5]. Take any two F,-points of
Vg, N representing non-isogenous abelian varieties. This can be achieved by taking two points of
different Newton polygons, whose existence is guaranteed by the dimension formula of Newton
polygon stratum in [Oor00, Theorem 3.2]. Take any closed curve in Vj y connecting these two
points. This curve is actually defined over a finite field k. Take the function field K of the curve
over k, and the universal abelian variety of A, y induces an abelian variety A over K. If A has
non-trivial (K /k)-trace, we can replace it by its quotient by the trace part. Then A/K is an
example of the theorem.

Now we prove Theorem 3.9. Assume that (k, S, K, A) satisfies the condition of the theorem,
but fails the conclusion of the theorem. Namely, A is an abelian over K with p-rank 0, trivial
(K /k)-trace, semi-abelian reduction, and ample Hodge bundle over S. We obtain a contradiction.
By the Lang-Néron theorem (cf. [Con06, Theorem 2.1]), the abelian group A(K) is finitely
generated. Replacing K by a finite extension if necessary, we can assume that A(K) has a
positive rank. The key is to apply Rossler [Rosl5, Theorem 1.1], which is the prototype of
Theorem 1.2. We see that A(KP) = A(K'/?P") for sufficiently large n. Replacing K by such
a K'/P" if necessary, we can assume that A(KP®") = A(K). Now we claim that the map [p]:
A(K) — A(K) is surjective. In fact, for any point P € A(K), consider the inverse image [p] ! P
in A, viewed as a zero-dimensional closed subscheme of A. As A has p-rank 0, the morphism [p] :
A — A is purely inseparable, and thus the induced map [p]~'P — P is radicial. Consequently,
the reduced structure Q of [p] ! P is purely inseparable over P. Then @ corresponds to a point of
A(KPe). By the result above, we have ) € A(K), which is a preimage of P under [p] : A(K) —
A(K). This proves that [p] : A(K) — A(K) is surjective. Then we have a contradiction as we
have assumed that A(K) has a positive rank.

Tate—Shafarevich group of abelian varieties of p-rank 0
For abelian varieties of p-rank 0, we have the following interesting result.

ProrosITION 3.10. Let K be a field of characteristic p > 0, and let A be an abelian variety of
p-rank 0 over K. Then H' (K, A)[F>] = H'(K, A)[p*]. Therefore, if K is a global function field,
then II(A)[F*°] = LI(A)[p>].

As mentioned in the introduction, H' (K, A)[F"] ¢ H'(K, A)[p"], because F" : A — AP") is
a factor of [p"] : A — A. This gives H'(K, A)[F>] C H'(K, A)[p™]. The other direction of the
inclusion is a consequence of the following result.

LEMMA 3.11. Let K be a field of characteristic p > 0, and let A be an abelian variety of p-rank
0 over K. Then for any positive integer n, there is a positive integer m such that F™ : A — A®™)
factorizes through [p"] : A — A.

Proof. View [p"]: A — A as the quotient map of A by A[p"]. It suffices to find m such that
F™: A — AP™) annihilates A[p"] or, equivalently, the restriction (F™)| Apr - AP — AP [pn]
is the zero map. Note that A®™)[p"] ~ (A[p"])®™). Then (F"™)| appr) = Alp"] — AP™)[p"] is just
the relative Frobenius morphism F™ : G — G®™). Here we denote G = A[p"].

As A has p-rank 0, the group scheme G is non-reduced and supported at the identity point.
Denote G = Spec(R), and denote by I the defining ideal of the identity section. By the identity
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section, we have a splitting R = K + I as vector spaces over K. Let m be an integer such that
IP" = 0. We check that F™ : G — G®™) is zero.

To avoid confusion, write K — K’ for the absolute Frobenius map of K, so F : G — G®™)
is viewed as a morphism over Spec(K’). Then G®™) = Spec(R®f K') and the morphism
F™: G — G®") corresponds to the homomorphism

f:Rx K' - R, z®ar— azP".

This gives f(I ® g K') = 0. Then f factorizes through the quotient map R ® x K’ — K'. In terms
of schemes, F : G — G®™) factorizes through the identity point Spec(K’) — G®™), and thus
it is zero. 0

4. Variation of the Tate conjecture

The goal of this section is to prove Theorem 1.6. The idea of the proof is sketched in §1.5. In
§4.1, we introduce some preliminary results to be used later. In §4.2, we prove Theorem 1.6.

4.1 Preliminary results

The goal of this subsection is to review some basics of the BSD conjecture, and introduce its
equivalence with the Tate conjecture as in the work of Artin—Tate. We also introduce a result
about projective regular models of abelian varieties as a consequence of the works of Mumford,
Faltings and Chai, and Kunnémann.

The BSD conjecture. The prestigious BSD conjecture over global fields is as follows.
CONJECTURE 4.1 (BSD conjecture: BSD(A)). Let A be an abelian variety over a global field
K. Then

ords—1L(A, s) = rank A(K).

Recall that the global L-function

L(A,s) = [[ Lo(A, 5)

is the product over all non-archimedean places v of K, where the local L-function
Ly (A, s) = det(1 — g, *Frob(v)|Vy(4)*) L.

Here ¢, is the order of the residue field of v, Frob(v) is a Frobenius element of v in Gal(K*/K),
I, is the inertia subgroup of v in Gal(K*/K), ¢ is any prime number different from the residue
characteristic of v, and Vy(A) is the ¢-adic Tate module of A.

In this paper, we are only interested in the case that K is a global function field. In this
case, L(A, s) is known to be a rational function of ¢~*, where ¢ is the order of the largest finite
field contained in K see [Mil80, VI, Example 13.6(a)] for example. The abelian group A(K) is
finitely generated by the Lang—Néron theorem, as in [Con06, Theorem 2.1]. Moreover, in this
case, we always know

ords—1 L(A, s) > rank A(K)

by the works [Tat95, Bau92], as a consequence of the comparison with the Tate conjecture which
is reviewed in the following.

We need the following results, which can be checked by treating both sides of the BSD
conjecture.
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LEMMA 4.2.

(1) Let A and B be isogenous abelian varieties over a global function field. Then the BSD
conjecture holds for A if and only if the BSD conjecture holds for B.

(2) Let A and B be any abelian varieties over a global function field. Then the BSD conjecture
holds for A x B if and only if the BSD conjecture holds for both A and B.

Tate conjecture versus BSD conjecture. The bridge between the Tate conjecture and the BSD
conjecture is via fibrations of surfaces. Recall that the Tate conjecture T (X) (cf. Conjecture 1.5)
for a projective and smooth surface X over a finite field k asserts that for any prime ¢ # p, the
cycle class map

Pic(X) ®7 Q, — H?(Xj, QZ(1)>Gal(fc/k)

is surjective.

By a fibered surface over a field k, we mean a projective and flat morphism 7 : X — S, where
S is a projective and smooth curve over k and X is a projective and smooth surface over k, such
that the generic fiber of X — S is smooth.

Then we have the following beautiful result of Artin and Tate.

THEOREM 4.3 (Artin-Tate). Let m : X — S be a fibered surface over a finite field k. Denote by
J the Jacobian variety of the generic fiber of w. Then T'(X) is equivalent to BSD(J).

This equivalence is part of [Tat95, §4, (d)], which actually treats equivalence of the refined
forms of the conjectures; see also [Ulm14] for a nice exposition of the theorem. For further results
related to this equivalence, including results about the Tate—Shafarevich group and the Brauer
group, we refer to [Tat95, Mil75, Bau92, Sch82, KT03].

For a projective and smooth surface X, to convert it into a fibered surface, one usually needs
to blow-up X along a smooth center. The following result asserts that this process does not
change the Tate conjecture.

LEMMA 4.4. Let X’ — X be a birational morphism of projective and smooth surfaces over a
finite field. Then T (X) is equivalent to T*(X').

This can be checked by directly describing the change of both sides of the conjectures.

With a little extra work (cf. [TY14, Theorem 5.5]), the above results imply that T (X) for
all projective and smooth surfaces X over finite fields is equivalent to BSD(A) for all abelian
varieties A over global function fields.

Projective regqular integral models of abelian varieties. The following result asserts that we
have well-behaved regular projective models of abelian varieties with semi-abelian reduction.

THEOREM 4.5. Let S be a connected Dedekind scheme with generic point n, and let A be
an abelian variety over n with semi-abelian reduction over S. Then there is a projective, flat,
and regular integral model ¢ : P — S of A over S such that there is a canonical Og-linear
isomorphism

RYW,0p — Lie(AY/S).
Here AV is the Néron model over S of the dual abelian variety AV of A.

Proof. This follows from the theory of degeneration of abelian varieties of Mumford [Mum72]
and Faltings and Chai [FC90]. In particular, by the exposition of Kiinnemann [Kun98], the
degeneration theory gives an explicit compactification of a semi-abelian scheme from a reasonable
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rational polyhedral cone decomposition. For the purpose of our theorem, choose P to be the
integral model constructed in [Kun98, Theorem 4.2]. We claim that it automatically satisfies
the property of the cohomology. Note that we have a canonical isomorphism H'(A, O,4) —
Lie(AY /n), as expressions of the tangent space of the Picard functor Pic 4 /p- Then it remains
to prove that this isomorphism extends to the integral version over S. This essentially follows
from the special case (s,a,b) = (1,1,0) of [FC90, Chapter VI, Theorem 1.1(iv)], which is proved
in § VI.2 of [FC90]. We can check literally that their proof works in our case. Alternatively, we
introduce a different approach in the following.

First, the truth of our isomorphism does not depend on the choice of the rational poly-
hedral cone decomposition, as mentioned at the beginning of page 209 in [FC90]. Second, the
isomorphism R!f,0y — Lie(G/X) of [FC90, Chapter VI, Theorem 1.1(iv)] is compatible with
base change by any morphism Z — X. In other words, the map f is cohomologically flat in
dimension one. In fact, by the semi-continuity theorem, this holds if h!(Ys, Oy.) is constant in
s € X, which can be seen from their proof. Once we have the cohomological flatness, our result
holds if A is principally polarized. In fact, take a level structure by extending S if necessary, and
then we have a map S — X by the moduli property. Then the pull-back of R! f,Oy — Lie(G/X)
to S gives the isomorphism we need. Finally, if A does not have a principal polarization, we can
apply Zarhin’s trick as in our treatment of Proposition 3.6. U

4.2 Variation of the Tate conjecture
Now we prove Theorem 1.6. Let X be a projective and smooth surface over k. We convert T (X)
into T1()) for some projective and smooth surface ) over k with H*(), Oy) = 0.

Step 1: Make a fibration. By Nguyen [Ngu05], there is a Lefschetz pencil in X over the finite
field k. This is a version over finite field of the existence of Lefschetz pencils in [SGA7, Exp. XVII,
§ 3]. Blowing-up X along the base locus of the Lefschetz pencil, we get a birational morphism
X" — X and a fibered surface 7 : X’ — S with S = P}. Here X’ is smooth over k as the base
locus is reduced. Denote by J the Jacobian variety of the generic fiber of 7 : X’ — S, which is
an abelian variety over K = k(t).

As 7 is semistable, J has semi-abelian reduction over S = ]P’,{,. In fact, by [BLR90, §9.5,
Theorem 4(b)], the Picard functor Pic%, /s 1s isomorphic to the relative identity component of

the Néron model of J. By [BLR90, §9.2, Proposition 10], Pic%, /s 18 semi-abelian for any closed
point s € S.

By Lemma 4.4, T'(X) is equivalent to T%(X’). By Theorem 4.3, T(X’) is equivalent to
BSD(J).

Step 2: Make the Hodge bundle positive. We prove that BSD(J) is equivalent to BSD(A) for
an abelian variety A over K with everywhere semi-abelian reduction and with an ample Hodge
bundle over S.

Apply Theorem 1.1 to J. Then J is isogenous to A x i Ck, where C is an abelian variety
over k, and A is an abelian variety over K with an ample Hodge bundle over S. Note that A also
has semi-abelian reduction by [BLR90, § 7.3, Corollary 7|. By Lemma 4.2, BSD(J) is equivalent
to the simultaneous truth of BSD(A) and BSD(Ck).

By [Mil68], BSD(Ck) holds unconditionally. Alternatively, in the current case of K = k(t),
it is easy to prove that both sides of the BSD conjecture is zero. For the Mordell-Weil rank, we
have

CK(K) = HomS(S, Cs) = Homk(S, C) = C(k})
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is finite. For the L-function, one can also have an explicit expression in terms of the eigenvalues
of the Frobenius acting on the Tate module of C.
Therefore, BSD(J) is equivalent to BSD(A).

Step 3: Take projective reqular model. Let ¢ : P — S be a projective, flat, and regular integral
model of AV over S as in Theorem 4.5. In particular, we have a canonical isomorphism

RYW,0p — Lie(A/S).

Here A is the Néron model of A over S. Then the dual of R'),Op is isomorphic to the Hodge
bundle of A, which is ample by construction.
By the Leray spectral sequence for ¢ : P — S, we have an exact sequence

0 — HY(S,05) — HY(P,0p) — H°(S, R'4,0p) — 0.

The term HY(S, R'4,0Op) vanishes by the ampleness of the dual of R'1),Op. Therefore, we end
up with HY(P,Op) = 0.

Step 4: Take a surface in the regular model. Note that P is a projective and smooth variety
over k with H'(P,Op) = 0. We claim that there is a projective and smooth k-surface ) in P
satisfying the following conditions:

(1) H'(Y,0y) = 0;

2) the canonical map H'(P,, Op ) — H'(Y,, Oy, ) is injective;
1 n ns ' In

(3) the generic fiber ), of ) — S is smooth.

Here 7 is the generic point of S.

This is a consequence of the Bertini-type theorem of Poonen [Poo04]. By induction on the
codimension of Y in P, it suffices to prove that there is a smooth hyperplane section ) of P
satisfying condition (3), because conditions (1) and (2) are automatic. For example, condition (1)
follows from the vanishing of H?(P,O(—)Y)), which holds if ) is sufficiently ample. To achieve
condition (3), it suffices to make the closed fiber Vs smooth over s for some closed point s € S
such that P; is smooth. Take a very ample line bundle £ over P such that H°(P, £) — H%(Ps, Ls)
is surjective. The complete linear series of £ defines a closed immersion P — ]P’{CV . Denote ¥4 =
HO(PY, O]P’iv (d)), and denote by ¥ the disjoint union of ¥, for all d > 1. Denote m = dimP. By

Poonen [Poo04, Theorem 1.1}, we have the following results.

(a) The density of f € X such that div(f) NP is smooth over k is (p(m + 1)71.
(b) The density of f € ¥ such that div(f) N Ps is smooth over s is (p, (m) 1.

We claim that (p,(m) goes to 1 as [k(s) : s] goes to infinity. In fact, this is easily seen by
the Riemann hypothesis proved by Weil. As a consequence, we can choose s € S such that
Cp(m + 1)~ 4+ ¢p,(m)~! > 1. Consequently, we can find f € ¥ simultaneously satisfying results
(a) and (b). Then Y = div(f) NP satisfies condition (3). This proves the existence of ).

Let Y be a surface in P with the above properties. Denote by B the Jacobian variety
of YV, over 7. Consider the homomorphism A — B induced by the natural homomorphism
@pn n = @yn /n- The induced map between the Lie algebras is exactly the injection in condi-
tion (2). Therefore, the kernel of A — B is finite. It follows that A is a direct factor of B up to
isogeny. By Lemma 4.2, BSD(A) is implied by BSD(B). By Theorem 4.3, BSD(B) is equivalent
to T4 ().

In summary, 7T1(X) is implied by T!()). By construction, ) is a projective and smooth
surface over k with H'(), Oy) = 0. This finishes the proof of Theorem 1.6.
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