
FTK: A Simplicial Spacetime Meshing
Framework for Robust and Scalable

Feature Tracking
Hanqi Guo ,Member, IEEE, David Lenz , Jiayi Xu , Xin Liang, Wenbin He , Iulian R. Grindeanu,

Han-Wei Shen,Member, IEEE, Tom Peterka,Member, IEEE, Todd Munson, and Ian Foster, Fellow, IEEE

Abstract—We present the Feature Tracking Kit (FTK), a framework that simplifies, scales, and delivers various feature-tracking

algorithms for scientific data. The key of FTK is our simplicial spacetime meshing scheme that generalizes both regular and

unstructured spatial meshes to spacetime while tessellating spacetime mesh elements into simplices. The benefits of using simplicial

spacetime meshes include (1) reducing ambiguity cases for feature extraction and tracking, (2) simplifying the handling of

degeneracies using symbolic perturbations, and (3) enabling scalable and parallel processing. The use of simplicial spacetime

meshing simplifies and improves the implementation of several feature-tracking algorithms for critical points, quantum vortices, and

isosurfaces. As a software framework, FTK provides end users with VTK/ParaView filters, Python bindings, a command line interface,

and programming interfaces for feature-tracking applications. We demonstrate use cases as well as scalability studies through both

synthetic data and scientific applications including tokamak, fluid dynamics, and superconductivity simulations. We also conduct end-

to-end performance studies on the Summit supercomputer. FTK is open sourced under the MIT license: https://github.com/hguo/ftk.

Index Terms—Feature tracking, spacetime meshing, distributed and parallel processing, critical points, isosurfaces, vortices

Ç

1 INTRODUCTION

FEATURE tracking is a core topic in scientific visualization
for understanding dynamic behaviors in time-varying

simulation and experimental data. By tracking features
such as extrema, vortex cores, and boundary surfaces, one
can highlight key regions in visualization, reduce data to
store, and enable further analysis based on the dynamics of
features in scientific data.

This paper introduces a general framework that delivers
a collection of feature-tracking tools to end users, scales fea-
ture-tracking algorithms in distributed and parallel environ-
ments, and simplifies the development of new feature-
tracking algorithms. The motivations for developing this
framework are threefold. First, although feature-tracking

capabilities appear sporadically in today’s data analysis
and visualization tools, a general-purpose toolset is lacking
that would enable users to track and analyze features in sci-
entific workflows. In community tools such as VTK [1],
VTK-m [2], ParaView [3], VisIt [4], and TTK [5], most algo-
rithms focus on single-timestep data, and only a few filters
are provided for tracking features over time. Object tracking
for videos is available in computer vision libraries such as
OpenCV [6], but scientific data differ significantly from nat-
ural videos in their feature definitions and data representa-
tion. Second, few existing feature-tracking algorithms are
designed for scalability and parallel processing. The advent
of exascale computing means that data produced by super-
computers need to be efficiently handled by the same scale
of computing resources. In both in situ and post hoc scenar-
ios, the sheer data size and high complexity of tracking algo-
rithms necessitate distributing data to many computing
nodes and using GPU accelerators when available. Third,
no developer framework exists for eliminating redundant
efforts to implement application-specific feature-tracking
algorithms. Implementing feature tracking algorithms from
scratch can be daunting; the management of time-varying
data, the handling of degenerate cases, and the paralleliza-
tion of tracking algorithms are needed in many applications;
such features do not exist in publicly available software
libraries.

To these ends, we identify the common ground—space-
time meshing—among many tracking algorithms for isosur-
faces, critical points, and vortex cores. By extruding the
spatial mesh into the time dimension, a spacetime mesh
connects the cells in the spatial mesh over adjacent time-
steps. For example, in 3D isosurface tracking, marching

� Hanqi Guo, David Lenz, Iulian R. Grindeanu, Tom Peterka, and Todd
Munson are with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439 USA. E-mail: {hguo,
dlenz}@anl.gov, {iulian, tpeterka, tmunson}@mcs.anl.gov.

� Jiayi Xu and Han-Wei Shen are with the Department of Computer Science
and Engineering, Ohio State University, Columbus, OH 43210 USA.
E-mail: {xu.2205, shen.94}@osu.edu.

� Xin Liang is with the Department of Computer Science, Missouri Univer-
sity of Science and Technology, Rolla, MO 65409 USA.
E-mail: xliang@mst.edu.

� Wenbin He is with the Bosch Research North America, Sunnyvale, CA
94085 USA. E-mail: wenbin.he2@us.bosch.com.

� Ian Foster is with the Ian Foster is with the Data Science and Learning
Division, Argonne National Laboratory, Lemont, IL 60439 USA.
E-mail: foster@anl.gov.

Manuscript received 16 Nov. 2020; revised 7 Mar. 2021; accepted 10 Apr. 2021.
Date of publication 15 Apr. 2021; date of current version 30 June 2021.
(Corresponding author: Hanqi Guo.)
Recommended for acceptance by M. Hadwiger.
Digital Object Identifier no. 10.1109/TVCG.2021.3073399

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021 3463

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0002-2587-2783
https://orcid.org/0000-0002-2587-2783
https://orcid.org/0000-0002-2587-2783
https://orcid.org/0000-0002-2587-2783
https://orcid.org/0000-0002-2587-2783
https://orcid.org/0000-0002-9091-6412
https://orcid.org/0000-0002-9091-6412
https://orcid.org/0000-0002-9091-6412
https://orcid.org/0000-0002-9091-6412
https://orcid.org/0000-0002-9091-6412
https://orcid.org/0000-0002-5376-5803
https://orcid.org/0000-0002-5376-5803
https://orcid.org/0000-0002-5376-5803
https://orcid.org/0000-0002-5376-5803
https://orcid.org/0000-0002-5376-5803
https://github.com/hguo/ftk
mailto:hguo@anl.gov
mailto:dlenz@anl.gov
mailto:iulian@mcs.anl.gov
mailto:tpeterka@mcs.anl.gov
mailto:tmunson@mcs.anl.gov
mailto:xu.2205@osu.edu
mailto:shen.94@osu.edu
mailto:xliang@mst.edu
mailto:wenbin.he2@us.bosch.com
mailto:foster@anl.gov

cubes [7] are generalized to higher dimensions [8], [9] by
iterating and classifying 4D spacetime cells with lookup
tables. In critical point tracking [10], [11], the movement of
critical points can be captured by identifying the spatiotem-
poral cells that contain critical points. Likewise, in tracking
quantum vortices in complex-valued scalar fields [12], [13],
the moving trajectories of vortex core lines can be recon-
structed in spacetime meshes.

We present the Feature Tracking Kit (FTK), which intro-
duces simplicial spacetime meshing for robust and scalable
feature tracking. Compared with spacetime meshes used
previously, the key difference of our method is that all
mesh elements are simplices. Previous feature-tracking
methods extruded 2D triangles into 3D prisms [10], [13] and
3D cubes into 4D cubes [8], [12]; but neither a prism nor a
cube in the extruded mesh is simplicial.

Simplicial meshes offer three benefits for feature track-
ing: specificity, stability, and scalability. First, simplicial
meshes eliminate ambiguities in feature tracking, similar to
howmarching tetrahedra [14] eliminates isosurface ambigu-
ity. In nonsimplicial cells such as cubes, multiple features
intersect the same cell, causing ambiguities that require
attention. We show that with the spacetime piecewise lin-
earity (PL) assumption, no disambiguation is needed for
tracking critical points and isosurfaces in simplicial meshes.
Second, simplicial meshes ease the handling of degenera-
cies, enabling robust feature tracking. Degeneracies, such as
a critical point on an edge or isosurface intersecting a vertex,
may lead to loss or duplication of the detection results due
to numerical instabilities [15]. Simplicial meshes enable the
use of Simulation of Simplicity (SoS) [16]—a mature pro-
gramming technique to simplify the handling of degenera-
cies in computational geometry—to generate robust,
combinatorial, and consistent tracking results regardless of
numerical instabilities. Third, simplicial meshes make it
straightforward to accelerate feature-tracking algorithms
with both GPU parallelism and distributed parallelism. In
cases when the feature detection is independent in each cell,
we can distribute the tasks to different computing resources
for concurrent and scalable processing.

In this study, we design and implement the simplicial
subdivision of two types of spacetime meshes—ðnþ 1Þ-D
prismatic and ðnþ 1Þ-D regular meshes—to enable robust
and scalable feature tracking in both unstructured and regu-
lar meshes, in order to support the tracking of critical points
(0D features in 2D/3D), quantum vortices (1D features in
3D), and isosurfaces (2D features in 3D) for a wide range of
applications. The ðnþ 1Þ-dimensional space consists of both
2D/3D space and time, and all mesh elements are simplices.
Enabled by simplicial spacetime meshing, each individual
tracking algorithm has novelties in disambiguation, degen-
eracy handling, and scalability. We also enable efficient
mesh element traversal over time. Considering that time-
varying data are large and streamed from simulations in
situ, one can iterate spacetime mesh elements within a slid-
ing window of a few timesteps for out-of-core and stream-
ing data access.

As a software framework, FTK provides ParaView plu-
gins, Python bindings, command line interfaces, and pro-
gramming interfaces for end users to track a variety of
features both in situ and post hoc. We demonstrate the use

of FTK for fluid dynamics, fusion, and superconductivity
simulations. In summary, the novelty of this paper is in its
combination of several individual technical contributions:

� A simplicial spacetime meshing scheme that general-
izes and tessellates both regular and unstructured
spatial meshes to spacetime simplices (Section 3)

� A robust and scalable critical point tracking algo-
rithm that handles degeneracies in a consistent man-
ner with no ambiguities (Section 4)

� A scalable implementation of quantum vortex track-
ing with distributed parallelism (Section 5)

� A robust and scalable isosurface tracking algorithm
that avoids ambiguities and handles degeneracies in
a consistent manner (Section 6)

� A software framework for users to track features
with distributed and parallel environments both in
situ and post hoc (Sections 7 and 8)

� Comprehensive performance studies of FTK algo-
rithms on both supercomputers and commodity
hardware (Section 9)

2 RELATED WORK

This section reviews related work in the extraction and
tracking of critical points, quantum vortices, and isosurfa-
ces. We also briefly review simulation of simplicity and
spacetime meshing. In the following, we refer to the process
of independently detecting features in individual timesteps
as feature extraction, as opposed to feature tracking, which
is the process of reconstructing trajectories of features
through multiple consecutive timesteps. For a comprehen-
sive review of feature extraction and tracking, see Post et al.
[17]; for a review of topology-based methods for visualiza-
tion, see Heine et al. [18].

2.1 Critical Point Extraction and Tracking

In general, a critical point is defined as the location where a
vector field vanishes. This work treats critical points in sca-
lar fields through their gradient fields; limitations of this
treatment will be discussed in later sections. Below, we
review critical point extraction and tracking algorithms in
both vector and scalar fields.

2.1.1 Critical Point Extraction

Numerical methods have been used to locate critical points
where all vector components are zero simultaneously,
assuming the vector field can be interpolated based on dis-
crete representations. While finding such zero crossings has
been studied for bilinear and trilinear schemes [19], the
piecewise linear (PL) interpolation of vector fields is more
widely used in various applications because of its simplic-
ity [20], [21], [22]. Tricoche et al. [21] characterized higher-
order critical points in 2D PL vector fields by partitioning
neighboring regions based on different flow behavior. That
approach was generalized to 3D vector fields [23]. Besides
PL, extraction of critical points in piecewise-constant vector
fields can be achieved by discreteHodge decomposition [24].

A major issue with numerical methods is their sensitivity
to numerical instabilities. As illustrated in Figs. 1a and 1b, a
critical point may be identified multiple times if the critical

3464 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

point resides on the boundary of cells. To this end, Bhatia
et al. [15] introduced the use of Simulation of Simplices
(SoS) [16] in testing whether a simplicial cell contains critical
points, leading to a robust critical point detection in a com-
binatorial manner, illustrated in Fig. 1c. Our study further
generalizes the use of SoS to ensure that the tracking of criti-
cal points is robust and combinatorial, as demonstrated in
following sections.

In scalar fields, numerical methods for extracting critical
points have been studied in the context of resolving ambi-
guities of marching cubes. In the early 1990s, Nielson and
Hamann [25] derived the closed-form representation of crit-
ical points (saddles) in bilinear interpolants, in order to han-
dle ambiguous quadrilateral faces. Nielson [26] generalized
the derivation to trilinear interpolants, which can be used to
subdivide an ambiguous cube into blocks with simple con-
figurations [27]. Carr and Snoeyink [28] further studied sca-
lar field topology through contour trees that capture
bilinear/trilinear interpolant topologies.

Topology methods include the use of the Poincar�e index
theorem, (discrete) Morse theories, and contour trees/Reeb
graphs. For example, Poincar�e’s index theorem can be used
to test whether critical points exist in 3D regions [29], [30] or
PL surfaces [31]. With Morse decomposition, Chen et al. [32]
proposed a vector field topology representation of 2D PL
vector fields with graphs, such that critical points can be
identified as part of the vector field topology. For scalar
fields, critical points are the key constituents of the scalar
field topology, including Reeb graphs [33] and contour
trees [34] extracted with well-established algorithms.

2.1.2 Critical Point Tracking

Spacetime meshing methods perform interpolation over time
to track critical points. Tricoche et al. [10] extruded 2D trian-
gular cells into 3D spacetime prisms, detected entries and
exits of singularities on prism faces, and then identified
paths of critical points. Garth et al. [11] generalized this
approach to 3D by extruding from tetrahedra to 4D tetrahe-
dral prisms. For both methods, the vector field is assumed
linear over both space (barycentric interpolation) and time
(linear interpolation). As with bilinear and trilinear interpo-
lations, such spacetime interpolation in prisms is not PL in
spacetime, as explained in the next section.

Feature flow field (FFF) methods [35] use a derived FFF vec-
tor field to characterize feature movements, such that fea-
ture trajectories can be computed as tangent curves in FFF.
For critical point tracking, one needs to find an appropriate
set of critical points in spacetime as the seeds, compute tan-
gent curves from the seeds by numerical integration, and
then slice the tangent curves back into individual timesteps.
To address instabilities in the numerical integration, Wein-
kauf et al. [36] proposed a method to improve convergence.
Klein and Ertl generalized FFF to track critical points in
scale space. [37] Reininghaus et al. [38] proposed a combina-
torial version of FFF based on the discrete Morse theory to
track critical points in 2D scalar fields.

Nearest-neighbor and region-overlapping approaches are heu-
ristics to track critical points. For example, Wang et al. [39]
reconstructed critical point trajectories by joining proximal
and same-type critical points in adjacent timesteps. Skraba
and Wang [40] used the closeness of robustness, the mini-
mum amount of perturbation needed to cancel features, to
link corresponding critical points in adjacent timesteps.

2.2 Quantum Vortex Extraction and Tracking

We use quantum vortices as an example of tracking 1D fea-
tures. Quantum vortices, or simply vortices, are topological
defects in superconductivity [41], superfluidity [42], and
Bose–Einstein condensates. Simulations produce 3D com-
plex-valued fields that combine both amplitudes and phase
angles. Singularities in phase fields are closed 1D curves
embedded in 3D euclidean spaces. By definition, a vortex is
the locus of points such that

�
I
C

ruðxÞ � dl ¼ 2kp; k 6¼ 0; (1)

where uðxÞ is the phase field, C is an infinitesimal contour
that encircles the vortex curve, dl is the infinitesimal arc on
C, and k is a nonzero integer usually equal to �1.

Vortex Extraction. Based on the definition, a straightfor-
ward approach to extract vortices in 3D meshes is to first
check whether the contour integral is nonzero for each face
boundary and then to trace singularity curves along
faces [12], [41]. Guo et al. [13] proved that a triangulated
mesh cell intersects up to one singularity line and thus that
simplicial mesh subdivision leads to combinatorial and con-
sistent extraction results.

Vortex Tracking. A spacetime meshing approach was pro-
posed to associate vortex curves in adjacent timesteps [12],
[43]. As a result, mesh faces testing positive for a singularity
form graphs that characterize the movement of singularities
as surfaces. Guo et al. [13] used triangular/tetrahedral
prisms as the spacetime cells to extract and track singulari-
ties. However, ambiguities still exist because spacetime
prisms are nonsimplicial. In Section 5 we demonstrate that
a simplicial spacetime mesh eliminates ambiguities in a con-
sistent manner and allows parallel vortex curve tracking in
distributed environments.

Quantum vortices are fundamentally different from vor-
tices in fluid flows [44], which are swirling centers of flows
and have been defined by level sets or extremum lines of �2

eigenvalues [45] and vorticity magnitude [46]. Depending
on definitions, tracking of fluid flow vortices may be
achieved by connected component labeling [47] or FFF [35].

Fig. 1. Nonrobust (a and b) versus robust (c) critical point extraction.
With numerical methods, when a critical point resides on an edge, the
critical point may or may not be detected by all tetrahedron that share
the same edge; in this case, the number of detected critical points could
range from zero to six because of numerical instabilities. With the help of
Simulation of Simplicities [15], [16], the single critical point will be
detected and associated with one of the triangles in a combinatorial
manner.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3465

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

2.3 Isosurface Extraction and Tracking

Isosurface extraction—the task of reconstructing polygon sur-
faces with a given isovalue in a 3D scalar field—is funda-
mental to scientific visualization. The marching cubes [7]
algorithm extracts isosurfaces in regular grid data based on
lookup tables; disambiguating how surfaces are connected
inside a cube was the key research problem for a decade [25],
[26], [27], [28]. A cubic cell has 28 ¼ 256 possible ways to
intersect an isosurface, which boil down to 15 unique con-
figurations. Ambiguities exist when vertex values have
alternating signs on any faces. Marching tetrahedra [14] is a
promising method to eliminate ambiguities by tessellating
inputs into simplicial cells; each tetrahedron has only two
unambiguous cases of intersections. For rectilinear grid
data, different approaches exist for subdividing cubes into
simplices [48], which may induce visual artifacts and topol-
ogy variations.

Isosurface Tracking. Two distinct approaches exist for
tracking isosurfaces: volume tracking [47], [49] and higher-
dimensional isosurfacing [8]. The former extracts regions of
interest independently in each timestep and then associates
regions across adjacent timesteps based on overlaps. The
latter generalizes marching cubes to 4D spacetime; the out-
puts are 3D objects embedded in 4D that can be sliced back
into 2D surfaces in individual timesteps for visualization.
Similar to marching cubes in 3D, ambiguities exist in 4D
spacetime, and researchers have shown that one can disam-
biguate 4D cases by triangulation [9]. We will demonstrate
in Section 6 a simplified implementation of 4D isosurface
tracking based on our simplicial spacetime meshes.

2.4 Simulation of Simplicity

Simulation of Simplicity (SoS) [16] is a programming tech-
nique to simplify the handling of degenerate cases in geo-
metric algorithms. In 1D spaces, an analogy to SoS is the
stable sorting algorithm, which handles degenerate cases
when the input array contains equal numbers; if two num-
bers are equal, the number with the smaller array index is
considered smaller than the other, resolving in consistent
ordering of numbers.

We use the example of a 2D point-in-polygon test to
explain the idea of SoS. The test is positive if the count of
intersections between edges and the horizontal half-line
started with the test point (v0 in Fig. 2a) is an odd number.
The half-line/edge intersection is tested by the sign of a
determinant, and the test is unambiguous in nondegenerate
cases. Ambiguity occurs when the line intersects a vertex
(Fig. 2b), because the determinant is zero. By incorporating

vertex indices, SoS simplifies the test by implicitly associat-
ing the intersection to one of the edges in a consistent man-
ner, even in more complicated cases when vertices overlap
(Fig. 2c). Note that results may change if a different vertex
ordering system is used (Fig. 2d), but this is normally not a
problem because the ordering is predetermined. FTK uses
SoS to simplify the test if a simplex (e.g., edge, triangular
face, or tetrahedron cell) intersects a feature (e.g., critical
point trajectory or contour) in spacetime, as discussed in fol-
lowing sections.

2.5 Spacetime Meshing

Spacetime Meshing for Computational Sciences. Recently, sci-
entists have started to explore the use of 4D meshes [50],
[51] to numerically solve time-dependent partial differential
equations in spacetime as opposed to traditional timestep-
ping approaches. We believe that our method could be
directly applied to spacetime mesh data; but because of
challenges of increased complexity, memory footprint, and
cost to converge, the majority of scientific data today is still
stored and represented in discrete timesteps.

Spacetime Meshing for Scientific Visualization. Spacetime
meshing approaches, which are limited mostly to prisms to
date, have been successfully used to track singularities in
vector fields [10], [11] and phase fields [12], [13], [41], [43].
Prisms are a straightforward choice, but challenges exist in
handling ambiguities, as discussed in later sections.

3 SIMPLICIAL SPACETIME MESH

We design and implement the simplicial subdivision of
ðnþ 1Þ-D prismatic and ðnþ 1Þ-D regular meshes, respec-
tively, in order to enable robust and scalable feature track-
ing in unstructured and regular grid meshes, where the
dimensionality n is 2 or 3 for the spatial domain. The addi-
tional dimension is time in this study, and we assume that
the spatial mesh does not change over time. The simplicial
subdivision of ðnþ 1Þ-D regular meshes, which is a special
case of the subdivision of ðnþ 1Þ-D prismatic meshes, is
implemented separately for the efficient handling of images,
volumes, and curvilinear grids.

For example, in the case of n ¼ 2, the input is a (time-
invariant) triangular mesh (illustrated in Fig. 3a). One can
extrude the mesh into 3D by replicating and elevating verti-
ces in the new dimension, forming 3D triangular prisms
(Fig. 3b). The output 3D mesh is a subdivision of triangular
prisms, and each mesh element in the output mesh is sim-
plicial (Fig. 3c). We also categorize and index simplices in
all dimensions for efficient traversal (Fig. 3d). In the rest of
this section we formalize definitions (Section 3.1), describe
the subdivision of ðnþ 1Þ-D prismatic meshes (Section 3.2),
and introduce the subdivision of ðnþ 1Þ-D regular meshes
as a special case of subdividing prismatic meshes
(Section 3.3).

3.1 Definitions

Formally, an n-simplex is the convex hull of nþ 1 affinely
independent points a0; a1; . . . ; an in Rn. An n-simplicial com-
plex is the set of k-simplices (k ¼ 0; 1; . . . ; n); in this simpli-
cial complex, any face of a simplex is part of the complex,

Fig. 2. Example use of SoS for testing whether an edge intersects the
horizontal half-line originated from v0: (a) edge v2v3 intersects the half-
line with no ambiguity; (b) ambiguity exists because v2 intersects the
half-line, and SoS rules that edge v1v2 is intersected while v2v3 is not; (c)
with multiple overlapped vertices (v2, v3, and v4) intersecting the half-
line, SoS rules that edge v1v2 is intersected while edges v2v3, v3v4, and
v4v5 are not; (d) by flipping the indices of v1 and v3 in (b), SoS resolves
the ambiguity in a different way.

3466 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

and the intersection of any two simplices is either a lower-
dimensional simplex or the empty set.

We define the ðnþ 1Þ-D (simplicial) prism1 as the extru-
sion of an n-simplex a0a1 . . . an to one dimension higher.
Denoting the Rnþ1 coordinates of each point ai as xi ¼
ðxi;0; xi;1; . . . ; xi;nÞ> with the identical last component xi;n for
all i, the extruded prism includes another simplex
b0b1 . . . bn; the coordinates of each point bi are
ðxi;0; xi;1; . . . ; x

0
i;nÞ>, xi;n < x0i;n. Note that ai and bi share the

same first n coordinates and that the last coordinate is dif-
ferent. In addition to the two simplicial bases, the prism
includes n edges a0b0; a1b1; . . . ; anbn.

We further define the ðnþ 1Þ-D prismatic mesh as the col-
lection of ðnþ 1Þ-D prisms obtained by extruding a simpli-
cial mesh into one dimension higher. Our goal is to
tessellate the ðnþ 1Þ-D prismatic mesh into a simplicial
complex without adding new vertices.

3.2 Simplicial Subdivision of (n+1)-D Prismatic
Meshes

We first review the concept of staircase triangulation [52] and
then generalize the staircase triangulation to the simplicial
subdivision of prismatic meshes. Without loss of generality,
we describe the case of n ¼ 3, the extrusion from an
unstructured 2D triangular mesh to a 3D prismatic mesh,
followed by its subdivision into a 3D tetrahedral mesh.
Assuming the input is given by a list of triangles (2-simpli-
ces), our algorithm extrudes each triangle into a prism in a
new dimension; each triangular prism is further subdivided
into three tetrahedra.

Staircase Triangulation of a 3D Triangular Prism. As illus-
trated in Fig. 3d, a triangular prism may be subdivided into
three tetrahedra. Denoting the “lower” vertices as a0a1a2
and the “upper” vertices as b0b1b2, one may subdivide this
triangular prism into three tetrahedra: a0a1a2b2, a0a1b1b2,
and a0b0b1b2. As documented by DeLoera et al. [52], the ver-
tex list of each tetrahedron corresponds to a monotone stair-
case beginning with a0 and ending with b2 in Fig. 4; each
vertex is immediately above or to the right of the previous
vertex in the grid.

Staircase Triangulation of an (n+1)-D Prism. The staircase
triangulation can be generalized to higher dimensions, and
an ðnþ 1Þ-D prism may be subdivided into nþ 1
ðnþ 1Þ-simplices without the introduction of new vertices.
First, we impose an ordering on the nþ 1 vertices in the

lower and upper hyperplanes (and use the same ordering in
both hyperplanes). Second, we identify the 2ðnþ 1Þ points
of the prism with the grid f0; 1; 2; . . . ; ng � f0; 1g. Third, we
compute all monotone paths2 on the grid. The staircase tri-
angulation of 2D, 3D, and 4D prisms is listed in Table 1.

Staircase Triangulation of (n+1)-D Prismatic Mesh. The
staircase subdivision method produces simplicial subdivi-
sions along prism boundaries, given a global vertex order-
ing on a prismatic mesh. In a 3D case in Figs. 3a, 3b, and 3c),
we assign a global order to each vertex and then subdivide
each prism with staircase triangulation. For example, the
quadrilateral a1a7b7b1 is subdivided into two triangles
a1a7b7 and a1b1b7 along the monotonous edge a1b7.

Mesh Element Indexing. Each k-simplex in the subdivided
ðnþ 1Þ-D prismatic mesh can be one to one mapped to a
tuple of integer ID, type, and timestep for traversing and
compact storage. Considering the extrusion along the new
dimension for multiple layers of vertices (e.g., multiple
timesteps), we use the same triangulation scheme for each
layer and design an efficient indexing of simplices in all
dimensions in the newmesh. For k ¼ 3, there are three types
of 3-simplices: bottom, center, and upper tetrahedra (or
type-I, type-II, and type-III tetrahedra), such that one can
index each tetrahedron with a tuple of original triangle ID,
type, and timestep. The original triangle ID is the integer
index of the triangle in the original mesh. For k ¼ 2, to
uniquely index 2-simplices, we identify five unique types of
faces: prism base, prism lower, prism higher, edge lower,
and edge upper. For example, the “top” triangle of a prism
can be indexed by the “bottom” triangle of the same prism
in the next timestep; triangles on quadrilaterals can also be
indexed by neighboring prisms in the same layer. As such,
each 2-simplex can be uniquely indexed by the tuple of orig-
inal triangle/edge ID, type, and timestep. Likewise, for k ¼
1, we identify three unique types of edges; each can be
indexed by the original vertex/edge ID, type, and timestep.

Mesh Element Queries.We provide functions such as ver-
tices(), sides(), and side_of() that feature tracking

Fig. 3. Extrusion of simplicial mesh: (a) the input 2D simplicial mesh, (b) the extruded 3D prismatic mesh, (c) the output 3D simplicial mesh as the
subdivision of the 3D prismatic mesh, and (d and e) subdivision of a 3D triangular prism. Unique types of edges, faces, and tetrahedra in the extruded
mesh are illustrated in d and e.

Fig. 4. All monotone paths from a0 to b2 in the triangular prism a0a1a2 �
b0b1b2; each path corresponds to a staircase triangulation of the prism.

1. For ease of description, we limit the definition of prisms to those
with simplicial bases.

2. Monotone here means that both alphabets and subscripts are
ascending. For example, an edge like b0a1 or a1a0 cannot appear.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3467

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

algorithms that can be used to query a mesh element in the
extruded mesh. The vertices() function returns the list
of vertices of the given mesh element ID. The sides()

function provides a list of ðk� 1Þ-simplicial sides of the
given k-simplex, such as the triangular faces of a tetrahe-
dron. The side_of() function gives a list of ðkþ 1Þ-simpli-
ces that contain the given k-simplex. For example, a
triangular face in 3D simplicial meshes is usually contained
by two tetrahedra unless the face is on the boundary of the
domain; likewise, a tetrahedron in a 4D simplicial mesh is
usually shared by two pentachora (4-simplices).3

Ordinal and Interval Mesh Elements. For ease of feature
tracking, we further categorize k-simplices into ordinal and
interval types. A simplex is an ordinal type if each of its ver-
tices resides in the same timestep in the extruded mesh; oth-
erwise it is an interval type. For example, the lower edge
triangle (type-V face in Fig. 3d) has two vertices in the lower
layer and one vertex in the upper layer and is thus an inter-
val type. The type-I edge is ordinal because both vertices
are in the same layer.

There are two reasons to distinguish ordinal and interval
types. First, this distinction allows feature-tracking algo-
rithms to consume data in a streaming and out-of-core man-
ner for both in situ and post hoc processing, as discussed in
the next paragraph. Second, the distinction allows efficient
slicing of output trajectories. If one needs only individual
timesteps, rather than intervals, it is straightforward to
select features identified in ordinal mesh elements.

In a streaming pipeline, assuming data of each timestep
0; 1; . . . ; nt � 1 is available in ascending order, nt being the
number of timesteps, we show that one can traverse all
k-simplices while keeping a sliding window of two time-
steps of data. For each ith timestep, we first traverse ordinal
types and then traverse interval types if i < nt � 1. Because
each interval type consists of vertices from adjacent time-
steps, both the ith and ðiþ 1Þth timesteps must be available
in memory. As a result, the discrimination of ordinal and
interval types makes it possible to traverse every k-simplex
without having all timesteps in memory simultaneously.

Complexity. The space complexity of the subdivided
ðnþ 1Þ-prismatic mesh is of the order of mesh element count
in the original n-simplicial mesh. For example, in the case of
n ¼ 2, we need to maintain lists of all triangles, edges, and
vertices of the original triangular mesh. We also maintain

lists of sides and parents for all simplices in the original
mesh, in order to accelerate the query of sides and parents in
the extruded mesh. The time complexity of querying a sim-
plex and getting the vertex list of the simplex is constant.

3.3 Simplicial Subdivision of (n+1)-D Regular Mesh

Subdividing a regular mesh is a special case of that in the
preceding subsection but does not require maintaining a
mesh data structure (e.g., lists of vertices and triangles). We
define the ðnþ 1Þ-D regular simplicial mesh as a simplicial
subdivision of the ðnþ 1Þ-D regular mesh without introduc-
ing additional vertices.

Recursive Subdivision of (n+1)-D Regular Mesh. One can
recursively subdivide an ðnþ 1Þ-D regular mesh based on
the simplicial extrusion of an n-D regular simplicial mesh.
For n ¼ 0, the extruded mesh (1D regular grid) is already
simplicial. For n � 1, one can extrude cells in a n-D regular
mesh into prisms and follow Table 1 to triangulate the
prisms. As a result, each n-D cube is subdivided in the same
way into n! congruent and disjoint n-simplices.

Precomputation of the Subdivision for n-D Unit Cube. In
practice, we precompute the subdivision of the n-D unit
cube for any n, which enables direct access to an n-D simpli-
cial mesh without recursive subdivision. For example, the
unit 2-cube can be subdivided into two 2-simplices:

00; 01; 11
00; 10; 11

;

where each 2-digit is the coordinate and ID of the vertex and
each line is a 2-simplex. By extruding the simplices, the sim-
plicial subdivision of the unit 3-cube contains six tetrahedra:

000; 001; 011; 111
000; 010; 011; 111
. . .
000; 100; 110; 111

;

as is also illustrated in Fig. 5a. Likewise, the unit 4-cube can
be subdivided into twenty-four (4! ¼ 24) pentachora, as
illustrated in Fig. 5b.

0000; 0001; 0011; 0111; 1111
0000; 0010; 0011; 0111; 1111
0000; 0001; 0101; 0111; 1111
. . .
0000; 1000; 1100; 1110; 1111

:

TABLE 1
Monotone Staircases and Triangulation of 1D, 2D, 3D (Triangu-

lar), 4D (Tetrahedral), and 5D Prisms

Fig. 5. Regular simplicial meshes: (a) 3D mesh with eight cubes, each
being subdivided to six tetrahedra. (b) 4D mesh with one single 4-cube,
which is subdivided into 24 pentachoron. Numbers encode both indices
and coordinates of vertices.

3. A 4-simplex is equivalently referred as pentachoron, pentahe-
droid, pentatope, or tetrahedral pyramid in other literature; this paper
uses the term pentachoron without loss of generality.

3468 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

After the precomputation, each cube in the n-D regular
mesh is subdivided in the same way.

Mesh Element Indexing. We use the tuple of simplicial
dimension k, corner coordinates, and the unique type ID to
index a k-simplex in the n-D simplicial mesh. The corner
coordinates encode the location of the n-cube that contains
the simplex. The unique type ID is designed to encode a
simplex within the cube; one cannot use other cubes to
index the same simplex. In a 2D case in Fig. 6a, although
there are five edges (1-simplices) in each 2-cube, we have
only three unique types of edges, because horizontal and
vertical edges are always shared between neighboring
cubes. For example, to index the top edge of cube (1, 1), we
can use the cube (1, 2) to find the same edge. Fig. 6b enumer-
ates all unique simplex types in 2-cubes.

Mesh Element Queries. We also provide the vertices(),
sides(), and side_of() functions defined in the preced-
ing subsection for n-D regular simplicial meshes. The
results of each function are precomputed for each unique
type. As illustrated in the 2D mesh in Fig. 6c, the sides of
type-II 1-simplices (diagonal edges) include two vertices;
two triangular cells contain the same type-I 1-simplices
(horizontal edges).

Complexity. The space complexity of maintaining an n-D
regular simplicial mesh is Oðn!Þ, but n does not exceed 4 for
tracking features for 3D data. Note that the space complex-
ity does not grow with the size of the regular grid, because
precomputed unit-cube subdivisions are stored instead of
an explicit list of mesh elements. Such implicit mesh data
structure allows queries of a simplex in constant time.

4 TRACKING 0D FEATURES: CRITICAL POINTS

We describe here the use of simplicial meshes to track criti-
cal points in 2D and 3D vector fields.

4.1 Assumptions and Definitions

We assume that the input n-dimensional time-varying vec-
tor field v : Rnþ1 ! Rn is piecewise linear. The PL assump-
tion implies that the vector field is defined on a simplicial
spacetime mesh; each cell is an ðnþ 1Þ-simplex. For exam-
ple, each cell in a 2D or 3D time-varying vector field is a tet-
rahedron (3-simplex) or pentachoron (4-simplex),
respectively. The ðnþ 1Þ-simplicial spacetime mesh can be
constructed based on an existing n-dimensional mesh, as
detailed in Section 3. Thus, v is C1 continuous along any

combination of spatial and temporal directions; that is, there
exist A 2 Rn�ðnþ1Þ and b 2 Rn for each ðnþ 1Þ-simplex S
such that v ¼ Axþ b, x 2 S.

Algorithm 1. Two-Pass Algorithm of Tracking 0-, 1-, and
2- Features—Critical Points, Quantum Vortices, and Iso-
surfaces, Respectively—With Simplicial Spacetime
Mesh. S is the Set of Simplices that test positive, UF being
union-find.

S ? , UF ?

for each tri 2 simplices(2) do
if test(tri) then ⊳ Eq. (2)
S S[tri

end if
end for
for each tet 2 simplices(3) do
T S\ tet.sides(2)

UF.unite(T)
end for

S ? , UF ?

for each tri 2 simplices(2) do
if test(tri) then ⊳ Eq. (1)
S S[tri

end if
end for
for each penta 2 simplices(5) do
T S\ penta.sides(2)

UF.unite(T)
end for

S ? , UF ?

for each edge 2 simplices(1) do
if edge intersects isosurface then
S S[edge

end if
end for
for each penta 2 simplices(5) do
T S\ penta.sides(1)

UF.unite(T)
end for

We further assume that the time-varying vector field is
generic. This means that vector values on each vertex i are
nonzero (vi 6¼ 0) and that vectors at verticies of any k-sim-
plex (k ¼ 0; 1; . . . ; nþ 1) are affinely independent. Thus,
critical points in generic vector fields may be found in the
interior of n-simplices instead of on cell boundaries. In the
end of this subsection we discuss the relaxation of the
generic assumption by using the simulation of simplic-
ity [16] technique.

A (spacetime) critical point xc 2 Rnþ1 is the location where
the vector value vðxcÞ is zero. We focus on critical points
that are nondegenerate; meaning that the (spatial) Jacobian
Jv at xc is nondegenerate. Based on the eigensystem of Jv,
the critical point xc can be further categorized into various
types such as sources, sinks, and saddles. In the case that v
is the gradient field of a scalar field, the critical point types
are maxima, minima, and saddles.

A critical point trajectory (or simply trajectory) is a locus of
critical points in space and time, which are 1D curves
embedded in Rnþ1. Because v is PL, critical point trajectories
are PL parametric curves, and the intersection with each cell

Fig. 6. Indexing and querying mesh elements in regular simplicial mesh:
(a) a 2D regular simplicial mesh; (b) indexing simplicial elements with k :
ði0i1Þ=type, where k is the dimensionality of the simplex, ði0i1Þ is the cor-
ner coordinates of the cube that contains the simplex, and type is the
unique simplex type ID; (c) sides() and side_of() of a simplicial
element.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3469

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

is a line segment. Critical point trajectories can be sliced into
a set of critical points at an arbitrary time t0 by intersecting
the hyperplane t ¼ t0. In the following sections we discuss
methods for reconstructing critical point trajectories.

4.2 Two-Pass Critical Point Trajectory
Reconstruction

As illustrated in Fig. 7, we use a two-pass algorithm to recon-
struct critical point trajectories from v. Without loss of general-
ity, we describe this algorithm with 2D time-varying vector
fields (v : R3 ! R2). In the first pass,we iterate each triangular
face (2-simplex) to determine whether a trajectory intersects
the face by solving the inverse linear interpolation problem:

u0 u1 u2

v0 v1 v2
1 1 1

0
@

1
A m0

m1

m2

0
@

1
A ¼

0
0
1

0
@

1
A; (2)

where ðm0;m1;m2Þ> are the normalized barycentric coordi-
nates of the trajectory intersection with the face and ðu0; v0Þ>,
ðu1; v1Þ>, and ðu2; v2Þ> are the vector values on the three verti-
ces of the 2-simplex. If mj 2 ½0; 1� for all j 2 f0; 1; 2g, then the
triangular face is punctured by a trajectory, and the spacetime
coordinates of the critical point can be calculated. In the sec-
ond pass, we iterate over each tetrahedral cell (3-simplex) to
associate its sides that are punctured by trajectories, because
one can prove that each tetrahedron intersects up to one tra-
jectory. Complete trajectories can be constructed by pairing
every twopunctured triangular faces of the same tetrahedron.

In general, for arbitrary dimensionality n, the two-pass
algorithm to reconstruct critical point trajectories in v :
Rnþ1 ! Rn is the following. The first pass iterates over each
n-simplex to determine whether the simplex intersects a tra-
jectory based on Eq. (2). The second pass iterates each
ðnþ 1Þ-simplex and pairs its sides (n-simplices) that inter-
sect a trajectory. The two-pass algorithm can be easily paral-
lelized with both distributed and GPU parallelism, as
discussed in the following sections.

The output reconstructed critical point trajectories are
closed curves in spacetime; they either end on domain
boundaries or are loops. Within each curve, the critical point
type may alternate, and there may be multiple monotone
intervals with respect to time. For example, as illustrated in
Fig. 8a, each loop characterizes a maximum-saddle pair in
the gradient field; the maximum-saddle pair establishes and
annihilates simultaneously. In Fig. 8b, we see the birth of a
saddle-sink pair; the saddle further merges with another
sink soon after the birth. One can further simplify and filter
trajectories based on their attributes, as discussed in the fol-
lowing sections.

4.3 Robustness

The two-pass algorithm assumes that PL vector fields are
generic, an assumption that often does not hold for real-
world data. For example, gradients of an integer-valued
image may be exactly zero at vertices; gradients based on
central-differences, which are rational numbers, may be
affinely dependent, causing nongeneric situations. In fluid
flows, nonslip conditions lead to zero velocities on bound-
aries. Ideally, there would be a guarantee that each
ðnþ 1Þ-simplex has at most one pair of intersected sides,
but this is not true for nongeneric cases. A critical point may
reside on the boundary of the cell, causing numerical insta-
bilities during the test of mk 2 ½0; 1� in Eq. (2). As a result,
the critical point may or may not be detected in the current
n-simplex; the same critical point may be detected by neigh-
boring cells, causing nonrobust and noncombinatorial track-
ing results, as illustrated in Fig. 1.

We use Simulation of Simplicity [16] (SoS) to compute
critical point trajectories robustly and combinatorially in
nongeneric vector fields. As proved by Bhatia et al. [15] with
the Brouwer degree theory, a critical point exists in the
n-simplex fx0; x1; . . . ; xng if and only if 0 lies in the interior
of the convex hull of fv0; v1; . . . ; vng, where vj
(j ¼ 0; 1; . . . ; n) is the vector value on each vertex xi (illus-
trated in Figs. 9a, 9b, and 9c). As a result, the critical point
test is reduced to the point-in-simplex predicate, which can
be determined by the sign of the determinant of the matrix
ðv0; v1; . . . ; vn; 1Þ.

In nongeneric cases, such as a critical point on the bound-
ary of the simplex, the SoS prevents the determinant from
becoming zero by adding a symbolic perturbation to each
component of the matrix. The perturbation, namely,
�-expansion, is a function of an arbitrarily small number �;
the form of the perturbation is determined by the vertex
and dimension ordering. As a result, if a critical point lies
on the boundary that is shared by two or more simplices,
SoS implicitly enforces a consistent choice to exclusively
associate the critical point with one of the simplices, as illus-
trated in Fig. 9d.

4.4 Critical Point Trajectory Filtering, Simplification,
and Smoothing

We provide three postprocessing approaches to help users
filter, smooth, and simplify trajectories that result from
tracking critical points.

Filtering. One can filter results based on the trajecxtory
attributes—time duration, topology, persistence, scalar

Fig. 7. Two-pass critical point trajectory reconstruction for 2D and 3D
vector fields with 3D (a) and 4D (b) spacetime simplicial meshes, respec-
tively. The first pass tests whether triangular/tetrahedral sides intersects
the trajectory, and then the second pass associates every pair of inter-
sected sides if they share the same tetrahedron/pentachoron.

Fig. 8. Example of (a) filtering, (b) simplification, and (c) smoothing of
critical point trajectories. Colors indicate different critical point types.

3470 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

value, if applicable. Fig. 8a is an example of filtering loops in
the gradient of a scalar field. Typically, a loop exists when a
small transient bump appears, introducing a saddle-extre-
mum pair. Such a loop may be filtered out based on the
time duration or persistence of the loop. Likewise, trajecto-
ries can be filtered based on other attributes, as demon-
strated in the following sections.

Simplification. One can also simplify trajectories that
change directions frequently in time based on a threshold of
persistence in time. As illustrated in Fig. 8b, for example, a
saddle-sink pair is born right before the saddle merges with
another sink. Because the saddle may be caused by noise,
we provide the simplification function to eliminate the sad-
dle and merge the trajectory as a consistent sink type.

Smoothing. Although our trajectory reconstruction algo-
rithm is robust, the evaluation of Jacobians Jv may subject to
numerical instabilities, causing inconsistent critical point
types along trajectories. One can smooth the types based on
a window-shifting approach. We iterate each point in the
trajectory and check whether the current critical point type
is consistent with both the precedent and antecedent. If an
inconsistency is identified, we mark the inconsistency loca-
tion and modify the type after the iterations, as illustrated
in Fig. 8c. The window size depends on the application and
analysis needs. For example, we set the half-window size to
be two consecutive timesteps in our experiments.

4.5 Evaluation and Verification With Synthetic Data

We validate the effectiveness and evaluate the robustness of
our critical point tracking approach with synthetic data.

3D Moving Minimum. We use the following scalar func-
tion to synthesize 3D time-varying scalar field data with the
known position of the single minimum to evaluate the
numeric robustnesss of our method:

fðx; tÞ ¼ kx� ðx0 þ d � tÞk2; (3)

where ðx; tÞ 2 Rnþ1 are the spatiotemporal coordinates and
x0 and d are arbitrary vectors in Rn. As a result, the trajec-
tory of the single minimum xcðtÞ in the data is

xcðtÞ ¼ x0 þ d � t: (4)

In Fig. 10, we synthesized 20 different instances with the
same x0 ¼ ð10; 10; 10Þ> but with different d. The scalar func-
tion f is discretized into a 21� 21� 21 grid, which

represents a ð0; 0; 0Þ � ð20; 20; 20Þ domain. Each component
of the moving direction d is a random rational number such
that the trajectory must intersect at least one grid point
including x0, causing degenerate cases similar to that of
Fig. 1. In Fig. 10a, because the grid point of x0 is shared by
multiple pentachora in the spacetime mesh, the number of
tetrahedra that numerically test positive for containing a
critical point ranges from zero to tens. Because the degener-
ate cases cause ambiguity in tracing, trajectories in the
figure appear dashed and isolated. In Fig. 10b, our robust
detection approach guarantees that each critical point is
exclusively associated with a tetrahedron such that trajecto-
ries can be tracked robustly without any ambiguity.

2D Double Gyre Flow.We demonstrate critical point track-
ing in a 2D unstructured mesh with the double gyre func-
tion, which is widely used to study Lagrangian coherent
structures [53]. The double gyre function is defined in the
domain of ½0; 0� � ½2; 1�, and we generate a triangular mesh
with 2,098 triangles and 1,100 vertices to demonstrate the
results. Fig. 11 visualizes critical trajectories in t 2 ½0; 40�; the
timespan Dt between adjacent timesteps is 0.1. The color of
each trajectory is categorical and encodes the unique ID of
the trajectory. Slices at t ¼ 0 and t ¼ 2:8 visualize flow direc-
tions with line integral convolution (LIC), and the slice at
t ¼ 1:5 visualizes the 2D mesh. As shown in the figure, two
critical points move back and forth along the x-axis periodi-
cally inside the 2D domain. Because the double gyre func-
tion is analytical, we verified that the vector field is exactly
zero at all points in the trajectories, and all critical points are
identified by our method.

2D Spiral Woven With Perturbations. We design the spiral
woven function f to evaluate our critical point tracking
method with the presence of noise:

fðx; yÞ ¼ cos ðx cos t� y sin tÞ sin ðx sin tþ y cos tÞ: (5)

This function has a finite number of critical points including
minima, maxima, and saddles for a bounded 2D domain.
The critical points rotate around the origin at a fixed angular
speed over time. We discretized the function into a 1282 grid
and injected Gaussian noise with two different standard
deviations into the data, as shown in Fig. 12. Note that the
range of the data is ½�1; 1�, and thus perturbation of s ¼
0:02 and s ¼ 0:08 introduces up to 3 and 12 percent relative
error, respectively, to the data in the 3-sigma limits. Because
the noise injection produces many artificial bumps in the

Fig. 9. Example of robust critical point test in a 2D mesh; a triangle aiajak
tests positive if the origin point 0 is in the interior of the simplex vivjvk,
which consists of vector values at vertices. The point-in-simplex test is
robust and combinatorial based on SoS.

Fig. 10. Nonrobust (a) versus robust (b) tracking of critical points in 20
instances of the 3D moving minimum synthetic data, each with the same
origin but random rational directions. Color encodes time in the figure.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3471

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

data, the output critical point trajectories contain artifacts.
Artifacts such as small loops can be removed through trajec-
tory filtering, as discussed in the preceding subsection.

4.6 Case Studies With Applications

We demonstrate use cases of our critical point tracking
methods in science applications.

Fluid Dynamics. We track vector field critical points to
visualize the vortex streets in a 2D flow-past-cylinder simu-
lation (Fig. 13a). The data are available on a uniform grid
with the resolution of 400� 50 for 1,001 timesteps. We use
the average velocity as the frame of reference and track all
critical over time. Based on the trajectories, we can see that
critical points are created in pairs past the cylinder and
move evenly toward the other side of the domain.

Tokamak Simulations. We use trajectories of scalar field
critical points to characterize the dynamics of blobs in toka-
mak fusion plasma simulations (Fig. 13b). Understanding
blobs—regions of high turbulence that could damage the
tokamak—is critical for reactor design and future power
generation. Assuming each blob corresponds to a maxi-
mum/minimum in the preconditioned and normalized
electron density field, we reconstruct trajectories of critical
points in a single poloidal plane consisting of 56,980 vertices
and 112,655 triangles in an XGC particle-in-cell simula-
tion [55]. These trajectories can enable further analyses of
the physical properties of blobs.

Turbulent Vortices.We track and visualize scalar field crit-
ical points in a publicly available turbulent vortex data-
set [56], which contains 100 timesteps of 1283 scalar value
data characterizing vorticity magnitudes. We visualize
results for the first 30 timesteps (Fig. 13c) to avoid overplot-
ting. There are 549 maximal trajectories out of 85,911 trajec-
tories in all types (minima, saddles, and maxima). In the
visualization, one can see how high-turbulent locations
move over space and time.

4.7 Limitations

First, in the case of critical point tracking in scalar fields, one
has to use the derived gradient fields as the input. The
spacetime PL gradient field implies C2 continuity of the
original scalar field; this is different from topology methods,

which assume a PL scalar field and identify critical points at
vertices of the mesh [57]. The outputs may be distorted
because of the smoothness of differentiation kernels used
for gradient derivation. That said, the output trajectories are
as accurate as the quality of the gradient field and how close
the scalar field is to C2 continuity. In addition, the fidelity of
critical point trajectories is related to the spacetime resolu-
tion of the inputs. Downsampling the data may lead to an
oversimplified topology of the trajectories.

Second, the determination of critical point types is sub-
ject to numerical instabilities. Because Jacobians are usually
estimated numerically, in extreme cases the signs of eigen-
values may change when perturbation is introduced. We
therefore introduced a smooth filter to heuristically correct
classification errors, but one can also remediate the problem
based on domain-specific knowledge.

Third, the PL assumption prevents the native identifica-
tion of higher-order critical points [21], [23]. An example of
higher-order cases is illustrated in Fig. 14, where two local
maxima periodically merge and split. However, the result
includes a persisting trajectory that characterizes one of the
maxima and a number of maxima-saddle loops periodically.
At the time of merging, ideally three critical points (two
maxima and one saddle) should merge and then split into
another three critical points. Because at most one trajectory
is assumed to intersect each cell, our method cannot identify
the “3-in-3-out” event over time. We leave the study of
higher-order dynamics of critical points to future work as
well.

4.8 Comparison With Existing Critical Point
Tracking Algorithms

Our approach offers three improvements over existing
approaches that use spacetime meshing [10], [11]. First, our
method uses simplicial meshes instead of prismatic meshes
in 4D spacetime. Because each of our simplicial cells inter-
sects at most one singularity, our method consistently
avoids ambiguity when multiple trajectories intersect a
prism. Second, the PL assumption makes it easier to localize
zero crossings in simplicial cells than in prismatic cells,
which may result in multiple pairs of intersections on the
cell boundary and cause challenges in the parity test. Third,
our simplicial mesh enables the robust tracking of critical
points based on SoS, producing combinatorial and consis-
tent results when nongeneric cases occur.

Compared with approaches based on feature flow
fields [35], [36], [37], [38], our method is numerically robust
and computationally scalable. FFFs are vector fields that

Fig. 11. Critical point tracking in 2D unstructured mesh double gyre flow.
Color encodes ID of trajectories.

Fig. 12. Critical point tracking and filtering in the 2D synthetic spiral
woven data. (a) left: no noise injection, right: s = 0.02 without filtering,
(b) left: s = 0.08 without filtering, right: s = 0.08 with filtering.

3472 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

characterize the movement of critical points such that the
trajectories can be computed as tangent curves in FFFs.
First, in comparison with FFF, which requires numerical
approximations of the gradients of vector fields, our method
does not require such transformation. Numerical integra-
tion in FFF, such as Runge–Kutta methods, further introdu-
ces error in curve tracing. Second, our two-pass algorithm
can be embarrassingly parallelized, while computing
streamlines in distributed and parallel environments in gen-
eral can be difficult to scale [58].

5 TRACKING 1D FEATURES: QUANTUM VORTICES

We demonstrate the use of simplicial spacetime meshing to
track 1D topological defects (quantum vortices) in 3D com-
plex-valued scalar fields produced by superconductivity,
superfluidity, and Bose–Einstein condensate simulation
data. Unlike critical points in vector fields, vortices are 1D

curves in individual timesteps, and the trajectories of vorti-
ces are 2D surfaces embedded in 4D spacetime.

5.1 Two-Pass Vortex Curve and Surface
Reconstruction

Vortex tracking can be achieved by a two-pass reconstruction
algorithm, as outlined in Algorithm 1 (middle). We review
here how vortices intersect 2- and 3-simplices, and we then
introduce the two-pass vortex surface reconstruction.

Contour Integral Test on Triangular Faces. We test whether
each spacetime 2-simplex intersects a vortex based on the
definition in Eq. (1). As shown in Fig. 15a, a triangular face
intersects a vortex at most once. The contour integral can be
calculated by accumulating phase shifts along each edge:

I
C

ruðxÞ � dl ¼
X2
i¼0

Dui;j; i ¼ 0; 1; 2; j ¼ iþ 1 mod 3; (6)

where the phase shift Dui;j is the modulo of uj � ui and 2p; ui
and uj, respectively, are the phase angle at the ith and jth
vertex of the triangular face. The test is positive if the con-
tour integral equals �2p. Because the modulo is less than
2p, we assume that the data resolution in both spatial and
temporal dimensions is sufficiently fine that the phase dif-
ference between each pair of adjacent vertices is less than
2p. Scientists would need to refine the spatiotemporal reso-
lution of simulations if the discretization is too coarse.

Vortex Curve Reconstruction. One can reconstruct the 1D
topology of vortices in the R3 subspace of individual time-
steps. Because vortices are closed curves In R3, each closed
volume has an even number of intersections on boundaries;

Fig. 13. Case studies of critical point tracking. (a) 2D flow-past-cylinder vector field (data courtesy of Weinkauf and Theisel [54]); color encodes the ID
of each trajectory. The two 2D slices at t = 60 and t = 200 each visualize the velocity direction and magnitude with line integral convolution image and
pseudo colors, respectively. (b) XGC fusion simulation (data courtesy of Dominski et al.); color of trajectories encodes whether a critical point is a
maximum (red) or minimum (blue). (c) Turbulent vortices (data courtesy of Ma); color encodes time (0 	 t 	 30) of all maximal trajectories in the large
image; color encodes critical point types (blue for minima, white for saddles, and red for maxima) in the small image.

Fig. 14. Concurrent merges and splits of three critical points. Color enco-
des trajectory ID.

Fig. 15. Cases of a quantum vortex intersecting a 2-, 3-, and 4-simplices,
respectively.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3473

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

each tetrahedral cell has up to one pair of intersected
faces [13], as illustrated in Fig. 15b. As a result, vortex
curves can be reconstructed by associating intersected faces
that share the same tetrahedral cells. The process involves
two passes: first iterating all triangular faces and then scan-
ning tetrahedral cells that have intersected faces.

Vortex Surface Reconstruction. The two-pass curve recon-
struction can be generalized to 4D spacetime to characterize
the trajectory of vortex curves as surfaces. In 4D, each penta-
choron has five tetrahedral faces; each tetrahedron may
intersect a vortex. Since tetrahedron shares triangular sides
in the pentachoron, the number of triangular sides that test
positive may be 3, 4, or 5 (corresponding to Case I, II, or III
in Fig. 15). Each intersection sits on the same 2-manifold of
the vortex surface. In the reconstruction of the vortex sur-
face, the first pass tests all triangular faces in 4D spacetime,
and then the second pass joins all triangular faces that test
positive and share the same pentachoron.

Benefits. The use of spacetime simplicial meshing simpli-
fies and improves on previous implementations based on
cubic meshes [12] and prismatic meshes [13]. In the former
study, ambiguity exists when two vortices penetrate the
same cube. In the latter study, in order to eliminate ambigu-
ities with cubic cells, each spatial cube is tessellated into six
tetrahedra such that each tetrahedron intersects up to one
vortex line. Although mesh elements in individual time-
steps are simplices, prisms are used in spacetime, causing
two problems: (1) two different functions are needed to test
triangular and quadrilateral faces of a prism, and (2) ambi-
guity is still possible with prismatic cells. With simplicial
spacetime meshes, we need only one function to test trian-
gular faces, and there is no ambiguity.

5.2 Case Study of a Superconductivity Simulation

Fig. 16 demonstrates vortex tracking results4 of a time-
dependent Ginzburg–Landau superconductivity simula-
tion, produced by the finite-difference partial differential
equation solver GLGPU [59]. In this case, the resolution of
the mesh is 512� 128� 64, and the number of the timesteps
is 200. As a result, 6.5M out of 251M spacetime triangular
faces tested positive for encircling a vortex, forming a set of
disjoint surfaces.

From the scientific perspective, the dynamics of vortices
determine all electromagnetic properties of the supercon-
ducting materials, and recombinations of vortices are
directly related to energy dissipation [60]. The surface-
based visualization produced by our tools enables scientists
to investigate the time-varying features with a single image.
The reconstructed surface also makes it possible to derive
the moving speed of each vortex when there are no topolog-
ical changes; the moving speed has positive correlation with
the voltage drop, which is critical to the material design.

6 TRACKING 2D FEATURES: ISOSURFACES

Isosurface tracking in FTK is also based on simplicial space-
time meshes. As demonstrated by Bhaniramka et al. [8] and
Ji et al. [9], isosurfaces can be tracked in 3D scalar fields by
extracting and slicing levelsets in R4 regular meshes. While
the major complexities of previous efforts—disambiguation
of isosurfaces intersecting the same hypercube—may be
resolved by triangulation, our implementation with simpli-
cial spacetime meshing intrinsically avoids ambiguities in a
consistent manner and scales to larger computing resources
with the FTK framework.

6.1 Two-Pass Isovolume Reconstruction in
Spacetime Scalar Fields

We formalize the isosurface tracking problem as the recon-
struction of isovolumes in the time-varying scalar field f :
Rnþ1 ! R, isovolumes being the solution of f ¼ c, where c
is the isovalue. In general, the isovolume is an
ðn� 1Þ-dimensional object embedded in Rnþ1. With n ¼ 3,
the object can be further sliced into 2D surfaces with fixed
time values. We assume that f is generic; that is, the scalar
value fi 6¼ c for each vertex i and scalars at vertices of any
k-simplex (k ¼ 1; 2; . . . ; nþ 1) are affinely independent.
Thus, each edge (2-simplex) in the spacetime mesh inter-
sects the level set at most once; the edge neither resides on
the level set nor intersects the it at vertices. Similar to the
robust critical point tracking method in Section 4, we use
symbolic perturbations [16] to relax the generic assumption
and to reconstruct 4D level sets in a robust and consistent
manner for real application data.

As shown in Algorithm 1, the reconstruction consists of
two passes for isovolume reconstruction in 4D: the edge
pass and pentachoron pass. In the first pass, we check
whether every edge (2-simplex) intersects a level set. In the

Fig. 16. Trajectory surfaces of quantum vortices in a 3D superconductivity simulation data with 200 timesteps; color encodes the timestep. Vortices at
timestep 132 are visualized with tubes. The two zoomed subfigures visualize how a pair of vortices exchanges parts before and after the recombina-
tion event.

4. We have cross-validated the results by comparing with our previ-
ous publications. Specific to this simulation, a local gauge transforma-
tion is used for numerical treatment. See more details in [12], [13].

3474 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

second pass, we iterate every pentachoron; edges that inter-
sect the level set are associated and labeled with the same
identifier.

In the case of a 3D time-varying scalar field, the output
isovolumes are 3D objects and can be represented as a tetra-
hedral grid, which can be further sliced into isosurfaces in
individual timesteps for visualization and analysis. As illus-
trated in Fig. 17a, the intersection between a pentachoron
and an isovolume has only two distinct cases. We use the
positive and negative sign, respectively, to represent
whether the scalar value on a vertex is greater or less than
the threshold. In the 4D case I (þ���� or other permuta-
tions), one of the vertices has a different sign than other ver-
tices do; in this case, the isovolume inside the pentachoron
is the single tetrahedron consisting of the four intersections.
In the 4D case II (þþ��� or other permutations), the
pentachoron has six intersections, which form a polytope
and can be triangulated into three tetrahedra, as explained
below.

Without loss of generality, we show that the second case
þþ��� leads to an 3-polytope that can be tessellated
into three tetrahedra. In the five tetrahedral sides of the pen-
tachoron, we find three tetrahedra with þþ�� and the
other two tetrahedra with þ��� . As illustrated in
Fig. 17b, in the 3D case I (þ���), the intersection is a trian-
gle; in the 3D case II (þþ��), the intersection of the tetra-
hedron and the isovolume leads to a coplanar quadrilateral.
As a result, we have two triangles and three quadrilaterals,
forming a prism-like polytope that resides in the same 3D
subspace. With the same staircase triangulation method
described in Section 3.2, we can decompose the polytope
into three non-overlapping tetrahedra in a combinatorial
manner.

6.2 Robustness

The robustness of this method is guaranteed by the assump-
tion that the function is generic; that is, the scalar value of
each vertex is either greater or less than the isovalue. For
real problems that usually do not observe this assumption,
degenerate cases may appear. For example, should the sca-
lar value of a vertex exactly equal the isovalue, the intersec-
tion may or may not be identified by other edges that share
the same vertex, leading to unstable results. Should an edge
reside on an isosurface, every point on the edge is part of
the isosurface, leading to numerical instabilities.

In nongeneric cases, we ensure the robustness with the
same SoS programming technique [16] used for robust criti-
cal point tracking (described in Section 4.3), and we regard
the isosurface/edge intersection test as a special case of crit-
ical point detection in a 1D vector field. Thus, if an

intersection is on any vertex of the edge, the SoS prevents
the divisor from becoming zero by adding a symbolic per-
turbation, such that the intersection is exclusively associated
with one of the edges that share the same vertex.

6.3 Case Studies

We demonstrate our isovolume reconstruction with both
synthetic and simulation data in Fig. 18 and below.

Synthetic Data. We show in Fig. 18a the reconstruction of
the isovalue at f ¼ 0 for the function fðx; y; z; tÞ ¼ x� at on
a 21� 21� 21 grid and 12 timesteps, with a ¼ 0:9. Since the
closed form of the surface trajectory (x ¼ at) is available, we
can verify that the reconstructed isovolume and the isosur-
faces sliced from the isovolume are correct.

Supernova Simulation Data. We reconstruct the isovolume
of a supernova simulation dataset [61] with the isovalue of
0.8 and visualize the sliced isosurfaces of four timesteps in
Fig. 18b. The resolution of the data is 4323, which in turn
produces
 6G spacetime edges to test intersections for the
4-timestep data. As a result, the isovolume consists of 25M
intersection points and 141M tetrahedra, which can be
sliced back into individual timesteps for visualization and
analysis.

6.4 Comparison With Existing Isosurface-Tracking
Algorithms

Compared with existing methods of isosurfacing in higher
dimensions [8], [9], the benefits of our method include (1)
straightforward implementation, (2) no disambiguation
cases, (3) guaranteed robustness, and (4) straightforward
parallelization with GPUs and distributed environments.
First, the two-pass algorithm can be written in a few lines of
code based on FTK meshing APIs; there is no need to gener-
ate large lookup tables for higher-dimensional marching
cubes. Second, compared with marching cubes [7], no ambi-
guity cases exist with simplicial meshes. Our method can be
viewed as a generalization of marching tetrahedra [14] in
higher dimensions, which automatically eliminates any
ambiguities. Third, the use of the simplicial mesh makes it
possible to ensure robustness with symbolic perturbations,
leading to consistent tracking results. Fourth, our two-pass
algorithm can be easily distributed and computed with par-
allel computing resources.

Fig. 17. Cases of an isovolume intersecting a pentachoron (a) and a tet-
rahedron (b). Signs indicate whether the scalar value on a vertex is
greater or less than the given isovalue.

Fig. 18. Tracking isosurfaces: (a) projected isovolume (top) and isosurfa-
ces (bottom) of synthetic data and (b) isosurfaces of supernova data.
Colors in (a) and (b) encode time and surface ID, respectively.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3475

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

7 FTK LIBRARY DESIGN

FTK’s software design takes into account parallelization for
both distributed- and shared-memory environments, and
the needs of both in situ and post hoc analyses.

Simplicial Spacetime Mesh APIs. FTK provides three func-
tions, namely, element_for, sides, and side_of, to
support the development of feature-tracking algorithms
that traverse mesh elements along different dimensions of
spacetime simplical meshes. The element_for function
takes a user-defined labmda function as the input and ena-
bles the traversal of all k-simplices. The sides function
returns the set of ðk� 1Þ-simplicial sides for the given k-sim-
plex; the side_of function returns the set of ðkþ 1Þ-simpli-
ces, whose side contains the input k-simplex. All three
functions are frequently used in the implementation of fea-
ture-tracking algorithms in FTK. For example, in the first
pass of 3D critical point tracking (Section 4), we use ele-

ment_for(3, detect_critical_point) to detect criti-
cal points in all 3-simplicial cells in the 4D spacetime mesh.
In the second pass, we use both sides and side_of to
help determine how triangular faces should be connected.

Inline Numerical Functions. FTK implements numerical
functions—small-matrix linear algebra and symbolic per-
turbations—for feature-tracking algorithms. The implemen-
tation is header-only and template-based, such that the
numerical functions can be directly compiled with C/C+
+/CUDA and executed in GPU kernel functions. For exam-
ple, in 3D critical point tracking, the robust critical point test
relies on the sign of a determinant calculated by symbolic
perturbation. If test positive, the exact location of the critical
point can be estimated by solving a linear system, and the
type of the critical point is determined by the eigenvalues of
the Jacobian matrix.

Distributed Union-Find. We use an asynchronous distrib-
uted union-find method [62] to enable distributed feature
tracking. Union-find is a key algorithm for partitioning a set
of mesh elements into disjoint subsets. By eliminating fre-
quent and expensive global synchronizations, this method
outperforms existing implementations based on the bulk-
synchronous parallel programming model.

I/O. FTK can be built with various I/O libraries, includ-
ing VTK [1], NetCDF [63], HDF5 [64], and ADIOS2 [65], to
read and write data in a variety of formats. Data streamed
in situ can be loaded into memory with ADIOS2. FTK’s out-
put formats include VTK, text, and Python objects. With
VTK, trajectories and surfaces are transformed into vtkPo-

lyData; isovolumes are written in vtkUnstructured-

Grid formats. FTK also supports human-readable text
formats. Python objects can be retrieved and serialized into
either JSON or pickle formats.

8 IN SITU AND POST HOC ANALYSIS WITH FTK

FTK provides four different utilities for end users: VTK/
ParaView filters, a command line interface, Python bindings,
and a C++ programming interface. The VTK/ParaView fil-
ters are designed for interactive visualization, with the possi-
bility to couple simulations through ParaView Catalyst and
other in situ frameworks. The command line interface can be
used for loosely coupled in situ processing and post hoc
analyses. The Python bindings are designed for post hoc

analyses and integration with data science libraries. The C++
programming interface is designed mainly for tightly cou-
pled in situ analyses. Readers can find documents and exam-
ples in the FTK repository: https://github.com/hguo/ftk.

ParaView Plugins. We developed ParaView data sources
and filters for users to use FTK interactively. Synthetic data
sources, including double gyre, spiral woven, and merger
functions demonstrated in this paper, are available for users
to learn FTK filters. FTK filters include vtkCritical-

PointTracker and vtkLevelsetTracker. Currently,
the inputs need to be image data types, and the output
vtkPolyData can be directly rendered and further proc-
essed with other filters with ParaView. Fig. 19 demonstrates
a critical point tracking case: a scalar field is generated from
a synthetic data source, and then critical point trajectories
are extracted and transformed into tubes for visualization.

Command Line Interface.We provide executables for track-
ing critical points, quantum vortices, and isosurfaces in data
obtained from files and in situ data streams. For file inputs,
FTK supports multiple file formats, including NetCDF,
HDF5, VTK, ADIOS2, and raw binaries. Users need to
explicitly specify variable names for self-described formats.
For in situ data streams, users must specify ADIOS2 stream
sources, variable names, mesh information, and other
needed parameters. The command line interface automati-
cally loads and handles data in parallel if executed with
MPI. Users are also provided with options to use multi-
threading and GPU accelerators.

Python bindings enables post hoc feature tracking and
analysis in Python. PyFTK functions take NumPy arrays as
inputs, allowing users to load data with Python’s netCDF4,
h5py, and other I/O libraries. PyFTK also enables easy inte-
gration with other libraries. One may load scalar field data
with the NetCDF4 Python module, apply Gaussian smooth-
ing in spacetime with SciPy, and then track critical points
with our Python bindings.

C++ Programming Interface. C++ APIs enable users to
couple simulation codes with FTK and/or customize fea-
ture-tracking algorithms. The former can be achieved with
user-level APIs; the latter requires the use of developer-level
APIs. User-level APIs are available to users to feed time-
varying data into FTK algorithms. Users can call push_-
field_data() functions to feed individual timesteps to
FTK. Developer-level APIs are provided to customize fea-
ture-tracking algorithms by using meshing APIs to access
spacetime mesh elements.

Fig. 19. Example use of FTK’s ParaView plugins.

3476 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hguo/ftk

9 PERFORMANCE EVALUATION

We benchmarked the scalability of FTK on Summit, a 200-
petaflop supercomputer at Oak Ridge National Laboratory.
The system consists of 4,608 IBM AC922 computing nodes,
each of which has two 22-core Power9 CPUs and six NVI-
DIA Tesla V100 GPUs. The clock frequency of each CPU is
3.07 GHz, and each node is equipped with 1,600 GB of high-
bandwidth memory. The interconnection between nodes is
100 Gbps EDR InfiniBand. As shown in Fig. 20, we charac-
terize the strong scalability by measuring the execution time
of solving three feature-tracking problems with different
numbers of processes, each of which uses either one GPU or
one CPU core.

GPU Acceleration. Compared with the CPU perfor-
mance, the GPU acceleration typically ranges from Oð100Þ
to Oð1000Þ. The acceleration is expected because there is no
synchronization or communication between GPU threads;
each thread independently tests a mesh element. The mag-
nitude of GPU acceleration varies, possibly because of dif-
ferent complexities of handling mesh elements, precision of
numeric algorithms (double versus single), and data access
cost (e.g., accessing scalars, vectors, and Jacobians in critical
point tracking versus accessing only scalars in isosurface
tracking). We will study performance variability in future
work.

Scalability. CPUs appear to scale better than GPUs. As
we continue to increase the number of processes each by a
factor of 2, the acceleration of using GPUs saturates faster
than when using CPUs. Because the iteration over simplices
is accelerated by GPUs, the non-GPU cost (e.g., data move-
ment and connected component labeling) dominates when
the workload per process decreases. In our applications
such as fusion and superconductivity simulations, which
typically produce 3 to 4 timesteps per second [13], [66], our
algorithms are able to keep up with the data-producing rate
in situ. In the future we will further investigate the perfor-
mance and resource consumption during in situ processing.

10 DISCUSSION

We discuss FTK’s design limitations, lessons learned, and
comparison with other visualization libraries.

10.1 Design Limitations

FTK builds on top of SoS and simplicial spacetime subdivi-
sions and thus inherits limitations of both techniques.

Limitations of SoS. SoS produces consistent results
regardless of degeneracies given the predetermined vertex
ordering system, but different vertex ordering systems may
lead to different results because of SoS. In handling degen-
eracies, certain choices are implicitly made to associate fea-
tures with mesh elements. We will investigate how
different vertex ordering could change the results in the
future.

Limitations of Simplicial Subdivision. Simplicial subdivision
comes at a price although it has advantages in producing
robust and combinatorial tracking results. As documented
by Carr et al. [48], subdivisions of cubic cells could lead to
visual artifacts and topology changes in isosurfaces based
on the choice of subdivision schemes. With simplicial space-
time subdivision, we observe similar artifacts in critical
point trajectories and isovolumes in the presence of noise.
In future work, we will investigate how different spacetime
subdivisions affect feature-tracking results, and we will
offer different triangulation schemes in FTK.

10.2 Lessons Learned From Developing FTK

Our objectives—simplifying, scaling, and delivering fea-
ture-tracking algorithms—align with the design goals of
existing frameworks. We share the filter and pipeline design
patterns with other frameworks, which enable easy exten-
sion and integration in the future.

Simplified Time-Varying Data Access. A key advantage of
FTK is treating space and time dimensions equally in imple-
menting feature-tracking algorithms. For example, in the
reconstruction of critical point trajectories in 4D spacetime,
the tracking algorithm requires access to the 4D volume, but
time-varying data are usually read/produced in a stream-
ing manner. FTK’s design allows hiding the details of time-
varying data access by distinguishing ordinal/interval ele-
ments in the spacetime meshing design. If one needs to
implement a new algorithm similar to Algorithm 1, the out-
of-core time-varying data access and parallelism are already
managed by our framework.

Synthetic Data and Unit Tests. We evaluate synthetic data
to verify our feature-tracking algorithms with ground truth.
We tailor synthetic data in order to incorporate corner cases
rarely seen in real data. For example, in the moving extre-
mum case, we design critical point trajectories that intersect
vertices and edges, in order to test whether the output tra-
jectory is one single line with the expected initial location
and direction. As one of many unit tests in FTK, we use ran-
dom numbers to define expected trajectories (Fig. 10) and to
verify the correctness of the outputs using single/multiple
MPI processes, with or without GPUs.

10.3 Comparison With Other Visualization Libraries

Comparison With General-Purpose Visualization Libraries.
Compared with VTK [1] and VTK-m [2], FTK features the
spacetime meshing design and eases the access to time-
varying data. We hide the details of accessing/caching 4D
data with the element_for() function; a developer can
use the same lambda function to iterate both ordinal and

Fig. 20. Timings, in seconds, of critical point tracking, isovolume, and
quantum vortices computations for different numbers of CPU cores and
GPUs on the Summit supercomputer.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3477

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

interval mesh elements in 4D. To the best of our knowledge,
the majority of VTK data structures and filters are purposed
for individual timesteps; one needs to manage and cache
time-varying data if a filter needs the access to consecutive
timesteps in a visualization pipeline.

Comparison With Scalar Field Topology Libraries. Compared
with TTK [5], FTK enables the tracking of a different family
of features—“local” features that can be localized in indi-
vidual mesh elements—as opposed to “global” features
such as merge trees, Morse-smale complexes, and Jacobi
sets. For the tracking of local features, FTK enables data par-
allelism and out-of-core data management because there are
no task dependencies in mesh element traversal.

11 CONCLUSIONS AND FUTURE WORK

This paper demonstrates the use of spacetime simplicial
meshes for simplifying, scaling, and delivering feature-
tracking algorithms, which are implemented in a suite of
feature-tracking tools called FTK. In the future we plan to
investigate several aspects. First, we will expand FTK’s sup-
port of features including parallel vectors (1D features in
3D), ridge/valley surfaces (2D features in 3D), and interval
volumes (3D features in 3D). Second, we will develop space-
time mesh generalizations for cubic cells, finite volume
meshes, and adaptive mesh refinements for broader scien-
tific applications. Third, we will incorporate scales as the
fifth dimension for scale-space tracking.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their valuable
feedback. This work was supported in part by the Exascale
Computing Project (ECP), through Project 17-SC-20-SC, a
collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administra-
tion, as part of the Co-design center for Online Data Analy-
sis and Reduction (CODAR) [66], in part by the Scientific
Discovery through Advanced Computing (SciDAC) Pro-
gram, Office of Advanced Scientific Computing Research,
U.S. Department of Energy, in part by the Laboratory
Directed Research and Development (LDRD) funding from
Argonne National Laboratory, provided by the Director,
Office of Science, U.S. Department of Energy, under Grant
DE-AC02-06CH11357, and in part by the National Science
Foundation Division of Information and Intelligent Systems
under Grant 1955764.

REFERENCES

[1] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Tool-
kit, 4th ed. Clifton Park, NY, USA: Kitware, 2006.

[2] K. Moreland et al., “VTK-m: Accelerating the visualization toolkit
for massively threaded architectures,” IEEE Comput. Graph. Appl.,
vol. 36, no. 3, pp. 48–58, May/Jun. 2016.

[3] U. Ayachit, The ParaView Guide: A Parallel Visualization Application.
Clifton Park, NY, USA: Kitware, 2015.

[4] H. Childs et al., “VisIt: An end-user tool for visualizing and ana-
lyzing very large data,” in High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, E. W. Bethel, H. Childs,
and C. Hansen, Eds., Boca Raton, FL, USA: CRC Press, 2012,
pp. 357–372.

[5] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux,
“The topology toolkit,” IEEE Trans. Vis. Comput. Graph., vol. 24,
no. 1, pp. 832–842, Jan. 2018.

[6] G. Bradski, “The openCV library,” Dr. Dobb’s J. Softw. Tools, vol.
120, pp. 122–125, 2000.

[7] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3D surface construction algorithm,” in Proc.14th Annu. Conf.
Comput. Graph. Interactive Techn., 1987, pp. 163–169.

[8] P. Bhaniramka, R. Wenger, and R. Crawfis, “Isosurface construc-
tion in any dimension using convex hulls,” IEEE Trans. Vis. Com-
put. Graph., vol. 10, no. 2, pp. 130–141, Mar./Apr. 2004.

[9] G. Ji, H. Shen, and R. Wenger, “Volume tracking using higher
dimensional isosurfacing,” in Proc. 14th IEEE Vis. Conf., 2003, pp.
209–216.

[10] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen,
“Topology tracking for the visualization of time-dependent two-
dimensional flows,” Comput. Graph., vol. 26, no. 2, pp. 249–257, 2002.

[11] C. Garth, X. Tricoche, and G. Scheuermann, “Tracking of vector
field singularities in unstructured 3D time-dependent datasets,”
in Proc. IEEE Vis., 2004, pp. 329–336.

[12] H. Guo, C. L. Phillips, T. Peterka, D. Karpeyev, and A. Glatz,
“Extracting, tracking and visualizing magnetic flux vortices in 3D
complex-valued superconductor simulation data,” IEEE Trans.
Vis. Comput. Graph., vol. 22, no. 1, pp. 827–836, Jan. 2016.

[13] H. Guo, T. Peterka, and A. Glatz, “In situ magnetic flux vor-
tex visualization in time-dependent Ginzburg-Landau super-
conductor simulations,” in Proc. IEEE Pacific Vis. Symp., 2017,
pp. 71–80.

[14] A. Doi and A. Koide, “An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells,” IEICE Trans. Inf. Syst.,
vol. E74-D, no. 1, pp. 214–224, 1991.

[15] H. Bhatia, A. Gyulassy, H. Wang, P. Bremer, and V. Pascucci,
“Robust detection of singularities in vector fields,” in Topological
Methods in Data Analysis and Visualization III, Theory, Algorithms,
and Applications, P. Bremer, I. Hotz, V. Pascucci, and R. Peikert,
Eds. Cham, Switzerland: Springer, 2014, pp. 3–18.

[16] H. Edelsbrunner and E. P. M€ucke, “Simulation of simplicity:
A technique to cope with degenerate cases in geometric algo-
rithms,” ACM Trans. Graph., vol. 9, no. 1, pp. 66–104, 1990.

[17] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch,
“The state of the art in flow visualisation: Feature extraction and
tracking,” Comput. Graph. Forum, vol. 22, no. 4, pp. 775–792, 2003.

[18] C. Heine et al., “A survey of topology-based methods in visual-
ization,” Comput. Graph. Forum, vol. 35, no. 3, pp. 643–667, 2016.

[19] A. L. Haynes and C. E. Parnell, “A trilinear method for finding
null points in a three-dimensional vector space,” AIP Phys. Plas-
mas, vol. 14, no. 8, 2007, Art. no. 082107.

[20] J. Helman and L. Hesselink, “Representation and display of vector
field topology in fluid flow data sets,” Comput., vol. 22, no. 8,
pp. 27–36, Aug. 1989.

[21] X. Tricoche, G. Scheuermann, and H. Hagen, “A topology simpli-
fication method for 2D vector fields,” in Proc. IEEE Vis., 2000,
pp. 359–366.

[22] X. Liang et al., “Toward feature-preserving 2D and 3D vector field
compression,” in Proc. IEEE Pacific Vis. Symp., 2020, pp. 81–90.

[23] T. Weinkauf, H. Theisel, K. Shi, H. Hege, and H. Seidel,
“Extracting higher order critical points and topological simplifica-
tion of 3D vector fields,” in Proc. IEEE Vis., 2005, pp. 559–566.

[24] K. Polthier and E. Preuß, “Identifying vector field singularities
using a discrete Hodge decomposition,” in Visualization and Math-
ematics III, H. Hege and K. Polthier, Eds., Berlin, Germany:
Springer, 2003, pp. 113–134.

[25] G. M. Nielson and B. Hamann, “The asymptotic decider:
Resolving the ambiguity in marching cubes,” in Proc. Vis., 1991,
pp. 83–91.

[26] G. M. Nielson, “On marching cubes,” IEEE Trans. Vis. Comput.
Graph., vol. 9, no. 3, pp. 283–297, Jul.–Sep. 2003.

[27] H. Carr and N. Max, “Subdivision analysis of the trilinear
interpolant,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 4,
pp. 533–547, Jul.–Aug. 2010.

[28] H. Carr and J. Snoeyink, “Representing interpolant topology for
contour tree computation,” in Topology-Based Methods in Visualiza-
tion II (Mathematics and Visualization), H.-C. Hege, K. Polthier,
and G. Scheuermann, Eds., Berlin, Germany: Springer, 2009,
pp. 59–74.

[29] J. M. Greene, “Locating three-dimensional roots by a bisection
method,” J. Comput. Phys., vol. 98, no. 2, pp. 194–198, 1992.

[30] S. Mann and A. P. Rockwood, “Computing singularities of 3D
vector fields with geometric algebra,” in Proc. IEEE Vis., 2002,
pp. 283–289.

3478 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

[31] W. Li, B. Vallet, N. Ray, and B. L�evy, “Representing higher-order
singularities in vector fields on piecewise linear surfaces,” IEEE
Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 1315–1322, Sep./Oct.
2006.

[32] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang, “Efficient
Morse decompositions of vector fields,” IEEE Trans. Vis. Comput.
Graph., vol. 14, no. 4, pp. 848–862, Jul./Aug. 2008.

[33] G. Reeb, “Sur les points singuliers d’une forme de Pfaff compl�ete-
ment int�egrable ou d’une fonction num�erique,” Comptes Rendus
Acad. Sci., vol. 222, pp. 847–849, 1946.

[34] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” in Proc. 11th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 2000, pp. 918–926.

[35] H. Theisel and H.-P. Seidel, “Feature flow fields,” in Proc. Symp.
Data Vis., 2003, pp. 141–148.

[36] T. Weinkauf, H. Theisel, A. V. Gelder, and A. T. Pang, “Stable fea-
ture flow fields,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 6,
pp. 770–780, Jun. 2011.

[37] T. Klein and T. Ertl, “Scale-space tracking of critical points in 3D
vector fields,” in Topology-based Methods in Visualization (Mathe-
matics and Visualization), H. Hauser, H. Hagen, and H. Theisel,
Eds., Berlin, Germany: Springer, 2007, pp. 35–49.

[38] J. Reininghaus, J. Kasten, T. Weinkauf, and I. Hotz, “Efficient com-
putation of combinatorial feature flow fields,” IEEE Trans. Vis.
Comput. Graph., vol. 18, no. 9, pp. 1563–1573, Sep. 2012.

[39] B. Wang, P. Rosen, P. Skraba, H. Bhatia, and V. Pascucci,
“Visualizing robustness of critical points for 2D time-varying vec-
tor fields,” Comput. Graph. Forum, vol. 32, no. 3, pp. 221–230, 2013.

[40] P. Skraba and B. Wang, “Interpreting feature tracking through the
lens of robustness,” in Topological Methods in Data Analysis and
Visualization III, P. Bremer, I. Hotz, V. Pascucci, and R. Peikert,
Eds., Cham, Switzerand: Springer, 2014, pp. 19–37.

[41] C. L. Phillips, T. Peterka, D. Karpeyev, and A. Glatz, “Detecting
vortices in superconductors: Extracting one-dimensional topologi-
cal singularities from a discretized complex scalar field,” Phys.
Rev. E, vol. 91, no. 2, 2015, Art. no. 023311.

[42] Y. Guo, X. Liu, C. Xiong, X. Xu, and C. Fu, “Towards high-quality
visualization of superfluid vortices,” IEEE Trans. on Vis. and Com-
put. Graph., vol. 24, no. 8, pp. 2440–2455, Aug. 2018.

[43] C. L. Phillips, H. Guo, T. Peterka, D. Karpeyev, and A. Glatz,
“Tracking vortices in superconductors: Extracting singularities
from a discretized complex scalar field evolving in time,” Phys.
Rev. E, vol. 93, no. 2, 2016, Art. no. 023305.

[44] M. Jiang, R. Machiraju, and D. Thompson, “Detection and visuali-
zation of vortices,” in The Visualization Handbook, C. D. Hansen
and C. R. Johnson, Eds., Amsterdam, the Netherlands: Elsevier,
2005, pp. 937–962.

[45] J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid
Mechanics, vol. 285, pp. 69–94, 1995.

[46] N. J. Zabusky, O. N. Boratav, R. B. Pelz, M. Gao, D. Silver, and
S. P. Cooper, “Emergence of coherent patterns of vortex stretching
during reconnection: A scattering paradigm,” Phys. Rev. Lett.,
vol. 67, no. 18, pp. 2469–2472, 1991.

[47] D. Silver and X. Wang, “Tracking scalar features in unstructured
datasets,” in Proc. Vis., 1998, pp. 79–86.

[48] H. Carr, T. M€oller, and J. Snoeyink, “Artifacts caused by simplicial
subdivision,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 2,
pp. 231–242, Mar./Apr. 2006.

[49] D. Silver and X. Wang, “Volume tracking,” in Proc. IEEE Vis.,
1996, pp. 157–164.

[50] M. Ishii, M. Fernando, K. Saurabh, B. Khara, B. Ganapathysu-
bramanian, and H. Sundar, “Solving PDEs in space-time: 4D
tree-based adaptivity, mesh-free and matrix-free approaches,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage, Anal.,
2019, pp. 1–61.

[51] S. Thite, “Adaptive spacetime meshing for discontinuous galerkin
methods,” Comput. Geometry, vol. 42, no. 1, pp. 20–44, 2009.

[52] J. A. D. Loera, J. Rambau, and F. Santos, Triangulations: Structures
for Algorithms and Applications. Berlin, Germany: Springer, 2010.

[53] S. Shadden, “Time-dependent double gyre,” Accessed: Nov. 14,
2020. [Online]. Available: https://shaddenlab.berkeley.edu/
uploads/LCS-tutorial/examples.html

[54] T. Weinkauf and H. Theisel, “Streak lines as tangent curves of a
derived vector field,” IEEE Trans. Vis. Comput. Graph., vol. 16,
no. 6, pp. 1225–1234, Nov./Dec. 2010.

[55] C. S. Chang and S. Ku, “Spontaneous rotation sources in a quies-
cent tokamak edge plasma,” Phys. of Plasmas, vol. 15, 2008,
Art. no. 062510.

[56] K.-L. Ma, “TVDR: time-varying volume data repository,”
Accessed: Nov. 14, 2020. [Online]. Available: https://www.cs.
ucdavis.edu/ ma/ITR/tvdr.html

[57] T. F. Banchoff, “Critical points and curvature for embedded poly-
hedra,” J. Differ. Geometry, vol. 1, pp. 245–256, 1967.

[58] D. Pugmire, T. Peterka, and C. Garth, “Parallel integral curves,” in
High Performance Visualization: Enabling Extreme Scale Scientific
Insight, E. W. Bethel, H. Childs, and C. Hansen, Eds., Boca Raton,
FL, USA: CRC Press, pp. 91–113, 2012.

[59] I. Sadovskyy, A. Koshelev, C. Phillips, D. Karpeyev, and A. Glatz,
“Stable large-scale solver for Ginzburg-Landau equations for super-
conductors,” J. Comput. Phys., vol. 294, no. C, pp. 639–654, 2015.

[60] A. Glatz, V. K. Vlasko-Vlasov, W. K. Kwok, and G. W. Crabtree,
“Vortex cutting in superconductors,” Phys. Rev. B, vol. 94, 2016,
Art. no. 064505.

[61] V. Morozova, D. Radice, A. Burrows, and D. Vartanyan, “The
gravitational wave signal from core-collapse supernovae,” Astro-
physical J., vol. 861, no. 10, pp. 1–19, 2018.

[62] J. Xu et al. “Asynchronous and load-balanced union-find for dis-
tributed and parallel scientific data visualization and analysis,”
IEEE Trans. Vis. Comput. Graph., to be published, doi: 10.1109/
TVCG.2021.3074584.

[63] R. Rew and G. Davis, “NetCDF: An interface for scientific data
access,” IEEE Comput. Graph. Appl., vol. 10, no. 4, pp. 76–82,
Jul. 1990.

[64] The HDF Group. Hierarchical data format version 5. Accessed:
Apr. 20, 2021. [Online]. Available: https://www.hdfgroup.org/
solutions/hdf5

[65] J. F. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable,
metadata rich IO methods for portable high performance IO,”
in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1–10.

[66] I. Foster et al. “Online data analysis and reduction: An important
co-design motif for extreme-scale computers,” Int. J. High-Perform.
Comput. Appl., 2020. to be published.

Hanqi Guo (Member, IEEE) received the BS
degree in mathematics and applied mathematics
from the Beijing University of Posts and Telecom-
munications in 2009 and the PhD degree in com-
puter science from Peking University in 2014. He
is currently an assistant computer scientist with
Argonne National Laboratory, a scientist with the
University of Chicago Consortium for Advanced
Science and Engineering, and a fellow with the
Northwestern Argonne Institute for Science and
Engineering. His research interests include data

analysis, visualization, and machine learning for scientific data. He was
the recipient of the Best Paper Award in the IEEE VIS 2019 and the
2017 Postdoctoral Performance Award in Basic Research at Argonne
National Laboratory.

David Lenz received the BS degree in mathe-
matics from the University of Notre Dame in 2015
and the PhD degree in mathematics from the Uni-
versity of California San Diego in 2020. He is cur-
rently a postdoctoral appointee with the
Mathematics and Computer Science Division,
Argonne National Laboratory. His research inter-
ests include high-dimensional meshing, space-
time finite element methods, and approximation
theory.

Jiayi Xu received the BS degree in computer sci-
ence and technology from Chu Kochen Honors
College, Zhejiang University in 2014. He is cur-
rently working toward the PhD degree with the
Department of Computer Science and Engineer-
ing, Ohio State University. His research interests
include graph visualization and scientific feature
tracking.

GUO ETAL.: FTK: A SIMPLICIAL SPACETIME MESHING FRAMEWORK FOR ROBUSTAND SCALABLE FEATURE TRACKING 3479

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/examples.html
https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/examples.html
https://www.cs.ucdavis.edu/ ma/ITR/tvdr.html
https://www.cs.ucdavis.edu/ ma/ITR/tvdr.html
http://dx.doi.org/10.1109/TVCG.2021.3074584
http://dx.doi.org/10.1109/TVCG.2021.3074584
https://www.hdfgroup.org/solutions/hdf5
https://www.hdfgroup.org/solutions/hdf5

Xin Liang received the BS degree in computer
science from Peking University in 2014, with a
minor in math and applied math, and the PhD
degree in computer science from the University
of California, Riverside, in 2019. He is currently
an assistant professor with the Department of
Computer Science, Missouri University of Sci-
ence and Technology (MS&T). Before joining
MS&T, he was a computer or data scientist with
Workflow Systems Group, Oak Ridge National
Laboratory, where he led the ESAMR project
funded by the Director’s Research and Develop-
ment Program.

Wenbin He received the PhD in computer sci-
ence and engineering from Ohio State University
in 2019 and the BS degree from the Department
of Software Engineering, Beijing Institute of Tech-
nology in 2012. He is currently a research scien-
tist with Bosch Research North America. His
research interests include analysis and visualiza-
tion of large-scale scientific data, uncertainty
visualization, and flow visualization.

Iulian R. Grindeanu received the BS degree in
aerospace engineering from Military Technical
Academy, Romania, and the MS and PhD degrees
in mechanical engineering from the University of
Iowa. He is currently a software development spe-
cialist with Mathematics and Computer Science
Division, ArgonneNational Laboratory. He has auth-
ored several journal and conference papers. In
1986, he was the recipient of the gold medal at the
BalkanMathematicalOlympiad and the silver medal
at the International Mathematical Olympiad. Since
1996, he has been amember of ASMEandAIAA.

Han-Wei Shen (Member, IEEE) received the BS
degree from the Department of Computer Sci-
ence and Information Engineering, National Tai-
wan University in 1988, the MS degree in
computer science from the State University of
New York, Stony Brook, in 1992, and the PhD
degree in computer science from the University
of Utah in 1998. He is currently a full professor
with Ohio State University. From 1996 to 1999, he
was a research scientist with NASA Ames
Research Center in Mountain View, California.

His primary research interests include scientific visualization and com-
puter graphics. He was the recipient of the National Science
Foundation’s CAREER Award, the U.S. Department of Energy’s Early
Career Principal Investigator Award, and the Outstanding Teaching
Award twice with the Department of Computer Science and Engineering,
Ohio State University.

Tom Peterka (Member, IEEE) received the PhD
in computer science from the University of Illinois
at Chicago in 2007. He is currently a computer
scientist with Argonne National Laboratory, a sci-
entist with the University of Chicago Consortium
for Advanced Science and Engineering, an
adjunct assistant professor with the University of
Illinois at Chicago, and a fellow with the North-
western Argonne Institute for Science and Engi-
neering. He currently leads several DOE- and
NSF-funded projects. He has authored or coau-

thored more than 100 peer-reviewed papers in conferences and journals
that include the ACM/IEEE SC, IEEE IPDPS, IEEE VIS, the IEEE Trans-
actions on Visualization and Computer Graphics, and the ACM SIG-
GRAPH. His research focuses on large-scale parallel in situ analysis of
scientific data. He was the recipient of the 2017 DOE Early Career
Award and four best paper awards.

Todd Munson is currently a senior computa-
tional scientist with Argonne National Laboratory,
a senior scientist with the Consortium for
Advanced Science and Engineering, University of
Chicago, and the software ecosystem and deliv-
ery control account manager for the Exascale
Computing Project. His research interests include
numerical methods for nonlinear optimization and
variational inequalities to workflow optimization
for online data analysis and reduction.

Ian Foster (Fellow, IEEE) received the BSc
(Hons I) degree in computer science from the
University of Canterbury, New Zealand, and the
PhD degree in computer science from Imperial
College, U.K. He is currently a distinguished fel-
low, a senior scientist, the director of the Data
Science and Learning Division, Argonne National
Laboratory, and a professor with the Department
of Computer Science, the University of Chicago.
He was the recipient of the Global Information
Infrastructure Next Generation award, the British

Computer Society’s Lovelace Medal, the R&D Magazine’s Innovator of
the Year, the IEEE Tsutomu Kanai Award, and honorary doctorates from
the University of Canterbury, New Zealand and CINVESTAV, Mexico.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3480 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 8, AUGUST 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on May 26,2022 at 16:18:34 UTC from IEEE Xplore. Restrictions apply.

