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Roth’s theorem over arithmetic function fields

Paul Vojta

Roth’s theorem is extended to finitely generated field extensions of (O, using Moriwaki’s theory of heights.

In his work dating back at least to the 1970s, Serge Lang observed that many results in diophantine
geometry that were true over number fields were also true for fields finitely generated over Q. Following
Moriwaki, the latter will be called arithmetic function fields in this paper.

Lang felt that such fields were a more natural setting for diophantine geometry; see [Lang 1974; 1986].

For example, the Mordell-Weil theorem and Faltings’ theorem on the Mordell conjecture are true over
arithmetic function fields — see Corollaries 4.3 and 2.2, respectively, in Chapter I of [Lang 1991].! Both
are proved using induction on the transcendence degree, using the cases of the theorems over (classical)
function fields in the inductive step. Correspondingly, Lang phrased his early conjectures on “Mordellicity”
in terms of rational points over subfields of C finitely generated over Q (i.e., arithmetic function fields).

As for integral points, Siegel’s theorem on integral points holds also for points integral over entire
rings of finite type over Z [Lang 1960, Theorem 4]; see also [Lang 1991, Chapter IX, Theorem 3.1] and
Corollary 4.11, below. In that spirit, Lang conjectured that results on integral points over number rings
should extend to integral points over entire rings finitely generated over Z; see [Lang 1974].

A weaker version of the Dirichlet unit theorem is also true (it gives only an inequality for the rank,
since finiteness of the class group does not hold for arithmetic function fields). One can then extend the
Mordell-Weil theorem to include integral points on semiabelian varieties over arithmetic function fields.
This is done in the usual way.

More recently, Moriwaki [2000] formulated a theory of heights over arithmetic function fields, and
showed that they have a many of the standard properties, including independence up to O (1) of the
choices made, Northcott’s theorem, and canonical heights on abelian varieties.

Moriwaki’s work opened the door for theorems on diophantine approximation to be extended to
arithmetic function fields.

This paper takes a first step in this direction, by extending Roth’s theorem to arithmetic function fields.
This uses Moriwaki’s theory of height functions and an obvious extension of his work to Weil functions
(local heights). As a consequence, it follows that arithmetic function fields are quite close to number
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fields, in the sense that Roth’s theorem can be proved using extensions of the standard proof over number
fields, as opposed to arguments that reduce to the number field case.

This paper was suggested by a paper of Rastegar [2015] (as it turns out, though, his theorem can be
proved more easily without using results of this paper).

Schmidt’s subspace theorem should extend to arithmetic function fields using the same methods. That
will be the subject of future work. I thank one of the referees for pointing me in this direction.

The Masser—Oesterlé abc conjecture should also extend to arithmetic function fields. (A proof of the
abc conjecture has been proposed by Mochizuki, but it has not attained wide acceptance yet.) Also, I
conjecture that Conjectures 15.6, 23.4, 25.1, 25.3, 26.1, and 30.1 of [Vojta 2011] generalize to arithmetic
function fields.

Recall that in the classical diophantine theory of function fields, the function field in question is the
function field K of a projective variety B over a ground field F. Often F is taken to be algebraically
closed; hence, following Moriwaki [2002, Section 1], we refer to such function fields as geometric function
fields. When dim B > 1, it is necessary to choose a projective embedding of B, in order to determine
degrees of the prime divisors on B to be used in the product formula. When the ground field is infinite,
there may be infinitely many elements of K whose height is below a fixed bound. It is true, however,
that a set of such elements can belong to only a finite number of algebraic families. A similar principle
applies also to Northcott’s finiteness theorem (for algebraic points on a projective variety, rational over a
field of bounded degree over K and of bounded height relative to an ample divisor).

Moriwaki [2002, Section 2] refers to fields finitely generated over Q as arithmetic function fields.
They have this name because they have features of both function fields and number fields. An arithmetic
function field K arises as the function field of an arithmetic variety; i.e., an integral scheme B, flat and
projective over Spec Z. As is the case of geometric function fields, when dim B > 1 it is necessary to
choose metrized line sheaves on B in order to determine weights for the prime divisors on B. Unlike the
case of geometric function fields, though, not all places are nonarchimedean; in fact, if dim B > 1 then
there are uncountably many archimedean places. (When dim B = 1, one recovers the classical case of
number fields.) For all values of dim B, though, Northcott’s theorem gives actual finiteness (as opposed
to finiteness of algebraic families in the geometric function field case).

We recall here the statement of Roth’s theorem [1955], as generalized by LeVeque [1956, Theorem 4-15],
Ridout [1958], and Lang [1962] (Lang’s work also covered geometric function fields).

Theorem 0.1. Let k be a number field, and let S be a finite set of places of k. For each v € S let a, be
algebraic over k, and assume that v is extended to k in some way. Then, for all € > 0, the set of € € k

satisfying the approximation condition

. 1
[ [ min{1, & —enl) < o (0.1.1)

vesS

is finite.
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If one extends this statement to arithmetic function fields in a straightforward way, then the resulting
statement is false — see Examples 4.12 and 4.13. Instead we impose the additional condition that the
set of all «, is finite, as v varies over S (which is now in general uncountable, as described below). See
Theorem 4.6. (Theorem 4.6 is actually stronger than the above — see Remark 4.7.) Theorem 4.6 reduces
to Theorem 0.1 in the number field case, and is strong enough to imply Siegel’s theorem on integral
points (Corollary 4.11).

Actually, we give four equivalent formulations of Roth’s theorem over arithmetic function fields
(Theorems 4.3—4.6), and show in Proposition 4.8 that they are equivalent. Sections 5-10 contain a proof
of Theorem 4.5, which then implies the other three variants.

The proof of Roth’s theorem in this paper follows the same general outline as the classical proofs
of Thue, Siegel, and Roth. In particular, it is ineffective (i.e., it does not give a constructive proof for
the upper bound on the heights of exceptions to the main inequality). Fundamentally different proofs
of Roth’s theorem over geometric function fields (of characteristic 0) have been obtained by Osgood
[1985] and Wang [1996], using “Nevanlinna—Kolchin systems” and Steinmetz’s method in Nevanlinna
theory, respectively; the latter is effective. Roth’s theorem can be proved over geometric function fields
of characteristic 0 by the Thue—Siegel method; see [Lang 1983]. The current paper does not add anything
to this proof.

Unfortunately, Roth’s theorem over arithmetic function fields does not yet imply any new applications.
However, as noted above it is anticipated that Schmidt’s subspace theorem will also extend to arithmetic
function fields, and that result has numerous diophantine consequences whose counterparts over arithmetic
function fields will be new.

The main difficulty in generalizing Roth’s theorem to arithmetic function fields concerns the part of
the proof often referred to as “reduction to simultaneous approximation.” In that part, it is shown that it
suffices to prove the theorem with the approximation condition (0.1.1) replaced by conditions

min{1, [|§ — o |l,} < Hi(§) 3+

for each v, where 0 < €’ < ¢, and for each v € S a constant A, > 0 is given such that

> =1
ves
In addressing this difficulty, a key idea came from a proof of Wirsing [1971]. Wirsing extended Roth’s
theorem to approximation by rational numbers of bounded degree. In his proof the number of archimedean
places was still finite, but it grew exponentially with the number of solutions to (his equivalent of) (0.1.1)
under consideration. The idea was to ignore a small proportion of those places, and this is also done here.
See the introduction to Section 6 for more details on this.
The paper is organized as follows. Section 1 summarizes the basic results and conventions from number
theory, algebraic geometry, and Arakelov theory used in the paper. Section 2 describes the positivity
properties of metrized line sheaves that are needed in the paper. Section 3 introduces Moriwaki’s theory
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of heights for arithmetic function fields, and describes how this theory can be extended to give a theory
of Weil functions (often called local heights). Thus, one can decompose the height into proximity and
counting functions, as in Nevanlinna theory [Vojta 2011]. In Section 4, the main theorem of the paper is
formally stated, in four different forms, and the four are shown to be equivalent.

Section 5 begins the main line of the proof of the theorem, by showing that it suffices to prove the
theorem under some additional assumptions. Sections 6—8 give the proof of reduction to simultaneous
approximation for arithmetic function fields; this is the technical core of the paper. Mostly this focuses
on the archimedean places, and involves analysis of Green functions. More details are given in the
introduction to Section 6. Sections 9 and 10 then conclude the proof by formulating and proving Siegel’s
lemma for arithmetic function fields, constructing the auxiliary polynomial, and deriving a contradiction
to conclude the proof. For the latter, we use a version of Dyson’s lemma [1947] due to Esnault and
Viehweg [1984] instead of Roth’s lemma, since the former is true for arbitrary fields of characteristic
zero, and therefore needs no adaptation for arithmetic function fields.

1. Basic notation and conventions

In this paper, N={0, 1,2, ...} and Z.o = {1, 2, 3, .. .}. Also,
log™ x =logmax{l,x} and log~ x =logmin{l, x}.

Throughout this paper, the notation c¢; always refers to either a Chern form or a Chern class. The letter
¢ with any other subscript refers to a constant— and this includes, for example, ¢; when i = 1. Higher
Chern classes do not occur in this paper.

1A. Algebraic geometry. A variety over a field k is an integral separated scheme of finite type over k,
and a curve over k is a variety over k of dimension 1. A line sheaf is an invertible sheaf. For a point x on
a scheme X, k(x) denotes the residue field of x. If X is a variety or integral scheme, then « (X) denotes
its function field (this equals the residue field k(&) for the generic point £ of X).

For more details on these conventions, see [Vojta 2011].

Also, following [Moriwaki 2014], if s is a nonzero rational section of a line sheaf on an integral scheme
X or a nonzero rational function on X, then div(s) is the associated Cartier divisor of s.

1B. Number theory. For a number field k, the subring &} is its ring of integers (the integral closure of
Z in k). The set M}, is the set of all places of k; this is the disjoint union of the sets of archimedean and
nonarchimedean places of k. These are in canonical bijection with the set of injections k < C and with
the set of nonzero prime ideals in &}, respectively.

For each place v € M} we define an absolute value ||-||,, as follows:

lxl, = lo(x)] if v is archimedean and corresponds to o : k < C;
v (Oy - p)_ordp(x) if v is nonarchimedean and corresponds to p C .
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(In the nonarchimedean case, the formula assumes x # 0; of course ||0||, = O for all v.) Note that two
nonreal complex conjugate embeddings o, 6 : k — C are regarded as different places but give rise to the
same absolute value. This is the usual convention in Arakelov theory. These absolute values satisfy the
product formula
[]lxl=1 forallxek*. (1.1)
veMy
Heights are always taken to be logarithmic but not absolute. The reason for the latter is that, for a
general function field K (either arithmetic or geometric) there is no canonical choice of “base field” to
play the role of Q, for which K is a finite extension (other than K itself).

As a specific example, the height of a point P € P" (k) with homogeneous coordinates [xg : xq : - -+ x,]
is
hi(P) =" logmax{||xollu. ... [all}.
veMy

For more information on the basic properties of heights, see [Hindry and Silverman 2000, Part B] or
[Lang 1983, Ch. 4].

1C. Complex analytic spaces. A complex analytic space, or just complex space, is as defined in
[Hartshorne 1977, Appendix B]. Examples include X", where X is a reduced quasiprojective scheme
over C (note that X may be reducible, and may have singularities); and the unit discs

D:={zeC:|z] <1} and DY :={zeC?:|z| <1}
in C and CY (d € Z-), respectively.

In this paper, complex spaces are always assumed to be Hausdorff and reduced.

This paper generally follows the definitions of [Zhang 1995].

For the rest of this subsection, let T be a complex space.

A function f: T — R is smooth if for any holomorphic map ¢: D¢ — T, the composite function
f o ¢ is smooth (i.e., C*). Smoothness of differential forms is defined similarly.

Let . be a line sheaf on T'. Then a smooth hermitian metric or continuous hermitian metric on % is
defined as usual in Arakelov theory, with the metric varying smoothly or continuously, respectively. A
smoothly metrized line sheaf or continuously metrized line sheaf £ on T is a pair (%n, ||-|l.#), consisting
of a line sheaf %4, on T', together with a smooth or continuous hermitian metric ||-|| & on %, respectively.
Most hermitian metrics in this paper are assumed to be smooth. Here the subscript “fin” means finite, and
is used to refer to the underlying nonmetrized line sheaf (this terminology will make more sense when
we get to Arakelov theory). We do not use bars to denote metrized line sheaves: an object . is what
it was said to be. This is because metrized line sheaves are the most natural objects to consider when
working in Arakelov theory. For the remainder of this paper, all line sheaves on complex analytic spaces
written using notation not involving a subscript “fin” are metrized.

The subscript .Z on ||-||.» may be omitted if . should be clear from the context.
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Let . be a continuously metrized line sheaf on 7. Then a section of . over an open subset U of T is
a section of %, over U. A global section s of . is small (resp. strictly small) if ||s]| < 1 (resp. ||s|| < 1)
everywhere on 7.

If £ is a smoothly metrized line sheaf on a complex manifold M, then it has a Chern form c1(||-||.#)
(well-)defined by the condition that ¢;(||-||.»)|y = —dd® log||s||> for all open U € M and all nowhere-
vanishing sections s of .2 over U. Note that if £ is a smoothly metrized line sheaf on a reduced complex
space T, then it may not be possible to define a Chern form ¢ (]|-||.«) at singular points of 7.

For n € Z-, the line sheaf &'(1) on P"(C) can be smoothly metrized by the standard metric, also
called the Fubini—Study metric. It is defined uniquely by the condition that, for all global sections
s =apzo+ - - -+ anzn, where zo, ..., z, are homogeneous coordinates on P"(C),

. |00p0+" '+anpn|
VIpolP+-+1pal?

IsliCpo:---: pu) (1.2)

When n = 1, the Chern form of this metric is

J=1 1 _ddz)?
Y  diAndi=—
2 (14 z2)2 (1+z1%)?

Recall that a form on a complex manifold M is real if it can be written as a form with real coefficients

ci(ll-h =

when M is regarded as a manifold over R. For a (1, 1)-form w on M, written as

w:x/—IZh;‘/(Z)dzi/\de, (1.3)
i,j

this is equivalent to (h;;(z)) being a Hermitian matrix for all holomorphic local coordinate systems

(z1, ..., 2n) and all z. Following [Moriwaki 2014, Section 1.12 and 1.14], this form is positive (resp. semi-

positive) if it is real and if (h;;(z)) is positive definite (resp. positive semidefinite) for all z. A (1, 1)-form

on a complex projective variety is semipositive if its pull-back to a desingularization is semipositive.
Likewise, an (n, n)-form 6 on a complex manifold M, written in local coordinates as

0 = p(2)ddC|zi)> A+ Add€|za?, (1.4)

is real if and only if p(z) € R for all z, and is positive (resp. semipositive) if it is real and p(z) > 0
(resp. p(z) > 0) for all z.

Proposition 1.5. Positivity of forms as in (1.3) and (1.4) are related as follows:

(a) Let M be a complex manifold of dimension n, and let wy, ..., w, be positive (resp. semipositive)

(1, 1)-forms on M. Then w; A - - - A w, is positive (resp. semipositive).

(b) Let X be a complex projective variety of dimension n, and let w1, . . ., w, be semipositive (1, 1)-forms
on X. Then wy A - - - AN wy, is also semipositive.

Proof. See [Lang 1987, Ch. IV, Lemma 2.4]. For the convenience of the reader, we provide more details
here.
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It will suffice to prove part (a), since (b) follows by passing to a desingularization.

First assume that wy, ..., ®, are positive. We will use induction on n. The n =1 case is trivial. Fix
apoint p € M, and let (zy, ..., z,) be a local coordinate system on M near p. We may assume that p
corresponds to z; = - - - =z, = 0. Write

o1 =V=1) " hij(x)dz; AdZ;.
i,j

By Gram—Schmidt, we may assume that (h,;(0)) is a diagonal matrix. Since w is positive, the diagonal
entries Aq, ..., A, of this matrix are real and positive. For all i =1,...,n and all j > 1, wj|;—0 is

positive, so if we write
= 0:(dd\ 7112 A - AddC7: 1PV A - AddC )z 12
wy N\ /\C!)n|zl»=0—/01(Z) |z117 A A( |zi|5) A AN |Zn |

for all i, then by induction p; (0) is real and positive. Let 6 = w; A--- A w, and let p be as in (1.4). Then
p(0) = 2n)~! > 4ipi(0) > 0, so 6 is positive.
The argument for the semipositive case is similar. (Il

1D. Arakelov theory. An arithmetic variety is an integral scheme, flat and projective over Spec Z.

All arithmetic varieties in this paper will be assumed to be normal.

Let X be an arithmetic variety. Let K = k(X); this is a finitely generated extension field of (0. We
also write Xg = X xz Q. The set X (C) will often be regarded as a complex space (with the classical
topology).

We say that X is generically smooth if Xg is smooth over Q. If X is generically smooth, then X (C) is
a complex manifold (not necessarily connected). If X is an (arbitrary) arithmetic variety, then a generic
resolution of singularities of X is a proper birational morphism 7 : ¥ — X, where Y is a generically
smooth arithmetic variety.

A smoothly metrized line sheaf £ on X is a pair (Zsn, ||-||.#) consisting of a line sheaf %4, on X and a
smooth hermitian metric ||-||.» on (Zn)c, Where (Zin)c is the pull-back of %, to X (C). A continuously
metrized line sheaf on X is defined similarly. In both cases, we will always assume that the hermitian
metric is of real type; i.e., that it is invariant under the complex conjugation map F, on X (C); see
[Moriwaki 2014, (5.2)].

As discussed earlier, metrized line sheaves are not denoted using bars. In this paper, all line sheaves on
arithmetic varieties written using notation not involving a subscript “fin” are metrized.

If £ = (%n, |I]l.») is a smoothly or continuously metrized line sheaf on X, then % will denote the
smoothly or continuously metrized line sheaf ((Zn)c, ||]l.#) on X (C), respectively. We also let %y
denote the (nonmetrized) line sheaf (Zh,)g on X obtained by restriction.

A section of £ over an open subset U of X is a section of %5, over U. A global section s of .Z is
small (resp. strictly small) if the corresponding section of .Z¢ is small (resp. strictly small).

If . is a smoothly metrized line sheaf on X, then its Chern form is the form c;(]|-|| #); it is a smooth
(1, 1)-form on X (C) and is again denoted ¢ (||-|| ). If .2 is a line sheaf (resp. smoothly metrized line sheaf)
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on a scheme (resp. arithmetic variety) X, then c;(.¥) will denote the first Chern class (resp. arithmetic
first Chern class) of .#; it is a cycle (resp. Arakelov cycle) of codimension 1 on X. In particular, if . is a
smoothly metrized line sheaf on an arithmetic variety X, then c;(%p) is an (ordinary, i.e., non-Arakelov)
cycle of codimension 1 on Xgq.

In order to simplify the notation, we will often omit deg(-), even though the product of a number of
Chern classes is technically a O-cycle, not a number. It will always be the intersection number that is
meant.

Finally, if . is a smoothly metrized line sheaf on X then we recall that the height function h.y: X (Q) —
R is defined by

c1(ZLx)

hy(x) = Ko 0]

(1.6)

where x € X (@) and x is its closure in X. This is an absolute height.

1E. Arithmetic intersection theory of Cartier divisors. At the present time, a theory of resolution of
singularities on arithmetic varieties is not available, so the theory of arithmetic intersection theory on
regular varieties, as in [Gillet and Soulé 1990] or [Soulé 1992] cannot be used. Gillet and Soulé [1990,
4.5] construct an intersection theory on generically smooth arithmetic varieties, at the cost of allowing
rational coefficients in the Chow groups.

However, since we only need to work with the subring of the Chow ring generated by arithmetic
Cartier divisors, it is simpler to use the theory of [Faltings 1992, Lect. 1]. That is what we will do here. It
does not require passing to rational coefficients. Moreover, this theory can be extended to an arbitrary
arithmetic variety by pulling back to a generic resolution of singularities.

(For generically smooth arithmetic varieties, however, the results of [Gillet and Soulé 1990, Section 1-2],
on Green currents and Green forms, can be applied. In fact, they play a key role in this paper.)

Here we follow [Moriwaki 2014, Section 5.4]. A brief summary of his definitions follows.

Let X be a generically smooth arithmetic variety. For p € N, an arithmetic cycle of codimension p
on X is a pair Z = (Zgy,, T'), where Zg, is a cycle of codimension p on X and T is a current on X (C)
of type (p — 1, p — 1). These form an abelian group under componentwise addition, which is denoted
ZS(X ). Note that Z%(X ) =7-(X,0). (Moriwaki denotes this group Zg (X), but the hat is redundant
since the subscript “D” already implies that there is a component at infinity.)

A (p—1, p—1)-current T on X (C) is said to be of real type it F3 (T) = (—1)?T. Note that this is
different from a current (or form) being real; i.e., T=T.

If Z is a cycle of codimension p on X, then we say that a Green current for Z is a current T on X (C)
of type (p — 1, p — 1) such that

dd‘T 4687 = [w]

for some smooth (p, p)-form w on X. An arithmetic cycle Z = (Zg,, T) € Z]’;(X ) is said to be of Green
type if T is a Green current for Zg,. These cycles form a subgroup of ZF (X).
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Moriwaki defines Rat” (X) to be the subgroup of Z{; (X) generated by (i) cycles i, (div(f)an,— log] f | 2,
where Y is an integral closed subscheme of X of codimension p — 1, i: Y — X is the corresponding
closed embedding, and f is a nonzero rational function on Y; and (ii) (0, dA) and (0, dB), where A and
B are currents on X (C) of type (p —2, p—1) and (p — 1, p — 2), respectively. He then defines

CHp(X) = 25 (X)/Rat” (X).

By way of comparison, Gillet and Soulé [1992, III 1.1] define ZP(X ) to be the subgroup of ZS(X )
consisting of all pairs (Z, T') of Green type such that 7" is real and of real type, and they let CH’ (X) be
the image of 7" (X) in CH]’;(X ). In this paper, all currents under consideration come from (smoothly)
metrized line sheaves, so they are real and of real type, but not all pairs (Z, T) € ZF (X) in this paper are
of Green type, since it is sometimes useful (e.g., in the proof of Lemma 1.11) to split up (Z, T) € Z5 (X)
into a sum (Z, 0) + (0, T).

At times it will be useful to consider intersections on integral closed subschemes of an arithmetic
scheme X, including those that are not flat over Spec Z. Therefore, consider for now an integral scheme X,
projective over Spec Z, which lies entirely over a single closed point (p) € Spec Z. Such schemes X
will be said to be vertical. Since Xg = &, this scheme is always generically smooth. Similarly, since
X (C) = », a metrized line sheaf on X (defined as above) is just a pair . = (%, &), and the same
definitions as above give that Z¥ (X) is the group of pairs (Zgn, 0), where Zgy is a cycle of codimension p
on X in the classical (non-Arakelov) sense. Similarly, CHI’;(X ) is canonically isomorphic to the classical
Chow group CH” (X).

Let X be an integral scheme, projective (but not necessarily flat) over Spec Z, and generically smooth.
Let . be a smoothly metrized line sheaf on X. By [Moriwaki 2014, Def. 5.16, Thm. 5.20, and Section 5.2],
the formula

(Z, 8) = (div(s)in - Z, ix[—logls|zI* T+ 1 (I 2) A ) (1.7)

gives a well-defined group homomorphism CH{; (X)) —> CH{;H(X ), denoted ¢;(&¥) -, where (Z, g) €
ZE(X) is such that Z is a closed integral subscheme of X, i: Z — X is the corresponding closed
embedding, and s is a rational section of . whose restriction to Z is nonzero. (If Z is vertical, then
Z(C) = @, and therefore i,[— log||s|Z||2] =0.) It is easy to check that (i) ¢; (%) - (X, 0) = ¢1(.¥), where
c1(£) on the right-hand side is as defined earlier, and (ii) if X is regular and if @ € cH’ (X), then
c1(%) - a as defined here coincides with the definition from [Gillet and Soulé 1990, Section 3] (or with
classical intersection theory if X is vertical).

Let X be an integral scheme, projective over Spec Z and generically smooth; let # = dim X; and let
A, ..., %, be smoothly metrized line sheaves on X. Then we have a well-defined element

c1(A) - e1(Zy) € CHp(X).

Since this is a cycle of dimension 0 on X, we can take its degree [Moriwaki 2014, Def. 5.22] to get a real
number, which will also (by the usual abuse of notation) be denoted ¢, (%)) - - - ¢1(.%,). This degree is
always taken in the Arakelov sense, even if X is vertical.
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The map ¢ (%) - satisfies the following projection formula. Let X and Y be integral schemes, projective
over Spec Z and generically smooth; let f: X — Y be a morphism; let .7, ..., %, be smoothly metrized
line sheaves on Y; and let o € CH{;(X ). Then

Ler(f* ) - a(f* %) -a) =ci1(A) - a1(L) - frar. (1.8)

Indeed, when n = 1 this is [Moriwaki 2014, Thm. 5.20 (2) and Prop. 5.5], and the general case follows
by induction. In particular, if f is birational and » = dim X, then (taking degrees) we have

ca(f*2)--a(f*L)=ca(f*2)--a(f*%) (X,0)
=c1(A) -1 (L) - (Y, 0)
=c1(A) -1 (L). (1.9)

By pulling back to a generic resolution of singularities and using (1.9), one can also define this quantity
without assuming that X is generically smooth; see [Moriwaki 2014, Def. 5.24]. With this definition,
(1.9) holds without the assumption that X and Y are generically smooth.

We conclude this section with a result which is implicit several places in Moriwaki’s work, and obvious
to the experts, but which seems not to be explicitly stated or proved anywhere.

Definition 1.10. Let X be an arithmetic variety, and let .# be a continuously metrized line sheaf on X.
Then, for any nonzero rational section s of .#, we define

c1(A) = (div(s)fin, — 10g||s||2) € CHll)(X).

This definition is independent of the choice of s, and is compatible with the definition of ¢; (#) € CH'(X)
when the metric on .# is smooth.

Lemma 1.11. Let X be a generically smooth arithmetic variety of dimension n. Let 4, ..., %,—1 be
smoothly metrized line sheaves on X, let .# be a continuously metrized line sheaf on X, and let s be a
nonzero rational section of /. Write div(s)sy as a finite sum Y nzZ, where nz € Z for all Z and each Z

is a prime divisor on X. Then

c1(A) - c1(Zp-r) - (A)
=an(c1<$1|z)---c1<$n_1|z)>—/

loglls|l ci(ll-lL.z) A== - Aer(ll-llg,_).  (L11.1)
X(C)

Proof. Since both sides of (1.11.1) are linear in .# (and correspondingly in nz and — log||s||), we may
assume that there is only one prime divisor Z, and that nz = 1. Then ¢ (.#) is represented by the cycle
(Z, —log|ls %), and we have

c1(A) - -c1(Lh-1) - c1(A)
=c1(Z) - c1(Z1) - (Z,0)+c1(A) - c1(Z1)- (0, —log|ls)|?). (1.11.2)

We first consider the first term on the right-hand side.
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Let Z be a generic resolution of singularities of Z, and let f': 7 — X be the corresponding map to X.
By (1.8) and (1.9),

(A c1(Zo1) (Z,0) = c1 (L) - c1 (L) - f(Z,0)
=1 (f* () - e1(f*(Z-1)) - (Z,0)
=c1(f* () - (f*(Z-1)
=c1(Zlz) -+ c1(Lu-1lz) (1.11.3)

(where the last formula is computed on Z).
Now consider the second term on the right-hand side of (1.11.2).
If g is a current of type (n — 1 —i,n — 1 —i) on X (C), then by (1.7),

c1(Z)-(0,8) =0, c1(ll-Il.£) A 8), (1.11.4)

and therefore (taking the degree)
ci(A) - c1(Zo1) - (0, —loglls||?) = —f log[[sll c1(ll-llz) A= Acrl-llz,-)-
X(©)

Combining (1.11.2)—(1.11.4) then gives (1.11.1). O
Proposition 1.12. Let X be an integral scheme of dimension n, projective over Spec Z.

(a) Let A, ..., %, be nef, smoothly metrized line sheaves on X, or

(b) let £, ..., %L1 be nef, smoothly metrized line sheaves on X, and let £, be a continuously metrized
line sheaf on X for which some positive tensor power has a small nonzero global section.

Then
c1(&)---c1(Z) = 0.

Proof. If X an arithmetic variety, then part (a) is [Moriwaki 2000, Prop. 2.3 (1)] or [Moriwaki 2014,
Thm. 6.15]. Otherwise, it is a standard result in algebraic geometry.
Part (b) is [Moriwaki 2000, Prop. 2.3 (2)]. It follows from part (a) and Lemma 1.11. O

2. Positivity conditions on metrized line sheaves

This section defines the conditions nef, big, and ample for a smoothly metrized line sheaf on an arithmetic
variety, and gives some of their main properties.
References for this section are [Zhang 1995; Yuan 2008; 2009; Moriwaki 2014].

Throughout this section, £ is a smoothly metrized line sheaf on an arithmetic variety X.
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2A. Nef metrized line sheaves.

Definition 2.1 [Moriwaki 2014, Definition 5.38(3)]. (a) % is vertically nef if %5, is nef on all closed
fibers of X — Spec Z and if the metric on .Z is semipositive, and

(b) % is nef if it is vertically nef and if 2 (x) > 0 forall x € X (@).

Proposition 2.2. Ler f: X' — X be a surjective generically finite morphism of arithmetic varieties. If
is nef, then so is f*.%.

Proof. This is clear from the definition. [l

2B. Big metrized line sheaves. The definition of a big metrized line sheaf given here is modeled after
the definition of big in the classical case.
Definition 2.3. (a) Let H°(X, %) denote the set of small sections of .Z:
H(X, 2)={s € H'(X, %) : lIsllsup < 1},
and let
(X, #) =log#H’ (X, 2).

(b) Let n = dim X. Then the volume of £ is

. ho(X, ™)
vol(.¥) =limsup ———.
m— 00 mn/nl
By [Yuan 2009, Section 1.1 and Theorem 2.7] (see also [Chen 2008]), this lim sup converges as a

limit.
(c) We say that .Z is big if vol(.¥) > 0.

Remark 2.4. Sometimes H O(X , -Z) is defined to be the set of strictly small sections of %, and this defini-
tion is used to define bigness. This definition of big (and several others) are equivalent to Definition 2.3(c),
by [Yuan 2008, Corollary 2.4] and [Moriwaki 2009, Theorem 4.6].

Proposition 2.5. Let f: X' — X be a surjective generically finite morphism of arithmetic varieties. If &
is big, then so is f*.%.

Proof. This is immediate from the fact that pulling back by f induces an injection H*(X, %) —
HY(X', f*2). O
2C. Ample metrized line sheaves. To define ampleness, we follow [ Yuan 2008, Secton 2.1].

Definition 2.6. We say that . is horizontally positive if ¢ (&£ ly) 4imY ~ 0 for all horizontal integral
closed subschemes Y of X. Here an integral subscheme Y of X is horizontal if it is flat over Spec Z.

Definition 2.7. A smoothly metrized line sheaf . is ample if
(i) Zo is ample;
(i) .Z is vertically nef; and

(iii) . is horizontally positive.
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Remark 2.8. Moriwaki defines ampleness differently. He defines .# to be ample if (i) %, is ample
(on X), (i) the metric on . is positive, and (iii) there is some integer n > 0 such that H°(X, fﬁ%”) is
generated by strictly small sections [Moriwaki 2014, Definition 5.38 (2)]. This definition is stronger than
Definition 2.7. Indeed, (i) and (ii) of Definition 2.7 follow from Moriwaki’s (i) and (ii), and horizontal
positivity follows from [Moriwaki 2014, Proposition 5.39]. The converse implication is false: for example,
if £ is ample on X in the sense of Moriwaki, then its pull-back to the blowing-up of X at a closed point
is ample in the sense of Definition 2.7, but not in Moriwaki’s sense.

Proposition 2.9. If ¥ is ample, then it is nef and big.

Proof. The fact that . is nef follows immediately by comparing Definitions 2.7 and 2.1. That .# is big
follows from [Yuan 2008, Corollary 2.4]. U

2D. An openness property. Because a metrized line sheaf is only required to be vertically nef in order to
be ample, arithmetical ampleness is not an open condition. However, it is true that arithmetical ampleness
is preserved under changing the metric by a constant multiple sufficiently close to 1, provided that the
arithmetic variety is generically smooth. This is the conclusion of Proposition 2.12, which is the goal of
this subsection.

Note that the definition of ampleness is comparable to the Nakai—Moishezon criterion. This implies
something comparable to the more common definition of ampleness in the non-Arakelov setting [Zhang
1995, Corollary 4.8].

We start with a result that may be regarded as a counterpart to the theorem in classical algebraic
geometry that says that the Nakai—-Moishezon and Kleiman criteria for ampleness are equivalent.

Lemma 2.10. Assume that X is generically smooth, that £y is ample, and that the metric on £ is
semipositive. Then £ is horizontally positive if and only if the height function h¢ has a positive lower
bound on X.

Proof. This proof makes use of the condition that a smoothly metrized line sheaf be relatively semiample.
We will not quote the definition here (see [Zhang 1995, (3.1)]); instead, it is sufficient to know that .Z|y
is relatively semiample for all horizontal integral closed subschemes Y of X [Zhang 1995, Theorem 3.5].

This proof follows fairly easily from the equivalence (ii)<=>(iii) of [Zhang 1995, Corollary 5.7]. This
says the following. Let .# be a smoothly metrized line sheaf on an arithmetic variety Y. Assume that
Mg is ample, that .# is relatively semiample, and that 4_, (y) > 0 for all y € Y (Q). Then the following
conditions are equivalent: (ii) there is a nonempty Zariski-open subset U of Y such that /_, has a positive
lower bound on U (i.e., on U(Q)), and (iii) ¢;(.#) ™Y > 0.

We will apply this result with Y equal to a horizontal integral closed subscheme of X and with
A = Z|y. In this situation, .# is relatively semiample as noted above, and .Zq is ample because g is.

We first prove the converse assertion. Assume that 4 »» has a positive lower bound on X, let Y be a
horizontal integral closed subscheme on X, and let .# = Z|y. Then condition (ii) in Zhang’s lemma holds
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for Y and .# with U =Y, and also the hypothesis %_,(y) > 0 holds. Therefore, by (iii), c1 (.# y dimY - 0,
Since Y is arbitrary, . is horizontally positive.

Conversely, assume that .# is horizontally positive. We will show by noetherian induction that 4 ¢ has
a positive lower bound on Y (@) for all Zariski-closed subsets Y of X, and therefore it holds for X.

Let Y be a Zariski-closed subset of X. If Y = & then there is nothing to show. If Y is reducible, then
write Y =Y, U...-UY, with all ¥; irreducible. By the inductive hypothesis, /& » has a positive lower
bound on Y; for all i, so the same is true for Y.

Assume now that Y is irreducible. If ¥ is not horizontal, then Y (@) is empty, and there is nothing
to prove. Otherwise, we apply the above result of Zhang. Note that, since . is horizontally positive,
the hypothesis that 4_,(y) > O forall y e Y (@) holds, and so does condition (iii) of Zhang’s corollary.
Therefore, by condition (ii) of the corollary, there is a nonempty open U C Y such that & & has a positive
lower bound on U. Also & ¢ has a positive lower bound on Y \ U by the inductive hypothesis, so /& ¢ has
a positive lower bound on Y.

It follows by taking ¥ = X that & » has a positive lower bound on X. ]

Definition 2.11. For all a € R let ¥, be the smoothly metrized line sheaf on X such that (¥, )4y, is the
structure sheaf of X and the constant section 1 of ¥, has constant metric e ~“. (Here ¥ stands for vertical.)

We are now ready to prove the main result of this subsection.

Proposition 2.12. Assume that X is generically smooth and that £ is ample. Then there is a ¢ > 0 such
that £ ® V_c is ample for all € < c.

Proof. For all € € R, the properties (¥ ® ¥_¢)g ample and .¥ ® ¥_, vertically nef follow trivially from
the same properties of .. Therefore it will suffice to find ¢ > 0 such that . ® ¥_ is horizontally positive
foralle <c.

Let

c= inf he(x).
xeX(Q)

By Lemma 2.10, ¢ > 0. Fix € < ¢. We need to show that .¥ ® ¥_. is horizontally positive. To see this,
we note that
hggy (X)) =hg(x)—€

for all x € X(@). Then h 2. has the positive lower bound ¢ — €, and therefore ¥ ® ¥_. is ample by
Lemma 2.10. O

3. Arithmetic function fields

An arithmetic function field is a finitely generated extension field of Q. Such fields have a diophantine
theory that contains the number field case as a special case.
This theory was originally developed in [Moriwaki 2000]. See also the survey article [Moriwaki 2002].
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3A. Polarizations, places, and heights.

Definition 3.1. Let K be an arithmetic function field, and let d = tr. degg K. Then a polarization of K
consists of

(i) an arithmetic variety B, given with an isomorphism x(B) = K, and
(i1) nef smoothly metrized line sheaves .71, ....#; on B.

Such a polarization will be denoted M = (B; .4\, ..., .#4). A polarization will be said to be big if
M, . .., Mg are all big.

We now define a set of places of K to replace the set M} of places of a number field k recalled in
Section 1. This description follows [Burgos Gil et al. 2016, Section 1] as well as [Moriwaki 2000].

We assume from now on that B is normal.

We start with the nonarchimedean places. Let B! denote the set of prime (Weil) divisors on B; i.e.,
the set of integral closed subschemes of B of codimension 1. (These may be horizontal or vertical.)
Let Y be a prime divisor on B, and let

hy(Y) =ci(Aly) - --c1(Maly). (3.2)

By Proposition 1.12(a), hy(Y) > 0. For nonzero x € K, we then define a nonarchimedean absolute value
associated to Y as

llxlly = exp(—hp (Y) ordy (x)). (3.3)

(Note that if d = 0 then K is a number field &, Y is a closed point on Spec 0%, and the intersection product
(3.2) is just the cycle Y, whose degree is the logarithm of the number of elements in the residue field.
Therefore ||.x ||y coincides with || x|, for the place v € M} that corresponds to Y.)

The set B! will be the set of nonarchimedean places of K. We write MIO( = B and let ug, be the
counting measure on B = MIO<.

For archimedean places, we define the set of generic points of B(C) as

B =B©)\ |J r©.

YeB(M

For such a generic point b € B(C)#*", we define an absolute value
lxlle = lxlp = |x(b)]

for all x € K. Note that x(b) € C, because b does not lie on a pole of the function x: all such poles lie in
elements of BV,
The set B(C)&°" will be the set of archimedean places of K, and we will usually denote it My°. In
sharp contrast to the number field case, if d > 0 then there are uncountably many archimedean places.
We let 11 be the Lebesgue measure on B(C) associated to the (d, d)-form ¢;(||-[l.z) -+ - c1(ll1l.z,)-
This form is semipositive by Proposition 1.5(b). The set B(C) \ B(C)&*" is a countable union of the sets
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Y (C), all of which have measure zero, so B(C) \ B(C)&®" has measure zero. We also regard u~ as a
measure on B(C)&". We then have

oo (B(C)™) = 1 ((#)a) - - - c1 (Ma)a) < oo. (3.4
One can then let Mg be the disjoint union
Mg =MP UMY =B(C)E 11 BY,

and combine the measures /1o, on B(C) and 5, on B to give a measure ;o on B(C) LI BV D Mg. As
in [Moriwaki 2000, Section 3.2], this then leads to a product formula

/ log|lx|ly du(v) =0 forall x € K* (3.5)
Mg
and a “naive height”

hK(X)Z/ log™[|x ||y du(v)
Mg

=/ log™ |x(b)| d oo (D) + Z max{0, —ordy (x)}p (Y) (3.6)
B(C)gen

YeB®M

for all x € K; here we take max{0, — ordy (x)} = 0 if x = 0. Note that g (x) >0 forall x € K.

Remark 3.7. The set of archimedean places of K can be canonically identified with the set of embeddings
of K into C, in such a way that if an archimedean place v of K corresponds to o : K — C, then

lxlly = lo(x)] (3.7.1)

for all x € K. So this is just like the number field case. The construction using B(C)&®" is necessary to
define the measure.
To see this identification, recall from [Hartshorne 1977, II, Exercise 2.7] that giving an element of

gen

B(C) is equivalent to giving a point P € B and an injection k(P) < C. The elements of B(C)&*" are
exactly those for which the point P is the generic point of B. Thus B(C)&®" is in natural bijection with

Hom(K, C), and (3.7.1) is true.

Definition 3.8. For all v € Mg we define a field extension C, /K as follows. If v is archimedean, then let
Cy, = C, viewed as an extension of K by the embedding K < C of Remark 3.7. If v is nonarchimedean,
then we let C, be the completion of the algebraic closure K, of the completion K, of K at v. This field
is algebraically closed [Bosch et al. 1984, Proposition 3.4.1/3].

3B. Finite extensions of arithmetic function fields. Let K be an arithmetic function field of transcen-
dence degree d over @, and let K’ be a finite extension of K. Then K’ is also an arithmetic function field

of transcendence degree d.
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Definition 3.9. Let M = (B; .#,, ..., .#;) be a polarization of K. We define a polarization M’ of K’ as
follows. Let B’ be the normalization of B in K', and let 7 : B’ — B be the associated map. Then 7 is
a finite morphism of degree [K’ : K], and of course B’ is normal. Let .#/ = w*.#; for all i; these are
nef line sheaves on B’ by Proposition 2.2. Thus M’ := (B'; 4], ..., .#}) is a polarization of K', and
is called the polarization of K’ induced by M, or the induced polarization of K’ if M is clear from the
context.

The absolute values of K’ are related to those of K as follows.

Definition 3.10. Let M, M’, and w: B’ — B be as in Definition 3.9, let v € Mk, and let w € M. Then
we say that w lies over v, and write w | v, if one of the following holds:

(i) Both w and v are archimedean, corresponding to b’ € B/(C)%*" and b € B(C)&", respectively, and
7 (b') =b.

(ii) Both w and v are nonarchimedean, corresponding to prime divisors Y on B” and Y on B, respectively,
and 7 (Y') =Y.

As in [Moriwaki 2000, Section 3.2], we then have:

Proposition 3.11. Let v e M. For each w € Mg lying over v there is a canonical injection i : C, — C,,
of fields, and a canonical integer ny, , such that

1 GOl = lx11"" (3.11.1)
for all x € C,. Moreover,
> nup=IK": K], (3.11.2)
wlv
[Th = 1x 155 for all x € C,, (3.11.3)
wlv
and
hg(x) =[K': Klhg(x) forallx e K. (3.11.4)

Proof. If v is archimedean, then let 0 : K — C and 0’: K’ — C be injections as in Remark 3.7 for v and
w, respectively. Theni: C, — C,, is just the identity map on C via the identifications C, = C = C,,, and
the diagram

kK 2> ¢C

L

K 25 ¢
commutes; therefore (3.11.1) holds with n,,/, = 1. Moreover, since K’'/K is separable, there are exactly
[K': K] places w lying over v, and this gives (3.11.2).
If v is nonarchimedean, then it corresponds to a prime divisor Y on B, and 7*Y = Zi e;Y;, where the
Y; are the irreducible components of 7 ! (Y). These correspond to the places w of K’ lying over v. Let f;
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be the residue degree [K (Y;) : K(Y)] for all i. Then, for all i, iy (Y;) = fihu(Y) and ordy, x = ¢; ordy x
for all x € K*. Therefore (3.11.1) holds with n,,;, = ¢; f; if w corresponds to ¥;. Also (3.11.2) holds by
the basic theory of Dedekind rings applied to the local ring &g y and its integral closure in K.

Finally, in both cases (3.11.3) and (3.11.4) follow immediately from (3.11.1) and (3.11.2). O

3C. Models and Arakelov heights. For higher generality, Roth’s theorem over arithmetic function fields
is best formulated using Arakelov theory, using a model for [P’}(.
Throughout this subsection let (B; .4, ..., .#;) be a polarization of K.

Definition 3.12. Let V be a projective variety over K. A model for V over B consists of an arithmetic
variety X, a morphism X — B, and an isomorphism i: V —> X over K. We say that a given line sheaf
& (resp. Cartier divisor D) on V extends to X if there is a smoothly metrized line sheaf %’ (resp. Arakelov
Cartier divisor D) on X such that i*.%; = .Z (resp. i* D = D).

Remark 3.13. Let V, X, and 7 be as above. Not every line sheaf . or Cartier divisor D on V extends
to X, but there is always a model for V to which . or D extends. For existence of a model X, we may
take an embedding of V into P%, and let X be the closure of the image in P’;. To see that for any given
Cartier divisor D on V there is a model to which D extends, it will suffice for our purposes to assume
that V is nonsingular. Take any model X for V, extend each irreducible component of Supp D to X as
a Weil divisor, and blow up the sheaves of ideals of the closure in X of each such irreducible component.
The resulting scheme X will then be a model for V to which D extends as a Cartier divisor. Given any
line sheaf .# on V, one can then find a model to which .# extends by writing . = ¢'(D) for a Cartier
divisor D, and finding a model to which D extends. For more general situations; see [Vojta 2007].

We can now define height functions in terms of Arakelov theory.

Definition 3.14 [Moriwaki 2000, Section 3.3]. Let 7: X — B be a model for a variety V over K, and
let . be a continuously metrized line sheaf on X. Then the Arakelov height of a point x € V(K) (or,
equivalently, x € X (K)) is given by

ci(m* M z) - (T* Mylz) - 1 (Llz)
[k(x): K] )

Here, as usual, x denotes the closure of x in X. (Compare with (1.6).)

ho(x) = (3.14.1)

We will use the following results of Moriwaki.

Proposition 3.15 [Moriwaki 2000, Proposition 3.3.1]. Let V, X, 7, and £ be as above. Let K’ be a
finite extension of K, and let (B'; .4/, ..., #) be the polarization of K' induced by the polarization
(B; A\, ..., H#y) of K. Let X' be the main component of X x g B’ (the latter may have many components
if V is not geometrically integral over K). Let f: X' — X be the projection morphism, and let &' = f* .
Here X' is a model over B’ for the main component Vi of V x g K'. For all x € X (K), pick x' € X'(K")
lying over x. Then

ho(x')=[K": Klhg(x). (3.15.1)
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Theorem 3.16 (Northcott’s finiteness theorem, [Moriwaki 2000, Theorem 4.3]). Let V, X, and &
be as above, and let ¥ be a continuously metrized line sheaf on X. Assume that the polarization
(B; A, ..., M) of K is big; i.e., that all #; are big (see [Yuan 2008, Corollary 2.4]; it suffices if the
M; are ample). Assume also that Lk is ample. Then for all C e Rand all n € 7, the set

{x € X(K):hy(x)<Candk(x): K] <n}
is finite.

Proposition 3.17 [Moriwaki 2000, Proposition 3.3.2]. Let £ be the continuously metrized line sheaf
on P}g such that %4y is the tautological line sheaf 0 (1) on IP’E and the metric is uniquely defined by
the condition that for all global sections s = ayzy + a121, where zq, 7| are the standard homogeneous

coordinates on P!,
llao po + a1 p1llv
max{|| pollv, I p1llv}

Then the Arakelov height h o is equal to the “naive height” hi of (3.6).

IsllCpo : p1) =

This then gives a Northcott finiteness theorem for the naive height as an immediate corollary.

3D. Mk-constants and Weil functions. This paper will rely heavily on Weil functions (also called local
heights). As far as I know, they have not been developed in the context of arithmetic function fields, but
their construction from the number field case carries over directly, once the definitions have been chosen.

Throughout this subsection, K is an arithmetic function field, with polarization (B; .#, ..., #y).
Models over B of varieties are not necessary for the theory of Weil functions itself, although they
can be used to construct examples of Weil functions. We do need the polarization, though, because it
determines M.

Definition 3.18. An My-constant is a measurable, L' function from My to R, whose support has finite
measure. An Mg-constant is usually denoted v +— ¢, or (¢,),. Equivalently, an Mg-constant is a
measurable, L! function v — ¢, such that, when restricted to nonarchimedean places, ¢, = 0 for all but
finitely many v.

The sum and maximum of two M -constants is an M g-constant, and a (real) constant multiple of an
M g -constant is an M g -constant.
Since an Mg -constant (c,), is L', we have

/ leyldu(v) <oo and — o0 </ cydu(v) < oo. (3.19)
M[( MK

Remark 3.20. Since — log|z| has finite integral on the unit disc D, the function v — — log||«||, is an
Mg -constant for all @« € K*. Note, however, that if « is transcendental, then — log||«||,, is not bounded in
the usual sense: for all ¢ € R there is a v € Mg such that — log||«||, > ¢. (This happens near zeroes of «
on B(C).)
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The reliance on integration and measure theory makes it necessary to assume that the sets and functions
encountered are measurable (this trivially holds for the counting measure). Therefore:

In this paper, subsets of Mg of finite measure are always assumed to be measurable.
Also, we define the following.

Definition 3.21. Let V be a variety over K, and let S be a measurable subset of Mk:

(a) The set V(S) is the disjoint union

V(S) = ]_[ V(C,).

veS
In particular,

viMg) = || v@y.

UEMK

(b) A function : V(S) — R is K -measurable if the following condition is true. For all finite extensions
L of K, let 71 : By — B be the normalization of B in L, let nfen denote the induced map By (C)**" —
B(C)2", let §;, = (nfen)*l(S), and (as usual) let V; = V xg L. A rational point P € V(L) induces a
function Bp: S; — V. (Sp); for all w € Sy, we have a canonical identification of V; (C,) with V(C,),
where v = nfen(w) € S. This identification associates Bp with a function B, : S; — V(S). Then the
condition is that « o B, : S; — R is a measurable function for all L and P as above. (Note that S; does
not contain any nonarchimedean places, but that removing nonarchimedean places from a given set does
not affect whether the set is measurable.)

(c) A function a: V(S) — R is M-continuous if it is K -measurable and if, for all v € S, its restriction to
V(C,) is continuous in the topology induced by the metric on C,.

(d) Let U = Spec A be an open affine in V, let xy, ..., x,, be elements of A such that A = K[xy, ..., x,],
and let y be an Mg-constant. Then

Bs(U, x1, ..., x5, ) ={P € U(S) :log||x;|| < yycp) forall i},

where v(P) denotes the (unique) v € S for which P € V(C,).

(e) Let U be as in (d). Then a subset E of V(S) is affine M-bounded with respect to U if there exist
X1,...,X, € A and an Mg-constant y such that A= K[xy,...,x,]and E C Bs(U, x1, ..., x,, ). (This
implies £ C U (S).)

(f) Aset E C V(S)is M-bounded if there exist open affine subsets Uy, ..., U, of V and a decomposition
E=E;U---UE, such that E; is affine M-bounded with respect to U; for all i.

(g) A function «: V(S) — R is locally M-bounded if it is bounded above and below by M g-constants
on all M-bounded subsets of V (S).
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Then Weil functions can be defined, following [Lang 1983, Chapter 10]; see also [Gubler 1997,
Section 2]:2

Definition 3.22. Let V be a complete variety over K, and let D be a Cartier divisor on V. Then a Weil
function for D is a function Ap: (V\Supp D)(Mg) — R such that, forallopen U C V and all f € K(V)*
for which D|y =div(f)|y, there is an M-continuous, locally M-bounded function «: U (Mg) — R such
that

Ap(P) = —log| f(P)|lv +a(P) forall P e (U\Supp D)(Mk),

where v is the (unique) place of K for which P € U(C,).

Similarly, for a subset S € M, a partial Weil function for D over S is a function A p:(V\Supp D)(S) — R
that satisfies a similar condition.

For v € S, the restriction of Ap to (V \ Supp D)(C,) is denoted Ap ,.

The following lemma will be needed in the proof of Proposition 3.28.
Lemma 3.23. Let V be a variety over K, and let S be a measurable subset of Mg

(a) Let U = Spec A be an open affine subset of V, and let E be a subset of U (S) which is affine M-
bounded with respect to U. Then the condition of Definition 3.21(e) is satisfied for every choice of
Xls..., Xy € Asuchthat A= K|[xy, ..., x,]

(b) If U’ C U are open affine subsets of V, and if E C V(S) is affine M-bounded with respect to U’,
then E is also affine M-bounded with respect to U.

(c) Let E be an M-bounded subset of V (S). Then, for all (finite) open affine covers Uy, ..., U, of V,
there is a decomposition E = E1U - - -U E, such that E; is affine M-bounded with respect to U; for

alli.

(d) If V is affine, then a subset of V(S) is M-bounded if and only if it is affine M-bounded with respect
toV.

(e) Let Vy, ..., V, be acovering of V by arbitrary open subsets V;. Then any M-bounded subset E of

V(S) has a decomposition E = E| U ---U E,,, in which each E; is an M-bounded subset of V;(S).
Therefore a function V (S) — R is locally M -bounded if and only if its restriction to V;(S) is locally
M -bounded on V; for all i.

(f) Let D be a Cartier divisor on V. Let {Uy, ..., U,} be a covering of V by open affines, and let
fis ..., fu € K(V)* be rational functions such that D|y, = div(f;)|y, for all i. Then a function
Ap: (V\ Supp D)(Mg) — R is a partial Weil function for D over S if (and only if) for all i it
satisfies the condition of Definition 3.22 with U and f replaced by U; and f;, respectively.

2Gubler does not require M g -constants to have support of finite measure. This condition can be omitted for the purposes of
this paper.
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Proof (sketch). Part (a) amounts to showing thatif x1, ..., x, and yy, ..., y,, are two systems of generators
for A over K, then for each Mg-constant y there is an Mg-constant ' such that Bg(U, x1, ..., x5, ¥) C
Bs(U, y1, - Ym V).

For part (b), if U’ = Spec A’, U = Spec A, and A = K|[xy, ..., x,], then since A’ D A, we may use
A" =Kl[xj, ..., x, 1 with {x1, ..., x,} S {x],...,x),}.

For part (c), we first claim that the conclusion holds if V is affine and E is affine M-bounded with
respect to V. It suffices to prove this case when all U; are principal open affines D(f;) in V, in which
case we use the existence of ay, ..., a, € Oy(V) such that a; f; + - - - +a, f, = 1. The general case then
follows by reducing to finitely many instances of this special case.

Parts (d) and (e) are immediate from (c).

Finally, part (f) follows from (e), together with the fact that —log| f| is an M-bounded function on
V(S) forall f € 0(V)*, and the fact that finite sums of M-bounded functions on V (S) are M-bounded. [

For details on parts of the above proof, see [Lang 1983, Chapter 10] or [Gubler 1997, Section 2].

With the definitions from the number field case extended to arithmetic function fields in the above
way, the theory of Weil functions follows from [Lang 1983, Chapter 10], where one replaces references
to a finite subset of Mg with a subset of Mk of finite measure, and similarly references to “almost all
v € Mg” with “all v € Mg outside a set of finite measure.”

In particular, we have the following, in which Oy, (1) refers to a function whose absolute value is
bounded by an Mg -constant.

Theorem 3.24. Let V be a complete variety over an arithmetic function field K. Then:

(a) Additivity: If L1 and Ay are Weil functions for Cartier divisors Dy and D;, respectively, on V , then
A1 4 A2 (on the intersection of their domains) extends uniquely to a Weil function for Dy + D;.

(b) Functoriality: If A is a Weil function for a Cartier divisor D on 'V, and if f: V' — V is a morphism
of varieties over K whose image is not contained in Supp D, then ) o f is a Weil function for f*D
onV'.

(c) Normalization: If V =P} (withn € Z.), then the function Ap defined by

llxollw
max{|[xollv, - - ., IXnllv}

)VD,U([XO eeeixpl) =— IOg

for all v e Mg is a Weil function for the divisor D given by xoy = 0.

(d) Uniqueness: If both )| and ), are Weil functions for the same Cartier divisor D on V, then
AM =Xty + OMK (D).
(e) Boundedness from below: If A is a Weil function for an effective Cartier divisor D, then X is bounded

Sfrom below by an M -constant.

(f) Existence: If' V is projective, then every Cartier divisor on V has a Weil function. (For the case in
which V is complete, see Remark 3.29.)
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(g) Principal divisors: For all f € K(V)*, the function —log|| f ||, is a Weil function for the principal
divisor (f) on V.

Proof. Parts (a)—(c) and (g) are easy to see from the definitions. For parts (d) and (e), see [Lang 1983,
Chapter 10, Propositions 2.2 and 3.1], together with Chow’s lemma. For (f), see [Lang 1983, Chapter 10,
Theorem 3.5]. U

Next we show that nonzero rational sections of certain line sheaves can be used to define Weil functions
for the associated divisors. We start by defining the construction of such functions in more detail.

Definition 3.25. Let V be a projective variety over K, let w : X — B be a model for V with isomorphism
i:V— Xk, let £ be a continuously metrized line sheaf on X, let s be a nonzero rational section of .Z,
and let D = i* div(sg). Then we define a function

As: (V\Supp D)(Mg) — R

as follows:

(i) If v is an infinite place, then it corresponds to a point b € B(C)&". Furthermore, C, = C; up to
this choice of isomorphism, we have a canonical isomorphism of V(C,) with 7~ (b). This identifies
V(M) with 7~ Y (B(C)&"). Soifv e M3 and P € (V \ Supp D)(C,), then P corresponds to a point
xex ')Nv\ Supp D)(C), and we define A;(P) = — log|s(x)| (using the metric on .¥).

(i1) If v is a finite place, then it corresponds to a prime divisor Y on B. Let 1 be the generic point of
Y. Since B is normal, the local ring &, is a dvr, whose valuation determines the valuation used to
define C,. A point P € (V \ Supp D)(C,) corresponds to a point x € X and an injection from its residue
field « (x) to C, compatible with the injections 0p , — K < C,. (Therefore x actually lies on the
generic fiber Xx.) By the valuative criterion of properness, the morphism Spec C, — X extends to a
morphism /: Spec €, — X, where 0, is the valuation ring of C,. Let x9 € X be the image of the closed
point of Spec &), under this morphism. Then xg is a specialization of x in X.

Now let U be an open neighborhood of xg in X such that .#|y is trivial, and let sg € Z(U) be a
section that generates . over U. Then h*sy generates h*.# (over all of Spec ,), and h*s is a well-
defined nonzero section of h*.Z (because x ¢ Supp D). In particular, h*s/h*sy € C};, and so we define
As(P) = —logl|lh*s/h*sollv.

This value is independent of the choices of U and so. Indeed, suppose that U’ and s;, are a different
set of such choices. Then h*sq and h*s;, both generate h*.# at the special point, so h*s;/h*sy € O}, so
lh*s(/ h*soll, = 1 and therefore ||h*s/h*soll, = (|h*s/h*s{ .

We also let — log||s|| denote Ay, so A;(P) = —log||s(P)|, forall v e Mg and all P € (V\Supp D)(C,).

Lemma 3.26. Let n be a positive integer, let V =P, and let X = P, so that X is a model for V. Let
%" be the line sheaf 0(1) on X, with continuous metric uniquely determined by the condition that the
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metric of a global section s = agpxg+ - - - + a,x, at a point P =[py:---: p,] is given by
appo+---+a
Isli(P) = 00 nPully (3.26.1)
max{(|pollv, - - -, | Pnllv}

(this generalizes the metric of Proposition 3.17). Let s' be the global section xo of £'. Let D = div(s") g
(the hyperplane at infinity on V = P%). Then Ly = —logl||s’| is a Weil function for D.
Proof. By Lemma 3.23(f), it suffices to check the condition of Definition 3.22 on the standard open affines
U; = Dy (x;) with f; = xo/x;, fori =0, ..., n.

First we consider i = 0. Then fj is the constant function 1, and (in the notation of Definition 3.22)
o = Ay (note that Ug \ Supp D = Up). We write Uy = Spec K[y1, ..., yul, Where y; = x; /xo for all i. For

all v € M, the value of Ay ata point P = [pg:---: pu] € Up(C,) is
| poll
Ay (P) = —log Pollv =10gmax{1, Y1 (P vs -y 1y (P} (3.26.2)
max{“po”v’ ey “pn”U}

Indeed, for infinite v this holds by (3.26.1). For finite v, choose j such that

max{|l pollv, - - - 1 Pallo} = IPjllv-
Then, in the notation of Definition 3.25, we may take so = x;, SO

Il Pollv

Is"/solly = | (xo/x;)(P)|ly = max{| poll I pallv}”

and again we obtain (3.26.2).

The right-hand side of (3.26.2) is obviously continuous on Uy(C,) for all v, and it is M-bounded below
because it is always nonnegative. It is M-bounded above because for all Mg-constants y we have Ay
bounded above by y on By, (U, 1, y1, ..., Yn, ¥), by (3.26.2), Definition 3.21(d), and Lemma 3.23(a).

For i # 0, by symmetry it suffices to consider the case i =n. We have

U, = Spec K[yo, y1, -+ -» Yn—1l,

where y; = x;/x, foralli =0, ...,n— 1. We have f, = xo/x, = Yo, SO
a(P) = Ay (P) +logllyo(P)lly
_ l pollv o Il pollv
max{l|pollv, - .. [Ipnllv} l2nllv
= log max{|lyo(P)llv, - - -, lyn—1(P)llv, 1}
forall P=[pg:---: pn] € U,(C,) and all v € Mg. This is M-continuous and M-bounded for the same
reasons as before.
Thus Ay is a Weil function for D. |

Lemma 3.27. Let V be a projective variety over K, and let £ be a line sheaf on X. Then there exist a
model 7w : X — B for V with isomorphism i : V — X, a continuously metrized line sheaf ' on X that

extends £, and a nonzero rational section s’ of ', such that Ly is a Weil function for i* div(s') k.
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Proof. We first prove this in the case where . is very ample.

Let j: V — P% be a closed immersion over K such that . = j*&'(1). We may assume that n > 0
and the image of j is not contained in the hyperplane xo = 0. Let X be the closure of the image of j in
P’ and let .2’ be the sheaf ¢(1) on X. Then X is a model for V and .#” extends .. Finally, let s’ be
the restriction of the section x¢ of (1) to X. Since j (V) is not contained in the hyperplane at infinity, s’
is nonzero.

Then the lemma holds in this case by Theorem 3.24(b) and compatibility of div(-)x with pull-back.

We now consider the general case.

An arbitrary line sheaf .Z on V can be written as ¥ = .4 ® fzv, where 2 and % are very ample
on V. By the previous special case, for £ = 1, 2 there exist projective models 7,: X, — B for V over B,
continuously metrized line sheaves %, on X, extending .%;, and nonzero rational sections s, of .Z, such
that — logl|s; ||, are Weil functions for i* div(s)) k.

Let X be a projective model for V that dominates X; and X, (e.g., one can let X be the closure of
the graph of the isomorphism (X)x — (X2)x in X; xp X»). After pulling back the fe’ to X, we
may assume that X; = X, = X. Letting .¢' = . ® %, and s’ = 5|/}, we have that .#’ extends .Z,
s" is a nonzero rational section of .#”’, and —log||s’||, = —logl||s} [, + log|s5 ]|, is a Weil function for
i*div(s") g = i*div(s)) g —i*div(s))x on V, by Theorem 3.24(a). O

Proposition 3.28. Let 7: X — B be a dominant morphism of arithmetic varieties (i.e., a model for X ),
let & be a continuously metrized line sheaf on X, and let s be a nonzero rational section of £. Then
Ay = —log||s|| is a Weil function for div(s)g.

Proof. Let V = Xg. By Lemma 3.27 there exist a model X’ for V, a line sheaf .#’ on X’ extending Zx,
and a nonzero rational section s’ of .#”’, such that Ay is a Weil function for div(s') k.

We may assume that X" dominates X (replace X’ with the closure of the graph of V = X in X' x g X),
so there exists a proper birational morphism p: X" — X inducing an isomorphism X} —— Xk.

Then .} = p* %k, so the nonzero rational section s’/ p*s of £’ ® p*.#" corresponds to an element
o € K(V)*. Moreover,

div(s)x —div(p*s)x = (@) on X. (3.28.1)

Let .# be the metrized line sheaf .’ ® p*.#" on X', and let r = s’ /ap*s. Then t is a nonzero rational
section of .# whose restriction to .#x is a global section that generates .#x everywhere. Therefore
we have Zx = ﬁX/K , hence .44, = O(E) for some Cartier divisor E on X’ supported only on fibers of
X' — B. In particular there are Mg-constants y and y’ such that y < A; <y’ everywhere on V(My)
(these M -constants may be taken to be constants on M%°, by compactness of X’ (C)).

Thus A, is a Weil function for the trivial divisor on V. By additivity, we have

)\p*s = Ay +10g||01|| — Aty
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and this is a Weil function for div(s") ¢ — («) ¢ = div(p*s)k by (3.28.1), Theorem 3.24(a) and (g). Since
p induces an isomorphism X — X, we may identify X with X to obtain X (M) = Xg (Mg),
Aprs = Ap, and div(p*s)g = div(s)g; thus A is a Weil function for div(s)g. U

Remark 3.29. More generally, let X be an integral scheme, let 7 : X — B be a proper morphism, let .
be a continuously metrized line sheaf on X, and let s be a nonzero rational section of .. Definition 3.25
extends easily to this situation, giving a real-valued function A; = —log||s|| on (Xg \ Supp D)(Mg),
where D = div(s)x. Then the above proposition can be extended to this situation. Indeed, by Chow’s
lemma there is a proper birational morphism ¢: X’ — X such that X’ is projective over B, so ¢*A; is a
Weil function for ¢*D. It then follows that A, is a Weil function for D, because if f: Xx (M) — R
is a function such that f o ¢ is M-bounded, then f is also M-bounded. Then Theorem 3.24(f) can be
generalized to complete varieties V over K, as follows. Given a complete variety V over K, there exists
X as above with Xx¢ = V over K by Nagata’s embedding theorem; moreover X can be chosen such that
0(D) extends to a line sheaf . on X; see [Vojta 2007]. Let s be the extension of the canonical section
of 0(D) to .Z. Then A; is a Weil function for D. This fact is not needed in this paper, though, so the
details are left to the reader.

Weil functions can be extended to finite extensions of arithmetic function fields (with polarizations as
in Definition 3.9) in much the same way as for number fields. Indeed, let K’ be a finite extension of K,
and let M = (B; 4\, ..., #y) and M’ := (B'; 4], ..., #) be as in Definition 3.9. Let w € Mg, and
let v € M be the place lying under it. Let V be a complete variety over K, and recall that Vg =V x g K'.
Then there is a natural bijection ¢/, : Vg/(Cy) — V(C,). Let D be a Cartier divisor on V, let Ap be a
Weil function for D, and let

ADw :nw/v)\D,v Olw/v (3.30)
for all w € Mg and all v € Mg with w | v, where n,,/, is as in Proposition 3.11. Then Ap is a Weil
function for the pull-back D’ of D to Vk.. Moreover, by (3.11.3) and functoriality of pull-back of
polarizations to finite extension fields, this construction is functorial in towers of finite extensions of K.

This allows us to define proximity and counting functions for complete varieties over arithmetic
function fields, as follows.

Definition 3.31. Let S be a subset of Mg of finite measure, let K’ be a finite extension of K with the
polarization M’ induced by the polarization M of K, and let

S'={w e Mg/ : w | v for some v € S}.

Let D be a Cartier divisor on a complete variety V over K. Let Vg, D', Ap, and Ap be as above. Then

the proximity function and counting function for D relative to S are defined by

1
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and
Ns(D, P) =

Apw(P)d , 3.31.2
TR Dy g 0P A1) (331.2)

respectively, for all P € (V \ Supp D)(K’). By functoriality of (3.30) in towers, these quantities are
independent of the choice of K.
Combining these definitions leads to a height function

h),(P)=mg(D, P)+ Ns(D, P) =

[K': K] My Apw(P)dp(w) (3.31.3)

for all P € (V \ Supp D)(K’). By the method of [Lang 1983, Chapter 10, Section 4], this can be
extended to give a height function £, : V(K) — R. Indeed, choose a function f € K(V)* such that
P ¢ Supp(D +(f)), and let A = Ap —log|| f]|. Then A s is a Weil function for D + (f), so we define
hy(P) = h; ,(P), where the latter is defined as in (3.31.3). This is independent of the choice of f, because
if g € K(V)* also satisfies P ¢ Supp(D + (g)), then the rational function f/g extends to a rational
function @ € K (V)* which is regular and nonzero at P, and A y — A, = —log|l«||, s0 h;  (P) —hy (P) =0
by the product formula (3.5) applied to «(P) € K'*.

As is true in the number field case, Theorem 3.24(d) and (3.19) imply that the above definitions are
independent of the choice of Weil functions, up to O(1).

The next two propositions show that this height is the same (up to O(1)) as the height defined by
Moriwaki (Definition 3.14), and relate the height defined by Weil functions on P! to the naive height (3.6).

Proposition 3.32. Let V be a projective variety over K, and let £ be a line sheafon V. Let X be a model
for V over B such that £ extends to a continuously metrized line sheaf &' on X:

(a) Let s be a nonzero rational section of ', and let .. = Ay (Definition 3.25). Then
hy(P) =hy(P) forall P e V(K). (3.32.1)
(b) If D is a Cartier divisor on 'V such that 0(D) = %, and \p is a Weil function for D, then
hy., (P)=hg (P)+O(1) forall PeV(K). (3.32.2)

Proof. We first consider part (a). By Definition 3.31 and Proposition 3.15, it suffices to prove (3.32.1) for
all P € X(K).

Let ¢ be a nonzero rational section of .#” which is regular and nonzero at P, let 0: B --+ X be
the rational section of 7: X — B corresponding to P, and let P denote the closure of P in X. By
Definition 3.14, the projection formula, and Lemma 1.11,

ho (P)=ci(@* th|p) - c1(m* Malp) - 1 (L | p)
=ci1() - c1(My) -1 (L] 5)

= Z OrdY(U*f)Cl(//fllY)"‘Cl(///llY)-i'/ (—loglla™te1 (A1) A -+ Aer(y).
YeBW B(Cyeen



1970 Paul Vojta

Note that, since B is normal, the rational section o is regular at the generic points of all prime divisors
Y on B, so ordy (0*t) is defined. Moreover, if v € Mg)( corresponds to Y, then ||-||y as defined in (3.3)
agrees with |||, on C, (by definition of C,). Therefore, by (3.2), (3.3), and Definition 3.25,

ordy (o"t)c1 (A |y) = —logll(1/10) (P [lv = Ar,u(P),

where 1) is a local generator of o*.%’ at the generic point of Y. By (3.4), Definition 3.25, and (3.31.3),
we then have

hg(P) = /M Aiw(P)dp(v) = hy, (P).

Since h;, = h;, (see the end of Definition 3.31), this gives (3.32.1).
To prove (3.32.2), it suffices by (3.32.1) to show that s, ,,(P) =h,(P)4+O(1) forall P € V(K), where
A is defined by letting s be the rational section of .#” corresponding to the canonical section of &(D).
With this choice of s, A is a Weil function for the same divisor D, so |[Ap —A| < y for some Mg -constant
y by Theorem 3.24(d). Then, for all finite extensions K’ of K and all P € V(K'),

1
|hAD<P>—hA<P>|s[K,,K]/M V:/M y =0(D),

where y is extended to an Mg /-constant as in (3.30). This implies (3.32.2). [l

Proposition 3.33. Let Ap be a Weil function for a divisor D on [P’}(. Then
hj,(P) = (deg D)hg(P)+ O(1)
forall P € P1(K).

Proof. Let ¥ = 0(D) on [P’}(. Let X = [P’}g, and let .’ be the line sheaf ¢(deg D) on X, with metric
obtained from the metric of Proposition 3.17 by the isomorphism ¢'(deg D) = ¢'(1)®1¢ D) Then &’
extends . to X.

Therefore, by Proposition 3.32(b), (3.14.1), multilinearity of the intersection product, and by
Proposition 3.17,

hyp(P)=hg(P)+ O(1) = (deg D)hgy(P) + O(1) = (deg D)hg (P) 4+ O(1). (]

4. Roth’s theorem

This section discusses several equivalent formulations of Roth’s theorem, as well as the reasons why
certain choices have been made in extending Roth’s theorem to arithmetic function fields.

We also show that all of these variants are equivalent (i.e., can be proved from one another by relatively
short arguments).

4.1. Throughout this section, K is an arithmetic function field, M := (B; .#, ..., ) is a big polarization
of K with all metrized line sheaves equal to the same smoothly metrized line sheaf .#, Mg is derived
from this polarization, and § is a subset of Mg with finite measure. We also write M as (B; .#).
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Note that, by Proposition 2.5, if a polarization of a field K is big, then so is the induced polarization
of a finite extension K’ of K. Also, the set of places of K’ lying over places in S has finite measure.
Therefore 4.1 is preserved under passing to the induced polarization of a finite extension.

We start with a definition.

Definition 4.2. Let D be an effective divisor on a nonsingular variety V over a field K. We say that D is
reduced if all components in Supp D occur with multiplicity 1.

The first version of Roth’s theorem is stated using notation from Nevanlinna theory.
Theorem 4.3. Let K, Mg, and S be as in 4.1; let D be a reduced effective divisor on PL: ler mgs(D, -)
be the proximity function associated to some choice of Weil function for D; let € > 0; and let c € R. Then

the inequality
ms(D,§) < (2+e)hg(§)+c (4.3.1)

holds for all but finitely many & € K.

The next version of the theorem is close to the above formulation (see the equivalence proof, below)
but avoids Weil functions.

Theorem 4.4. Let K, Mk, and S be as in4.1; let ay, . .., ay be distinct elements of K ; let € > 0; and let
c € R. Then the inequality

q
/ (Z —log™ [l —«; ||v> dp(v) < Q+O)hg(E) +c (4.4.1)
S .
j=1
holds for all but finitely many & € K.
Next, the following version is close to the preceding version, and is the statement that will be proved
in this paper.

Theorem 4.5. Let K, Mk, and S be as in4.1; let ay, . . ., oy be distinct elements of K ; let € > 0; and let
c € R. Then the inequality
/maX{O, —logll§ —aiqlly, ..., —logll§ —aylly}du(v) < 2+e€)hg () +c¢ (4.5.1)
S

holds for all but finitely many § € K.
Finally, we consider a version that is close to Roth’s original theorem.

Theorem 4.6. Let K, Mg, and S be as in 4.1, and let ay, . .., oy be distinct elements of K. Choose
embeddings 1, j: K(a;) — K, over K forall j=1,...,q and all v € S in such a way that the function
vi> —log [ty j (§ —aj)lly is a measurable function for all j and all§ € K \ {ay, ..., ay}). Assume also
that v, j(aj) # by, (@) for all v and all j # j' (this is automatically true unless o ; and o j are conjugate
over K). Then, for all ¢ > 0 and all ¢ € R, the inequality

q
fs <Z —log (€ —aJ-)nv) dp(v) < 2+ Ohg ) +c (4.6.1)

j=1
holds for all but finitely many § € K.
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Remark 4.7. Roth’s theorem over number fields is often stated in the form of Theorem 0.1, involving
choices of o, € @ for all v € S. This leads to the question of whether a more natural generalization
would be to choose a function «: S — K and then bound fS(— log™ || — a(v)]ly) d(v). I doubt that
this is true, although I do not have a counterexample. I believe that Theorems 4.3—4.6 represent a more
natural generalization, because they correspond more closely to Nevanlinna theory, and because they are
sufficient to prove Siegel’s theorem on integral points (Corollary 4.11). (If the image of « is required to
be finite, then this is strictly weaker than Theorem 4.6, since the function does not depend on £. One can
fix a finite subset 7 of K, though, and allow « to be a function from S to 7 depending on &. This would
then be equivalent to Theorem 4.6.)

We now show that these four theorems are all equivalent, and therefore proving any one of them
suffices to prove all four.

Proposition 4.8. Theorems 4.3—4.6 are equivalent.

Proof. We first show that Theorems 4.3 and 4.4 are equivalent. Let «y, ..., o, be as in the statement of
Theorem 4.4. By Proposition 3.28, for fixed o € K the function & — —log™ ||§ — «||, defines a Weil
function for the divisor [o] on P!. By additivity of Weil functions, the integrand in (4.4.1) defines a Weil
function for a divisor D := [a1] + - - - + [, ]; hence the left-hand side of (4.4.1) equals mg(D, &) for this
choice of Weil function, so (4.4.1) and (4.3.1) are equivalent.

This shows that Theorem 4.3 implies Theorem 4.4. It does not (yet) show the converse, though, since
not all reduced effective divisors D on [FD}( are of the above form.

To show the converse, let D be a reduced effective divisor on P}(. We first consider the case in which
oo ¢ Supp D.

Let K’ be a finite Galois extension of K such that all points in Supp D are rational over K’, let S’
be the subset of Mg lying over S (as in Definition 3.31), and let D’ be the pull-back of D to PL,. The
proximity function mg(D, &) in (4.3.1) was defined using a specific choice of Weil function for D; let this
be extended to a Weil function for D’ on IP’}(, as in (3.30). We then have mg/ (D', £) = [K' : K|mgs(D, &)
and hg(§) = [K' : K]hg (&) for all £ € K \ Supp D. Therefore Theorem 4.3 for D’ on [Ij’}(, implies
Theorem 4.3 for D on IP}(. Since all points in Supp D’ are rational over K’, Theorem 4.3 for D’ follows
from Theorem 4.4 applied over K'. Therefore Theorem 4.3 also holds for D.

To drop the assumption co ¢ Supp D, let ¢ be an automorphism of [P’}( such that ¢ (co0) ¢ Supp D.
One can use the pull-back via ¢ of a Weil function for D to give a Weil function for ¢*D; we then have
ms(¢*D,§) = ms(D, ¢(§)) for all & € Py \ Supp¢*D. Also hg(§) = hg($(§)) + O(1) for all § by
Proposition 3.33 (let D’ be any divisor on P! of degree 1, and note that deg ¢* D’ = 1 also). Therefore
Theorem 4.3 for ¢*D implies Theorem 4.3 for D. Since the former follows from Theorem 4.4, it follows
that Theorems 4.3 and 4.4 are equivalent.

We next show that Theorems 4.4 and 4.5 are equivalent. Let a1, ..., a4 be distinct elements of K, and
let D =[a]+ -+ [og]. For fixed @ € K,

max{0, —logll§ —all,} = —log" [|I§ —all
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gives a Weil function for the divisor [«]. Therefore, by [Lang 1983, Chapter 10, Proposition 3.2] (applied
with Y = — D, and using the fact that the theory of Weil functions carries over directly to arithmetic
function fields), the integrand in (4.5.1) is a Weil function for D, and therefore the left-hand sides of
(4.4.1) and (4.5.1) differ by O(1). Thus Theorems 4.4 and 4.5 are equivalent.

Finally, we show that Theorem 4.6 is equivalent to the other three. Clearly Theorem 4.6 reduces to
Theorem 4.4 in the case when all ¢; lie in K, so Theorem 4.6 implies Theorem 4.4.

For the converse, let ay, ..., a4 € K and Liv: K(aj) — K, (1< Jj <gq,v e S)be as in the statement
of Theorem 4.6. Since the inequality (4.6.1) is strengthened by adding more elements to {aq, ..., o4},
we may assume that this set is invariant under Gal(K /K). (When doing this, it is possible to choose
the embeddings for the added elements in a way that satisfies the condition on measurability.) Then

K =K(ay, ..., ag) is a finite Galois extension of K. The map {1, ..., g} — {ai, ..., a4} given by
J > 1y, j (o)) is injective, hence bijective; therefore
q q
> —log . jE —aplly =Y —log™ [t —a))lly (4.8.1)
j=1 j=1

forallve S,all¢,: K/’ — K, over K,and all £ € K \ {o], RN AIE

We will show that Theorem 4.4, with K replaced by K’, S replaced by the set S’ of all places of K’
lying over places of S, and ¢ replaced by [K’ : K]c, implies Theorem 4.6 (with no replacements). Indeed,
let / denote the measure on M- associated to the polarization of K’ induced by the polarization of K.
This is compatible with the measure u on Mg ; combining this with (3.11.3) and (4.8.1) gives

1 q
/y(Z—log_ll& —Olj”w> du (w) = A(ZZ—log‘Hg _aj”w) du(v)

j=1 j=1 wlv

q
=[K’:K]A(Z—log—ntv(s—aj)nv) dp(v)

j=1

q
=[K’:K]/S(Z—log—ntv,j(s—aj)uv) du(v).

j=1

Combining this with (3.11.4) then gives that (4.6.1) is equivalent to (4.4.1) (with the above replacements).
O

Remark 4.9. For the equivalence of Theorems 4.4 and 4.5, something stronger was actually proved. The
above proof additionally showed that, for any given K, Mg, S, oy, ..., oy, and €, Theorem 4.4 for all ¢
is equivalent to Theorem 4.5 for all c¢. This fact will be used in the proof of Proposition 5.7, below.

As is true over number fields, Roth’s theorem and Mordell’s conjecture imply the author’s “Main
Conjecture” [Vojta 1987, Conjecture 3.4.3] in the special case of (rational points on) curves. This is
proved by essentially the same proof as over number fields, so the proof will only be sketched.

Corollary 4.10. Let X be a smooth projective curve over K of genus g; let D be a reduced effective
divisor on X; let <7 be a line sheaf of degree 1 on X; let ms(D, -) and h,(-) be the proximity and height
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functions, respectively, determined by some fixed choice of Weil function for D and </, respectively; let

€ > 0; and let ¢ € R. Then the inequality
ms(D,§) < (2—-2g+€)hy(§) +c (4.10.1)
holds for all but finitely many & € X (K).

Proof (sketch). When g = 0 this is Theorem 4.3, and when g > 1 this follows from Mordell’s conjecture
over K (see the Introduction) since X (K) is finite. This leaves the case g = 1. In this case, (4.10.1)
reduces to mg(D, &) <eh (&) +c.

As in the proof of Proposition 4.8, we may assume that all points of D are rational over K. We may
also assume that D # 0, so in particular X (K) # &. Thus X is an elliptic curve.

Assume that the statement is false. Then the inequality

ms(D,§) >ehy(E)+c (4.10.2)

holds for infinitely many & € X (K).

Following [Lang 1960], fix an integer n > 2/,/€. Since the Mordell-Weil theorem is known for
X (K) (see the Introduction), the subgroup nX (K) is of finite index in X (K). Therefore some coset
& +n X (K) contains infinitely many points £ for which (4.10.2) holds. Let ¢ : X — X be the K-morphism
& > n& + &y. Then, for some constant ¢/, the inequality

ms((,b*D, é’) > € //l¢*<@¢(g/) + C/

holds for infinitely many &’ € X (K).

Pick a morphism ¢ : X — IP}( over K of degree 2. Let D’ be the reduced divisor on IP}( whose support
is ¥ (Supp ¢* D). Since ¢ is étale, the divisor ¢* D is reduced (as well as effective). Therefore the divisor
Yw*D' — ¢* D is effective, so ms(y*D’, &) > mg(¢p*D, &)+ O(1) for all & € X (K). In addition, ¢* o7
and ¥* @ (1) have degrees n” and 2, respectively; therefore, for any €” such that 2 4 €” < n%e/2, standard
properties of heights (which extend straightforwardly to arithmetic function fields) give

€hp s (E) = 2+ €Nhyoa)(E)+0() = 2+€Nhg (Y (E))+ 0.
By choice of n, we may take €” > 0. Thus, up to O(1) at each step,
ms(D', Y (E") =ms(y* D', &) > ms(¢p*"D, &) > € hyry (§") = 2+ €Dhx (Y ().
This holds for infinitely many points ¥ (£¢') in P'(K), which contradicts Theorem 4.3. [l

This leads, in the usual way, to Siegel’s theorem on integral points on curves, due to [Lang 1960,
Theorem 4]; see also [Lang 1991, Chapter IX Theorem 3.1]:
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Corollary 4.11. Let K be a field finitely generated over Q, let R be a subring of K finitely generated
over Z, and let C be an affine curve over K. Assume that either none of the irreducible components of
C xx K are rational, or that there exists a projective completion of C having at least three points at
infinity. Then, for any closed embedding i : C < A} over K, the set i~Y(R™) of integral points on C is
finite.

Proof. The proof follows the classical proof over number fields very closely.

By enlarging K, we may assume that C is geometrically integral. Fix a big polarization M = (B; .#)
of K such that B is normal and generically smooth. Let S € Mk be the union of My and the set of all
prime divisors Y on B such that some generator of R has a pole along Y. Then $ has finite measure, and
R is contained in the ring of S-integers of K. Let X be a projective closure of C.

Leti: C — A} be a closed embedding over K, and let xy, ..., x, be the pull-backs to C of the
coordinate functions on A% . Then, for each v € Mg the function X((C,) — RU {oc} given by

Ay (§) = max{0, logllx1 (&) ]lv, - . ., logllx, (5}

defines a Weil function A on X for an effective divisor Dg such that Supp Dy = X\ C.

Let ¥ =i~'(R"), and assume that this is an infinite set. By construction we have 1, (£) = 0 for all
ve Mg\ Sandall &£ € X.

Let w: X — Xo be the normalization of Xy, let D be the reduced divisor on X such that Supp D =
X\ 7~1(C), and choose a Weil function Ap for D on X. Since 7*Dy — D is an effective divisor and
My(E)=0forall v ¢S andall £ € X, Theorem 3.24(e) implies that there is an Mg -constant (c,) such
that Ap ,(§) <c¢, forallv¢ Sandall & € 7~ 1(2). It then follows that

ms(D, &) =hp(§)+ O(1) (4.1L.1)

for all £ € 7~!(X), where mg(D, -) and hp are proximity and height functions defined using Ap.
Let g be the genus of X. The hypotheses on C imply that deg D > 2 —2g, so (4.11.1) contradicts
Corollary 4.10 by basic properties of heights (which still hold over arithmetic function fields). U

We conclude this section with two examples showing that Theorem 0.1 does not extend straightforwardly
to arithmetic function fields without requiring {«;, : v € S} to be a finite set.
These two examples use the standard notation B, (z0) ={z € C: |z —z0| < r}.

Example 4.12. Let K = Q(¢) with 7 an indeterminate, let B = IP%, let .# = ¢ (1) with Fubini—Study
metric, and let § = Mg°. Identify B(C) with CU {oo} in the usual way, so that S is identified with C\ Q
by associating 7: K — C to 7(r) € C\ Q.

For each n € N let S, be the subset of S corresponding to B 1 (n)N(C\ Q). Note that these subsets are
mutually disjoint (but do not cover S).

Since @(+/—1) is dense in C (in the classical topology), for each n € N and each v € S, we may
choose B, € Q(+/—1) to be arbitrarily close to v — n. This can be done so that the function v — S, is
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a measurable function (for example, partition S, into finitely many measurable subsets and let g, be
constant on each of these subsets). Let 8, =0 forall v ¢ SoUS; U---,and leta, =t — B, forall v € S.

If we choose 8, such that —log|8, +n — v| > 3hg(n)/u(S,) for all n € N and all v € §,,, then we
will have

/—log_lln—avlludu(v)z/ —log™ |n —v+Byldu(v) > 3hg(n)
N

for all n € N. Thus, taking € = 1 and ¢ = 0, we have constructed an infinite subset N C K and a system
of choices of o, € K for all v € S such that

/—IOg‘IIS —ayllydu(v) > 2+e)hg () +c (4.12.1)
S
for all £ e N.

In this example, the elements «, € K all have finite degrees over K, and in fact they all lie in the same
arithmetic function field Q(+~/—1, 1). However, their heights are unbounded.

This next example is very similar, except that the heights are bounded but the degrees are not. (Bounding
both the degrees and the heights amounts to requiring that {«, : v € S} be a finite set.)

Example 4.13. Let F = QW -1),let K =F(),let B= I]j’%ﬁ], and let M = ¢'(1) with Fubini-Study
metric. Fix an embedding i: F' — C, and let S € M be the subset of maps 7: K < C that satisfy
T|F =i. Again identify S with C\ @ as in Example 4.12.

This example will use the fact that the set {¢ + ¢’ : ¢ and ¢’ are roots of unity} is dense in the closed
ball |z] <2.

Choose &, € F and r,, > 0 for all n € N such that S, :== B, (§,) N (C\ Q) are mutually disjoint subsets
of B;(0). Then, as noted above, for each n and each v € S, one can choose roots of unity ¢, and ¢, whose
sum is arbitrarily close to v — &,.

Then, proceeding as before, we construct a collection of choices a, € K for all v € § such that
(4.12.1) with € = 1 and ¢ = 0 holds for all £ in the infinite subset E := {&y, &1, ...} of K. In addition,

hi (o) <hg(t) 4+ poo(B2(0)) log4 for all v € S.

5. Reductions

In this section we begin the main line of the proof of Roth’s theorem over arithmetic function fields.
Specifically, Theorem 4.5 will be proved in the remaining sections of the paper (and the other variations
will then follow, by Proposition 4.8).

The purpose of this section is to show that it will suffice to prove Theorem 4.5 under the following
additional hypotheses:

5.1. The set S contains all of the archimedean places.
5.2. B is generically smooth.
5.3. . is ample.

5.4. The metric on ./ is positive.
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We start by noting that the integrand of (4.5.1) is nonnegative, so enlarging the set S will only strengthen
the theorem. In particular, we may assume that 5.1 holds.

Next, consider the condition 5.2. Recall from 4.1 that M = (B; .#) is a big polarization of K. Let
7: B’ — B be a generic resolution of singularities of B, and let .#' = 7*.#. Then M' := (B'; .4") is
also a big polarization of K.

The map 7 induces a bijection 78" : B’ (C)&*" — B(C)&" which preserves measures and absolute
values.

As for nonarchimedean places, let Y’ € (B')(V, and let Y = m(Y’). First consider the case in which
codimY =1. Then Y € B!, and hp;(Y) = hpp(Y') by (1.9). Also ordy/(£) = ordy (¢) for all £ € K*, so
we have ||&]lyr = ||€]|y for all £ € K.

Next consider Y’ for which codimY > 1. Then m,.(Y,0) = 0 in Z]ID(B), s0 hpy(Y') = 0 by (1.8).
Therefore ||£|yr = 1 for all £ € K*.

Therefore, it is clear from (3.6) that /5, (&) remains the same when one changes the polarization from
MtoM'.

Next let S” be the subset of M), defined by

S'=B'(©)&"U{Y' € (B :n(¥)eSNnBWY}.
Since S D B(C)&™ by 5.1, the integral in (4.5.1) is unchanged when S is replaced by S’. Therefore, for
each & € K, (4.5.1) is true for the polarization M if and only if it is true for M’, and therefore it suffices
to prove Theorem 4.5 under the additional conditions 5.1 and 5.2.

This leaves 5.3 and 5.4. We begin with a result from Arakelov theory.

In the remainder of this section, it will be convenient to work with slightly different notation. For an
integral scheme X, projective over Spec Z, let Pic(X) denote the group of smoothly metrized line sheaves
on X, whose group operation is tensor product. A smoothly metrized Q-line sheaf on X is an element of
lgi?:(X ) ® Q. The previous definitions of “nef,” “big,” and “ample” extend to this group. For simplicity,
elements of fi\c(X ) ® @ will be written additively.

Since the intersection number ¢ (£]) - - - ¢1(-%,) on an arithmetic variety X is multilinear, its definition
extends to allow the .%; to be smoothly metrized Q-line sheaves, and correspondingly we allow smoothly
metrized Q-line sheaves to be used in polarizations.

Lemma 5.5. Let B be a generically smooth arithmetic variety, and let .# and <f be smoothly metrized line
sheaves on B. Assume that . is big and nef, that </ is ample, and that the metric on < is positive. Then:

(a) Forall rational § > 0, .# + 547 is ample, and its metric is positive.

(b) Let § € Q.¢. Let K = k(B), and let hx and h'y denote the naive heights computed using the
polarizations (B; #) and (B; M + 847, respectively. Then h'y (§) > hg (§) forall & € K.

(¢) For any given €” > 0 there is a rational § > 0 such that the inequality
(A +8)Y) < (1 +€)er(Ay)? (5.5.1)
holds for all but finitely many Y € B!,
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Proof. First, we claim that the inequality
(A +8)y) ™Y = er(a)yy ™Y (5.5.2)

holds for all rational § > 0 and all integral closed subschemes Y of X. Indeed,

dimY

Cl((///-l-&af)h,)-dimY _Cl(///|Y)‘dimY _ Z (
i=1

dim Y\ ; (dim Y —i i
S (Al T e ()
and each term on the right-hand side is nonnegative.
By a similar argument,

1 (M +8.27)|y)tmY > 4T ¢ (o7]y)dimY, (5.5.3)

Now consider (a). The metric on .# + §.<7 is positive because the metrics on .7 and .# are positive
and semipositive, respectively. Also .# 4 §.<7 is vertically nef because both .# and </ are.

Since the metric on .# is semipositive, .Zq is nef, and therefore (# + §.97)g is ample (by either
Kleiman’s or Seshadri’s criterion for ampleness).

Finally, .# + 8.4/ is horizontally positive by (5.5.3) and horizontal positivity of .«7. Thus .#Z + 8./ is
ample.

Next consider (b). Let £ € K. By (3.6),

Wy (§) —hg (&)

=/ log™ |£(D)| d (po (b) — poo(B)) + Z max{0, —ordy (§)}(hp (Y) —hu(Y)), (5.5.4)
B(C)een

YeB®M
where (s and p are the measures on B(C)&®" defined using M and M’, respectively. The signed
measure [, — (oo 18 associated to the (d, d)-form

d
1l lLassa)™ = er(lLa)" = Z(f)s"cl(||-||.%)“d—” Aer(l-l)™,
i=1
and this is nonnegative because each term on the right is nonnegative. Also, by (5.5.2), Ay (Y) > hy (Y)
for all Y € BV, Therefore, the right-hand side of (5.5.4) is nonnegative, and this gives (b).
Finally, consider (c).
By [Moriwaki 2014, Proposition 5.43], there is a rational 1 > 0 such that some positive integer multiple
of .# — n</ has a nonzero strictly small global section.
Let s be such a global section. Let ¥ € B, and assume that ¥ does not occur in the support of
div(s)fn. This excludes only finitely many Y.
Since s|y is nonzero and both .# and 7 are nef, Proposition 1.12(b) gives

1 (A y) D e () e (M —ne)]y) =0 (5.5.5)

forall j =0,...,d—1.
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Let €” > 0 be given. Choose a rational § > 0 such that

(1+en? > +8)7.

Since
< d
/" ,.d d _ d_1n _ d—igi
(€ = (n+8)! = e 2(,.)77 6,
=
we have
L d
Jj Jj—igi
p Z(i)” 5 >0 (5.5.6)
i=1
forall j =0,...,d.
For j =0,...,d let
L\ d 4 d ~
€)= (n/e” ->(¢ )nf—’a’)clufﬂy)'“—” i@ = 3 (§)sen iy @ e ()
i=1 i=j+1

We claim that C; > O for all j. This will be proved by descending induction on j. When j =d, we

have
d

d o
_ d, n _ d—i i -d
Cu= (n ¢ 21:(1 Jn'is )cl(my) ,
and this is nonnegative by (5.5.6) and Proposition 1.12(a). For j =0, ...,d — 1, we have
' d 4 a
Ciri=n(le" =Y (§ ) 80e1 (1) Ui (o 1y T = 37 ()8 er () e 1)
i=1 i=j+1
and therefore
J
, N . o y o o
Cj=Cjsi= (nle”—Z(l- )’ 18’) (1 ()T e )T =ner (A ly) IV er () D),
i=1
By (5.5.6) and (5.5.5), the right-hand side is nonnegative; hence C; > C,;.
We then have Cy > 0. Since
d
: dy i (d—i i : .
Co=e"er( 1y =Y )o'er(alyy = cr( A 1n)T = (1 + €Ner (M) = er (A + 8",
we have (5.5.1). O
This sets the stage for the main result of this section.

Remark 5.6. In the proof of the following proposition, it will be convenient to consider polarizations
(B; .#") in which .#’ is a smoothly metrized Q-line sheaf. This can be justified as follows.

Let (B; .#) be a polarization of K, and let n be a positive integer. Then (B; n.#) is also a polarization,
with the same set Mk of places. The archimedean absolute values of this new polarization are the same as
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those of the original polarization, but the measure o, is multiplied by n¢. For nonarchimedean places, the
counting measure is of course unchanged, but the absolute values for (B; n.#) are the n¢ powers of the
absolute values for (B; .#). Therefore the naive height is multiplied by n¢ by this change. Similarly, let D
be a Cartier divisor on a variety V over K, and let A be a Weil function for D using the polarization (B; .Z).
Define a function A’ by letting A/ = A, for all archimedean v and A’ = n“A, for all nonarchimedean v.
Then 1’ is a Weil function for D relative to (B; n.#). It then follows that the proximity and counting
functions obtained using A’ and (B; n.#) are equal to n“ times those obtained using A and (B; .Z).

Therefore, one obtains well-defined notions of absolute value, naive height, Weil functions, proximity
functions, and counting functions for polarizations with smoothly metrized Q-line sheaves. And, if
Theorem 4.5 holds for polarizations as defined earlier, then it is also true for polarizations using smoothly
metrized Q-line sheaves.

Proposition 5.7. It suffices to prove Theorem 4.5 under the additional hypotheses 5.1-5.4.

Proof. As noted earlier, we may already assume that 5.1 and 5.2 hold, so it remains to show that if
Theorem 4.5 holds under 5.1-5.4 then it holds when only 5.1 and 5.2 are assumed to be true. By
Remark 4.9, we may work with Theorem 4.4 instead of 4.5.

So let K, Mk, and S be as in 4.1, where S contains all archimedean places, and the polarization
M = (B; .#) satisfies 5.2; i.e., B is generically smooth. Also let «y, ..., aq, €, and ¢ be as in the
statement of Theorem 4.4.

Pick €’ > 0 and €” > 0 such that

—g—2—c (5.7.1)

Choose an ample smoothly metrized line sheaf .«# on B with positive metric, and let § > 0 be as in
Lemma 5.5(c). We may assume that S contains all of the (finitely many) ¥ € B for which (5.5.1) fails
to hold.

Let D = [a1] +-- -+ [ag4], and let A p be the Weil function for D defined by

q
hpw=—) log" & —aill,. (5.7.2)

i=1
Also let mg(D, &) and Ng(D, &) be as in Definition 3.31. By Proposition 3.33,
ms(D,§)+ Ng(D,§) =qhg(§)+ O(D) (5.7.3)

forall § € K\ {oq, ..., a4}

Let #' = .# 454/, and let M' = (B; .#"). Note that Mg depends only on B, so it is the same for
both polarizations M and M'. Define h'y (§), A, m's(D, &), and N¢(D, &) similarly to hg (§), Ap, etc.,
but using M’ instead of M. Again, we have

ms(D, &)+ Ng(D, &) =qhx(§) +O(1) (5.7.4)

forall § € K\ {ay, ..., a4).
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By Lemma 5.5(a), .#’ is ample with positive metric. Therefore, we can apply Theorem 4.4 to get that,
for all ¢’ € R, the inequality
mg(D, &) < 2+ (E) +¢

holds for all but finitely many & € K (where the excluded set depends on ¢’ as well as all other data here).
By (5.7.4) there is a constant a’, independent of ¢’, such that

Ng(D, &) > (g —2—€)hx () —c' —a.

By Lemma 5.5(b) and (5.5.1), we have A% (§) > hg (&) and N/ (D,&) < (14 €")Ng(D, &) for all
§e K\ {ay,...,ay}. Therefore

(1+€")Ns(D, &) > (¢ =2 —€Vhg(E) =’ —d
for all but finitely many & € K. By (5.7.1) and (5.7.3), there is a constant a, independent of ¢/, such that
' +d
1+¢€”
We can then take ¢’ small enough so that (¢’ +a’)/(1+€”)4+a < c to get (4.4.1). O

ms(D,§) = (2+€)hg(§)+

+a

6. Reduction to simultaneous approximation: The main analytic part

The proof of Theorem 4.5 follows the classical proof over number fields very closely. Most parts carry
over directly without difficulty. The main exception to this is the part of the proof that is often called
“reduction to simultaneous approximation”. This is briefly described in the Introduction; see also [Lang
1983, Chapter 7, Section 2], [Hindry and Silverman 2000, Theorem D.2.2], or [Bombieri and Gubler
2006, 6.4.2-6.4.4].

In more detail, reduction to simultaneous approximation is as follows. In the special case of number
fields, (4.5.1) reduces to the inequality

D_ max —log[[§ —jllu < Q+)hx(§) +c.

where S is a finite set. Reduction to simultaneous approximation consists of showing that, to prove
Roth’s theorem, it suffices to prove the following statement. For all functions j: S — {1, ..., ¢} and all
(cv)ves € R*S such that Y ¢, > 2, only finitely many & € K simultaneously satisfy

—log I —ajwylly > cohik (§)

for all v € S.

In the number field case S is finite, so this is proved by a simple compactness argument combined
with the pigeonhole principle. In the case of arithmetic function fields, though, S N M’ is a subset of a
complex manifold and v — —log™[|§ — «;||, is a smooth function (with singularities on the manifold
outside of M7°). This becomes a question in analysis, reminiscent of the Arzela—Ascoli theorem. In fact,
the proof presented here is motivated by the proof of the Arzela—Ascoli theorem. The singularities can be
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handled by removing a subset T of bounded measure from M?. It is possible to do this, for basically
the same reason as in [Wirsing 1971]. Since M \ T may now be locally disconnected, though, it is
necessary to work with differences instead of derivatives.

Another challenge in reducing to simultaneous approximation is the fact that the analytic estimates in
the proof need to be uniform in the rational points. Simple compactness arguments will not work here.
For example, in the d = 1 case the degree of the rational function can be arbitrarily large. Instead, we can
use the fact that — log||§ — «;||, is a Green function for the principal divisor (§ — ), and use properties
of Green forms and functions from Arakelov theory to write this function as an integral whose integrand
can be treated using compactness arguments (see Proposition 6.3).

The proof of reduction to simultaneous approximation for arithmetic function fields takes up the next
three sections of this paper. They form the core of this paper.

This section carries out the main analytic arguments leading up to Proposition 6.16, which is motivated
by a part of the proof of the Arzela—Ascoli theorem. Section 7 gives an upper bound on what is lost by
removing the set T'; this is Proposition 7.3. Section 8 then carries these two results over to the arithmetical
setting, and proves the main result on reduction to simultaneous approximation (Proposition 8.12). This
is the part that uses the pigeonhole argument.

Ultimately the proof of Proposition 6.16 relies on the following elementary lemma on integration
(which is used in proving Lemma 6.13).

Lemma 6.1. Let X be a space with measure i, let g: X — [0, 0o] be a measurable function with finite
integral, and let ¢ > 0. Then

pre X g zen =t [ gdn.

Proof. Let x: X — [0, c] be the function defined by x (x) = c if g(x) > c and x (x) = 0 otherwise. Then

f gdp—cu({x e X :g(x) > c}) =/(g—x)du20
X X
because the integrand is nonnegative. (I

Wirsing’s proof also uses this lemma (via its reliance on Chebyshev’s inequality).

Results in this section and the next will be phrased in terms of a smooth complex projective variety X.
The topology on X will be the classical topology. In Section 8 we will apply these results as X varies
over all connected components of B(C), where B is the arithmetic variety in some polarization of K.
Note that K is a subfield of «(X) (in fact, «(X) is the compositum of K and C over the algebraic closure
F of Q in K, for some choice of embedding of F into C).

Definition 6.2. Let X be a smooth complex projective variety and let Y € X be an irreducible closed
subvariety of X of codimension p > 0. Then a Green form for Y is a smooth (p — 1, p — 1)-form on
X\ Y whose associated current on X is a Green current for Y. A Green form of log type for Y is a Green
form for Y that is of logarithmic type along Y [Soulé 1992, Definition II.3].
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Proposition 6.3. Let X be a smooth complex projective variety of dimension d > 1. Let A be the diagonal
in X x X,letmw: W — X x X be the blowing-up of X x X along A, let E be the exceptional divisor,
choose a smooth metric on the line sheaf O'(E), and let s be the canonical section of this line sheaf. Then

there exist smooth (d — 1, d — 1)-forms o and B on W for which the following statements are true:

(a) There is a Green form ga of log type for A on X x X such that
n*ga = (—log|ls|>a+pB onW\E. (6.3.1)

(b) For each prime divisor D on X, define gp as follows. Let j : D — X be a proper map with image D
such that D — D is a desingularization of D, let q : D x X — X be the projection to the second
factor, and let

gp =qx(j xIdx)*ga. (6.3.2)

Then gp is a Green form of log type for D on X.

(¢c) Foreach & € k(X)*, write the principal divisor (£) as a (finite) sum (§) = ZD npD, where each D
is a prime divisor and np € Z for all D. Then there is a constant ¢ such that

~logls> =) npgp +c. (6.3.3)
D

Proof. Part (a) is proved in Step 2 of the proof of [Soulé 1992, Theorem I1.3], where f is taken to be the
identity map on X.
For part (b), note that (j x Idy)~'(A) is the graph I"j of j. Since

codimp,  I'; =codimy, x A,

it follows from [Soulé 1992, Section I1.3.2] that (j x Idx)*ga is a Green form of log type for I';.

Since the push-forward g.I"; equals D (as cycles on X), it follows from [Soulé 1992, II, Lemma 2(ii)
and proof of III, Theorem 3(ii)] that g, (j x Idx)*ga is a Green form of log type for D on X. This gives
part (b).

For part (c), we note that both — log|£|? and > npgp are Green forms for the same divisor (§).
Therefore, by [Gillet and Soulé 1990, Lemma 1.2.4], there is a smooth function f: X — R such that

—logl&* =) "npgp +log f (6.3.4)

everywhere outside of the support of the divisor ().

Since g is a Green form for A on X x X, the (d, d)-form dd€ga extends to a smooth form wa on
X x X. Similarly, if D is a prime divisor then dd°gp extends to a smooth form wp on X. By functoriality,
dd¢((j xIdx)*ga) extends to the smooth form (j x Idx)*wa on D x X, and by [Soulé 1992, proof of III,
Theorem 3(ii)] we have

gx (j x1dx)*wa = wp. (6.3.5)
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Let "/ (M) denote the set of harmonic (i, j)-forms on M for some fixed choice of Kihler (or
Riemannian) metric on a complex manifold M [Griffiths and Harris 1978, page 82]. Fix such a metric
on X and use the induced metric on X x X. By the construction in Step 2 of the proof of [Soulé 1992,
Theorem I1.3], we may choose ga such that w, is any given representative of A in Hg (X x X). By the
Hodge decomposition [Griffiths and Harris 1978, page 116], each cohomology class is represented by a
unique harmonic form. Therefore we may assume that w, is harmonic.

By the Kiinneth formula [Griffiths and Harris 1978, page 104],

AN X xX)= @ A (X))@ (X).
i+j=d
i'+j'=d

Applying this decomposition to w,, the only component that affects the value of g, (j x Idx)*wa is the
one with j = j’ = 1. Therefore there are forms

Uiy .oty € 275N XY and vy, ..., v, € 20 1(X)

such that if p,g: X x X — X are the first and second projections and if p: D x X — D is the first
projection, then

n
g« (G x 1dx) op =Y qx (G x 1dx)* (5 1 ® G vy)
i=1

=Y q:(p"j"u; ®q*v)

i=1

n
=3 ( [ )
i=1 \D

Therefore, Y npwp is also harmonic. Since it represents the (trivial) cohomology class of the principal

In particular, by (6.3.5), wp is harmonic.

divisor (), it must be zero. By (6.3.4), we then have
ddlog f = —dd‘log|t|* =0,
and therefore f is constant. t

Remark 6.4. In part (b), we may assume that j maps a Zariski-open subset U of D isomorphically to
the smooth locus Dy, of D. Since D \ U has measure zero and g is a form (as opposed to a current),
we can compute gp by integrating over Dyeg:

2n(x) =/ ga forall x € X\ D. 6.4.1)
Dregx{x}
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The following construction will often be used to obtain analytic estimates.

Lemma 6.5. Let M| and M, be complex manifolds of dimension d > 1, and let { be a positive smooth
(d —1,d — 1)-form on M. Let Gr' T M, be the Grassmannnian of hyperplanes in fibers of the tangent
bundle T My, and let ty: Gr! TM; — M, be the structural morphism. Let G = (Gr1 TMy) x My and
© =1 x1Idy,: G — M) x M. This can be regarded as the Grassmannian of hyperplanes in fibers of the
relative tangent bundle of M| x M, over M, taken relative to the projection q: M| x M, — M, to the
second factor.

Then, for each open subset U of M| x M, and each smooth (d — 1,d — 1)-form o« on U, there is
a unique smooth function x: t_l(U ) — C, depending only on My, My, {, U, and a, such that the
following is true.

Let N be a locally closed submanifold of M, of dimension d — 1. At each w € N, the tangent
space Ty N is a hyperplane in T,yM;, and this gives smooth sections oy 1: N — Gr! TM, and oy =
oyi1xIdy,: NxM,— G Of‘L'l_l(N) — N and T Y (N x M) — N x M>, respectively. Then we have

ol nxmynu, = ((Xa 0 oN) - (P YD (vxmynu,  for all x € Ma, (6.5.1)
where Uy, = (M x {x})NU and p: M| x M, — M, is the projection to the first factor.
Proof. Let N be as above. For dimension reasons, there is a smooth function
PuN: (NXM)NU — C

such that

o\ (Nx MU, = PN - (P Y (Nxmpynu,  for all x € M. (6.5.2)

For each (w, x) € U and each N passing through w, the value of this function at (w, x) depends only
on T, N; in other words, if N and N’ both pass through a point w € M; and are tangent at w, then
Pa.N(W, X) = py. N (w, x) for all x € M, such that (w, x) € U.

We claim that there is a function x,: 7~ '(U) — C such that

pa,N|(N><M2)r‘1UX = Xa © (O'Nl(NxMz)r’\Ux) for all x M. (6.5.3)

Indeed, we first note that the lemma is local on M|, so we may assume that M, is an open subset
of C4. Then Gr! T M, can be canonically identified with the set of pairs (w, H), where w € M and H is
a hyperplane in C? passing through w.

For all (w, H) € Gr' TM, and all x € M, such that (w,x) e U, let

o
Xe(w, H, x) = <M)(w,x),
P*Y|(H xxpnU
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where the quotient refers to (6.5.2). Let (w, x) € (N x M>)NU and let H be the hyperplane in c4 tangent
to N at w. Then oy 1(w) = (w, H); combining this with (6.5.2) gives

(Xa 0oon)(w, x) = xo(w, H, x)

o
=( *I(Hx{x})ﬁU )(w,x)
PVl (HxxpnU

_ ( o | (N x (xpnU )(w, )
P*Ylvxixhnu
= Pa,N (W, X).
This gives (6.5.3).
Then (6.5.1) follows by combining (6.5.2) and (6.5.3). ([l

Corollary 6.6. Let X, A, and ga be as in Proposition 6.3, and let d = dim X. Then, for each positive
smooth (d —1,d — 1)-form  on X, there is a xg, such that

¢p(x) = f @10, 3) ) 6.6.1)

for all D and gp as in Proposition 6.3(b) and all x € X \ D.

Proof. This follows from (6.4.1), by applying Lemma 6.5 with M1 =M, =X, U = (X x X)\ A, o = ga,
and i as above. [l

The first application of this construction will be to give bounds on the behavior of @ and 8 in
Proposition 6.3 near A.

Lemma 6.7. Let V be an open subset of C¢ with d > 1, and let  be a positive smooth (d — 1, d — 1)-form
onV. Let m: Wy — V x V be the (analytic) blowing-up of V x V along the diagonal A, and let
o be a smooth (d — 1,d — 1)-form on U := (V x V) \ A that extends to a smooth form on Wy. Let
T: (Gr1 TV)xV —V xVand xq: 1" (U) — C be as in Lemma 6.5.

We have TV 2V x C¢ and therefore Gr'TVXV x (Pd—1y*, canonically (where (P4=1Y* is taken to
be a point if d = 1). Thus we let pairs (w, H) € V x (P4=1Y* denote points in Gr'TV.

Let Ly and L, be compact subsets of V. Then, for all (w, z) € (L1 x Ly) U and all H € (PY=1*, we
have

1

IXe(w, H, z)| < 0<m), (6.7.1)
dxa(w, H, 2) 1 ,

— | <O — ), =1,...,d, 6.7.2
‘ o | (|w—z|2d—1> ‘ ©72

and 9 xa(w, H, 2) !
I <0l———), i=1,....d, 6.7.3
‘ 0z | <|w—z|2d—1) l (©7
where 71, ..., zq are the coordinates of 7. Moreover, the implicit constants in O(-) are uniform over

=Y (Ly x Ly)NU).
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Proof. If d =1, then 7 is an isomorphism and « is a smooth function on V x V, so (6.7.1)—(6.7.3) are
trivial.
Therefore, we assume from now on that d > 2.

For points (w, z) € U, write w = (wy, ..., wy) and 2= (21, ..., 24). Letv,=w; —z; fori =1, ...,d;
then (vy, ..., Vg4, 21, ..., Zq) is a (global) coordinate system on V x V in which A is given by v =--- =
V4 =0.

Foreach! =1,...,d let U; be the subset of points P € U such that

max{|vi(P)l, ..., [va(P)|} = [v/(P)]. (6.7.4)

Note that U1 U- - -UU,; = U (and that the sets U; are not open). From now on, for convenience of notation,
we assume that / = 1 unless otherwise specified.

Letu; =v;andu; =v; /vy fori =2,...,d. Then (uy, ..., uq, 21, ..., zq) is a local coordinate system
on Wy near all points of 7~ 1(U)). Let W, be the largest open subset of Wy on which the functions u;
are regular for all i # 1. Then (uy, ..., uq, 21, ..., Zq) is a coordinate system on Wy, and

7N U) ={P e W, :|u;(P)| <1foralli #1}.

As [ varies, the similarly defined sets W, cover all of Wy .
Let g: V x V — V denote the projection to the second factor. Then, on fibers of g o 7, we have
du; =dv; =dw; and

du; =d(ﬂ) _udvimudn  wdwimwdw o, (6.7.5)
]

vi v

By (6.7.4), we have |v]| < |w—z| < J/d|vi| over Uy. Then all coefficients 1, 1/vy, and —v,~/v12 above are

bounded in absolute value by max{1, Vd /lw — z|} over U; (again using |v;| < |v1|). The same estimates

hold for the coefficients obtained when writing di; in terms of dw; and dw; foralli =1, ...,d.
Next, for all z € V, let W, denote the fiber of g o w over z; it is isomorphic to the blowing-up of V

at z. For all z € V, we have

d d
alw,nw, =ZZoe,-jdu1 Ao ANdup N Ndug Nduy AN---ANdup N Ndug,
i=1 j=1

where ~ denotes omission and «; ;i Wi — C are smooth. Using the above substitutions for du; in terms
of dw; and dw;, and letting U, = (V \ {z}) x {z}, we then have

aijdwi A Adwi A Adwg Adwi A=~ ANdwjA--- Adg,

B
R

R A

1 1

~1
Il

~
Il

where

a5 Zaij - P (1/v1, 1/01, va /1, 02/97, . . ., va/vi, Da/07) (6.7.6)
i,j
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and each P;j;; is a polynomial of degree 2d — 2 with constant coefficients, which depends only on d, i, j,

7,and J.
Now we restrict to a hyperplane H € Ty, V. This hyperplane is given by the vanishing of a nontrivial
linear combination of dwy, ..., dwy. Therefore there is an index m such that H is given by
dw, =Y cidw; with¢; € Cand |¢;| < 1 for all i # m. (6.7.7)
i#m

Then, for any locally closed submanifold N of U, of dimension d — 1 tangent to H at w, we have

oy = am(w, H,2)dwy, - Adwy, -+ Adwg Adiwy, - Ady, - Adby  at w, (6.7.8)
where
d d
Um = ZZ 1m0'ijié](0~lij0‘E), (6.7.9)

~

oxm = =1 depending on k and m, and ¢;, = 1.
Now let K; ={P € WiNw~ (L x Ly) : lu;(P)| <1 for all i # 1}. This set is compact. For all i and
J let M;; be the maximum value of |a;;| over K. By (6.7.6) there is a constant Cy, depending only on d,

such that
Cuq

m1n{1 |lw — z|}24—2

ZM,, on K; Nz~ (V). (6.7.10)

Let K, be the set of elements of t~!(w (K1) N U) such that the hyperplane H satisfies (6.7.7). By
(6.7.9) and (6.7.10), we then have

ot | < — _zl}ZHZMU on Ki . (6.7.11)
ij

Let K,, be the set of all points (w, H) € 7, ! (L) for which H satisfies (6.7.7). This set is compact and
K, x L, contains K ,,. For all (w, H) € K,, and all locally closed submanifolds N of V of dimension

d — 1 tangent to H at w, we have
Uiy = V=D"Wu(w, HY dwy AdWy, - Adwp Adp, - - Adwg AdBy  at w, (6.7.12)

where v, : K, — R is continuous and positive. Let D,, > 0 be the minimum value of v, on K, .
Combining (6.7.8) and (6.7.12) gives
(—1)@=2E@=D/2g (. H, 7)
T D Y,
for all (w, H, z) € K1 . By (6.5.1) and the fact that on (w, z) = (w, H, z), we have

Yy at(w, H,z2)

(—1)(d_2)(d_1)/2am(w, H, Z)
(\/—_l)d_IWm(W, H? z)

XOl(w7 H’ z) =
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and therefore, by (6.7.11) and the definition of D,,,

dZCd 1
X (w, H.,2)| < —=5 3 Mij - —

B min{1, |w — z|}24-2
l’j

for all (w, H,z) € Ky .

Combining these estimates for all / and all m then gives (6.7.1), uniformly over ~!((L| x L,) N U).

Now consider (6.7.2) and (6.7.3).

First of all, it is important to note that the notation d/dz; is ambiguous. If taken with respect to
the coordinate system uy, ..., U4, 21, ..., 24, then u = (u1, ..., ug) is kept fixed (as well as all z; with
h # k), whereas if taken with respect to the coordinate system wy, ..., wq, 21, - . ., Z7 then w is kept
fixed. We denote these (different) partials 9, /9z; and 9d,,/9dzk, respectively, and define 9, /9Z; and 9y,/09Zk
similarly.

The proof of (6.7.2) and (6.7.3) is similar to that of (6.7.1), but is more complicated due to the presence
of partial derivatives.

First look at (6.7.5). Recalling that v; = w; — z;, we have 9y v; /0zx = —d;x (using the Kronecker delta),
and therefore

—v;i/vd ifk=1

o [ 1 102 ifk=1, B [ Vi v’z/vl P

— — | = . and — __2 - l/vl 1fk:l9

0zr \ V1 0 otherwise, 2k o .

0 otherwise.
This gives
8,,, vi) } 2

max 1 — ) — - <— 6.7.13
{ sz()‘ 3Zk< )' alk( v? d-lw—z ( .

A similar bound holds for (d,,/0z¢)(1/v1) and for (3,,,/821()(—1),-/1')%). (Of course we also have that
(0w/0zr)(1/v1) =0, etc.).

Next we need bounds for |dye;j/dzx| and [dywer;j/dZk|.

From the formulas u; = vi = w; — z; and u = v, /vy = (wy, — z5)/(wy; — z1) for all & # 1 and the
multivariable chain rule, we have

80{,‘/‘ d vy 30[,']' . _
8",0{1‘]‘ _ auOl,'j [__3u1 + Zh:Z E_ﬂuh if k = 1,

dzr Oz _Uil“;‘”_k if k1

on Wy N~ (). Using bounds for |dc;;/duy| and |9, /0zk| on Ky, we find constants M;j; such that
M;jk

—min{l, w—2zl] (6.7.14)

[0waj0zk| <

on K;N~1(U). A similar argument gives the same bound for |3, c; /02| (after possibly enlarging M; ).
By (6.7.13) and (6.7.14), we then have

1
~ min{1, |w — z|}2¢-!

aw&ij

(chM,jJrc Mijk> on K1 Nz~ (U) (6.7.15)

0Zx -
2% i,j
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(corresponding to (6.7.10)), where again C/, and C/; depend only on d. Again, the same bound is true
for [0y ;7/0Zk| by the same argument.

(Note that the bounds (6.7.13) and (6.7.14) are worse than the corresponding bounds used when proving
(6.7.1) by a factor 1/|w — z| or 1/ min{l, |w — z|}, so the bound in (6.7.15) is worse than (6.7.10) by that
same amount since each term in Leibniz’s rule contains only one derivative.)

The rest of the proofs of (6.7.2) and (6.7.3) proceed as for (6.7.1). U

The following lemma applies the preceding lemma to give local information on forms of type (6.3.1).

Lemma 6.8. Let V' € V' € V be open subsets of C? with d > 1 and V" convex. Let A, U, and
w: Wy — V XV beasin Lemma 6.7. Let «, B, and y be smooth (d — 1,d — 1)-forms on U such that

y = (—loglz —w*)a + 8 (6.8.1)

at all (w, z) € U, and such that t*a and 7* 8 extend to smooth forms on Wy. Let t . (Gr'TV)xV >
VxV,y¥,and x,: 1Y (U) — C be as in Lemma 6.5. Then there exist real constants rq € (0, 1], c2,
and c3, depending only on V", V', r, a, and B, such that the bound

2+ c3(—=logp) c2+c3(—logp’) }Iz _Z

Iy (w, H,2) — xy(w, H,2)| < max{ 21 ’ (p/)2d—1

holds for all (w, H) € Gr' TV and all z, 7' € V" such that w € V' \ {z, Z'}, where
p =min{rg, |z —w|} and p’ =min{ry, |2/ —w|}.

Proof. Fix ry > 0 such that ryp < 1 and r¢ is at most the distance between V' and C? \ V.

Let w, H, z, and z’ be as in the statement of the lemma. We may assume that |z — w| < |z’ — w|. Then
p=p.

Let B be the open ball of radius p centered at w.

We first claim that there is a piecewise smooth path from z to z” of length at most (7 /2)|z — z’| and
lying entirely in V’\ B. Indeed, start with the straight-line path from z to z’. It lies entirely in V". If it
does not pass through B, then we are done. Otherwise, replace the segment in B with a path along a great
circle on dB of minimal length that joins the endpoints of that segment. This increases the length of that
segment by a factor of at most 77 /2, so the revised path has length at most (;r/2)|z — z’|. Also, no point
on the great circle is further than p < ry from a point on the original line segment, so the revised path
stays entirely in V’. (This rerouting can take place within a plane in C? = R>? that contains the three
points w, z, and z'.)

Let y: [0, £] — V’\ B be this path, parametrized by arc length. It will then suffice to show that

d 2 c¢p+c3(—logp)
EXV(W, H, y(t)| < = T (6.8.2)

at smooth points of the path, since that would give

c2 +c3(—log p)
|X]/(w9H’z)_X}/(waH7z/)|S p2d71 |z_z/|
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To see (6.8.2), let x, and xg be as in Lemma 6.5. Then

Xy (w, H, y) = (—logly — w|}) xo (w, H, y) + xs(w, H, y)

for all y € V. Then (6.8.2) follows from the bounds (6.7.1)—(6.7.3) applied to x, and xg, together with
the inequality |(d/dt)(—log|y(¢t) — w|)| < 1/p at smooth points of the path. O

This can be translated to a result on the complex manifold X.

Corollary 6.9. Let X be a smooth complex projective variety of dimension d > 1. Let W be a positive
smooth (d —1,d — 1)-form on X. Let (U, ¢) be a coordinate chart on X, and let U" € U be a nonempty
open subset such that ¢ (U") is convex. Then there is a measurable function f: X x U" — [0, oo] such
that

(i) forall & € k(X)*, the inequality

|—1og|5(x>|+1og|5(x’)||stmﬂfD (fw, )+ fw.x)) -y (69.1)
D reg

holds for all x, x" € U”, where (§) = > pnpD as in Proposition 6.3(c); and
(i) there exists a constant cy4, depending only on X, y, ¥, U, U", and ¢, such that
- fw,x)d¢p*u(x) <c4 (6.9.2)
U//
for all w € X, where . is the standard measure on C.
Proof. Let ga be as in Proposition 6.3, write y = ga, and let x, be as in Lemma 6.5 (applied with
M, :Mz:XEll’ldO{Z]/).
We first claim that there exists a function f for which the inequality

Xy (w, H, x) — x, (w, H, x")| <2max{f (w, ), f(w,x)}¢(x) — ()] (6.9.3)

holds for all w € X and all x, x’ € U” \ {w}.
Pick an open subset U’ such that U” € U’ € U. Let 7;: Gr' TX — X be as in Lemma 6.5.
Note that

X(¢_1)*y(¢(w)’ Ha ¢(X)) = X)/ (w7 H’ X) (694)

for all (w, H) € ‘L'l_l(U) and all x € U \ {w}, and that (¢ ~!)*y is of the form (6.8.1) (using the fact that if
s and ||-|| are as in Proposition 6.3 then the function (w, z) — — log|ls (¢~ (w), ¢~ (z))||> +log|z — w|?
extends to a smooth function on ¢ (U) x ¢ (U)).

Then, by Lemma 6.8, there are real constants ry > 0, ¢, and c3, such that, letting

Fw,x) = c2 + ¢3(— log min{ro, | (x) — p(w)[})
’ 2min{ro, | (x) — ¢ (w)[}24~]!

forall w e U’ and all x € U” \ {w}, (6.9.3) holds whenever w € U’.
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Since the set 7, X\ U") x U” is compact and Xy 18 smooth on an open neighborhood of this set,
there is a constant ¢4 such that

|D((w, H,2) > x,(w, H, ¢ (@) < c4

for all (w, H) € 7,7 "x \ U’) and all z € ¢$(U"). Here D, means the vector consisting of all partial
derivatives in the coordinates of z. Then, letting

fw,x)=cq4

for all w ¢ U’, it now follows that (6.9.3) holds without additional restrictions on w.
By (6.3.3), (6.6.1), and (6.9.3), we then have

2|— log|& (x)| + log|& (x")|| =

> nplgpx) — gD(x’))‘
D
<D Il | 1y 0Dy 1 (W), X) = Xy (0D 1 (W), X)) - Y (w)
D Dreg

<20p(x) =¢GN Y Inpl [ max{fw,x), fw,x)} P (w),
D

Dreg

and this gives (6.9.1).
Finally, (6.9.2) follows from the fact that ¢ (U") is bounded and that the integrals

du(z) / log|z|
— d ——d
/l;)d 2|24 an 0 2241 m(z)
converge. (I

The next lemma combines Corollaries 6.6 and 6.9 to show that — log|&| obeys a Lipshitz condition
after removing a set of arbitrarily small (but nonzero) measure, with prescribed uniformities.
We start with a definition.

Definition 6.10. Let X be a smooth projective variety of dimension d > 1, and let .# be an ample line
sheaf on X:

(a) For all divisors D on X, let
deg , D =ci ()" D.

(b) For all £ € k(X)*, write (§) =), npD as in Proposition 6.3(c). Then we let

deg, & =4 |npldeg, D. (6.10.1)
D

If, moreover, X is a variety over C and if .# is a smoothly metrized line sheaf on X such that .4, is
ample, then deg , is defined to be deg , in the above two contexts.
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Remark 6.11. Let X, .#, and £ be as above. Then the divisors

€)o:=) max{0,np}D and (§)o:= Y max{0, —np}D
D D

are linearly equivalent, so
deg , & =deg ,(§)co- (6.11.1)

In particular, if X = P! and .# = ¢(1), then deg , & coincides with the degree of & as a rational function.

Remark 6.12. Let X be a smooth complex projective variety of dimension d > 1, let .# be a smoothly
metrized line sheaf on X such that .#4, is ample, and let D be a prime divisor on X. Then

®m0=fcmwmwmzf cr(l- )0, (6.12.1)
D

D, reg

Therefore if & € k(X)*, then by (6.10.1)
d%%s=%§:mm/‘cmwmm“““. (6.12.2)
D Dreg

Lemma 6.13. Let X, U, U” and ¢ be as in Corollary 6.9, and let .# be a smoothly metrized line sheaf
on X with positive metric. Then for all €, > 0 there is a constant cs such that the following is true. For
each & € k(X)* there is a closed subset T of U" such that u(¢(T)) < €, and such that the inequality

| —log|&(x)| +log|& (x)[| < cs(deg_, £)¢p(x) — P (x)] (6.13.1)
holds for all x,x' e U"\ T.
Proof. We apply Corollary 6.9 with ¥ = ¢ (||-l.»)"“~" (note that v is positive by Proposition 1.5(a)).
This gives a function f: X x U” — [0, oo] and a constant ¢4 that satisfy (6.9.1) and (6.9.2). Let
4C4
cs = —.
€1
Let & € k(X)*, and write (§) = ZD npD as in Proposition 6.3(c). By (6.9.1), it then suffices to
construct a suitable set T such that

Z|”D| (fw, )+ f(w,x) - ¥(w) <csdeg , &

D Dreg

forall x, x’ € U” \ T'. For this, in turn, it suffices to find 7 such that

Z|nD|/D fw, x) ¥ (w) < %Sdegj,é (6.13.2)
D

reg

forallx e U"\T.
Let g: U” — [0, oo] be the function defined by

g) =) lnpl | f(w,x) ¥ (w).

D Dreg
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Then (6.13.2) holds with
T= {xelT”:g(x)z%deg//,é}.

It remains only to show that (¢ (7)) < €;. Indeed, by Tonelli’s theorem, (6.9.2), and (6.12.2), we have
[ swdgu=Ymol [ [ fewnpwdtuc
u” D xeU” JWEDreg

= ol /  fw.0) AT ) Y (w)
D w

€Dyeg J xeU”

< Z|nD| /;) 4y
D

reg

=2c4deg , &
€1C5

=—=d .
) eg s &

Then w(¢(T)) < €; by Lemma 6.1. Ol

Coordinate charts as in Corollary 6.9 and Lemma 6.13 will now be used to obtain global results on X,
via the following construction.
Let X be a smooth complex projective variety of dimension d > 1. Since X is compact, there exists a
finite collection
(Ui, ¢, U :i=1,...,n} (6.14)

with U{, ..., U, covering X, such that for each i, (U;, ¢;) is a coordinate chart on X, U € U; is a
nonempty open subset, and ¢; (U/") is convex.

Let .# be a smoothly metrized line sheaf on X with positive metric, and let 0 = ¢1(]|-||.»)"¢. This is a
positive (d, d)-form by Proposition 1.5(a), so it defines a measure (g on X. For all i, the measures ug
and ¢ on U; are related by g = p; - ;' 1, where p; : U; — R. ¢ is smooth. Since lTl” is compact, there
are constants c¢; and c7; such that

Co,iP; L < 1o < C7.i0] 1 (6.15)
on U7,
This construction then leads to the main result of this section.

Proposition 6.16. Let X be a smooth complex projective variety of dimension d > 1, let .4 be a smoothly
metrized line sheaf on X with positive metric, let 6 = c1(||-]| ™, and let g be the corresponding
measure on X. Then, for all €; > 0 and €3 > 0 there is a finite collection of subsets C1, ..., Cp of X such
that \ ), C; = X and such that the following is true. For each & € k(X)* there is a measurable subset T of
X such that ug(T) < €, and such that

|—log™ [£(x)| +log ™ |E(x)|| < e3deg , & (6.16.1)
forallx,x' e C;]\T andalll =1, ..., A.
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Proof. Choose triples (U;, ¢;, U/") as in (6.14), and fix for now an index i. Let ¢7; be as in (6.15).

By Lemma 6.13, there is a constant ¢s; such that for each & € k(X)* there is a subset 7; C lTl” such
that u(¢; (T;)) < €2/nc7,; and such that (6.13.1) holds for all x, x" € 17,” \T;.

Choose subsets C; 1, ..., C; a; of U_l” such that |, Ci; = U_,N and such that ¢ (C; ;) has diameter at
most €3/cs; for all [. Let & € k(X)*. The function f(y) = min{0, y} satisfies | f(y) — f(Y)] < |y — |
for all y, y’ € R. Combining this with (6.13.1) and the above diameter bound, we have

|—log™|&(x)| +log T [E(x)|| < |- log|&(x)] +log|& (x)]|
< cs,i(deg , &)|p(x) — (x|

<edeg ,§&
forall/=1,..., A; and all x,x" € C;; \ T;, where T; is the subset chosen above for the given &.
Now, letting i vary, let Cq, ..., Cx be the collection of all C; ;. Given & as above, let T = Ui T;; then

Ho(T) Y cran@ T =Y. 2 = e,
i=1

i=1

and (6.16.1) holds for T. O

7. Reduction to simultaneous approximation: The excluded set T

Proposition 6.16 in the previous section involved excluding a set T', which can be chosen to have arbitrarily
small measure. This section provides the key estimate needed in order to show that excluding this set
does not affect the diophantine estimates excessively.

7.1. Throughout this section, X is a smooth complex projective variety of dimension d > 1, .Z is a
smoothly metrized line sheaf on X with positive metric, 8 = ¢ (|| 1) ¥ =ci(l- L) @D, and pg is
the measure on X associated to 6.

‘We start with some definitions.

Definition 7.2. Let
deg , X = ¢y (M) = / 9,
X
and let

h(©) = [ ~tog 6P -0
X
for all £ € k(X)*.
The main result of this section is then the following.

Proposition 7.3. Let X, d, .#, 0, and i1y be as in 7.1. Then for all €4 > 0 there is an €5 > 0 such that the

inequality

po(T)
e

—log”|E]* -0 < esdeg , & +
/; g gun deg , X

(2hx(§) +csdeg 4, &) (7.3.1)
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holds for all & € k(X)* and all measurable T C X with uy(T) < €s. Here cg is a constant that depends
onlyon X and M .

To prove the proposition, we write
—loglg* =) “npgp +ec: (74)
D

for all £ € k(X)* as in (6.3.3), and bound the integrals of each term on the right-hand side separately.

Lemma 7.5. Let (U, ¢) be a coordinate chart on X, and let U" @ U be a nonempty open subset. Then
for all € > 0 there is an €7 > 0 such that the following is true. Let & € k(X)*, and write (§) = ZD npD
in the notation of (7.4). Then for all measurable subsets T C U” such that w(p(T)) < e7, we have

> o / gn(x) d¢*1(x) < e deg . (7.5.1)
D T

Proof. Let y = g and let x,, be as in Lemma 6.5. By (6.6.1) and Tonelli’s theorem, (7.5.1) is equivalent
to

Z”D / f Xy (0D 1 (W), X) d* 11 (x) - ¥ (w) < €gdeg , &. (7.5.2)
D Dieg /T
To prove this, it suffices to show that the inequality
/Ixy(w, H,x)|d¢"p(x) < %6 (7.5.3)
T

holds for all w € X, all H, and all T C U” with w(@(T)) < e7 (where €7 is to be chosen later). Indeed,
integrating (7.5.3) and applying (6.12.2) implies (7.5.2).

To show (7.5.3), choose an open subset U’ C U such that U” € U' € U, and let V =¢(U), V' = (U"),
and V" = ¢(U"). Fix ry € (0, 1] such that ry is at most the distance between V” and C¢\ V'. By (6.9.4)
and the fact that (¢~ !)*y is of the form (6.8.1), we obtain from (6.7.1) that there are constants ¢ and ¢’,
depending only on X, y, ¥, U, U’, U”, ¢, and ro, such that

c+c'(—logp)

|X)/(w7Ha x)l S 102d72

(7.5.4)

forall w € U’, all H, and all x € U” \ {w}, where

p = min{ro, [¢(w) — ¢ (x)|}.

We may assume that ¢, ¢’ > 0.
Next, we claim that for all €5 > O there is an €7 > 0 such that, for all T C V” with M(T) < €7 and for
all w € V’, we have

¢+ c’'(—logmin{rg, |lw — z €
/ (= logmintro. 10 =21 /() < 6. (7.5.5)
7 min{rg, |lw — z|} 2

Basically, this follows from the fact that the integrand is a function of w — z, and that the latter function

is locally L'.
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In more detail, let [D)‘,i ={z € C? : |z| < r}. The integral in (7.5.6) converges for all r > 0; therefore
there is a number r > 0 such that

¢+ ¢'(—logmin{ry, |z|}) €6
d < —. 7.5.6
/Dg min(ro, 22 M =7 (750
Pick such an r and let €; = (ID7). Then
¢ + ¢'(=log min{ro, |z]}) / ¢ + ¢'(=log min{ro, |z]}) €6
d < d < —
/T min(ro 1222 = T iy, ez M9 =3

for all T € C4 with p,(f) < €7. This then gives (7.5.5) by translation.

Combining (7.5.5) with (7.5.4) then gives (7.5.3) for all w € U’.

Next consider w ¢ U'. Let 7;: Gr' TX — X be as in Lemma 6.5, and let ¢” be the maximum of |, |
over the compact set 7~ ! (X\U") x U”. We then have

/Ixy(w, H,x)|do*n(x) <€
T

forallwe X\ U’,all H,and all T C U” for which w(@d(T)) <ej.
Assume now that €; has been chosen so that ¢”e7 < €6/2. Then (7.5.3) holds also for all w ¢ U’, so it
holds for all w € X. O

The following lemma translates the above lemma into the global setting.

Lemma 7.6. For all €4 > 0 there is an €5 > 0 such that the following is true. Let & € k(X)*, and write
() =) _pnpD in the notation of (7.4). Then for all measurable subsets T € X such that uy(T) < €,
we have

> np / gp(0) dug(x) < egdeg , . (7.6.1)
D T

Proof. Choose triples (U;, ¢;, U[") as in (6.14), and fix for now an index i. Let cg; and ¢7; be as in (6.15).
By Lemma 7.5 there is an €7; > O such that (7.5.1) holds with €5 = €4/nc;; forall T C Ul.” with
w(pi(T)) <e7;andall § € k(X)*. By (7.5.1) and (6.15),

Y np f g dug(x) < deg &
D r "

for all such 7 and &.
Now let

€5 = MiN C¢;€7,;.
1<i<n

Let T be a measurable subset of X with ug(7) < €5. By (6.15), we have

(g (T NU))) <es/cei < €1,
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for all i, and therefore

ZnD/ _gp(x)due(x) < Eideg,//s
5 T

nu; n
holds for all £ and all i. Summing over i then gives (7.6.1). (I

The next step in proving Proposition 7.3 is to find an upper bound for c¢.
To find this bound, we first find an upper bound for

L= —log|€]*-6 7.7
= g [~ loelé (.7
(this is the average value of — log|& |2 over X).
Lemma 7.8. Let & € k(X)*. Then
L < h .
Ce = deg , X x ()

Proof. Let &y = ecé/zé, so that — log|.§(x)|2 =— 10g|§0(x)|2 + cé and therefore

f —log|&o|? -6 =0.
X
Hence

hx(so)zf —log‘léolz-ezf log™|&0|? - 6. (7.8.1)
X X

Let A(x) = — logl.f;o(x)|2 for all x € X outside of the support of the principal divisor (&) = (£), and for
teRlet

f@® :/ max{0, A +1¢}-6.
X

Then hx(§) = f (cé), so it suffices to show that

d X
fo) > B2, (7.8.2)
for all € R.
Note that f is continuous, and is differentiable outside a countable set. Also
() =ue({x € X : A(x) +1t >0}) (7.8.3)

wherever f’(¢) is defined. By abuse of notation, we use (7.8.3) to extend f’ to a function on all of R.
Note that f’ is an increasing function of ¢, so f is concave upward. Also
lim f(t)= lim f'(r)=0 and lim f'(r) =deg , X.
t——00 t——00 t—00
Let

B = sup{t S f(@) < deg;{X}‘

Then, by concavity, it suffices to show that (7.8.2) holds when ¢ = .
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This is trivial when 8 < 0, so assume that 8 > 0.

We have
. 1 deg , X
mo({x : A(x) + B > 0}) = lim f/(ﬁ - —) < g‘—/’;
n—oo n 2
hence
deg , X

1o ({x s loglgo(0)|* > BH) = pn({x : A(x) < —B)) = —=

Then, by (7.8.1) and trivial properties of integration,

d X
F(B) = £(0) =hx () = /X log* [£o(x)[ -6 = ===,

To bound c, it then suffices to compare c¢ and c}.

Lemma 7.9. There is a constant cg, depending only on X and .# , such that

d
¢} —cp| < BIEBaE
deg , X
forall & € k(X)*.
Proof. Let V' € V' € V, y, and yx, be as in Lemma 6.8. By (6.8.1) and (6.7.1),

max{1, — log|z — w|}
|z_w|2d—2

Ixy(w, H, 2)| = 0(
for all w € V” and all z € V’\ {w}, where the implicit constant is independent of z and w. Therefore
flxy(w,H,z)Id/L(Z)SO(l)
V/

for all w € V" and all H, uniformly in w and H.
LetU”" €U C X and ¢: U — C? be as in Corollary 6.9, let y and Xy be as in the proof of Corollary 6.9,
and let U’ be an open subset of X with U” € U’ € U. Then, by (6.15),

|xy (w, H, x)|-0(x) < O(1)
U/

forall w e U” and all H, uniformly in w and H. A standard compactness argument on 7, YOy x (x \U")
gives a similar bound on [ |x, (w, H, x)|-6(x) for all w € U” and all H.
Applying this bound to all charts in a finite set of charts as in (6.15) then gives a constant cg such that

/Ixy(w,H, x)|-0(x) 5% (7.9.1)
X

forall w e X and all H.
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By (7.7), (7.4), (6.6.1), Tonelli’s theorem, (7.9.1), and (6.12.2), we then have

|cé—c§~|:

1
~deg, X

/){(ZnD /D xy<aDreg,1(w>,x>-w(w)> -9‘

D

1
< |nD|f /
deg///X; Dreg ¥ X

1

-0(x) - (w)

X}/ (GDreg,l (U)), x)

The proof of Proposition 7.3 is then a matter of combining these lemmas, as follows.

Proof of Proposition 7.3. Let & € k(X)*, and let T be as in the statement of the proposition. Let
T'={xeT:|Ex)| <1}. Then ug(T") < ue(T) and

f —log|s|2-9=f—log—|5|2-e,
T’ T

so instead of (7.3.1) it will suffice to prove

mo(T)
deg , X

[ —togiei 0 <cudee e + (Qhx(€) +cs deg &) (7.10)
T
for all T as in the proposition.

Given €4 > 0, let €5 > 0 be as in Lemma 7.6. Then (7.10) follows from (7.4) and Lemmas 7.6, 7.8
and 7.9. O

8. Reduction to simultaneous approximation: Arithmetic

This section translates Propositions 6.16 and 7.3 into the arithmetic setting, and proves a result on reduction
to simultaneous approximation (Proposition 8.12) that will be sufficient to prove Roth’s theorem.

Recall from 4.1 that K is an arithmetic function field, that M = (B; .#) is a (big) polarization of K,
and that S C M is a subset of finite measure. Also recall from 5.1-5.4 that S contains all archimedean
places of K, that B is generically smooth, and that .# is ample with positive metric. Finally, let d be the
transcendence degree of K over Q.

Let F be the algebraic closure of Q in K (i.e., the set of all elements of K that are algebraic over Q).
It is a number field (by [Lang 2002, Chapter VIII, Exercise 4] it is finitely generated over (0, and by
definition it is algebraic over Q; hence [F : Q] < 00).
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Since B is normal and OF is integral over Z, the canonical morphism B — Spec Z factors uniquely
through a morphism 7 : B — Spec Of. Also, we write BF = B X4, F, and if .Z is a continuously
metrized line sheaf on B then % will denote the pull-back of %, to Bp.

For any embedding o : F — C, we let C, denote the field C, viewed as an extension field of F via o,
and let B, = (Br xr C,)*. We then have

B(C) = ]_[ B,.
o: F—-C

By [EGA1V, 1965, EGA 1V, 4.5.10], B is geometrically integral over F. Therefore the schemes
Br xp C, are integral for all o, and the B, correspond to the irreducible components of B xz C.

Let . be a continuously metrized line sheaf on B. For all o: F — C, we let %, denote the restriction
Zcl|p,. Then, for example, a global section of .Z is strictly small if and only if its pull-back to % is
strictly small for all 0.

Definition 8.1. If 4 > 1 then for all £ € K*, we define

degé =deg , & =deg 4, (§)ol By, (8.1.1)

where deg 4, (§)co |8, is as in Definition 6.10. (In the latter, note that the intersection degree is taken
relative to F'.)
For all d > 0 we also let

deg B =deg , B = n(My). (8.1.2)

For all 0: F — C, let .#, denote the pull-back of .# to B,, and for all £ € K* let &, denote the
pull-back of £ to an element of k(B ). Then

degé =deg , & forallo. (8.2)

Also, ug in 7.1 coincides with u on B, € B(C) for all o. Therefore
_ W(MY) _ degB

B,)=deg, B, =ci(MF)" = = 8.3
w(Bs) g4, c1(AF) (F 0] [F.0 (8.3)
by (3.4) and (8.1.2).
Next we show that deg & is bounded by a linear function of the height.
Lemma 8.4. Ifd > 1 then
degé < hi(§) (8.4.1)

for all £ € K, where the implicit constant depends only on K and the polarization.

Proof. For all a € R let 7, be the line sheaf on B given by Definition 2.11. By Proposition 2.12, there is
an € > 0 such that 4" := .# ® ¥_. is ample. Let 1, denote the height on K defined using the polarization
M :=(B;.").
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As noted below (3.6),
hx(E)>0 (8.4.2)

forall £ € K.
Since ci(||-]l».) = 0, the measure p on M7 is the same for M’ as for the polarization M = (B, .Z).
Now consider Y € B(V. Since ¢;(¥_c|y) - c1(¥—ely) = 0 by (1.11.4), we have

hag (Y) —hyy(Y) =d ey (M )y) ™D e (Voely)
=dci(My)“V (0, —2¢)
— —ed / 1) @D
Y

by (1.7). If Y is vertical then this is zero; otherwise it equals —ed[F : Q]deg , Y by (6.12.1) and (8.2).
By (3.6), (8.1.1), and (8.4.2), we then have

hi(€) = hg () + ed[F : Q] deg > degé. O

Note that wg coincides with u on B, € B(C). Therefore, by (3.6) and the product formula (3.5),
Z hp,(§) <hg(1/§) =hg(§) (8.5)
o: F—C

for all £ € K*, where hp_ is as in Definition 7.2.
Also, we note that

hg(§ £a) <hg(§)+hg(a)+ (log2)deg B (8.6)
for all £, o € K. Indeed, this follows from the elementary inequality

2 if v is archimedean,

max{l, [[§ oy} <max{l, [|§][y} - max{l, ||} . .
1 if v is nonarchimedean,

together with (3.6) and (8.1.2).
Finally, we note the closely related inequality

N if v is archimedean,
lay +-- - +aylly <max{llailly, ..., layllv}- e . (8.7)
1 if v is nonarchimedean

forall @y, ...,y € K and all N € Z.. This inequality is often used in diophantine geometry.
The following lemma adapts Proposition 7.3 to K and its polarization.

Lemma 8.8. For each €g > 0 there is an €5 > 0 such that

/T—log‘llé‘lludu(v) <eghk(§) (8.8.1)

holds for all § € K* and all measurable T C M for which u(T) < es.
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Proof. If d =0 then M}? is a finite set and y is the counting measure, so the result is trivial with €5 = %
Now assume that d > 1.
For each o : F — C, Proposition 7.3, (8.2), and (8.3) imply that for each €4 > 0 there is an €5 > 0

such that
u(T N By)

w(Bs)

holds for all £ € K* and all measurable T C B(C) with u(T N B,) < €s.
Let ¢’ be the implicit constant in (8.4.1). Choose €4 > 0 and shrink €5 if necessary so that

ces[F : Q] +e5[F:(I;D] (1+C8 /) .

—c
2 deg B 2

Summing (8.8.2) over all o then gives (8.8.1), by (8.3) and (8.5). O

/ —log IE [l dpu(v) < < deg & + (hBJ <s>+@degs) (8.8.2)
TNB, 2 2

The following proposition gives a similar adaptation of Proposition 6.16.

Proposition 8.9. For all g > 0 and all €19 > O there is a cover of S by measurable subsets C1, ..., Cp,
such that the following condition is true. For all § € K* there is a measurable subset T C M such that
w(T) < €9, and such that

|—log™ 1€ lly +1og™ 1€ llw| < €10hk (§) (8.9.1)
forallv,v e C;\T andalll =1, ..., A.

Proof. If d = 0 then S is a finite set, and we can let Cy, ..., C, be disjoint one-element sets whose union
is S. Then the proposition holds trivially with 7= @ for all &.

Therefore, assume from now on that d > 1.

Let ¢’ be the implicit constant in (8.4.1). Applying Proposition 6.16 with X = B, for all o, and with
€y =¢€9/[F : Q] and €3 = €19/’ gives a cover of B(C) by measurable subsets C i, ..., Co, a,, such that
for all £ € K* there is a measurable subset 7z of B(C) such that u(7¢) < €9, and such that

|—log™ £ (x)| +log ™ |£(x))|| < €10hk (£)

forall x,x" € Co;\ Tz andalll =1, ..., Ay.

Let C; =Co;NSforalll =1,..., Ag, and let Cp 41, ..., Cp be disjoint one-element sets whose
union is S N M,O(. Then Cq, ..., Cp are measurable subsets of S that cover S. Moreover (8.9.1) holds for
eaché € K*, with T =T: N S. O

We are now ready to prove the main result of this section. The following lemma carries out the main
pigeonhole argument. It is phrased in more general terms in order to use it in later work. Later in this
section it will be applied with E C K and A¢ ;(v) = —log™ |I§ —«;]lv.

Lemma 8.10. Let E be a set, let (S, X, ) be a measure space of finite measure, let h: & — [hg, 00) be
an unbounded function with hg > 0, let ¢ > 0 be an integer, let A¢ 1, ..., Le 4. S — Rx be measurable
functions for all € € E, let cg € R>¢, and let €19 > 0. Assume that these satisfy the following hypotheses:
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(i) Forallé e Eandall j=1,...,q,

/ Aejdp < h(&)+co. (8.10.1)
N

(ii) For all €9 > O there is a cover of S by subsets Cy, ..., Cp € X such that for each & € B there is a set
T: € ¥ with u(T¢) < €9, such that

IAg,j (V) — Ag j (V)] < €10(h(§) + c9)
forall j=1,...,q,allv,v e C;\T,andalll =1, ..., A.

Then for every €11 > O there is a subset E' C E, together with subsets T € X forall & € &'

unbounded on B', such that u(Tg) < €1y for all & € E', and such that

Apj (V) Ag (V) (4 9 9 )
— +—+ — 8.10.2
w ~ he | =\ e Tho ) (8.102)

foralln, ¢ € &, allve S\ (T,UT;),andall j=1,...,q.

, such that h is

Proof. First, we note that it suffices to prove the special case g = 1. Indeed, the general case follows
from this case by applying the special case to each of the A; ;, with € replaced by €;; /g, successively
shrinking the set E’ for each j.

We now show the special case g = 1. Let A = A¢ 1 forall § € E.

Let €9 = €11 /2. By (ii) there is a cover of S by subsets Cy, ..., Cp € X such that for each & € E there
is a subset Tg0 € X with ,u(TSO) < €9 such that

e (v) — Ae (V)] < €10(h (&) + o) (8.10.3)

forallv,v/eCI\Tg0 andall/=1,..., A.
We may assume that Cy, ..., Cx are mutually disjoint.
Foreach& € Eandeachl/ =1, ..., A for which u(C;) > 0, let

s =intl1 € R u(lo € € ae) = eheeyn < “00 |

2
(One can think of this as “a median value of A¢(v)/h(§) on C;.”) Note that, for all £ and /, both sets

fveCi:r:(w) <mgh(§)} and {v e Cp:re(v) = mg h(§)} (8.10.4)

have measure at least w(Cy)/2.

For the next step, we claim that there are constants cjo;, / =1, ..., A, independent of &, such that
mg | < c1o, for all & and [ that satisfy p(C; N TSO) < u(Cy)/2. Indeed, for all such & and [, the statement
about the second set in (8.10.4), together with (8.10.1), gives

n(Cp)
2

me h(E) < /ng di < hE) +oo < (1 + ;—Z)h@),

and the claim follows. (Note that the condition on & and / implies u(C;) > 0.)
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Next comes a pigeonhole argument.
For each & € E let m;¢ be the vector in R” whose /-th coordinate is

o mer HEGNTY) < u(C)/2,
U 0 otherwise.

Thenm; € ]_[l’\:1 [0,c10,] forall £ € E. By a pigeonhole argument, there is a vector m°= (m(l), e m(l)\) eRA
such that 4 is unbounded on the set E’ of all £ € E for which

A

mg € [ [Im] — €10, m{ + ol (8.10.5)
=1

For each & € &' let T; be the union of 7, and all C; for which u(C; N'T) = pu(C1)/2. Then
w(Te) < 2M(T§O) < €.

It remains only to show that (8.10.2) holds.

To show this, let , { € E" and let v € S\ (T, U Ty).

Let [ be the (unique) index such that v € C;. By the definitions of 7,, and T, we have u(C; N T,;)) <
w(Cr)/2 and w(C; N Tgo) < u(Cy)/2. Therefore, by (8.10.4), there are v’ € C;\ T, and v" € C; \ T; such
that 1, (v") <m,,;h(n) and A, (V") > m; 1h(C).

By (8.10.3), the choice of v/, (8.10.5), the choice of v”, and (8.10.3) again, we then have

Jy (@) (V) <1 _)
w = ke T\ w )

<my;+ (1 + m)élo

<m;;+ (3+ m)
(1o,
h(é') h( )

Ar(v
LWy (4 +—+ —)
h(g) h(n) h(%)
A similar inequality holds with n and ¢ interchanged, and this gives (8.10.2). ]

The next step gives an upper bound for the “cost” of reducing to simultaneous approximation.

Lemma 8.11. Let E, (S, X, u), h, ho, Aej § € B, j =1,...,q), and c9 be as in Lemma 8.10, and
assume that the conclusion of Lemma 8.10 is true for all €19 > 0 (hypotheses (i) and (ii) are not assumed

here). Assume also that the following hypothesis is satisfied:

(iii) For each €g > 0 there is an €5 > O such that

/kajdufes(k(é)m) (8.11.1)
T

forall j=1,...,q,allE € E,and all T € X with u(T) < es.
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Forall § € E define As: S — R by

Ae(v) =max{Ag 1 (V), ..., e q(V)}, veES. (8.11.2)
Then, foralln € 7., all €’ > 0, all ¢ € R, and all ry, € [1, 00), there exist &1, ..., &, € B, a subset
T € X, and a measurable function J: S\T — {1, ..., q} such that
h(&:) )
> Fmin foralli=2,...,n (8.11.3)
hgi-) — "
and
Ae, A, v “
/idu—/ min Mdu(vwr < <& foralli=1,...,n. (8.11.4)
s h(&) s\ 1=i'=n h(§) h(&1)

Proof. Letn, €, ¢”, and rmy;, be given. We may assume that ¢” > 0.
Choose €g > 0, €19 > 0, and A, > 0 such that

/!

2
qeg(l +-2 ) + <4+ = )elou(S) +—=e 8.11.5)

h min min min

Choose €5 > 0 such that (8.11.1) holds, and let €} = €5/n.

Let & C E be as in the conclusion to Lemma 8.10. Choose & € B with h(&]) > hmin and choose
&,...,& € B tosatisfy (8.11.3). Let T =Tg, U---UTg,; then u(T) <es. Since Ag <Ag 1+ -+ ey,
by (8.11.1) we have

hmin

q
/T?»édﬂiZ/T?»s,jduins(h(é)Jr@)Sq68<1+ © )h(é‘) (8.11.6)
j=1

forall £ e {&,...,&,}.
Now let v € §\ T'. For conciseness and readability, let A;; = A¢, ;(v)/h(§;) for all 1 <i <n and all

1<j<gq,andlet €;p = (4+2c9/h(&€1))€10. Then, by (8.10.2),

[Aij — Airjl < €12 (8.11.7)
foralli,i’ e {l,...,n}andall j €{l,..., q}. We then claim that there is a j € {1, ..., ¢} such that
max A;jy— min Ay; <e€p foralli=1,..., n. (8.11.8)
1<j'<q 1<i’<n

Indeed, this is equivalent to the existence of j such that

max max A;j — min Ay; < €j. (8.11.9)
I<i<n1<j'=q 1<i’<n

The first term is equal to max; <<, maxj<;<, A;j’; pick j such that this equals A;; for some i. If there

are more than one such values of j, choose the smallest one (this ensures that v — j is a measurable
function). Then (8.11.9) reduces to

max A;; — min A;; <€,
1<i<n 1<i’'<n

and this follows from (8.11.7).
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Let J: S\T — {1, ..., g} be the function defined by letting J (v) be the above choice of j for each
v e S\T. Then, by (8.11.6), (8.11.8), the choice of &, and (8.11.5),

/!

Ag; B . Mg (V) c
fs@d“ /,;\712’2'1 ne PO e
Ag / <)ué,-(v) . )»si,,J(u)(v)) ¢’

= | Ziau+ AL SO ) ) +
,Ah@n “E L\ T ey )M e

C9 209 ”
<qeg| 1+ + 4+ €lou(S\T)+

hmin h(§1) h(&1)
S E//
foralli =1,...,n. This implies (8.11.4). O
The main result of this section now follows easily from Lemmas 8.10 and 8.11.
Proposition 8.12. Let ay, ..., a, be distinct elements of K, let € > 0, and let c € R. Assume that
Theorem 4.5 is false for these values. Let n be a positive integer, let €' € (0, €), let ¢’ € R, and let
Ymin € [1, 00). Then there exist &1, ..., &, € K and mutually disjoint measurable subsets Ty, ..., T, of S
such that
hk (&) .
—————— >Fmin foralli=2,...,n (8.12.1)
hg o) — ™
and
q — /
—1o o
> [ min —% IS =ailly )y s 240ers S (8.12.2)
T; 1si=<n hi (&) hi (§1)

j=1

Proof. By the assumption that Theorem 4.5 is false, there is an infinite subset
ECK\ (. ... )

such that (4.5.1) is false for all £ € E, using the above choices of «y, ..., ay, €, and c. By Northcott’s
theorem (Theorem 3.16) we may assume that there is some &g > 0 such that hg (§) > ho for all £ € E.
Also hg is unbounded on this set.

We will apply Lemmas 8.10 and 8.11 to this choice of &, with h = hg, with A¢ ;: § — R given by

re, j(v) = —log™ I —olvs
and with

c9 = 1max hg(aj)+ (log2) deg B. (8.12.3)
<izq

Note that, defining A = max{As ;j: j=1,...,¢q} asin (8.11.2), by the definition of E we have

)\.g C
d 2 i 11 =. 8.12.4
fshK@) w=2tet g orallsc (8124
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Assumption (i) of Lemma 8.10 holds, since

/S—IOg_Hf —ajllydp(v) ShK< ) =hg(E —oaj) <hgE)+co
j

by (3.6), the product formula (3.5), (8.6), and (8.12.3). Assumption (ii) holds by Proposition 8.9, and
assumption (iii) of Lemma 8.11 holds by Lemma 8.8.

Therefore Lemma 8.11 applies, and there exist &;,...,&, € &, a measurable subset 7 C §, and
a measurable function J: S\ T — {1,...,q} such that (8.11.4) holds with ¢’ = ¢ — ¢’ and ¢" =
¢’ +max{—c, 0}, and such that (8.12.1) holds.

Subtracting (8.11.4) from (8.12.4) with & = &; then gives

. g (V) ” c " .
min —————duw)>2+e—€"+—+ for all
s\ 1=i'=n h(&) h&)  hé)
el c max{—c, 0}
=24+ + + + for all i
h(&)  h&) h(&1)
/
>2+4+¢€ + )
h(§)
Upon letting T} = J_l(j) for all j, this gives (8.12.2). O

9. Siegel’s lemma and the auxiliary polynomial

Since .# is ample, work of X. Yuan and (independently) H. Chen allows one to control the number of
small global sections of .#Z®™ as m — oo, providing a counterpart to Axioms la and 1b of [Lang 1983,
Chapter 7, Section 1].
In more detail, by [ Yuan 2009, Section 1.1 and Theorem 2.7] (see also [Chen 2008]), we have
OB, M)
lim — T
m—o00 m4tt/(d +1)!
since .# is ample by assumption 5.3. (Recall Definition 2.3(a) and that dim B =d 4 1.)
Therefore there are constants c¢;; and c1p, with ¢12 > ¢1; > 0, and an integer mq (depending on ¢y,

=c1 ()T > 0,

c12, and .#), such that the inequality
cum®™ <h°(B, .4®™) < ciom™! ©.1)
holds for all integers m > mg. (Also, c;; and ¢ can be taken so that cy/cy; is arbitrarily close to 1,

although this fact will not be used here.)
This estimate is sufficient for proving the following Siegel lemma for arithmetic function fields.

Theorem 9.2. Let c11, c12, and mg be as in (9.1). Let h and b be positive integers, and let A be an M x N
matrix with entries in H*(B, #®" ® v log N)- Assume that b > mq and that

h d+1 N
(1+—) < 2en 9.2.1)

b MClz'

Then there is a nonzero vector v e HO(B, . #®" ® ”I/logz)N such that Av =0 (in H°(B, ///ﬁ(thb))M).
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Proof. By (9.1),
log#H%(B, .#%")N > Ncj b9,

On the other hand, if v € HO(B, .#®”)N then Av lies in H*(B, .#®®+t")M by (8.7), and
log #H(B, .MM < Mcyy (b + h)*H.

Therefore, by (9.2.1),

HO(B, %®h)N > HO(B,’%‘@(}H-h))M,
so there are distinct vectors vy, vo € HO(B, .#®")"N such that Av; = Av,. Let v = v; — v,. Then v £ 0,
Av =0, and

Ve HO(B, ///®b ® 7/logZ)N

by (8.7), as was to be shown. U
Now we recall the index of a polynomial in K[xy, ..., x,].
Definition 9.3. Let n,dy,...,d, € Z-¢, let P € K[xy, ..., x,] be a nonzero polynomial, and let § =
(&1,...,&,) beapointin K". Write P as a polynomial in x; — &, ..., x, —§&;:
Pxi,.xg) = Y ag(er —EDM - (o — £, 9.3.1)
keNn

with ay € K for all k, where k = (ky, ..., k,). Then the index of P at § with respecttod = (d, ..., dy,)
is the number

. kl kn
tg(P,&) =min{ —+---+ —:1ax #0¢.
di d,

Following [Lang 1983, Chapter 7, Section 3], we may express the definition of index using (repeated)
divided partial derivatives of P, as follows. The expansion (9.3.1) is just the Taylor expansion of P at &,

8 _ 1 a kl 8 kn
k' \ax, ax, )

In particular, the coefficients of d; P are integral multiples of the coefficients of P.

so ax = Jdx P (&), where

Assume from now on that for all i the degree of P with respect to x; is at most d;. Then the integral
factors in question are nonnegative and bounded by

() () <

n
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For any v € R, a polynomial P as above has index > 7 at & if and only if dx P(§) = O for all
k = (ki, ..., k,) such that k; < d; forall i and ), k;/d; < t. Let J4(r) denote the number of such
conditions.

Following [Esnault and Viehweg 1984, Section 9], let Vol,(7) be the Lebesgue measure of the set
{x=0(1,...,x,) €[0,1]" :x1+---+x, < t}. Then

Ja(7)

1 1
= Vol, ol —+---+—),
d-d ol,(t) + ( +---+ )

d dy
where the implicit constant depends only on 7.

Now we introduce (as is typical of proofs of Roth’s theorem) an auxiliary polynomial. The degree
of this polynomial will be taken large, depending on a real number D which in the end will be taken
sufficiently large depending on everything else in the proof (except for things defined using D).

Proposition 9.5. Let n be a positive integer, and let T be a positive real number such that Vol,(t) < 1/q.
Let c11 and ¢y be as in (9.1), let B be a positive real number such that

1 d+1
(1 n —) o 9.5.1)

< ’
B gci2 Vol (7)
and let hy, ..., h, be positive real numbers. Then there exist a positive integer u, depending only on
ai, ..., o and A, and a real number Dy > 0, depending on all of the foregoing, such that the following

is true forall D > Dy. Letd; = |D/h;| foralli,letd = (dy, ...,d,), leth=u(d, +---+d,), and let
b = | Bh]. Then there is a nonzero polynomial

P e H'B, #®" ® ogd)lx1. ... Xul, (9.5.2)
of degree at most d; in x; for all i, such that
ta(P,(aj,...,a;))) >t forallj=1...,q. (9.5.3)

Proof. Let E be an effective divisor on Bg such that E + («;) is effective forall j =1, ..., q. Let .# be
a smoothly metrized line sheaf on B such that g = ¢(E), and such that the canonical section 1z of
O'(E) satisfies

1 1
1ellv <5 and ojlul1elly <5

for all v € Mg and all j. For all j let s; = o 1E, so that s; is a global section of .% and |5, < % for
all v e M. By [Moriwaki 2014, Proposition 5.43], there is a positive integer u such that 7" ® .# ®u
has a nonzero strictly small global section p.

Now let hy, ..., hy, D, dy,...,d,, d, h, and b be as in the statement of the proposition. We aim to
use Theorem 9.2 (Siegel’s lemma) to construct P, by letting the coefficients of P be the unknowns in the
linear algebra problem and using the conditions o P(ctj, ..., ;) =0(j =1, ..., qg) as the equations.
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Let N be the number of terms in P and M be the number of constraints (as mentioned above). Then

N = H(di +1) and M =qJi(7).
i=1
Since N/[[d; =1+ O(Z dl._l) and M/ []d; =q Vol,(t)+ O(Z di_l), (9.2.1) follows from (9.5.1) for
all sufficiently large D.
For all k and all j, 9 P(cj, ..., a;) is a homogeneous linear form in the coefficients of P. The
coefficients of this linear form are elements of K of the form

d A\ Ity
(y) -+ G )

with 0 <k; <djand 0 <[; <d; foralli =1, ...,n. By (9.4), multiplying these latter coefficients by
l[g+"'+d” gives small global sections of .Z®@1++d); tensoring these with p1++% then gives (strictly)
small sections of .#®". Since p is a strictly small section and since log N = o(D) = o(h), all of these
products lie in H OB, #%" V. log n) for sufficiently large D.

Finally, since b grows roughly linearly in D, we have b > m for all sufficiently large D. Therefore

Theorem 9.2 applies, and this gives the polynomial P that satisfies (9.5.2) and (9.5.3). ]

10. Conclusion of the proof

The remainder of the proof of Roth’s theorem consists of choosing &, ..., &, € K, constructing an
auxiliary polynomial P, finding a lower bound for the index of P at (&, ..., &,), and finally putting
everything together to produce a contradiction. The last step in obtaining a contradiction usually involves
Roth’s lemma. Although Roth’s lemma is almost certainly true over arithmetic function fields, here it is
more expedient to use Dyson’s lemma [Esnault and Viehweg 1984], simply because it is already proved
over all fields of characteristic zero.

We start by finding a lower bound for the index. Since this involves a polynomial whose coeffi-
cients are global sections of a line sheaf, it involves metrics on that line sheaf at all places, including
nonarchimedean places.

Definition 10.1. Let . be a smoothly metrized line sheaf on B, let s be a nonzero rational section of .%,
let v be a nonarchimedean place of K, and let Y be the prime divisor on B corresponding to v. Let ny
be the multiplicity of Y in div(s). Then we define ||s||, = exp(—nyhy(Y)). (Recall also that ||s||, at an
archimedean place v is defined using the metric of .£.)

The following lemma may be regarded as an extension of the product formula (which is the case d =0
here).

Lemma 10.2. Let b € Z and let s be a nonzero rational section of .#®" on B. Then

/ —log||s |l dp(v) = bey ()@t (10.2.1)
Mk
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Proof. Write div(s)g, = Y _ny - Y. Then, by Lemma 1.11,

ber () D = Tnyei(Aly)! ~ / loglls |l e1(l-[l.)"
Y B(C)
= Znth(Y) —/ log||sly du(v)
Y ME
=> —log||s||v—/ logllsly dp(v)
M()O

0 K
veMy

f —log|ls|lv dp(v) U
Mg

We are now ready to prove a lower bound for the index of the polynomial P constructed in Proposition 9.5
at a point & satisfying certain conditions. This will involve using the approximation condition (8.12.2) to
obtain bounds on || P (&)||, for all v.

Proposition 10.3. Let n, t, u, and Dy be as in Proposition 9.5. Let o > 0 be a real number such that

Q2+eN(t—0)>n, (10.3.1)
let rmin > 1 be a real number, and let
n q
= —((10g12) degB+ZhK(a,~)). (10.3.2)
T—0 =

Let&y, ..., &, be elements of K that satisfy (8.12.1) and (8.12.2) for some €' > 0 and some T\, ..., T, C S.
Leth; =hg(&) foralli=1,...,n. Letd =(d,,...,d,), b, and P be as in Proposition 9.5. Then the

polynomial P also satisfies

ta(P, (§1,....6)) = 0. (10.3.3)

Proof. This proof is adapted from the argument at the end of [Lang 1983, Chapter 7, Section 3].
It will suffice to show that o P (&1, ..., &,) =0 forall k = (kq, ..., k,) € N" satisfying

kl n

Assume by way of contradiction that k is an n-tuple that satisfies the above inequality, but that

kP&, ..., 8)#0. (10.3.4)

To avoid cluttered notation, let Q = d; P.
Note that

td(Qs (aj""7aj))ZT—O'



Roth’s theorem over arithmetic function fields 2013

forall j =1,...,q, and therefore 3, Q(cj, ..., ;) # 0 only if

by by (10.3.5)
— 4+ —>1—0. 3.
di d, ~

We start by estimating ||Q (&1, ..., &) |, for all v € Mg. Here we will think of the coefficients of P

as being global sections of .#®”, having norms < 2 at all archimedean places (and hence not necessarily
small sections). Coefficients of Q will then also be global sections of .#®”, and values of Q such as
Q(&1, ..., &,) will be rational sections of .#%".

Let Ty, ..., T, be as in Proposition 8.12. By shrinking 77, ..., T if necessary, we may assume that
— 10 - PR .
min 8 I&—aille (10.3.6)
1<i<n /’l]((‘é,)

forallveT;, j=1,...,q. This does not affect (8.12.2).
First, let v be an archimedean place of K such that v € T; for some ;.
We consider the Taylor expansion

Q1. X)) = 30, ... o)) — ) (o — ), (10.3.7)
LeA
where A is the set of all n-tuples £ = (¢, ..., ¥€,) € N" with ¢; < d; for all i and satisfying (10.3.5).

Note that d¢ Q = 9, P, that the operator 9,0y takes x;" to (" ’Zk" ) (’Zi" )x" ~ki=t and that (m’gk" ) (’Zl_" )isa

trinomial coefficient with m; < d;. Hence d;Q(«;, ..., oj) can be written as a sum of at most 2dittdy
terms, each with an additional factor of at most 3%+ +d coming from 0,0k, so we have

di+-td, di+-+d, di+-+d,
10eQ(etj, ..., aj)lly <2207 Fh 3AFFh max(1, [loj |},

The Taylor expansion (10.3.7) then gives the bound
1QC1, .-, &)l

—1 > —1] — b . —a: )
n —
: Zgi —log™[|§ — v
> (D D .
= (bl ))I‘pelfr\l(i_l d; hi (&)
—log™ [|& —olw

= (D+o(D))(r —0) min (10.3.8)

hi (&)
Here we use the bound |A| < 291+ +4: in the first step (this changes 6 to 12 in the left-hand side) and
(10.3.5) in the last step. Also, the limiting behavior of o(D) can be taken independent of k.
For nonarchimedean v € T; satisfying (10.3.6), a similar argument gives
1QG1, ..., &l —log™[I& —a;llv

—log T > (D+4+o(D))(t—0) 1I§i§n I G

10.3.9
(max{1, [laj|l,Hd+-+ ( )

Next consider archimedean v withv ¢ 7 U---UT,.
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By bounds on binomial coefficients arising from applying dx to P, the norms of coefficients of Q at
archimedean places are bounded by 21741+ Since Q has at most 2414 terms, we have

1QEr, ..., E)lly <2-41F T max({1, ||&[|,}" - - - max{1, [|&,]],}". (10.3.10)

Finally, for nonarchimedean v ¢ Ty U - - - U T, we have simply

QG .., &) lly < max{l, [|&1,}" - - - max{1, |&,l,}". (10.3.11)
Combining (10.3.8)—(10.3.11) and (8.12.2), we then have

fM —log||Q(§1,...,sn>||vdu(v)z—me(loguaog 12>Zd,-) du(v)—(ZhK(aj))Zd,-

+<D+o<D>)(r—a>(z+e +h,<<s )) > dihg (&).

By (10.3.4) and Lemma 10.2, the left-hand side equals b (.#) “@+D. By (8.1.2) and (10.3.2), this then
becomes

bcl(///)'(d+l)+—( o)

Y, +(10g2)deg3>(D+0(D))(T—U)(2+6+h (5)) > dink &)
K

By definition of d;, we have d;hx (§;) = D+ o(D) for all i. Furthermore, (8.12.1) and the assumption that
rmin > 1 imply that hg (&) > hg (&) for all i; hence Y d; <n(D + o(D))/hk (&1). Therefore we have

bey () TV + (log2) deg B > (D + o(D))((t —0)(2+€') —n).
By (10.3.1) this gives a contradiction for large enough D; hence (10.3.3) is true. U

The next (and next to last) step in the proof is to choose the main parameters of the proof. It is based
on [Esnault and Viehweg 1984, Lemma 9.7].

Lemma 10.4. Let g > 2 be an integer and let €' > 0 be given. Then there is an integer no = no(q, €') > 2
such that for all n > ng there are real numbers T and o such that

q Vol (t) < 1 < g Vol,,(t) 4+ Vol,, (o) (10.4.1)
and

Q+e)NT—0)>n. (10.4.2)

Proof. We will show that the lemma holds with o = 1 and with t chosen such that
1

g Vol,(t)=1— . (10.4.3)
2-n!
For each n there is such a 7, and since Vol, (1) = 1/n!, these choices satisfy (10.4.1).
Consider the inequality
logg —log(1—1/2-n!)) 1 1 1
e . 10.4.4
\/ 6n + n = 2 24¢€ ( )
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Its left-hand side tends to zero as n — 00, so there is an integer ng > 2 such that this inequality holds for
all n > ng. It remains only to check that (10.4.2) holds for these values of n, 7, and o.
Bombieri and Gubler [2006, Lemma 6.3.5] showed that

1
Vol,, ((5 — n)n) < e~

for all n > 0. If 7 satisfies (% - n)n = t and 7 satisfies (10.4.3), then

n? < logg —log(1 — 1/(2-n!))’
6n
and therefore by (10.4.4)

1 1 1
——n—=> .
2 n 24¢€
The left-hand side equals (t — o)/n, so (10.4.2) is true. U

We now introduce Dyson’s lemma, as extended by Esnault and Viehweg.

Theorem 10.5 [Esnault and Viehweg 1984, Theorem 0.4]. Let K be a field of characteristic zero. Let
;i =1y &) J=1,..., M, be points in K"; let d € 7" withd\ > dp > --- > dy > 0; let
H,...,tm €[0,00);andlet P € K|[xy, ..., x,]. Assume that

() ¢ji#¢piforall j#j andi=1,... n;
(ii) P has degree at most d; in x; for all i
(i) ta(P, &) =t; forall j=1,..., M.

Then
3 Vol (t»)<li[(l+max{M 2, 0} 2": d[) (10.5.1)
j2=1: o i ’ l:i+idi . o
Remark 10.6. Esnault and Viehweg [1984] stated this theorem only with K = C, but it is true over
arbitrary fields of characteristic zero (as above) by the Lefschetz principle in algebraic geometry, or (in
the present situation) just by embedding K into C.

More generally, let B be an integral scheme whose function field K has characteristic zero, and let .¥
be a line sheaf on B. Then Dyson’s lemma also holds for polynomials with coefficients in H(B, .£).
Indeed, one can tensor all coefficients with a fixed nonzero element of the stalk of .#" at the generic
point of B. The resulting polynomial will have coefficients in K, and it will have the same degree and
index properties, so (10.5.1) will then apply to the original polynomial.

Proof of Theorem 4.5. The proof will be by contradiction. Let K, Mg, S, ay,...,a;, € >0;and c € R
be as in the statement of Theorem 4.5, and assume that (4.5.1) fails to hold for infinitely many & € K.
Pick €’ € (0, €), and choose n, 7, and o such that (10.4.1) and (10.4.2) hold.

We shall apply Dyson’s lemma with M =g +1,¢; = (aj, ..., ;) (j=1,...,¢q),and § ), = &, with
& yet to be determined.
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First, by (10.4.1), we may choose rpi, > 1 such that

n n
g Vol (t) + Vol, (o) >l_[(1+(q—1) > li_) (10.7)
i=1 I=i+1 "min
By Propositions 8.12, 9.5, and 10.3, there are &1, ..., &, € K satisfying (8.12.1), such that the following
is true for all sufficiently large D. Let h; = hg (&) and d; = | D/h;| foralli =1, ..., n. Then there is a
nonzero polynomial P as in (9.5.2), of degree at most d; in x; for all i, such that (9.5.3) and (10.3.3) hold.

By (8.12.1) and (10.7), we may also assume that D is sufficiently large so that

n n
g Vol, (1) + Vol (o) > H(l—i—(q— 1) Z%) (10.8)
i=1 I=i+i
Let § = (§1,...,&,). Then, in the notation of Theorem 10.5, we have t; > 7 forall j =1,...,¢4 and
tg+1 = o by (9.5.3) and (10.3.3), respectively.
Thus (10.8) contradicts (10.5.1) (via Remark 10.6), and Theorem 4.5 is proved. [l
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