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Roth’s theorem over arithmetic function fields
Paul Vojta

Roth’s theorem is extended to finitely generated field extensions of Q, using Moriwaki’s theory of heights.

In his work dating back at least to the 1970s, Serge Lang observed that many results in diophantine
geometry that were true over number fields were also true for fields finitely generated over Q. Following
Moriwaki, the latter will be called arithmetic function fields in this paper.

Lang felt that such fields were a more natural setting for diophantine geometry; see [Lang 1974; 1986].
For example, the Mordell–Weil theorem and Faltings’ theorem on the Mordell conjecture are true over

arithmetic function fields — see Corollaries 4.3 and 2.2, respectively, in Chapter I of [Lang 1991].1 Both
are proved using induction on the transcendence degree, using the cases of the theorems over (classical)
function fields in the inductive step. Correspondingly, Lang phrased his early conjectures on “Mordellicity”
in terms of rational points over subfields of C finitely generated over Q (i.e., arithmetic function fields).

As for integral points, Siegel’s theorem on integral points holds also for points integral over entire
rings of finite type over Z [Lang 1960, Theorem 4]; see also [Lang 1991, Chapter IX, Theorem 3.1] and
Corollary 4.11, below. In that spirit, Lang conjectured that results on integral points over number rings
should extend to integral points over entire rings finitely generated over Z; see [Lang 1974].

A weaker version of the Dirichlet unit theorem is also true (it gives only an inequality for the rank,
since finiteness of the class group does not hold for arithmetic function fields). One can then extend the
Mordell–Weil theorem to include integral points on semiabelian varieties over arithmetic function fields.
This is done in the usual way.

More recently, Moriwaki [2000] formulated a theory of heights over arithmetic function fields, and
showed that they have a many of the standard properties, including independence up to O(1) of the
choices made, Northcott’s theorem, and canonical heights on abelian varieties.

Moriwaki’s work opened the door for theorems on diophantine approximation to be extended to
arithmetic function fields.

This paper takes a first step in this direction, by extending Roth’s theorem to arithmetic function fields.
This uses Moriwaki’s theory of height functions and an obvious extension of his work to Weil functions
(local heights). As a consequence, it follows that arithmetic function fields are quite close to number
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1Lang apparently forgot to state the necessary assumption that X has genus ≥ 2.
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fields, in the sense that Roth’s theorem can be proved using extensions of the standard proof over number
fields, as opposed to arguments that reduce to the number field case.

This paper was suggested by a paper of Rastegar [2015] (as it turns out, though, his theorem can be
proved more easily without using results of this paper).

Schmidt’s subspace theorem should extend to arithmetic function fields using the same methods. That
will be the subject of future work. I thank one of the referees for pointing me in this direction.

The Masser–Oesterlé abc conjecture should also extend to arithmetic function fields. (A proof of the
abc conjecture has been proposed by Mochizuki, but it has not attained wide acceptance yet.) Also, I
conjecture that Conjectures 15.6, 23.4, 25.1, 25.3, 26.1, and 30.1 of [Vojta 2011] generalize to arithmetic
function fields.

Recall that in the classical diophantine theory of function fields, the function field in question is the
function field K of a projective variety B over a ground field F . Often F is taken to be algebraically
closed; hence, following Moriwaki [2002, Section 1], we refer to such function fields as geometric function
fields. When dim B > 1, it is necessary to choose a projective embedding of B, in order to determine
degrees of the prime divisors on B to be used in the product formula. When the ground field is infinite,
there may be infinitely many elements of K whose height is below a fixed bound. It is true, however,
that a set of such elements can belong to only a finite number of algebraic families. A similar principle
applies also to Northcott’s finiteness theorem (for algebraic points on a projective variety, rational over a
field of bounded degree over K and of bounded height relative to an ample divisor).

Moriwaki [2002, Section 2] refers to fields finitely generated over Q as arithmetic function fields.
They have this name because they have features of both function fields and number fields. An arithmetic
function field K arises as the function field of an arithmetic variety; i.e., an integral scheme B, flat and
projective over Spec Z. As is the case of geometric function fields, when dim B > 1 it is necessary to
choose metrized line sheaves on B in order to determine weights for the prime divisors on B. Unlike the
case of geometric function fields, though, not all places are nonarchimedean; in fact, if dim B > 1 then
there are uncountably many archimedean places. (When dim B = 1, one recovers the classical case of
number fields.) For all values of dim B, though, Northcott’s theorem gives actual finiteness (as opposed
to finiteness of algebraic families in the geometric function field case).

We recall here the statement of Roth’s theorem [1955], as generalized by LeVeque [1956, Theorem 4-15],
Ridout [1958], and Lang [1962] (Lang’s work also covered geometric function fields).

Theorem 0.1. Let k be a number field, and let S be a finite set of places of k. For each v ∈ S let αv be
algebraic over k, and assume that v is extended to k in some way. Then, for all ε > 0, the set of ξ ∈ k
satisfying the approximation condition

∏
v∈S

min{1, ‖ξ −αv‖v} ≤
1

Hk(ξ)2+ε
(0.1.1)

is finite.
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If one extends this statement to arithmetic function fields in a straightforward way, then the resulting
statement is false — see Examples 4.12 and 4.13. Instead we impose the additional condition that the
set of all αv is finite, as v varies over S (which is now in general uncountable, as described below). See
Theorem 4.6. (Theorem 4.6 is actually stronger than the above — see Remark 4.7.) Theorem 4.6 reduces
to Theorem 0.1 in the number field case, and is strong enough to imply Siegel’s theorem on integral
points (Corollary 4.11).

Actually, we give four equivalent formulations of Roth’s theorem over arithmetic function fields
(Theorems 4.3–4.6), and show in Proposition 4.8 that they are equivalent. Sections 5–10 contain a proof
of Theorem 4.5, which then implies the other three variants.

The proof of Roth’s theorem in this paper follows the same general outline as the classical proofs
of Thue, Siegel, and Roth. In particular, it is ineffective (i.e., it does not give a constructive proof for
the upper bound on the heights of exceptions to the main inequality). Fundamentally different proofs
of Roth’s theorem over geometric function fields (of characteristic 0) have been obtained by Osgood
[1985] and Wang [1996], using “Nevanlinna–Kolchin systems” and Steinmetz’s method in Nevanlinna
theory, respectively; the latter is effective. Roth’s theorem can be proved over geometric function fields
of characteristic 0 by the Thue–Siegel method; see [Lang 1983]. The current paper does not add anything
to this proof.

Unfortunately, Roth’s theorem over arithmetic function fields does not yet imply any new applications.
However, as noted above it is anticipated that Schmidt’s subspace theorem will also extend to arithmetic
function fields, and that result has numerous diophantine consequences whose counterparts over arithmetic
function fields will be new.

The main difficulty in generalizing Roth’s theorem to arithmetic function fields concerns the part of
the proof often referred to as “reduction to simultaneous approximation.” In that part, it is shown that it
suffices to prove the theorem with the approximation condition (0.1.1) replaced by conditions

min{1, ‖ξ −αv‖v} ≤ Hk(ξ)
−λv(2+ε′)

for each v, where 0< ε′ < ε, and for each v ∈ S a constant λv ≥ 0 is given such that∑
v∈S

λv = 1.

In addressing this difficulty, a key idea came from a proof of Wirsing [1971]. Wirsing extended Roth’s
theorem to approximation by rational numbers of bounded degree. In his proof the number of archimedean
places was still finite, but it grew exponentially with the number of solutions to (his equivalent of) (0.1.1)
under consideration. The idea was to ignore a small proportion of those places, and this is also done here.
See the introduction to Section 6 for more details on this.

The paper is organized as follows. Section 1 summarizes the basic results and conventions from number
theory, algebraic geometry, and Arakelov theory used in the paper. Section 2 describes the positivity
properties of metrized line sheaves that are needed in the paper. Section 3 introduces Moriwaki’s theory
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of heights for arithmetic function fields, and describes how this theory can be extended to give a theory
of Weil functions (often called local heights). Thus, one can decompose the height into proximity and
counting functions, as in Nevanlinna theory [Vojta 2011]. In Section 4, the main theorem of the paper is
formally stated, in four different forms, and the four are shown to be equivalent.

Section 5 begins the main line of the proof of the theorem, by showing that it suffices to prove the
theorem under some additional assumptions. Sections 6–8 give the proof of reduction to simultaneous
approximation for arithmetic function fields; this is the technical core of the paper. Mostly this focuses
on the archimedean places, and involves analysis of Green functions. More details are given in the
introduction to Section 6. Sections 9 and 10 then conclude the proof by formulating and proving Siegel’s
lemma for arithmetic function fields, constructing the auxiliary polynomial, and deriving a contradiction
to conclude the proof. For the latter, we use a version of Dyson’s lemma [1947] due to Esnault and
Viehweg [1984] instead of Roth’s lemma, since the former is true for arbitrary fields of characteristic
zero, and therefore needs no adaptation for arithmetic function fields.

1. Basic notation and conventions

In this paper, N= {0, 1, 2, . . .} and Z>0 = {1, 2, 3, . . .}. Also,

log+ x = log max{1, x} and log− x = log min{1, x}.

Throughout this paper, the notation c1 always refers to either a Chern form or a Chern class. The letter
c with any other subscript refers to a constant — and this includes, for example, ci when i = 1. Higher
Chern classes do not occur in this paper.

1A. Algebraic geometry. A variety over a field k is an integral separated scheme of finite type over k,
and a curve over k is a variety over k of dimension 1. A line sheaf is an invertible sheaf. For a point x on
a scheme X , κ(x) denotes the residue field of x . If X is a variety or integral scheme, then κ(X) denotes
its function field (this equals the residue field κ(ξ) for the generic point ξ of X ).

For more details on these conventions, see [Vojta 2011].
Also, following [Moriwaki 2014], if s is a nonzero rational section of a line sheaf on an integral scheme

X or a nonzero rational function on X , then div(s) is the associated Cartier divisor of s.

1B. Number theory. For a number field k, the subring Ok is its ring of integers (the integral closure of
Z in k). The set Mk is the set of all places of k; this is the disjoint union of the sets of archimedean and
nonarchimedean places of k. These are in canonical bijection with the set of injections k ↪→ C and with
the set of nonzero prime ideals in Ok , respectively.

For each place v ∈ Mk we define an absolute value ‖·‖v, as follows:

‖x‖v =
{
|σ(x)| if v is archimedean and corresponds to σ : k ↪→ C;

(Ok : p)
− ordp(x) if v is nonarchimedean and corresponds to p⊆ Ok .
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(In the nonarchimedean case, the formula assumes x 6= 0; of course ‖0‖v = 0 for all v.) Note that two
nonreal complex conjugate embeddings σ, σ : k ↪→ C are regarded as different places but give rise to the
same absolute value. This is the usual convention in Arakelov theory. These absolute values satisfy the
product formula ∏

v∈Mk

‖x‖v = 1 for all x ∈ k∗. (1.1)

Heights are always taken to be logarithmic but not absolute. The reason for the latter is that, for a
general function field K (either arithmetic or geometric) there is no canonical choice of “base field” to
play the role of Q, for which K is a finite extension (other than K itself).

As a specific example, the height of a point P ∈Pn(k) with homogeneous coordinates [x0 : x1 : · · · : xn]

is
hk(P)=

∑
v∈Mk

log max{‖x0‖v, . . . , ‖xn‖v}.

For more information on the basic properties of heights, see [Hindry and Silverman 2000, Part B] or
[Lang 1983, Ch. 4].

1C. Complex analytic spaces. A complex analytic space, or just complex space, is as defined in
[Hartshorne 1977, Appendix B]. Examples include X an, where X is a reduced quasiprojective scheme
over C (note that X may be reducible, and may have singularities); and the unit discs

D := {z ∈ C : |z|< 1} and Dd
:= {z ∈ Cd

: |z|< 1}

in C and Cd (d ∈ Z>0), respectively.

In this paper, complex spaces are always assumed to be Hausdorff and reduced.

This paper generally follows the definitions of [Zhang 1995].
For the rest of this subsection, let T be a complex space.
A function f : T → R is smooth if for any holomorphic map φ : Dd

→ T , the composite function
f ◦φ is smooth (i.e., C∞). Smoothness of differential forms is defined similarly.

Let L be a line sheaf on T . Then a smooth hermitian metric or continuous hermitian metric on L is
defined as usual in Arakelov theory, with the metric varying smoothly or continuously, respectively. A
smoothly metrized line sheaf or continuously metrized line sheaf L on T is a pair (Lfin, ‖·‖L ), consisting
of a line sheaf Lfin on T , together with a smooth or continuous hermitian metric ‖·‖L on Lfin, respectively.
Most hermitian metrics in this paper are assumed to be smooth. Here the subscript “fin” means finite, and
is used to refer to the underlying nonmetrized line sheaf (this terminology will make more sense when
we get to Arakelov theory). We do not use bars to denote metrized line sheaves: an object L is what
it was said to be. This is because metrized line sheaves are the most natural objects to consider when
working in Arakelov theory. For the remainder of this paper, all line sheaves on complex analytic spaces
written using notation not involving a subscript “fin” are metrized.

The subscript L on ‖·‖L may be omitted if L should be clear from the context.
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Let L be a continuously metrized line sheaf on T . Then a section of L over an open subset U of T is
a section of Lfin over U . A global section s of L is small (resp. strictly small) if ‖s‖ ≤ 1 (resp. ‖s‖< 1)
everywhere on T .

If L is a smoothly metrized line sheaf on a complex manifold M , then it has a Chern form c1(‖·‖L )

(well-)defined by the condition that c1(‖·‖L )|U = −ddc log‖s‖2 for all open U ⊆ M and all nowhere-
vanishing sections s of L over U . Note that if L is a smoothly metrized line sheaf on a reduced complex
space T , then it may not be possible to define a Chern form c1(‖·‖L ) at singular points of T .

For n ∈ Z>0, the line sheaf O(1) on Pn(C) can be smoothly metrized by the standard metric, also
called the Fubini–Study metric. It is defined uniquely by the condition that, for all global sections
s = a0z0+ · · ·+ anzn , where z0, . . . , zn are homogeneous coordinates on Pn(C),

‖s‖(p0 : · · · : pn)=
|a0 p0+ · · ·+ an pn|√
|p0|2+ · · ·+ |pn|

2
. (1.2)

When n = 1, the Chern form of this metric is

c1(‖·‖)=

√
−1

2π
1

(1+ |z|2)2
dz ∧ dz =

ddc
|z|2

(1+ |z|2)2
.

Recall that a form on a complex manifold M is real if it can be written as a form with real coefficients
when M is regarded as a manifold over R. For a (1, 1)-form ω on M , written as

ω =
√
−1

∑
i, j

hi j (z)dzi ∧ dz j , (1.3)

this is equivalent to (hi j (z)) being a Hermitian matrix for all holomorphic local coordinate systems
(z1, . . . , zn) and all z. Following [Moriwaki 2014, Section 1.12 and 1.14], this form is positive (resp. semi-
positive) if it is real and if (hi j (z)) is positive definite (resp. positive semidefinite) for all z. A (1, 1)-form
on a complex projective variety is semipositive if its pull-back to a desingularization is semipositive.

Likewise, an (n, n)-form θ on a complex manifold M , written in local coordinates as

θ = ρ(z)ddc
|z1|

2
∧ · · · ∧ ddc

|zn|
2, (1.4)

is real if and only if ρ(z) ∈ R for all z, and is positive (resp. semipositive) if it is real and ρ(z) > 0
(resp. ρ(z)≥ 0) for all z.

Proposition 1.5. Positivity of forms as in (1.3) and (1.4) are related as follows:

(a) Let M be a complex manifold of dimension n, and let ω1, . . . , ωn be positive (resp. semipositive)
(1, 1)-forms on M. Then ω1 ∧ · · · ∧ωn is positive (resp. semipositive).

(b) Let X be a complex projective variety of dimension n, and let ω1, . . . , ωn be semipositive (1, 1)-forms
on X. Then ω1 ∧ · · · ∧ωn is also semipositive.

Proof. See [Lang 1987, Ch. IV, Lemma 2.4]. For the convenience of the reader, we provide more details
here.
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It will suffice to prove part (a), since (b) follows by passing to a desingularization.
First assume that ω1, . . . , ωn are positive. We will use induction on n. The n = 1 case is trivial. Fix

a point p ∈ M , and let (z1, . . . , zn) be a local coordinate system on M near p. We may assume that p
corresponds to z1 = · · · = zn = 0. Write

ω1 =
√
−1

∑
i, j

hi j (z)dzi ∧ dz j .

By Gram–Schmidt, we may assume that (hi j (0)) is a diagonal matrix. Since ω1 is positive, the diagonal
entries λ1, . . . , λn of this matrix are real and positive. For all i = 1, . . . , n and all j > 1, ω j |zi=0 is
positive, so if we write

ω2 ∧ · · · ∧ωn|zi=0 = ρi (z)ddc
|z1|

2
∧ · · · ∧ (ddc

|zi |
2)̂ ∧ · · · ∧ ddc

|zn|
2

for all i , then by induction ρi (0) is real and positive. Let θ = ω1∧ · · · ∧ωn and let ρ be as in (1.4). Then
ρ(0)= (2π)−1∑ λiρi (0) > 0, so θ is positive.

The argument for the semipositive case is similar. �

1D. Arakelov theory. An arithmetic variety is an integral scheme, flat and projective over Spec Z.
All arithmetic varieties in this paper will be assumed to be normal.
Let X be an arithmetic variety. Let K = κ(X); this is a finitely generated extension field of Q. We

also write XQ = X ×Z Q. The set X (C) will often be regarded as a complex space (with the classical
topology).

We say that X is generically smooth if XQ is smooth over Q. If X is generically smooth, then X (C) is
a complex manifold (not necessarily connected). If X is an (arbitrary) arithmetic variety, then a generic
resolution of singularities of X is a proper birational morphism π : Y → X , where Y is a generically
smooth arithmetic variety.

A smoothly metrized line sheaf L on X is a pair (Lfin, ‖·‖L ) consisting of a line sheaf Lfin on X and a
smooth hermitian metric ‖·‖L on (Lfin)C, where (Lfin)C is the pull-back of Lfin to X (C). A continuously
metrized line sheaf on X is defined similarly. In both cases, we will always assume that the hermitian
metric is of real type; i.e., that it is invariant under the complex conjugation map F∞ on X (C); see
[Moriwaki 2014, (5.2)].

As discussed earlier, metrized line sheaves are not denoted using bars. In this paper, all line sheaves on
arithmetic varieties written using notation not involving a subscript “fin” are metrized.

If L = (Lfin, ‖·‖L ) is a smoothly or continuously metrized line sheaf on X , then LC will denote the
smoothly or continuously metrized line sheaf ((Lfin)C, ‖·‖L ) on X (C), respectively. We also let LQ

denote the (nonmetrized) line sheaf (Lfin)Q on XQ obtained by restriction.
A section of L over an open subset U of X is a section of Lfin over U . A global section s of L is

small (resp. strictly small) if the corresponding section of LC is small (resp. strictly small).
If L is a smoothly metrized line sheaf on X , then its Chern form is the form c1(‖·‖L ); it is a smooth

(1, 1)-form on X (C) and is again denoted c1(‖·‖L ). If L is a line sheaf (resp. smoothly metrized line sheaf)
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on a scheme (resp. arithmetic variety) X , then c1(L ) will denote the first Chern class (resp. arithmetic
first Chern class) of L ; it is a cycle (resp. Arakelov cycle) of codimension 1 on X . In particular, if L is a
smoothly metrized line sheaf on an arithmetic variety X , then c1(LQ) is an (ordinary, i.e., non-Arakelov)
cycle of codimension 1 on XQ.

In order to simplify the notation, we will often omit deg(·), even though the product of a number of
Chern classes is technically a 0-cycle, not a number. It will always be the intersection number that is
meant.

Finally, if L is a smoothly metrized line sheaf on X then we recall that the height function hL : X (Q)→
R is defined by

hL (x)=
c1(L |x)

[κ(x) :Q]
, (1.6)

where x ∈ X (Q) and x is its closure in X . This is an absolute height.

1E. Arithmetic intersection theory of Cartier divisors. At the present time, a theory of resolution of
singularities on arithmetic varieties is not available, so the theory of arithmetic intersection theory on
regular varieties, as in [Gillet and Soulé 1990] or [Soulé 1992] cannot be used. Gillet and Soulé [1990,
4.5] construct an intersection theory on generically smooth arithmetic varieties, at the cost of allowing
rational coefficients in the Chow groups.

However, since we only need to work with the subring of the Chow ring generated by arithmetic
Cartier divisors, it is simpler to use the theory of [Faltings 1992, Lect. 1]. That is what we will do here. It
does not require passing to rational coefficients. Moreover, this theory can be extended to an arbitrary
arithmetic variety by pulling back to a generic resolution of singularities.

(For generically smooth arithmetic varieties, however, the results of [Gillet and Soulé 1990, Section 1–2],
on Green currents and Green forms, can be applied. In fact, they play a key role in this paper.)

Here we follow [Moriwaki 2014, Section 5.4]. A brief summary of his definitions follows.
Let X be a generically smooth arithmetic variety. For p ∈ N, an arithmetic cycle of codimension p

on X is a pair Z = (Zfin, T ), where Zfin is a cycle of codimension p on X and T is a current on X (C)
of type (p− 1, p− 1). These form an abelian group under componentwise addition, which is denoted
Zp

D(X). Note that Z0
D(X) = Z · (X, 0). (Moriwaki denotes this group Ẑ

p
D(X), but the hat is redundant

since the subscript “D” already implies that there is a component at infinity.)
A (p− 1, p− 1)-current T on X (C) is said to be of real type if F∗

∞
(T )= (−1)pT . Note that this is

different from a current (or form) being real; i.e., T = T .
If Z is a cycle of codimension p on X , then we say that a Green current for Z is a current T on X (C)

of type (p− 1, p− 1) such that

ddcT + δZ = [ω]

for some smooth (p, p)-form ω on X . An arithmetic cycle Z = (Zfin, T ) ∈ Zp
D(X) is said to be of Green

type if T is a Green current for Zfin. These cycles form a subgroup of Zp
D(X).
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Moriwaki defines R̂atp
(X) to be the subgroup of Zp

D(X) generated by (i) cycles i∗(div( f )fin,− log‖ f ‖2),
where Y is an integral closed subscheme of X of codimension p− 1, i : Y → X is the corresponding
closed embedding, and f is a nonzero rational function on Y ; and (ii) (0, ∂A) and (0, ∂B), where A and
B are currents on X (C) of type (p− 2, p− 1) and (p− 1, p− 2), respectively. He then defines

CHp
D(X)= Zp

D(X)/R̂atp
(X).

By way of comparison, Gillet and Soulé [1992, III 1.1] define Ẑ
p
(X) to be the subgroup of Zp

D(X)
consisting of all pairs (Z , T ) of Green type such that T is real and of real type, and they let ĈHp

(X) be
the image of Ẑ

p
(X) in CHp

D(X). In this paper, all currents under consideration come from (smoothly)
metrized line sheaves, so they are real and of real type, but not all pairs (Z , T ) ∈ Zp

D(X) in this paper are
of Green type, since it is sometimes useful (e.g., in the proof of Lemma 1.11) to split up (Z , T ) ∈ Zp

D(X)
into a sum (Z , 0)+ (0, T ).

At times it will be useful to consider intersections on integral closed subschemes of an arithmetic
scheme X , including those that are not flat over Spec Z. Therefore, consider for now an integral scheme X ,
projective over Spec Z, which lies entirely over a single closed point (p) ∈ Spec Z. Such schemes X
will be said to be vertical. Since XQ = ∅, this scheme is always generically smooth. Similarly, since
X (C) = ∅, a metrized line sheaf on X (defined as above) is just a pair L = (Lfin,∅), and the same
definitions as above give that Zp

D(X) is the group of pairs (Zfin, 0), where Zfin is a cycle of codimension p
on X in the classical (non-Arakelov) sense. Similarly, CHp

D(X) is canonically isomorphic to the classical
Chow group CHp(X).

Let X be an integral scheme, projective (but not necessarily flat) over Spec Z, and generically smooth.
Let L be a smoothly metrized line sheaf on X . By [Moriwaki 2014, Def. 5.16, Thm. 5.20, and Section 5.2],
the formula

(Z , g) 7→ (div(s)fin · Z , i∗[− log‖s|Z‖2] + c1(‖·‖L )∧ g) (1.7)

gives a well-defined group homomorphism CHp
D(X)→ CHp+1

D (X), denoted c1(L ) · , where (Z , g) ∈
Zp

D(X) is such that Z is a closed integral subscheme of X , i : Z → X is the corresponding closed
embedding, and s is a rational section of L whose restriction to Z is nonzero. (If Z is vertical, then
Z(C)=∅, and therefore i∗[− log‖s|Z‖2] = 0.) It is easy to check that (i) c1(L ) · (X, 0)= c1(L ), where
c1(L ) on the right-hand side is as defined earlier, and (ii) if X is regular and if α ∈ ĈHp

(X), then
c1(L ) ·α as defined here coincides with the definition from [Gillet and Soulé 1990, Section 3] (or with
classical intersection theory if X is vertical).

Let X be an integral scheme, projective over Spec Z and generically smooth; let n = dim X ; and let
L1, . . . ,Ln be smoothly metrized line sheaves on X . Then we have a well-defined element

c1(L1) · · · c1(Ln) ∈ CHn
D(X).

Since this is a cycle of dimension 0 on X , we can take its degree [Moriwaki 2014, Def. 5.22] to get a real
number, which will also (by the usual abuse of notation) be denoted c1(L1) · · · c1(Ln). This degree is
always taken in the Arakelov sense, even if X is vertical.
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The map c1(L )· satisfies the following projection formula. Let X and Y be integral schemes, projective
over Spec Z and generically smooth; let f : X→ Y be a morphism; let L1, . . . ,Ln be smoothly metrized
line sheaves on Y ; and let α ∈ CHp

D(X). Then

f∗(c1( f ∗L1) · · · c1( f ∗Ln) ·α)= c1(L1) · · · c1(Ln) · f∗α. (1.8)

Indeed, when n = 1 this is [Moriwaki 2014, Thm. 5.20 (2) and Prop. 5.5], and the general case follows
by induction. In particular, if f is birational and n = dim X , then (taking degrees) we have

c1( f ∗L1) · · · c1( f ∗Ln)= c1( f ∗L1) · · · c1( f ∗Ln) · (X, 0)

= c1(L1) · · · c1(Ln) · (Y, 0)

= c1(L1) · · · c1(Ln). (1.9)

By pulling back to a generic resolution of singularities and using (1.9), one can also define this quantity
without assuming that X is generically smooth; see [Moriwaki 2014, Def. 5.24]. With this definition,
(1.9) holds without the assumption that X and Y are generically smooth.

We conclude this section with a result which is implicit several places in Moriwaki’s work, and obvious
to the experts, but which seems not to be explicitly stated or proved anywhere.

Definition 1.10. Let X be an arithmetic variety, and let M be a continuously metrized line sheaf on X .
Then, for any nonzero rational section s of M , we define

c1(M )= (div(s)fin,− log‖s‖2) ∈ CH1
D(X).

This definition is independent of the choice of s, and is compatible with the definition of c1(M )∈CH1(X)
when the metric on M is smooth.

Lemma 1.11. Let X be a generically smooth arithmetic variety of dimension n. Let L1, . . . ,Ln−1 be
smoothly metrized line sheaves on X , let M be a continuously metrized line sheaf on X , and let s be a
nonzero rational section of M . Write div(s)fin as a finite sum

∑
nZ Z , where nZ ∈ Z for all Z and each Z

is a prime divisor on X. Then

c1(L1) · · · c1(Ln−1) · c1(M )

=

∑
nZ (c1(L1|Z ) · · · c1(Ln−1|Z ))−

∫
X (C)

log‖s‖ c1(‖·‖L1)∧ · · · ∧ c1(‖·‖Ln−1). (1.11.1)

Proof. Since both sides of (1.11.1) are linear in M (and correspondingly in nZ and − log‖s‖), we may
assume that there is only one prime divisor Z , and that nZ = 1. Then c1(M ) is represented by the cycle
(Z ,− log‖s‖2), and we have

c1(L1) · · · c1(Ln−1) · c1(M )

= c1(L1) · · · c1(Ln−1) · (Z , 0)+ c1(L1) · · · c1(Ln−1) · (0,− log‖s‖2). (1.11.2)

We first consider the first term on the right-hand side.
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Let Z̃ be a generic resolution of singularities of Z , and let f : Z̃→ X be the corresponding map to X .
By (1.8) and (1.9),

c1(L1) · · · c1(Ln−1) · (Z , 0)= c1(L1) · · · c1(Ln−1) · f∗(Z̃ , 0)

= c1( f ∗(L1)) · · · c1( f ∗(Ln−1)) · (Z̃ , 0)

= c1( f ∗(L1)) · · · c1( f ∗(Ln−1))

= c1(L1|Z ) · · · c1(Ln−1|Z ) (1.11.3)

(where the last formula is computed on Z ).
Now consider the second term on the right-hand side of (1.11.2).
If g is a current of type (n− 1− i, n− 1− i) on X (C), then by (1.7),

c1(Li ) · (0, g)= (0, c1(‖·‖Li )∧ g), (1.11.4)

and therefore (taking the degree)

c1(L1) · · · c1(Ln−1) · (0,− log‖s‖2)=−
∫

X (C)
log‖s‖ c1(‖·‖L1)∧ · · · ∧ c1(‖·‖Ln−1).

Combining (1.11.2)–(1.11.4) then gives (1.11.1). �

Proposition 1.12. Let X be an integral scheme of dimension n, projective over Spec Z.

(a) Let L1, . . . ,Ln be nef , smoothly metrized line sheaves on X , or

(b) let L1, . . . ,Ln−1 be nef , smoothly metrized line sheaves on X , and let Ln be a continuously metrized
line sheaf on X for which some positive tensor power has a small nonzero global section.

Then

c1(L1) · · · c1(Ln)≥ 0.

Proof. If X an arithmetic variety, then part (a) is [Moriwaki 2000, Prop. 2.3 (1)] or [Moriwaki 2014,
Thm. 6.15]. Otherwise, it is a standard result in algebraic geometry.

Part (b) is [Moriwaki 2000, Prop. 2.3 (2)]. It follows from part (a) and Lemma 1.11. �

2. Positivity conditions on metrized line sheaves

This section defines the conditions nef, big, and ample for a smoothly metrized line sheaf on an arithmetic
variety, and gives some of their main properties.

References for this section are [Zhang 1995; Yuan 2008; 2009; Moriwaki 2014].

Throughout this section, L is a smoothly metrized line sheaf on an arithmetic variety X.
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2A. Nef metrized line sheaves.

Definition 2.1 [Moriwaki 2014, Definition 5.38(3)]. (a) L is vertically nef if Lfin is nef on all closed
fibers of X→ Spec Z and if the metric on L is semipositive, and

(b) L is nef if it is vertically nef and if hL (x)≥ 0 for all x ∈ X (Q).

Proposition 2.2. Let f : X ′→ X be a surjective generically finite morphism of arithmetic varieties. If L

is nef , then so is f ∗L .

Proof. This is clear from the definition. �

2B. Big metrized line sheaves. The definition of a big metrized line sheaf given here is modeled after
the definition of big in the classical case.

Definition 2.3. (a) Let H 0(X,L ) denote the set of small sections of L :

H 0(X,L )= {s ∈ H 0(X,Lfin) : ‖s‖sup ≤ 1},

and let
h0(X,L )= log #H 0(X,L ).

(b) Let n = dim X . Then the volume of L is

vol(L )= lim sup
m→∞

h0(X,L ⊗m)

mn/n!
.

By [Yuan 2009, Section 1.1 and Theorem 2.7] (see also [Chen 2008]), this lim sup converges as a
limit.

(c) We say that L is big if vol(L ) > 0.

Remark 2.4. Sometimes H 0(X,L ) is defined to be the set of strictly small sections of L , and this defini-
tion is used to define bigness. This definition of big (and several others) are equivalent to Definition 2.3(c),
by [Yuan 2008, Corollary 2.4] and [Moriwaki 2009, Theorem 4.6].

Proposition 2.5. Let f : X ′→ X be a surjective generically finite morphism of arithmetic varieties. If L

is big, then so is f ∗L .

Proof. This is immediate from the fact that pulling back by f induces an injection H 0(X,L ) →

H 0(X ′, f ∗L ). �

2C. Ample metrized line sheaves. To define ampleness, we follow [Yuan 2008, Secton 2.1].

Definition 2.6. We say that L is horizontally positive if c1(L |Y )
· dim Y > 0 for all horizontal integral

closed subschemes Y of X . Here an integral subscheme Y of X is horizontal if it is flat over Spec Z.

Definition 2.7. A smoothly metrized line sheaf L is ample if

(i) LQ is ample;

(ii) L is vertically nef; and

(iii) L is horizontally positive.



Roth’s theorem over arithmetic function fields 1955

Remark 2.8. Moriwaki defines ampleness differently. He defines L to be ample if (i) Lfin is ample
(on X ), (ii) the metric on L is positive, and (iii) there is some integer n > 0 such that H 0(X,L ⊗n

fin ) is
generated by strictly small sections [Moriwaki 2014, Definition 5.38 (2)]. This definition is stronger than
Definition 2.7. Indeed, (i) and (ii) of Definition 2.7 follow from Moriwaki’s (i) and (ii), and horizontal
positivity follows from [Moriwaki 2014, Proposition 5.39]. The converse implication is false: for example,
if L is ample on X in the sense of Moriwaki, then its pull-back to the blowing-up of X at a closed point
is ample in the sense of Definition 2.7, but not in Moriwaki’s sense.

Proposition 2.9. If L is ample, then it is nef and big.

Proof. The fact that L is nef follows immediately by comparing Definitions 2.7 and 2.1. That L is big
follows from [Yuan 2008, Corollary 2.4]. �

2D. An openness property. Because a metrized line sheaf is only required to be vertically nef in order to
be ample, arithmetical ampleness is not an open condition. However, it is true that arithmetical ampleness
is preserved under changing the metric by a constant multiple sufficiently close to 1, provided that the
arithmetic variety is generically smooth. This is the conclusion of Proposition 2.12, which is the goal of
this subsection.

Note that the definition of ampleness is comparable to the Nakai–Moishezon criterion. This implies
something comparable to the more common definition of ampleness in the non-Arakelov setting [Zhang
1995, Corollary 4.8].

We start with a result that may be regarded as a counterpart to the theorem in classical algebraic
geometry that says that the Nakai–Moishezon and Kleiman criteria for ampleness are equivalent.

Lemma 2.10. Assume that X is generically smooth, that LQ is ample, and that the metric on L is
semipositive. Then L is horizontally positive if and only if the height function hL has a positive lower
bound on X.

Proof. This proof makes use of the condition that a smoothly metrized line sheaf be relatively semiample.
We will not quote the definition here (see [Zhang 1995, (3.1)]); instead, it is sufficient to know that L |Y

is relatively semiample for all horizontal integral closed subschemes Y of X [Zhang 1995, Theorem 3.5].
This proof follows fairly easily from the equivalence (ii)⇐⇒(iii) of [Zhang 1995, Corollary 5.7]. This

says the following. Let M be a smoothly metrized line sheaf on an arithmetic variety Y . Assume that
MQ is ample, that M is relatively semiample, and that hM (y)≥ 0 for all y ∈ Y (Q). Then the following
conditions are equivalent: (ii) there is a nonempty Zariski-open subset U of Y such that hM has a positive
lower bound on U (i.e., on U (Q)), and (iii) c1(M )· dim Y > 0.

We will apply this result with Y equal to a horizontal integral closed subscheme of X and with
M =L |Y . In this situation, M is relatively semiample as noted above, and MQ is ample because LQ is.

We first prove the converse assertion. Assume that hL has a positive lower bound on X , let Y be a
horizontal integral closed subscheme on X , and let M =L |Y . Then condition (ii) in Zhang’s lemma holds
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for Y and M with U = Y , and also the hypothesis hM (y)≥ 0 holds. Therefore, by (iii), c1(M )· dim Y > 0.
Since Y is arbitrary, L is horizontally positive.

Conversely, assume that L is horizontally positive. We will show by noetherian induction that hL has
a positive lower bound on Y (Q) for all Zariski-closed subsets Y of X , and therefore it holds for X .

Let Y be a Zariski-closed subset of X . If Y =∅ then there is nothing to show. If Y is reducible, then
write Y = Y1 ∪ · · · ∪ Yn with all Yi irreducible. By the inductive hypothesis, hL has a positive lower
bound on Yi for all i , so the same is true for Y .

Assume now that Y is irreducible. If Y is not horizontal, then Y (Q) is empty, and there is nothing
to prove. Otherwise, we apply the above result of Zhang. Note that, since L is horizontally positive,
the hypothesis that hM (y)≥ 0 for all y ∈ Y (Q) holds, and so does condition (iii) of Zhang’s corollary.
Therefore, by condition (ii) of the corollary, there is a nonempty open U ⊆ Y such that hL has a positive
lower bound on U . Also hL has a positive lower bound on Y \U by the inductive hypothesis, so hL has
a positive lower bound on Y .

It follows by taking Y = X that hL has a positive lower bound on X . �

Definition 2.11. For all a ∈ R let Va be the smoothly metrized line sheaf on X such that (Va)fin is the
structure sheaf of X and the constant section 1 of Va has constant metric e−a . (Here V stands for vertical.)

We are now ready to prove the main result of this subsection.

Proposition 2.12. Assume that X is generically smooth and that L is ample. Then there is a c > 0 such
that L ⊗V−ε is ample for all ε < c.

Proof. For all ε ∈ R, the properties (L ⊗V−ε)Q ample and L ⊗V−ε vertically nef follow trivially from
the same properties of L . Therefore it will suffice to find c> 0 such that L ⊗V−ε is horizontally positive
for all ε < c.

Let

c = inf
x∈X (Q)

hL (x).

By Lemma 2.10, c > 0. Fix ε < c. We need to show that L ⊗V−ε is horizontally positive. To see this,
we note that

hL⊗V−ε (x)= hL (x)− ε

for all x ∈ X (Q). Then hL⊗V−ε has the positive lower bound c− ε, and therefore L ⊗V−ε is ample by
Lemma 2.10. �

3. Arithmetic function fields

An arithmetic function field is a finitely generated extension field of Q. Such fields have a diophantine
theory that contains the number field case as a special case.

This theory was originally developed in [Moriwaki 2000]. See also the survey article [Moriwaki 2002].
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3A. Polarizations, places, and heights.

Definition 3.1. Let K be an arithmetic function field, and let d = tr. degQ K . Then a polarization of K
consists of

(i) an arithmetic variety B, given with an isomorphism κ(B) ∼−→ K , and

(ii) nef smoothly metrized line sheaves M1, . . .Md on B.

Such a polarization will be denoted M = (B;M1, . . . ,Md). A polarization will be said to be big if
M1, . . . ,Md are all big.

We now define a set of places of K to replace the set Mk of places of a number field k recalled in
Section 1. This description follows [Burgos Gil et al. 2016, Section 1] as well as [Moriwaki 2000].

We assume from now on that B is normal.

We start with the nonarchimedean places. Let B(1) denote the set of prime (Weil) divisors on B; i.e.,
the set of integral closed subschemes of B of codimension 1. (These may be horizontal or vertical.)

Let Y be a prime divisor on B, and let

hM(Y )= c1(M1|Y ) · · · c1(Md |Y ). (3.2)

By Proposition 1.12(a), hM(Y )≥ 0. For nonzero x ∈ K , we then define a nonarchimedean absolute value
associated to Y as

‖x‖Y = exp(−hM(Y ) ordY (x)). (3.3)

(Note that if d = 0 then K is a number field k, Y is a closed point on Spec Ok , and the intersection product
(3.2) is just the cycle Y , whose degree is the logarithm of the number of elements in the residue field.
Therefore ‖x‖Y coincides with ‖x‖v for the place v ∈ Mk that corresponds to Y .)

The set B(1) will be the set of nonarchimedean places of K . We write M0
K = B(1) and let µfin be the

counting measure on B(1) = M0
K .

For archimedean places, we define the set of generic points of B(C) as

B(C)gen
= B(C) \

⋃
Y∈B(1)

Y (C).

For such a generic point b ∈ B(C)gen, we define an absolute value

‖x‖b = |x |b = |x(b)|

for all x ∈ K . Note that x(b) ∈ C, because b does not lie on a pole of the function x : all such poles lie in
elements of B(1).

The set B(C)gen will be the set of archimedean places of K , and we will usually denote it M∞K . In
sharp contrast to the number field case, if d > 0 then there are uncountably many archimedean places.

We let µ∞ be the Lebesgue measure on B(C) associated to the (d, d)-form c1(‖·‖M1) · · · c1(‖·‖Md ).
This form is semipositive by Proposition 1.5(b). The set B(C) \ B(C)gen is a countable union of the sets
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Y (C), all of which have measure zero, so B(C) \ B(C)gen has measure zero. We also regard µ∞ as a
measure on B(C)gen. We then have

µ∞(B(C)gen)= c1((M1)Q) · · · c1((Md)Q) <∞. (3.4)

One can then let MK be the disjoint union

MK = M∞K qM0
K = B(C)gen

q B(1),

and combine the measures µ∞ on B(C) and µfin on B(1) to give a measure µ on B(C)q B(1) ⊇ MK . As
in [Moriwaki 2000, Section 3.2], this then leads to a product formula∫

MK

log‖x‖v dµ(v)= 0 for all x ∈ K ∗ (3.5)

and a “naïve height”

hK (x)=
∫

MK

log+‖x‖v dµ(v)

=

∫
B(C)gen

log+|x(b)| dµ∞(b)+
∑

Y∈B(1)

max{0,− ordY (x)}hM(Y ) (3.6)

for all x ∈ K ; here we take max{0,− ordY (x)} = 0 if x = 0. Note that hK (x)≥ 0 for all x ∈ K .

Remark 3.7. The set of archimedean places of K can be canonically identified with the set of embeddings
of K into C, in such a way that if an archimedean place v of K corresponds to σ : K → C, then

‖x‖v = |σ(x)| (3.7.1)

for all x ∈ K . So this is just like the number field case. The construction using B(C)gen is necessary to
define the measure.

To see this identification, recall from [Hartshorne 1977, II, Exercise 2.7] that giving an element of
B(C) is equivalent to giving a point P ∈ B and an injection κ(P) ↪→ C. The elements of B(C)gen are
exactly those for which the point P is the generic point of B. Thus B(C)gen is in natural bijection with
Hom(K ,C), and (3.7.1) is true.

Definition 3.8. For all v ∈ MK we define a field extension Cv/K as follows. If v is archimedean, then let
Cv = C, viewed as an extension of K by the embedding K ↪→ C of Remark 3.7. If v is nonarchimedean,
then we let Cv be the completion of the algebraic closure K v of the completion Kv of K at v. This field
is algebraically closed [Bosch et al. 1984, Proposition 3.4.1/3].

3B. Finite extensions of arithmetic function fields. Let K be an arithmetic function field of transcen-
dence degree d over Q, and let K ′ be a finite extension of K . Then K ′ is also an arithmetic function field
of transcendence degree d.
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Definition 3.9. Let M = (B;M1, . . . ,Md) be a polarization of K . We define a polarization M ′ of K ′ as
follows. Let B ′ be the normalization of B in K ′, and let π : B ′→ B be the associated map. Then π is
a finite morphism of degree [K ′ : K ], and of course B ′ is normal. Let M ′

i = π
∗Mi for all i ; these are

nef line sheaves on B ′ by Proposition 2.2. Thus M ′ := (B ′;M ′

1, . . . ,M
′

d) is a polarization of K ′, and
is called the polarization of K ′ induced by M , or the induced polarization of K ′ if M is clear from the
context.

The absolute values of K ′ are related to those of K as follows.

Definition 3.10. Let M , M ′, and π : B ′→ B be as in Definition 3.9, let v ∈ MK , and let w ∈ MK ′ . Then
we say that w lies over v, and write w | v, if one of the following holds:

(i) Both w and v are archimedean, corresponding to b′ ∈ B ′(C)gen and b ∈ B(C)gen, respectively, and
π(b′)= b.

(ii) Bothw and v are nonarchimedean, corresponding to prime divisors Y ′ on B ′ and Y on B, respectively,
and π(Y ′)= Y .

As in [Moriwaki 2000, Section 3.2], we then have:

Proposition 3.11. Let v ∈ MK . For each w ∈ MK ′ lying over v there is a canonical injection i : Cv→Cw

of fields, and a canonical integer nw/v such that

‖i(x)‖w = ‖x‖
nv/w
v (3.11.1)

for all x ∈ Cv. Moreover, ∑
w|v

nw/v = [K ′ : K ], (3.11.2)

∏
w | v

‖i(x)‖w = ‖x‖[K
′
:K ]

v for all x ∈ Cv, (3.11.3)

and
hK ′(x)= [K ′ : K ]hK (x) for all x ∈ K . (3.11.4)

Proof. If v is archimedean, then let σ : K → C and σ ′ : K ′→ C be injections as in Remark 3.7 for v and
w, respectively. Then i : Cv→ Cw is just the identity map on C via the identifications Cv = C= Cw, and
the diagram

K
σ

−−−→ Cy yi

K ′
σ ′

−−−→ C

commutes; therefore (3.11.1) holds with nw/v = 1. Moreover, since K ′/K is separable, there are exactly
[K ′ : K ] places w lying over v, and this gives (3.11.2).

If v is nonarchimedean, then it corresponds to a prime divisor Y on B, and π∗Y =
∑

i ei Yi , where the
Yi are the irreducible components of π−1(Y ). These correspond to the places w of K ′ lying over v. Let fi
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be the residue degree [K (Yi ) : K (Y )] for all i . Then, for all i , hM ′(Yi )= fi hM(Y ) and ordYi x = ei ordY x
for all x ∈ K ∗. Therefore (3.11.1) holds with nw/v = ei fi if w corresponds to Yi . Also (3.11.2) holds by
the basic theory of Dedekind rings applied to the local ring OB,Y and its integral closure in K ′.

Finally, in both cases (3.11.3) and (3.11.4) follow immediately from (3.11.1) and (3.11.2). �

3C. Models and Arakelov heights. For higher generality, Roth’s theorem over arithmetic function fields
is best formulated using Arakelov theory, using a model for P1

K .
Throughout this subsection let (B;M1, . . . ,Md) be a polarization of K .

Definition 3.12. Let V be a projective variety over K . A model for V over B consists of an arithmetic
variety X , a morphism X→ B, and an isomorphism i : V ∼

−→ X K over K . We say that a given line sheaf
L (resp. Cartier divisor D) on V extends to X if there is a smoothly metrized line sheaf L ′ (resp. Arakelov
Cartier divisor D′) on X such that i∗L ′fin

∼=L (resp. i∗D′fin = D).

Remark 3.13. Let V , X , and π be as above. Not every line sheaf L or Cartier divisor D on V extends
to X , but there is always a model for V to which L or D extends. For existence of a model X , we may
take an embedding of V into Pn

K , and let X be the closure of the image in Pn
B . To see that for any given

Cartier divisor D on V there is a model to which D extends, it will suffice for our purposes to assume
that V is nonsingular. Take any model X0 for V , extend each irreducible component of Supp D to X0 as
a Weil divisor, and blow up the sheaves of ideals of the closure in X0 of each such irreducible component.
The resulting scheme X will then be a model for V to which D extends as a Cartier divisor. Given any
line sheaf L on V , one can then find a model to which L extends by writing L ∼= O(D) for a Cartier
divisor D, and finding a model to which D extends. For more general situations; see [Vojta 2007].

We can now define height functions in terms of Arakelov theory.

Definition 3.14 [Moriwaki 2000, Section 3.3]. Let π : X→ B be a model for a variety V over K , and
let L be a continuously metrized line sheaf on X . Then the Arakelov height of a point x ∈ V (K ) (or,
equivalently, x ∈ X (K )) is given by

hL (x)=
c1(π

∗M1|x) · · · c1(π
∗Md |x) · c1(L |x)

[κ(x) : K ]
. (3.14.1)

Here, as usual, x denotes the closure of x in X . (Compare with (1.6).)

We will use the following results of Moriwaki.

Proposition 3.15 [Moriwaki 2000, Proposition 3.3.1]. Let V , X , π , and L be as above. Let K ′ be a
finite extension of K , and let (B ′;M ′

1, . . . ,M
′

d) be the polarization of K ′ induced by the polarization
(B;M1, . . . ,Md) of K . Let X ′ be the main component of X×B B ′ (the latter may have many components
if V is not geometrically integral over K ). Let f : X ′→ X be the projection morphism, and let L ′= f ∗L .
Here X ′ is a model over B ′ for the main component VK ′ of V ×K K ′. For all x ∈ X (K ), pick x ′ ∈ X ′(K ′)
lying over x. Then

hL ′(x ′)= [K ′ : K ]hL (x). (3.15.1)
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Theorem 3.16 (Northcott’s finiteness theorem, [Moriwaki 2000, Theorem 4.3]). Let V , X , and π
be as above, and let L be a continuously metrized line sheaf on X. Assume that the polarization
(B;M1, . . . ,Md) of K is big; i.e., that all Mi are big (see [Yuan 2008, Corollary 2.4]; it suffices if the
Mi are ample). Assume also that LK is ample. Then for all C ∈ R and all n ∈ Z>0, the set

{x ∈ X (K ) : hL (x)≤ C and [κ(x) : K ] ≤ n}

is finite.

Proposition 3.17 [Moriwaki 2000, Proposition 3.3.2]. Let L be the continuously metrized line sheaf
on P1

B such that Lfin is the tautological line sheaf O(1) on P1
B and the metric is uniquely defined by

the condition that for all global sections s = a0z0 + a1z1, where z0, z1 are the standard homogeneous
coordinates on P1,

‖s‖(p0 : p1)=
‖a0 p0+ a1 p1‖v

max{‖p0‖v, ‖p1‖v}
.

Then the Arakelov height hL is equal to the “naïve height” hK of (3.6).

This then gives a Northcott finiteness theorem for the naïve height as an immediate corollary.

3D. MK -constants and Weil functions. This paper will rely heavily on Weil functions (also called local
heights). As far as I know, they have not been developed in the context of arithmetic function fields, but
their construction from the number field case carries over directly, once the definitions have been chosen.

Throughout this subsection, K is an arithmetic function field, with polarization (B;M1, . . . ,Md).
Models over B of varieties are not necessary for the theory of Weil functions itself, although they
can be used to construct examples of Weil functions. We do need the polarization, though, because it
determines MK .

Definition 3.18. An MK -constant is a measurable, L1 function from MK to R, whose support has finite
measure. An MK -constant is usually denoted v 7→ cv or (cv)v. Equivalently, an MK -constant is a
measurable, L1 function v 7→ cv such that, when restricted to nonarchimedean places, cv = 0 for all but
finitely many v.

The sum and maximum of two MK -constants is an MK -constant, and a (real) constant multiple of an
MK -constant is an MK -constant.

Since an MK -constant (cv)v is L1, we have∫
MK

|cv| dµ(v) <∞ and −∞<

∫
MK

cv dµ(v) <∞. (3.19)

Remark 3.20. Since − log|z| has finite integral on the unit disc D, the function v 7→ − log‖α‖v is an
MK -constant for all α ∈ K ∗. Note, however, that if α is transcendental, then − log‖α‖v is not bounded in
the usual sense: for all c ∈ R there is a v ∈ MK such that − log‖α‖v > c. (This happens near zeroes of α
on B(C).)
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The reliance on integration and measure theory makes it necessary to assume that the sets and functions
encountered are measurable (this trivially holds for the counting measure). Therefore:

In this paper, subsets of MK of finite measure are always assumed to be measurable.

Also, we define the following.

Definition 3.21. Let V be a variety over K , and let S be a measurable subset of MK :

(a) The set V (S) is the disjoint union

V (S)=
∐
v∈S

V (Cv).

In particular,

V (MK )=
∐
v∈MK

V (Cv).

(b) A function α : V (S)→ R is K -measurable if the following condition is true. For all finite extensions
L of K , let πL : BL → B be the normalization of B in L , let πgen

L denote the induced map BL(C)
gen
→

B(C)gen, let SL = (π
gen
L )−1(S), and (as usual) let VL = V ×K L . A rational point P ∈ V (L) induces a

function βP : SL → VL(SL); for all w ∈ SL , we have a canonical identification of VL(Cw) with V (Cv),
where v = πgen

L (w) ∈ S. This identification associates βP with a function β ′P : SL → V (S). Then the
condition is that α ◦β ′P : SL → R is a measurable function for all L and P as above. (Note that SL does
not contain any nonarchimedean places, but that removing nonarchimedean places from a given set does
not affect whether the set is measurable.)

(c) A function α : V (S)→ R is M-continuous if it is K -measurable and if, for all v ∈ S, its restriction to
V (Cv) is continuous in the topology induced by the metric on Cv.

(d) Let U = Spec A be an open affine in V , let x1, . . . , xn be elements of A such that A= K [x1, . . . , xn],
and let γ be an MK -constant. Then

BS(U, x1, . . . , xn, γ )= {P ∈U (S) : log‖xi‖ ≤ γv(P) for all i},

where v(P) denotes the (unique) v ∈ S for which P ∈ V (Cv).

(e) Let U be as in (d). Then a subset E of V (S) is affine M-bounded with respect to U if there exist
x1, . . . , xn ∈ A and an MK -constant γ such that A= K [x1, . . . , xn] and E ⊆ BS(U, x1, . . . , xn, γ ). (This
implies E ⊆U (S).)

(f) A set E ⊆ V (S) is M-bounded if there exist open affine subsets U1, . . . ,Un of V and a decomposition
E = E1 ∪ · · · ∪ En such that Ei is affine M-bounded with respect to Ui for all i .

(g) A function α : V (S)→ R is locally M-bounded if it is bounded above and below by MK -constants
on all M-bounded subsets of V (S).
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Then Weil functions can be defined, following [Lang 1983, Chapter 10]; see also [Gubler 1997,
Section 2]:2

Definition 3.22. Let V be a complete variety over K , and let D be a Cartier divisor on V . Then a Weil
function for D is a function λD : (V \Supp D)(MK )→R such that, for all open U ⊆ V and all f ∈ K (V )∗

for which D|U = div( f )|U , there is an M-continuous, locally M-bounded function α : U (MK )→R such
that

λD(P)=− log‖ f (P)‖v +α(P) for all P ∈ (U \Supp D)(MK ),

where v is the (unique) place of K for which P ∈U (Cv).
Similarly, for a subset S⊆MK , a partial Weil function for D over S is a function λD:(V \Supp D)(S)→R

that satisfies a similar condition.
For v ∈ S, the restriction of λD to (V \Supp D)(Cv) is denoted λD,v.

The following lemma will be needed in the proof of Proposition 3.28.

Lemma 3.23. Let V be a variety over K , and let S be a measurable subset of MK :

(a) Let U = Spec A be an open affine subset of V , and let E be a subset of U (S) which is affine M-
bounded with respect to U. Then the condition of Definition 3.21(e) is satisfied for every choice of
x1, . . . , xn ∈ A such that A = K [x1, . . . , xn].

(b) If U ′ ⊆ U are open affine subsets of V , and if E ⊆ V (S) is affine M-bounded with respect to U ′,
then E is also affine M-bounded with respect to U.

(c) Let E be an M-bounded subset of V (S). Then, for all (finite) open affine covers U1, . . . ,Un of V ,
there is a decomposition E = E1 ∪ · · · ∪ En such that Ei is affine M-bounded with respect to Ui for
all i .

(d) If V is affine, then a subset of V (S) is M-bounded if and only if it is affine M-bounded with respect
to V .

(e) Let V1, . . . , Vn be a covering of V by arbitrary open subsets Vi . Then any M-bounded subset E of
V (S) has a decomposition E = E1 ∪ · · · ∪ En , in which each Ei is an M-bounded subset of Vi (S).
Therefore a function V (S)→ R is locally M-bounded if and only if its restriction to Vi (S) is locally
M-bounded on Vi for all i .

(f) Let D be a Cartier divisor on V . Let {U1, . . . ,Un} be a covering of V by open affines, and let
f1, . . . , fn ∈ K (V )∗ be rational functions such that D|Ui = div( fi )|Ui for all i . Then a function
λD : (V \ Supp D)(MK )→ R is a partial Weil function for D over S if (and only if ) for all i it
satisfies the condition of Definition 3.22 with U and f replaced by Ui and fi , respectively.

2Gubler does not require MK -constants to have support of finite measure. This condition can be omitted for the purposes of
this paper.
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Proof (sketch). Part (a) amounts to showing that if x1, . . . , xn and y1, . . . , ym are two systems of generators
for A over K , then for each MK -constant γ there is an MK -constant γ ′ such that BS(U, x1, . . . , xn, γ )⊆

BS(U, y1, . . . , ym, γ
′).

For part (b), if U ′ = Spec A′, U = Spec A, and A = K [x1, . . . , xn], then since A′ ⊇ A, we may use
A′ = K [x ′1, . . . , x ′m] with {x1, . . . , xn} ⊆ {x ′1, . . . , x ′m}.

For part (c), we first claim that the conclusion holds if V is affine and E is affine M-bounded with
respect to V . It suffices to prove this case when all Ui are principal open affines D( fi ) in V , in which
case we use the existence of a1, . . . , an ∈ OV (V ) such that a1 f1+ · · ·+ an fn = 1. The general case then
follows by reducing to finitely many instances of this special case.

Parts (d) and (e) are immediate from (c).
Finally, part (f) follows from (e), together with the fact that − log| f | is an M-bounded function on

V (S) for all f ∈O(V )∗, and the fact that finite sums of M-bounded functions on V (S) are M-bounded. �

For details on parts of the above proof, see [Lang 1983, Chapter 10] or [Gubler 1997, Section 2].
With the definitions from the number field case extended to arithmetic function fields in the above

way, the theory of Weil functions follows from [Lang 1983, Chapter 10], where one replaces references
to a finite subset of MK with a subset of MK of finite measure, and similarly references to “almost all
v ∈ MK ” with “all v ∈ MK outside a set of finite measure.”

In particular, we have the following, in which OMK (1) refers to a function whose absolute value is
bounded by an MK -constant.

Theorem 3.24. Let V be a complete variety over an arithmetic function field K . Then:

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2, respectively, on V , then
λ1+ λ2 (on the intersection of their domains) extends uniquely to a Weil function for D1+ D2.

(b) Functoriality: If λ is a Weil function for a Cartier divisor D on V , and if f : V ′→ V is a morphism
of varieties over K whose image is not contained in Supp D, then λ ◦ f is a Weil function for f ∗D
on V ′.

(c) Normalization: If V = Pn
K (with n ∈ Z>0), then the function λD defined by

λD,v([x0 : · · · : xn])=− log
‖x0‖v

max{‖x0‖v, . . . , ‖xn‖v}

for all v ∈ MK is a Weil function for the divisor D given by x0 = 0.

(d) Uniqueness: If both λ1 and λ2 are Weil functions for the same Cartier divisor D on V , then
λ1 = λ2+ OMK (1).

(e) Boundedness from below: If λ is a Weil function for an effective Cartier divisor D, then λ is bounded
from below by an MK -constant.

(f) Existence: If V is projective, then every Cartier divisor on V has a Weil function. (For the case in
which V is complete, see Remark 3.29.)
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(g) Principal divisors: For all f ∈ K (V )∗, the function − log‖ f ‖v is a Weil function for the principal
divisor ( f ) on V .

Proof. Parts (a)–(c) and (g) are easy to see from the definitions. For parts (d) and (e), see [Lang 1983,
Chapter 10, Propositions 2.2 and 3.1], together with Chow’s lemma. For (f), see [Lang 1983, Chapter 10,
Theorem 3.5]. �

Next we show that nonzero rational sections of certain line sheaves can be used to define Weil functions
for the associated divisors. We start by defining the construction of such functions in more detail.

Definition 3.25. Let V be a projective variety over K , let π : X→ B be a model for V with isomorphism
i : V → X K , let L be a continuously metrized line sheaf on X , let s be a nonzero rational section of L ,
and let D = i∗ div(sK ). Then we define a function

λs : (V \Supp D)(MK )→ R

as follows:

(i) If v is an infinite place, then it corresponds to a point b ∈ B(C)gen. Furthermore, Cv ∼= C; up to
this choice of isomorphism, we have a canonical isomorphism of V (Cv) with π−1(b). This identifies
V (M∞K ) with π−1(B(C)gen). So if v ∈ M∞K and P ∈ (V \ Supp D)(Cv), then P corresponds to a point
x ∈ π−1(b)∩ (V \Supp D)(C), and we define λs(P)=− log|s(x)| (using the metric on L ).

(ii) If v is a finite place, then it corresponds to a prime divisor Y on B. Let η be the generic point of
Y . Since B is normal, the local ring OB,η is a dvr, whose valuation determines the valuation used to
define Cv . A point P ∈ (V \ Supp D)(Cv) corresponds to a point x ∈ X and an injection from its residue
field κ(x) to Cv compatible with the injections OB,η ↪→ K ↪→ Cv. (Therefore x actually lies on the
generic fiber X K .) By the valuative criterion of properness, the morphism Spec Cv→ X extends to a
morphism h : Spec Ov→ X , where Ov is the valuation ring of Cv . Let x0 ∈ X be the image of the closed
point of Spec Ov under this morphism. Then x0 is a specialization of x in X .

Now let U be an open neighborhood of x0 in X such that L |U is trivial, and let s0 ∈ L (U ) be a
section that generates L over U . Then h∗s0 generates h∗L (over all of Spec Ov), and h∗s is a well-
defined nonzero section of h∗L (because x /∈ Supp D). In particular, h∗s/h∗s0 ∈ C∗v, and so we define
λs(P)=− log‖h∗s/h∗s0‖v.

This value is independent of the choices of U and s0. Indeed, suppose that U ′ and s ′0 are a different
set of such choices. Then h∗s0 and h∗s ′0 both generate h∗L at the special point, so h∗s ′0/h∗s0 ∈ O∗v , so
‖h∗s ′0/h∗s0‖v = 1 and therefore ‖h∗s/h∗s0‖v = ‖h∗s/h∗s ′0‖v.

We also let− log‖s‖ denote λs , so λs(P)=− log‖s(P)‖v for all v ∈MK and all P ∈ (V \Supp D)(Cv).

Lemma 3.26. Let n be a positive integer, let V = Pn
K , and let X = Pn

B , so that X is a model for V . Let
L ′ be the line sheaf O(1) on X , with continuous metric uniquely determined by the condition that the
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metric of a global section s = a0x0+ · · ·+ anxn at a point P = [p0 : · · · : pn] is given by

‖s‖(P)=
‖a0 p0+ · · ·+ an pn‖v

max{‖p0‖v, . . . , ‖pn‖v}
(3.26.1)

(this generalizes the metric of Proposition 3.17). Let s ′ be the global section x0 of L ′. Let D = div(s ′)K

(the hyperplane at infinity on V = Pn
K ). Then λs′ =− log‖s ′‖ is a Weil function for D.

Proof. By Lemma 3.23(f), it suffices to check the condition of Definition 3.22 on the standard open affines
Ui = D+(xi ) with fi = x0/xi , for i = 0, . . . , n.

First we consider i = 0. Then f0 is the constant function 1, and (in the notation of Definition 3.22)
α = λs′ (note that U0 \Supp D =U0). We write U0 = Spec K [y1, . . . , yn], where yi = xi/x0 for all i . For
all v ∈ MK , the value of λs′ at a point P = [p0 : · · · : pn] ∈U0(Cv) is

λs′(P)=− log
‖p0‖v

max{‖p0‖v, . . . , ‖pn‖v}
= log max{1, ‖y1(P)‖v, . . . , ‖yn(P)‖v}. (3.26.2)

Indeed, for infinite v this holds by (3.26.1). For finite v, choose j such that

max{‖p0‖v, . . . , ‖pn‖v} = ‖p j‖v.

Then, in the notation of Definition 3.25, we may take s0 = x j , so

‖s ′/s0‖v = ‖(x0/x j )(P)‖v =
‖p0‖v

max{‖p0‖v, . . . , ‖pn‖v}
,

and again we obtain (3.26.2).
The right-hand side of (3.26.2) is obviously continuous on U0(Cv) for all v, and it is M-bounded below

because it is always nonnegative. It is M-bounded above because for all MK -constants γ we have λs′

bounded above by γ on BMK (U0, 1, y1, . . . , yn, γ ), by (3.26.2), Definition 3.21(d), and Lemma 3.23(a).
For i 6= 0, by symmetry it suffices to consider the case i = n. We have

Un = Spec K [y0, y1, . . . , yn−1],

where yi = xi/xn for all i = 0, . . . , n− 1. We have fn = x0/xn = y0, so

α(P)= λs′(P)+ log‖y0(P)‖v

=− log
‖p0‖v

max{‖p0‖v, . . . , ‖pn‖v}
+ log

‖p0‖v

‖pn‖v

= log max{‖y0(P)‖v, . . . , ‖yn−1(P)‖v, 1}

for all P = [p0 : · · · : pn] ∈Un(Cv) and all v ∈ MK . This is M-continuous and M-bounded for the same
reasons as before.

Thus λs′ is a Weil function for D. �

Lemma 3.27. Let V be a projective variety over K , and let L be a line sheaf on X. Then there exist a
model π : X→ B for V with isomorphism i : V → X K , a continuously metrized line sheaf L ′ on X that
extends L , and a nonzero rational section s ′ of L ′, such that λs′ is a Weil function for i∗ div(s ′)K .
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Proof. We first prove this in the case where L is very ample.
Let j : V → Pn

K be a closed immersion over K such that L ∼= j∗O(1). We may assume that n > 0
and the image of j is not contained in the hyperplane x0 = 0. Let X be the closure of the image of j in
Pn

B , and let L ′ be the sheaf O(1) on X . Then X is a model for V and L ′ extends L . Finally, let s ′ be
the restriction of the section x0 of O(1) to X . Since j (V ) is not contained in the hyperplane at infinity, s ′

is nonzero.
Then the lemma holds in this case by Theorem 3.24(b) and compatibility of div(·)K with pull-back.
We now consider the general case.
An arbitrary line sheaf L on V can be written as L ∼=L1⊗L ∨2 , where L1 and L2 are very ample

on V . By the previous special case, for `= 1, 2 there exist projective models π` : X`→ B for V over B,
continuously metrized line sheaves L ′` on X` extending L`, and nonzero rational sections s ′` of L ′` such
that − log‖s ′`‖v are Weil functions for i∗ div(s ′`)K .

Let X be a projective model for V that dominates X1 and X2 (e.g., one can let X be the closure of
the graph of the isomorphism (X1)K

∼
−→ (X2)K in X1 ×B X2). After pulling back the L ′` to X , we

may assume that X1 = X2 = X . Letting L ′ = L ′1 ⊗L ′∨2 and s ′ = s ′1/s
′

2, we have that L ′ extends L ,
s ′ is a nonzero rational section of L ′, and − log‖s ′‖v = − log‖s ′1‖v + log‖s ′2‖v is a Weil function for
i∗ div(s ′)K = i∗ div(s ′1)K − i∗ div(s ′2)K on V , by Theorem 3.24(a). �

Proposition 3.28. Let π : X→ B be a dominant morphism of arithmetic varieties (i.e., a model for X K ),
let L be a continuously metrized line sheaf on X , and let s be a nonzero rational section of L . Then
λs =− log‖s‖ is a Weil function for div(s)K .

Proof. Let V = X K . By Lemma 3.27 there exist a model X ′ for V , a line sheaf L ′ on X ′ extending LK ,
and a nonzero rational section s ′ of L ′, such that λs′ is a Weil function for div(s ′)K .

We may assume that X ′ dominates X (replace X ′ with the closure of the graph of V ∼
−→ X ′K in X ′×B X ),

so there exists a proper birational morphism p : X ′→ X inducing an isomorphism X ′K
∼
−→ X K .

Then L ′K
∼= p∗LK , so the nonzero rational section s ′/p∗s of L ′⊗ p∗L ∨ corresponds to an element

α ∈ K (V )∗. Moreover,

div(s ′)K − div(p∗s)K = (α) on X ′K . (3.28.1)

Let M be the metrized line sheaf L ′⊗ p∗L ∨ on X ′, and let t = s ′/αp∗s. Then t is a nonzero rational
section of M whose restriction to MK is a global section that generates MK everywhere. Therefore
we have MK ∼= OX ′K , hence Mfin ∼= O(E) for some Cartier divisor E on X ′ supported only on fibers of
X ′→ B. In particular there are MK -constants γ and γ ′ such that γ ≤ λt ≤ γ

′ everywhere on V (MK )

(these MK -constants may be taken to be constants on M∞K , by compactness of X ′(C)).
Thus λt is a Weil function for the trivial divisor on V . By additivity, we have

λp∗s = λs′ + log‖α‖− λt ,
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and this is a Weil function for div(s ′)K − (α)K = div(p∗s)K by (3.28.1), Theorem 3.24(a) and (g). Since
p induces an isomorphism X ′K

∼
−→ X K , we may identify X ′K with X K to obtain X ′K (MK )= X K (MK ),

λp∗s = λp, and div(p∗s)K = div(s)K ; thus λs is a Weil function for div(s)K . �

Remark 3.29. More generally, let X be an integral scheme, let π : X→ B be a proper morphism, let L

be a continuously metrized line sheaf on X , and let s be a nonzero rational section of L . Definition 3.25
extends easily to this situation, giving a real-valued function λs = − log‖s‖ on (X K \ Supp D)(MK ),
where D = div(s)K . Then the above proposition can be extended to this situation. Indeed, by Chow’s
lemma there is a proper birational morphism φ : X ′→ X such that X ′ is projective over B, so φ∗λs is a
Weil function for φ∗D. It then follows that λs is a Weil function for D, because if f : X K (MK )→ R

is a function such that f ◦ φ is M-bounded, then f is also M-bounded. Then Theorem 3.24(f) can be
generalized to complete varieties V over K , as follows. Given a complete variety V over K , there exists
X as above with X K ∼= V over K by Nagata’s embedding theorem; moreover X can be chosen such that
O(D) extends to a line sheaf L on X ; see [Vojta 2007]. Let s be the extension of the canonical section
of O(D) to L . Then λs is a Weil function for D. This fact is not needed in this paper, though, so the
details are left to the reader.

Weil functions can be extended to finite extensions of arithmetic function fields (with polarizations as
in Definition 3.9) in much the same way as for number fields. Indeed, let K ′ be a finite extension of K ,
and let M = (B;M1, . . . ,Md) and M ′ := (B ′;M ′

1, . . . ,M
′

d) be as in Definition 3.9. Let w ∈ MK ′ , and
let v ∈MK be the place lying under it. Let V be a complete variety over K , and recall that VK ′ = V ×K K ′.
Then there is a natural bijection ιw/v : VK ′(Cw)

∼
−→ V (Cv). Let D be a Cartier divisor on V , let λD be a

Weil function for D, and let

λD′,w = nw/vλD,v ◦ ιw/v (3.30)

for all w ∈ MK ′ and all v ∈ MK with w | v, where nw/v is as in Proposition 3.11. Then λD′ is a Weil
function for the pull-back D′ of D to VK ′ . Moreover, by (3.11.3) and functoriality of pull-back of
polarizations to finite extension fields, this construction is functorial in towers of finite extensions of K .

This allows us to define proximity and counting functions for complete varieties over arithmetic
function fields, as follows.

Definition 3.31. Let S be a subset of MK of finite measure, let K ′ be a finite extension of K with the
polarization M ′ induced by the polarization M of K , and let

S′ = {w ∈ MK ′ : w | v for some v ∈ S}.

Let D be a Cartier divisor on a complete variety V over K . Let VK ′ , D′, λD , and λD′ be as above. Then
the proximity function and counting function for D relative to S are defined by

mS(D, P)=
1

[K ′ : K ]

∫
S′
λD′,w(P) dµ(w) (3.31.1)
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and

NS(D, P)=
1

[K ′ : K ]

∫
MK ′\S′

λD′,w(P) dµ(w), (3.31.2)

respectively, for all P ∈ (V \ Supp D)(K ′). By functoriality of (3.30) in towers, these quantities are
independent of the choice of K ′.

Combining these definitions leads to a height function

hλ(P)= mS(D, P)+ NS(D, P)=
1

[K ′ : K ]

∫
MK ′

λD′,w(P) dµ(w) (3.31.3)

for all P ∈ (V \ Supp D)(K ′). By the method of [Lang 1983, Chapter 10, Section 4], this can be
extended to give a height function hλ : V (K )→ R. Indeed, choose a function f ∈ K (V )∗ such that
P /∈ Supp(D+ ( f )), and let λ f = λD − log‖ f ‖. Then λ f is a Weil function for D+ ( f ), so we define
hλ(P)= hλ f (P), where the latter is defined as in (3.31.3). This is independent of the choice of f , because
if g ∈ K (V )∗ also satisfies P /∈ Supp(D + (g)), then the rational function f/g extends to a rational
function α ∈ K (V )∗ which is regular and nonzero at P , and λ f −λg =− log‖α‖, so hλ f (P)−hλg (P)= 0
by the product formula (3.5) applied to α(P) ∈ K ′∗.

As is true in the number field case, Theorem 3.24(d) and (3.19) imply that the above definitions are
independent of the choice of Weil functions, up to O(1).

The next two propositions show that this height is the same (up to O(1)) as the height defined by
Moriwaki (Definition 3.14), and relate the height defined by Weil functions on P1 to the naïve height (3.6).

Proposition 3.32. Let V be a projective variety over K , and let L be a line sheaf on V . Let X be a model
for V over B such that L extends to a continuously metrized line sheaf L ′ on X :

(a) Let s be a nonzero rational section of L ′, and let λ= λs (Definition 3.25). Then

hλ(P)= hL ′(P) for all P ∈ V (K ). (3.32.1)

(b) If D is a Cartier divisor on V such that O(D)∼=L , and λD is a Weil function for D, then

hλD (P)= hL ′(P)+ O(1) for all P ∈ V (K ). (3.32.2)

Proof. We first consider part (a). By Definition 3.31 and Proposition 3.15, it suffices to prove (3.32.1) for
all P ∈ X (K ).

Let t be a nonzero rational section of L ′ which is regular and nonzero at P , let σ : B 99K X be
the rational section of π : X → B corresponding to P , and let P denote the closure of P in X . By
Definition 3.14, the projection formula, and Lemma 1.11,

hL ′(P)= c1(π
∗M1|P) · · · c1(π

∗Md |P) · c1(L
′
|P)

= c1(M1) · · · c1(Md) ·π∗c1(L
′
|P)

=

∑
Y∈B(1)

ordY (σ
∗t)c1(M1|Y ) · · · c1(M1|Y )+

∫
B(C)gen

(− log‖σ ∗t‖)c1(M1)∧ · · · ∧ c1(Md).
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Note that, since B is normal, the rational section σ is regular at the generic points of all prime divisors
Y on B, so ordY (σ

∗t) is defined. Moreover, if v ∈ M0
K corresponds to Y , then ‖·‖Y as defined in (3.3)

agrees with ‖·‖v on Cv (by definition of Cv). Therefore, by (3.2), (3.3), and Definition 3.25,

ordY (σ
∗t)c1(M1|Y )=− log‖(t/t0)(P)‖v = λt,v(P),

where t0 is a local generator of σ ∗L ′ at the generic point of Y . By (3.4), Definition 3.25, and (3.31.3),
we then have

hL ′(P)=
∫

MK

λt,v(P) dµ(v)= hλt (P).

Since hλt = hλs (see the end of Definition 3.31), this gives (3.32.1).
To prove (3.32.2), it suffices by (3.32.1) to show that hλD (P)= hλ(P)+O(1) for all P ∈ V (K ), where

λ is defined by letting s be the rational section of L ′ corresponding to the canonical section of O(D).
With this choice of s, λ is a Weil function for the same divisor D, so |λD−λ|≤γ for some MK -constant

γ by Theorem 3.24(d). Then, for all finite extensions K ′ of K and all P ∈ V (K ′),

|hλD (P)− hλ(P)| ≤
1

[K ′ : K ]

∫
MK ′

γ =

∫
MK

γ = O(1),

where γ is extended to an MK ′-constant as in (3.30). This implies (3.32.2). �

Proposition 3.33. Let λD be a Weil function for a divisor D on P1
K . Then

hλD (P)= (deg D)hK (P)+ O(1)

for all P ∈ P1(K ).

Proof. Let L = O(D) on P1
K . Let X = P1

B , and let L ′ be the line sheaf O(deg D) on X , with metric
obtained from the metric of Proposition 3.17 by the isomorphism O(deg D) ∼= O(1)⊗(deg D). Then L ′

extends L to X .
Therefore, by Proposition 3.32(b), (3.14.1), multilinearity of the intersection product, and by

Proposition 3.17,

hλD (P)= hL ′(P)+ O(1)= (deg D)hO(1)(P)+ O(1)= (deg D)hK (P)+ O(1). �

4. Roth’s theorem

This section discusses several equivalent formulations of Roth’s theorem, as well as the reasons why
certain choices have been made in extending Roth’s theorem to arithmetic function fields.

We also show that all of these variants are equivalent (i.e., can be proved from one another by relatively
short arguments).

4.1. Throughout this section, K is an arithmetic function field, M := (B;M , . . . ,M ) is a big polarization
of K with all metrized line sheaves equal to the same smoothly metrized line sheaf M , MK is derived
from this polarization, and S is a subset of MK with finite measure. We also write M as (B;M ).
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Note that, by Proposition 2.5, if a polarization of a field K is big, then so is the induced polarization
of a finite extension K ′ of K . Also, the set of places of K ′ lying over places in S has finite measure.
Therefore 4.1 is preserved under passing to the induced polarization of a finite extension.

We start with a definition.

Definition 4.2. Let D be an effective divisor on a nonsingular variety V over a field K . We say that D is
reduced if all components in Supp D occur with multiplicity 1.

The first version of Roth’s theorem is stated using notation from Nevanlinna theory.

Theorem 4.3. Let K , MK , and S be as in 4.1; let D be a reduced effective divisor on P1
K ; let mS(D, ·)

be the proximity function associated to some choice of Weil function for D; let ε > 0; and let c ∈ R. Then
the inequality

mS(D, ξ)≤ (2+ ε)hK (ξ)+ c (4.3.1)

holds for all but finitely many ξ ∈ K .

The next version of the theorem is close to the above formulation (see the equivalence proof, below)
but avoids Weil functions.

Theorem 4.4. Let K , MK , and S be as in 4.1; let α1, . . . , αq be distinct elements of K ; let ε > 0; and let
c ∈ R. Then the inequality∫

S

( q∑
j=1

− log−‖ξ −α j‖v

)
dµ(v)≤ (2+ ε)hK (ξ)+ c (4.4.1)

holds for all but finitely many ξ ∈ K .

Next, the following version is close to the preceding version, and is the statement that will be proved
in this paper.

Theorem 4.5. Let K , MK , and S be as in 4.1; let α1, . . . , αq be distinct elements of K ; let ε > 0; and let
c ∈ R. Then the inequality∫

S
max{0,− log‖ξ −α1‖v, . . . ,− log‖ξ −αq‖v} dµ(v)≤ (2+ ε)hK (ξ)+ c (4.5.1)

holds for all but finitely many ξ ∈ K .

Finally, we consider a version that is close to Roth’s original theorem.

Theorem 4.6. Let K , MK , and S be as in 4.1, and let α1, . . . , αq be distinct elements of K . Choose
embeddings ιv, j : K (α j ) ↪→ K v over K for all j = 1, . . . , q and all v ∈ S in such a way that the function
v 7→ − log−‖ιv, j (ξ −α j )‖v is a measurable function for all j and all ξ ∈ K \ {α1, . . . , αq}. Assume also
that ιv, j (α j ) 6= ιv, j ′(α j ′) for all v and all j 6= j ′ (this is automatically true unless α j and α j ′ are conjugate
over K ). Then, for all ε > 0 and all c ∈ R, the inequality∫

S

( q∑
j=1

− log−‖ιv, j (ξ −α j )‖v

)
dµ(v)≤ (2+ ε)hK (ξ)+ c (4.6.1)

holds for all but finitely many ξ ∈ K .
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Remark 4.7. Roth’s theorem over number fields is often stated in the form of Theorem 0.1, involving
choices of αv ∈ Q for all v ∈ S. This leads to the question of whether a more natural generalization
would be to choose a function α : S→ K and then bound

∫
S(− log−‖ξ − α(v)‖v) dµ(v). I doubt that

this is true, although I do not have a counterexample. I believe that Theorems 4.3–4.6 represent a more
natural generalization, because they correspond more closely to Nevanlinna theory, and because they are
sufficient to prove Siegel’s theorem on integral points (Corollary 4.11). (If the image of α is required to
be finite, then this is strictly weaker than Theorem 4.6, since the function does not depend on ξ . One can
fix a finite subset T of K , though, and allow α to be a function from S to T depending on ξ . This would
then be equivalent to Theorem 4.6.)

We now show that these four theorems are all equivalent, and therefore proving any one of them
suffices to prove all four.

Proposition 4.8. Theorems 4.3–4.6 are equivalent.

Proof. We first show that Theorems 4.3 and 4.4 are equivalent. Let α1, . . . , αq be as in the statement of
Theorem 4.4. By Proposition 3.28, for fixed α ∈ K the function ξ 7→ − log−‖ξ − α‖v defines a Weil
function for the divisor [α] on P1. By additivity of Weil functions, the integrand in (4.4.1) defines a Weil
function for a divisor D := [α1]+ · · ·+ [αq ]; hence the left-hand side of (4.4.1) equals mS(D, ξ) for this
choice of Weil function, so (4.4.1) and (4.3.1) are equivalent.

This shows that Theorem 4.3 implies Theorem 4.4. It does not (yet) show the converse, though, since
not all reduced effective divisors D on P1

K are of the above form.
To show the converse, let D be a reduced effective divisor on P1

K . We first consider the case in which
∞ /∈ Supp D.

Let K ′ be a finite Galois extension of K such that all points in Supp D are rational over K ′, let S′

be the subset of MK ′ lying over S (as in Definition 3.31), and let D′ be the pull-back of D to P1
K ′ . The

proximity function mS(D, ξ) in (4.3.1) was defined using a specific choice of Weil function for D; let this
be extended to a Weil function for D′ on P1

K ′ as in (3.30). We then have mS′(D′, ξ)= [K ′ : K ]mS(D, ξ)
and hK ′(ξ) = [K ′ : K ]hK (ξ) for all ξ ∈ K \ Supp D. Therefore Theorem 4.3 for D′ on P1

K ′ implies
Theorem 4.3 for D on P1

K . Since all points in Supp D′ are rational over K ′, Theorem 4.3 for D′ follows
from Theorem 4.4 applied over K ′. Therefore Theorem 4.3 also holds for D.

To drop the assumption ∞ /∈ Supp D, let φ be an automorphism of P1
K such that φ(∞) /∈ Supp D.

One can use the pull-back via φ of a Weil function for D to give a Weil function for φ∗D; we then have
mS(φ

∗D, ξ) = mS(D, φ(ξ)) for all ξ ∈ P1
K \ Suppφ∗D. Also hK (ξ) = hK (φ(ξ))+ O(1) for all ξ by

Proposition 3.33 (let D′ be any divisor on P1 of degree 1, and note that degφ∗D′ = 1 also). Therefore
Theorem 4.3 for φ∗D implies Theorem 4.3 for D. Since the former follows from Theorem 4.4, it follows
that Theorems 4.3 and 4.4 are equivalent.

We next show that Theorems 4.4 and 4.5 are equivalent. Let α1, . . . , αq be distinct elements of K , and
let D = [α1] + · · · + [αq ]. For fixed α ∈ K ,

max{0,− log‖ξ −α‖v} = − log−‖ξ −α‖v
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gives a Weil function for the divisor [α]. Therefore, by [Lang 1983, Chapter 10, Proposition 3.2] (applied
with Y = −D, and using the fact that the theory of Weil functions carries over directly to arithmetic
function fields), the integrand in (4.5.1) is a Weil function for D, and therefore the left-hand sides of
(4.4.1) and (4.5.1) differ by O(1). Thus Theorems 4.4 and 4.5 are equivalent.

Finally, we show that Theorem 4.6 is equivalent to the other three. Clearly Theorem 4.6 reduces to
Theorem 4.4 in the case when all αi lie in K , so Theorem 4.6 implies Theorem 4.4.

For the converse, let α1, . . . , αq ∈ K and ι j,v : K (α j ) ↪→ K v (1≤ j ≤ q , v ∈ S) be as in the statement
of Theorem 4.6. Since the inequality (4.6.1) is strengthened by adding more elements to {α1, . . . , αq},
we may assume that this set is invariant under Gal(K/K ). (When doing this, it is possible to choose
the embeddings for the added elements in a way that satisfies the condition on measurability.) Then
K ′ := K (α1, . . . , αq) is a finite Galois extension of K . The map {1, . . . , q} → {α1, . . . , αq} given by
j 7→ ιv, j (α j ) is injective, hence bijective; therefore

q∑
j=1

− log−‖ιv, j (ξ −α j )‖v =

q∑
j=1

− log−‖ιv(ξ −α j )‖v (4.8.1)

for all v ∈ S, all ιv : K ′→ Kv over K , and all ξ ∈ K \ {α1, . . . , αq}.
We will show that Theorem 4.4, with K replaced by K ′, S replaced by the set S′ of all places of K ′

lying over places of S, and c replaced by [K ′ : K ]c, implies Theorem 4.6 (with no replacements). Indeed,
let µ′ denote the measure on MK ′ associated to the polarization of K ′ induced by the polarization of K .
This is compatible with the measure µ on MK ; combining this with (3.11.3) and (4.8.1) gives∫

S′

( q∑
j=1

− log−‖ξ −α j‖w

)
dµ′(w)=

∫
S

( q∑
j=1

∑
w|v

− log−‖ξ −α j‖w

)
dµ(v)

= [K ′ : K ]
∫

S

( q∑
j=1

− log−‖ιv(ξ −α j )‖v

)
dµ(v)

= [K ′ : K ]
∫

S

( q∑
j=1

− log−‖ιv, j (ξ −α j )‖v

)
dµ(v).

Combining this with (3.11.4) then gives that (4.6.1) is equivalent to (4.4.1) (with the above replacements).
�

Remark 4.9. For the equivalence of Theorems 4.4 and 4.5, something stronger was actually proved. The
above proof additionally showed that, for any given K , MK , S, α1, . . . , αq , and ε, Theorem 4.4 for all c
is equivalent to Theorem 4.5 for all c. This fact will be used in the proof of Proposition 5.7, below.

As is true over number fields, Roth’s theorem and Mordell’s conjecture imply the author’s “Main
Conjecture” [Vojta 1987, Conjecture 3.4.3] in the special case of (rational points on) curves. This is
proved by essentially the same proof as over number fields, so the proof will only be sketched.

Corollary 4.10. Let X be a smooth projective curve over K of genus g; let D be a reduced effective
divisor on X ; let A be a line sheaf of degree 1 on X ; let mS(D, ·) and hA (·) be the proximity and height
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functions, respectively, determined by some fixed choice of Weil function for D and A , respectively; let
ε > 0; and let c ∈ R. Then the inequality

mS(D, ξ)≤ (2− 2g+ ε)hA (ξ)+ c (4.10.1)

holds for all but finitely many ξ ∈ X (K ).

Proof (sketch). When g = 0 this is Theorem 4.3, and when g > 1 this follows from Mordell’s conjecture
over K (see the Introduction) since X (K ) is finite. This leaves the case g = 1. In this case, (4.10.1)
reduces to mS(D, ξ)≤ ε hA (ξ)+ c.

As in the proof of Proposition 4.8, we may assume that all points of D are rational over K . We may
also assume that D 6= 0, so in particular X (K ) 6=∅. Thus X is an elliptic curve.

Assume that the statement is false. Then the inequality

mS(D, ξ) > ε hA (ξ)+ c (4.10.2)

holds for infinitely many ξ ∈ X (K ).
Following [Lang 1960], fix an integer n > 2/

√
ε. Since the Mordell–Weil theorem is known for

X (K ) (see the Introduction), the subgroup nX (K ) is of finite index in X (K ). Therefore some coset
ξ0+nX (K ) contains infinitely many points ξ for which (4.10.2) holds. Let φ : X→ X be the K -morphism
ξ 7→ nξ + ξ0. Then, for some constant c′, the inequality

mS(φ
∗D, ξ ′) > ε hφ∗A (ξ ′)+ c′

holds for infinitely many ξ ′ ∈ X (K ).
Pick a morphism ψ : X→P1

K over K of degree 2. Let D′ be the reduced divisor on P1
K whose support

is ψ(Suppφ∗D). Since φ is étale, the divisor φ∗D is reduced (as well as effective). Therefore the divisor
ψ∗D′−φ∗D is effective, so mS(ψ

∗D′, ξ ′)≥ mS(φ
∗D, ξ ′)+ O(1) for all ξ ′ ∈ X (K ). In addition, φ∗A

and ψ∗O(1) have degrees n2 and 2, respectively; therefore, for any ε′′ such that 2+ ε′′ < n2ε/2, standard
properties of heights (which extend straightforwardly to arithmetic function fields) give

ε hφ∗A (ξ ′)≥ (2+ ε′′)hψ∗O(1)(ξ ′)+ O(1)= (2+ ε′′)hK (ψ(ξ
′))+ O(1).

By choice of n, we may take ε′′ > 0. Thus, up to O(1) at each step,

mS(D′, ψ(ξ ′))= mS(ψ
∗D′, ξ ′)≥ mS(φ

∗D, ξ ′) > ε hφ∗A (ξ ′)≥ (2+ ε′′)hK (ψ(ξ
′)).

This holds for infinitely many points ψ(ξ ′) in P1(K ), which contradicts Theorem 4.3. �

This leads, in the usual way, to Siegel’s theorem on integral points on curves, due to [Lang 1960,
Theorem 4]; see also [Lang 1991, Chapter IX Theorem 3.1]:
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Corollary 4.11. Let K be a field finitely generated over Q, let R be a subring of K finitely generated
over Z, and let C be an affine curve over K . Assume that either none of the irreducible components of
C ×K K are rational, or that there exists a projective completion of C having at least three points at
infinity. Then, for any closed embedding i : C ↪→ An

K over K , the set i−1(Rn) of integral points on C is
finite.

Proof. The proof follows the classical proof over number fields very closely.
By enlarging K , we may assume that C is geometrically integral. Fix a big polarization M = (B;M )

of K such that B is normal and generically smooth. Let S ⊆ MK be the union of M∞K and the set of all
prime divisors Y on B such that some generator of R has a pole along Y . Then S has finite measure, and
R is contained in the ring of S-integers of K . Let X0 be a projective closure of C .

Let i : C → An
K be a closed embedding over K , and let x1, . . . , xn be the pull-backs to C of the

coordinate functions on An
K . Then, for each v ∈ MK the function X0(Cv)→ R∪ {∞} given by

λv(ξ)=max{0, log‖x1(ξ)‖v, . . . , log‖xn(ξ)‖v}

defines a Weil function λ on X0 for an effective divisor D0 such that Supp D0 = X0 \C .
Let 6 = i−1(Rn), and assume that this is an infinite set. By construction we have λv(ξ) = 0 for all

v ∈ MK \ S and all ξ ∈6.
Let π : X→ X0 be the normalization of X0, let D be the reduced divisor on X such that Supp D =

X \ π−1(C), and choose a Weil function λD for D on X . Since π∗D0− D is an effective divisor and
λv(ξ)= 0 for all v /∈ S and all ξ ∈6, Theorem 3.24(e) implies that there is an MK -constant (cv) such
that λD,v(ξ)≤ cv for all v /∈ S and all ξ ∈ π−1(6). It then follows that

mS(D, ξ)= hD(ξ)+ O(1) (4.11.1)

for all ξ ∈ π−1(6), where mS(D, ·) and hD are proximity and height functions defined using λD .
Let g be the genus of X . The hypotheses on C imply that deg D > 2− 2g, so (4.11.1) contradicts

Corollary 4.10 by basic properties of heights (which still hold over arithmetic function fields). �

We conclude this section with two examples showing that Theorem 0.1 does not extend straightforwardly
to arithmetic function fields without requiring {αv : v ∈ S} to be a finite set.

These two examples use the standard notation Br (z0)= {z ∈ C : |z− z0|< r}.

Example 4.12. Let K = Q(t) with t an indeterminate, let B = P1
Z, let M = O(1) with Fubini–Study

metric, and let S = M∞K . Identify B(C) with C∪ {∞} in the usual way, so that S is identified with C \Q

by associating τ : K → C to τ(t) ∈ C \Q.
For each n ∈N let Sn be the subset of S corresponding to B 1

2
(n)∩ (C \Q). Note that these subsets are

mutually disjoint (but do not cover S).
Since Q(

√
−1) is dense in C (in the classical topology), for each n ∈ N and each v ∈ Sn we may

choose βv ∈Q(
√
−1) to be arbitrarily close to v− n. This can be done so that the function v 7→ βv is
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a measurable function (for example, partition Sn into finitely many measurable subsets and let βv be
constant on each of these subsets). Let βv = 0 for all v /∈ S0 ∪ S1 ∪ · · · , and let αv = t −βv for all v ∈ S.

If we choose βv such that − log|βv + n− v| ≥ 3hK (n)/µ(Sn) for all n ∈ N and all v ∈ Sn , then we
will have ∫

S
− log−‖n−αv‖v dµ(v)≥

∫
Sn

− log−|n− v+βv| dµ(v)≥ 3hK (n)

for all n ∈N. Thus, taking ε = 1 and c = 0, we have constructed an infinite subset N⊆ K and a system
of choices of αv ∈ K for all v ∈ S such that∫

S
− log−‖ξ −αv‖v dµ(v)≥ (2+ ε)hK (ξ)+ c (4.12.1)

for all ξ ∈ N.

In this example, the elements αv ∈ K all have finite degrees over K , and in fact they all lie in the same
arithmetic function field Q(

√
−1, t). However, their heights are unbounded.

This next example is very similar, except that the heights are bounded but the degrees are not. (Bounding
both the degrees and the heights amounts to requiring that {αv : v ∈ S} be a finite set.)

Example 4.13. Let F =Q(
√
−1), let K = F(t), let B = P1

Z[
√
−1]

, and let M = O(1) with Fubini–Study
metric. Fix an embedding i : F → C, and let S ⊆ M∞K be the subset of maps τ : K ↪→ C that satisfy
τ |F = i . Again identify S with C \Q as in Example 4.12.

This example will use the fact that the set {ζ + ζ ′ : ζ and ζ ′ are roots of unity} is dense in the closed
ball |z| ≤ 2.

Choose ξn ∈ F and rn > 0 for all n ∈N such that Sn := Brn (ξn)∩ (C \Q) are mutually disjoint subsets
of B2(0). Then, as noted above, for each n and each v ∈ Sn one can choose roots of unity ζv and ζ ′v whose
sum is arbitrarily close to v− ξn .

Then, proceeding as before, we construct a collection of choices αv ∈ K for all v ∈ S such that
(4.12.1) with ε = 1 and c = 0 holds for all ξ in the infinite subset 4 := {ξ0, ξ1, . . .} of K . In addition,
hK (αv)≤ hK (t)+µ∞(B2(0)) log 4 for all v ∈ S.

5. Reductions

In this section we begin the main line of the proof of Roth’s theorem over arithmetic function fields.
Specifically, Theorem 4.5 will be proved in the remaining sections of the paper (and the other variations
will then follow, by Proposition 4.8).

The purpose of this section is to show that it will suffice to prove Theorem 4.5 under the following
additional hypotheses:

5.1. The set S contains all of the archimedean places.

5.2. B is generically smooth.

5.3. M is ample.

5.4. The metric on M is positive.
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We start by noting that the integrand of (4.5.1) is nonnegative, so enlarging the set S will only strengthen
the theorem. In particular, we may assume that 5.1 holds.

Next, consider the condition 5.2. Recall from 4.1 that M = (B;M ) is a big polarization of K . Let
π : B ′→ B be a generic resolution of singularities of B, and let M ′

= π∗M . Then M ′ := (B ′;M ′) is
also a big polarization of K .

The map π induces a bijection πgen
: B ′(C)gen

→ B(C)gen which preserves measures and absolute
values.

As for nonarchimedean places, let Y ′ ∈ (B ′)(1), and let Y = π(Y ′). First consider the case in which
codim Y = 1. Then Y ∈ B(1), and hM(Y )= hM ′(Y ′) by (1.9). Also ordY ′(ξ)= ordY (ξ) for all ξ ∈ K ∗, so
we have ‖ξ‖Y ′ = ‖ξ‖Y for all ξ ∈ K .

Next consider Y ′ for which codim Y > 1. Then π∗(Y, 0) = 0 in Z1
D(B), so hM ′(Y ′) = 0 by (1.8).

Therefore ‖ξ‖Y ′ = 1 for all ξ ∈ K ∗.
Therefore, it is clear from (3.6) that hM(ξ) remains the same when one changes the polarization from

M to M ′.
Next let S′ be the subset of M ′K defined by

S′ = B ′(C)gen
∪ {Y ′ ∈ (B ′)(1) : π(Y ′) ∈ S ∩ B(1)}.

Since S ⊇ B(C)gen by 5.1, the integral in (4.5.1) is unchanged when S is replaced by S′. Therefore, for
each ξ ∈ K , (4.5.1) is true for the polarization M if and only if it is true for M ′, and therefore it suffices
to prove Theorem 4.5 under the additional conditions 5.1 and 5.2.

This leaves 5.3 and 5.4. We begin with a result from Arakelov theory.
In the remainder of this section, it will be convenient to work with slightly different notation. For an

integral scheme X , projective over Spec Z, let P̂ic(X) denote the group of smoothly metrized line sheaves
on X , whose group operation is tensor product. A smoothly metrized Q-line sheaf on X is an element of
P̂ic(X)⊗Q. The previous definitions of “nef,” “big,” and “ample” extend to this group. For simplicity,
elements of P̂ic(X)⊗Q will be written additively.

Since the intersection number c1(L1) · · · c1(Ln) on an arithmetic variety X is multilinear, its definition
extends to allow the Li to be smoothly metrized Q-line sheaves, and correspondingly we allow smoothly
metrized Q-line sheaves to be used in polarizations.

Lemma 5.5. Let B be a generically smooth arithmetic variety, and let M and A be smoothly metrized line
sheaves on B. Assume that M is big and nef , that A is ample, and that the metric on A is positive. Then:

(a) For all rational δ > 0, M + δA is ample, and its metric is positive.

(b) Let δ ∈ Q>0. Let K = κ(B), and let hK and h′K denote the naïve heights computed using the
polarizations (B;M ) and (B;M + δA ), respectively. Then h′K (ξ)≥ hK (ξ) for all ξ ∈ K .

(c) For any given ε′′ > 0 there is a rational δ > 0 such that the inequality

c1((M + δA )Y )·d ≤ (1+ ε′′)c1(M |Y )
·d (5.5.1)

holds for all but finitely many Y ∈ B(1).
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Proof. First, we claim that the inequality

c1((M + δA )|Y )
·dim Y

≥ c1(M |Y )
·dim Y (5.5.2)

holds for all rational δ > 0 and all integral closed subschemes Y of X . Indeed,

c1((M + δA )|Y )
·dim Y
− c1(M |Y )

·dim Y
=

dim Y∑
i=1

(dim Y
i

)
δi c1(M |Y )

·(dim Y−i)
· c1(A |Y )

·i ,

and each term on the right-hand side is nonnegative.
By a similar argument,

c1((M + δA )|Y )
·dim Y

≥ δdim Y c1(A |Y )
·dim Y . (5.5.3)

Now consider (a). The metric on M + δA is positive because the metrics on A and M are positive
and semipositive, respectively. Also M + δA is vertically nef because both M and A are.

Since the metric on M is semipositive, MQ is nef, and therefore (M + δA )Q is ample (by either
Kleiman’s or Seshadri’s criterion for ampleness).

Finally, M + δA is horizontally positive by (5.5.3) and horizontal positivity of A . Thus M + δA is
ample.

Next consider (b). Let ξ ∈ K . By (3.6),

h′K (ξ)− hK (ξ)

=

∫
B(C)gen

log+|ξ(b)| d(µ′
∞
(b)−µ∞(b))+

∑
Y∈B(1)

max{0,− ordY (ξ)}(hM ′(Y )− hM(Y )), (5.5.4)

where µ∞ and µ′
∞

are the measures on B(C)gen defined using M and M ′, respectively. The signed
measure µ′

∞
−µ∞ is associated to the (d, d)-form

c1(‖·‖M+δA )
∧d
− c1(‖·‖M )

∧d
=

d∑
i=1

(d
i

)
δi c1(‖·‖M )

∧(d−i)
∧ c1(‖·‖A )

∧i ,

and this is nonnegative because each term on the right is nonnegative. Also, by (5.5.2), hM ′(Y )≥ hM(Y )
for all Y ∈ B(1). Therefore, the right-hand side of (5.5.4) is nonnegative, and this gives (b).

Finally, consider (c).
By [Moriwaki 2014, Proposition 5.43], there is a rational η > 0 such that some positive integer multiple

of M − ηA has a nonzero strictly small global section.
Let s be such a global section. Let Y ∈ B(1), and assume that Y does not occur in the support of

div(s)fin. This excludes only finitely many Y .
Since s|Y is nonzero and both M and A are nef, Proposition 1.12(b) gives

c1(M |Y )
·(d−1− j)

· c1(A |Y )
· j
· c1((M − ηA )|Y )≥ 0 (5.5.5)

for all j = 0, . . . , d − 1.
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Let ε′′ > 0 be given. Choose a rational δ > 0 such that

(1+ ε′′)ηd
≥ (η+ δ)d .

Since

(1+ ε′′)ηd
− (η+ δ)d = ηdε′′−

d∑
i=1

(d
i

)
ηd−iδi ,

we have

η jε′′−

j∑
i=1

(d
i

)
η j−iδi

≥ 0 (5.5.6)

for all j = 0, . . . , d .
For j = 0, . . . , d let

C j =

(
η jε′′−

j∑
i=1

(d
i

)
η j−iδi

)
c1(M |Y )

·(d− j)
· c1(A |Y )

· j
−

d∑
i= j+1

(d
i

)
δi c1(M |Y )

·(d−i)
· c1
(
A |Y

)·i
.

We claim that C j ≥ 0 for all j . This will be proved by descending induction on j . When j = d, we
have

Cd =

(
ηdε′′−

d∑
i=1

(d
i

)
ηd−iδi

)
c1(A |Y )

·d ,

and this is nonnegative by (5.5.6) and Proposition 1.12(a). For j = 0, . . . , d − 1, we have

C j+1=η(η
jε′′−

j∑
i=1

(d
i

)
η j−iδi )c1(M |Y )

·(d− j−1)
·c1(A |Y )

·( j+1)
−

d∑
i= j+1

(d
i

)
δi c1(M |Y )

·(d−i)
·c1(A |Y )

·i ,

and therefore

C j−C j+1=

(
η jε′′−

j∑
i=1

(d
i

)
η j−iδi

)
· (c1(M |Y )

·(d− j)
·c1(A |Y )

· j
−ηc1(M |Y )

·(d− j−1)
·c1(A |Y )

·( j+1)).

By (5.5.6) and (5.5.5), the right-hand side is nonnegative; hence C j ≥ C j+1.
We then have C0 ≥ 0. Since

C0 = ε
′′c1(M |Y )

·d
−

d∑
i=1

(d
i

)
δi c1(M |Y )

·(d−i)
· c1(A |Y )

·i
= (1+ ε′′)c1(M |Y )

·d
− c1((M + δA )|Y )

·d ,

we have (5.5.1). �

This sets the stage for the main result of this section.

Remark 5.6. In the proof of the following proposition, it will be convenient to consider polarizations
(B;M ′) in which M ′ is a smoothly metrized Q-line sheaf. This can be justified as follows.

Let (B;M ) be a polarization of K , and let n be a positive integer. Then (B; nM ) is also a polarization,
with the same set MK of places. The archimedean absolute values of this new polarization are the same as
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those of the original polarization, but the measure µ∞ is multiplied by nd . For nonarchimedean places, the
counting measure is of course unchanged, but the absolute values for (B; nM ) are the nd powers of the
absolute values for (B;M ). Therefore the naïve height is multiplied by nd by this change. Similarly, let D
be a Cartier divisor on a variety V over K , and let λ be a Weil function for D using the polarization (B;M ).
Define a function λ′ by letting λ′v = λv for all archimedean v and λ′ = ndλv for all nonarchimedean v.
Then λ′ is a Weil function for D relative to (B; nM ). It then follows that the proximity and counting
functions obtained using λ′ and (B; nM ) are equal to nd times those obtained using λ and (B;M ).

Therefore, one obtains well-defined notions of absolute value, naïve height, Weil functions, proximity
functions, and counting functions for polarizations with smoothly metrized Q-line sheaves. And, if
Theorem 4.5 holds for polarizations as defined earlier, then it is also true for polarizations using smoothly
metrized Q-line sheaves.

Proposition 5.7. It suffices to prove Theorem 4.5 under the additional hypotheses 5.1–5.4.

Proof. As noted earlier, we may already assume that 5.1 and 5.2 hold, so it remains to show that if
Theorem 4.5 holds under 5.1–5.4 then it holds when only 5.1 and 5.2 are assumed to be true. By
Remark 4.9, we may work with Theorem 4.4 instead of 4.5.

So let K , MK , and S be as in 4.1, where S contains all archimedean places, and the polarization
M = (B;M ) satisfies 5.2; i.e., B is generically smooth. Also let α1, . . . , αq , ε, and c be as in the
statement of Theorem 4.4.

Pick ε′ > 0 and ε′′ > 0 such that
q − 2− ε′

1+ ε′′
= q − 2− ε. (5.7.1)

Choose an ample smoothly metrized line sheaf A on B with positive metric, and let δ > 0 be as in
Lemma 5.5(c). We may assume that S contains all of the (finitely many) Y ∈ B(1) for which (5.5.1) fails
to hold.

Let D = [α1] + · · · + [αq ], and let λD be the Weil function for D defined by

λD,v =−

q∑
i=1

log−‖ξ −αi‖v. (5.7.2)

Also let mS(D, ξ) and NS(D, ξ) be as in Definition 3.31. By Proposition 3.33,

mS(D, ξ)+ NS(D, ξ)= q hK (ξ)+ O(1) (5.7.3)

for all ξ ∈ K \ {α1, . . . , αq}.
Let M ′

=M + δA , and let M ′ = (B;M ′). Note that MK depends only on B, so it is the same for
both polarizations M and M ′. Define h′K (ξ), λ

′

D , m′S(D, ξ), and N ′S(D, ξ) similarly to hK (ξ), λD , etc.,
but using M ′ instead of M . Again, we have

m′S(D, ξ)+ N ′S(D, ξ)= q h′K (ξ)+ O(1) (5.7.4)

for all ξ ∈ K \ {α1, . . . , αq}.
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By Lemma 5.5(a), M ′ is ample with positive metric. Therefore, we can apply Theorem 4.4 to get that,
for all c′ ∈ R, the inequality

m′S(D, ξ)≤ (2+ ε
′)h′K (ξ)+ c′

holds for all but finitely many ξ ∈ K (where the excluded set depends on c′ as well as all other data here).
By (5.7.4) there is a constant a′, independent of c′, such that

N ′S(D, ξ)≥ (q − 2− ε′)h′K (ξ)− c′− a′.

By Lemma 5.5(b) and (5.5.1), we have h′K (ξ) ≥ hK (ξ) and N ′S(D, ξ) ≤ (1 + ε
′′)NS(D, ξ) for all

ξ ∈ K \ {α1, . . . , αq}. Therefore

(1+ ε′′)NS(D, ξ)≥ (q − 2− ε′)hK (ξ)− c′− a′

for all but finitely many ξ ∈ K . By (5.7.1) and (5.7.3), there is a constant a, independent of c′, such that

mS(D, ξ)≤ (2+ ε)hK (ξ)+
c′+ a′

1+ ε′′
+ a.

We can then take c′ small enough so that (c′+ a′)/(1+ ε′′)+ a ≤ c to get (4.4.1). �

6. Reduction to simultaneous approximation: The main analytic part

The proof of Theorem 4.5 follows the classical proof over number fields very closely. Most parts carry
over directly without difficulty. The main exception to this is the part of the proof that is often called
“reduction to simultaneous approximation”. This is briefly described in the Introduction; see also [Lang
1983, Chapter 7, Section 2], [Hindry and Silverman 2000, Theorem D.2.2], or [Bombieri and Gubler
2006, 6.4.2–6.4.4].

In more detail, reduction to simultaneous approximation is as follows. In the special case of number
fields, (4.5.1) reduces to the inequality∑

v∈S

max
1≤ j≤q

− log−‖ξ −α j‖v ≤ (2+ ε)hK (ξ)+ c,

where S is a finite set. Reduction to simultaneous approximation consists of showing that, to prove
Roth’s theorem, it suffices to prove the following statement. For all functions j : S→ {1, . . . , q} and all
(cv)v∈S ∈ R#S such that

∑
cv > 2, only finitely many ξ ∈ K simultaneously satisfy

− log−‖ξ −α j (v)‖v > cvhK (ξ)

for all v ∈ S.
In the number field case S is finite, so this is proved by a simple compactness argument combined

with the pigeonhole principle. In the case of arithmetic function fields, though, S ∩M∞K is a subset of a
complex manifold and v 7→ − log−‖ξ −α j‖v is a smooth function (with singularities on the manifold
outside of M∞K ). This becomes a question in analysis, reminiscent of the Arzelà–Ascoli theorem. In fact,
the proof presented here is motivated by the proof of the Arzelà–Ascoli theorem. The singularities can be
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handled by removing a subset T of bounded measure from M∞K . It is possible to do this, for basically
the same reason as in [Wirsing 1971]. Since M∞K \ T may now be locally disconnected, though, it is
necessary to work with differences instead of derivatives.

Another challenge in reducing to simultaneous approximation is the fact that the analytic estimates in
the proof need to be uniform in the rational points. Simple compactness arguments will not work here.
For example, in the d = 1 case the degree of the rational function can be arbitrarily large. Instead, we can
use the fact that − log‖ξ −α j‖v is a Green function for the principal divisor (ξ −α j ), and use properties
of Green forms and functions from Arakelov theory to write this function as an integral whose integrand
can be treated using compactness arguments (see Proposition 6.3).

The proof of reduction to simultaneous approximation for arithmetic function fields takes up the next
three sections of this paper. They form the core of this paper.

This section carries out the main analytic arguments leading up to Proposition 6.16, which is motivated
by a part of the proof of the Arzelà–Ascoli theorem. Section 7 gives an upper bound on what is lost by
removing the set T ; this is Proposition 7.3. Section 8 then carries these two results over to the arithmetical
setting, and proves the main result on reduction to simultaneous approximation (Proposition 8.12). This
is the part that uses the pigeonhole argument.

Ultimately the proof of Proposition 6.16 relies on the following elementary lemma on integration
(which is used in proving Lemma 6.13).

Lemma 6.1. Let X be a space with measure µ, let g : X→ [0,∞] be a measurable function with finite
integral, and let c > 0. Then

µ({x ∈ X : g(x)≥ c})≤ 1
c

∫
X

g dµ.

Proof. Let χ : X→ [0, c] be the function defined by χ(x)= c if g(x)≥ c and χ(x)= 0 otherwise. Then∫
X

g dµ− cµ({x ∈ X : g(x)≥ c})=
∫

X
(g−χ) dµ≥ 0

because the integrand is nonnegative. �

Wirsing’s proof also uses this lemma (via its reliance on Chebyshev’s inequality).
Results in this section and the next will be phrased in terms of a smooth complex projective variety X .

The topology on X will be the classical topology. In Section 8 we will apply these results as X varies
over all connected components of B(C), where B is the arithmetic variety in some polarization of K .
Note that K is a subfield of κ(X) (in fact, κ(X) is the compositum of K and C over the algebraic closure
F of Q in K , for some choice of embedding of F into C).

Definition 6.2. Let X be a smooth complex projective variety and let Y ⊆ X be an irreducible closed
subvariety of X of codimension p > 0. Then a Green form for Y is a smooth (p− 1, p− 1)-form on
X \ Y whose associated current on X is a Green current for Y . A Green form of log type for Y is a Green
form for Y that is of logarithmic type along Y [Soulé 1992, Definition II.3].
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Proposition 6.3. Let X be a smooth complex projective variety of dimension d ≥ 1. Let1 be the diagonal
in X × X , let π : W → X × X be the blowing-up of X × X along 1, let E be the exceptional divisor,
choose a smooth metric on the line sheaf O(E), and let s be the canonical section of this line sheaf. Then
there exist smooth (d − 1, d − 1)-forms α and β on W for which the following statements are true:

(a) There is a Green form g1 of log type for 1 on X × X such that

π∗g1 = (− log‖s‖2)α+β on W \ E . (6.3.1)

(b) For each prime divisor D on X , define gD as follows. Let j : D̃→ X be a proper map with image D
such that D̃→ D is a desingularization of D, let q : D̃× X → X be the projection to the second
factor, and let

gD = q∗( j × IdX )
∗g1. (6.3.2)

Then gD is a Green form of log type for D on X.

(c) For each ξ ∈ κ(X)∗, write the principal divisor (ξ) as a (finite) sum (ξ)=
∑

D nD D, where each D
is a prime divisor and nD ∈ Z for all D. Then there is a constant c such that

− log|ξ |2 =
∑

D

nDgD + c. (6.3.3)

Proof. Part (a) is proved in Step 2 of the proof of [Soulé 1992, Theorem II.3], where f is taken to be the
identity map on X .

For part (b), note that ( j × IdX )
−1(1) is the graph 0 j of j . Since

codimD̃×X 0 j = codimX×X 1,

it follows from [Soulé 1992, Section II.3.2] that ( j × IdX )
∗g1 is a Green form of log type for 0 j .

Since the push-forward q∗0 j equals D (as cycles on X ), it follows from [Soulé 1992, II, Lemma 2(ii)
and proof of III, Theorem 3(ii)] that q∗ ( j × IdX )

∗g1 is a Green form of log type for D on X . This gives
part (b).

For part (c), we note that both − log|ξ |2 and
∑

nDgD are Green forms for the same divisor (ξ).
Therefore, by [Gillet and Soulé 1990, Lemma 1.2.4], there is a smooth function f : X→ R such that

− log|ξ |2 =
∑

nDgD + log f (6.3.4)

everywhere outside of the support of the divisor (ξ).
Since g1 is a Green form for 1 on X × X , the (d, d)-form ddcg1 extends to a smooth form ω1 on

X×X . Similarly, if D is a prime divisor then ddcgD extends to a smooth form ωD on X . By functoriality,
ddc(( j× IdX )

∗g1) extends to the smooth form ( j× IdX )
∗ω1 on D̃× X , and by [Soulé 1992, proof of III,

Theorem 3(ii)] we have

q∗ ( j × IdX )
∗ω1 = ωD. (6.3.5)
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Let H i, j (M) denote the set of harmonic (i, j)-forms on M for some fixed choice of Kähler (or
Riemannian) metric on a complex manifold M [Griffiths and Harris 1978, page 82]. Fix such a metric
on X and use the induced metric on X × X . By the construction in Step 2 of the proof of [Soulé 1992,
Theorem II.3], we may choose g1 such that ω1 is any given representative of 1 in H d,d

∂
(X × X). By the

Hodge decomposition [Griffiths and Harris 1978, page 116], each cohomology class is represented by a
unique harmonic form. Therefore we may assume that ω1 is harmonic.

By the Künneth formula [Griffiths and Harris 1978, page 104],

H d,d(X × X)=
⊕

i+ j=d
i ′+ j ′=d

H i, j (X)⊗H i ′, j ′(X).

Applying this decomposition to ω1, the only component that affects the value of q∗ ( j × IdX )
∗ω1 is the

one with j = j ′ = 1. Therefore there are forms

u1, . . . , un ∈H d−1,d−1(X) and v1, . . . , vn ∈H 1,1(X)

such that if p̃, q̃ : X × X → X are the first and second projections and if p : D̃ × X → D̃ is the first
projection, then

q∗ ( j × IdX )
∗ω1 =

n∑
i=1

q∗ ( j × IdX )
∗( p̃∗ui ⊗ q̃∗vi )

=

n∑
i=1

q∗(p∗ j∗ui ⊗ q∗vi )

=

n∑
i=1

(∫
D̃

j∗ui

)
q∗vi .

In particular, by (6.3.5), ωD is harmonic.
Therefore,

∑
nDωD is also harmonic. Since it represents the (trivial) cohomology class of the principal

divisor (ξ), it must be zero. By (6.3.4), we then have

ddc log f =−ddc log|ξ |2 = 0,

and therefore f is constant. �

Remark 6.4. In part (b), we may assume that j maps a Zariski-open subset U of D̃ isomorphically to
the smooth locus Dreg of D. Since D̃ \U has measure zero and g1 is a form (as opposed to a current),
we can compute gD by integrating over Dreg:

gD(x)=
∫

Dreg×{x}
g1 for all x ∈ X \ D. (6.4.1)
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The following construction will often be used to obtain analytic estimates.

Lemma 6.5. Let M1 and M2 be complex manifolds of dimension d ≥ 1, and let ψ be a positive smooth
(d − 1, d − 1)-form on M1. Let Gr1 T M1 be the Grassmannnian of hyperplanes in fibers of the tangent
bundle T M1, and let τ1 : Gr1 T M1→ M1 be the structural morphism. Let G = (Gr1 T M1)× M2 and
τ = τ1× IdM2 : G→ M1×M2. This can be regarded as the Grassmannian of hyperplanes in fibers of the
relative tangent bundle of M1×M2 over M2, taken relative to the projection q : M1×M2→ M2 to the
second factor.

Then, for each open subset U of M1 × M2 and each smooth (d − 1, d − 1)-form α on U , there is
a unique smooth function χα : τ−1(U )→ C, depending only on M1, M2, ψ , U , and α, such that the
following is true.

Let N be a locally closed submanifold of M1 of dimension d − 1. At each w ∈ N , the tangent
space TwN is a hyperplane in TwM1, and this gives smooth sections σN ,1 : N → Gr1 T M1 and σN :=

σN ,1× IdM2 : N ×M2→ G of τ−1
1 (N )→ N and τ−1(N ×M2)→ N ×M2, respectively. Then we have

α|(N×M2)∩Ux = ((χα ◦ σN ) · (p∗ψ))|(N×M2)∩Ux for all x ∈ M2, (6.5.1)

where Ux = (M1×{x})∩U and p : M1×M2→ M1 is the projection to the first factor.

Proof. Let N be as above. For dimension reasons, there is a smooth function

ρα,N : (N ×M2)∩U → C

such that

α|(N×M2)∩Ux = ρα,N · (p
∗ψ)|(N×M2)∩Ux for all x ∈ M2. (6.5.2)

For each (w, x) ∈ U and each N passing through w, the value of this function at (w, x) depends only
on TwN ; in other words, if N and N ′ both pass through a point w ∈ M1 and are tangent at w, then
ρα,N (w, x)= ρα,N ′(w, x) for all x ∈ M2 such that (w, x) ∈U .

We claim that there is a function χα : τ−1(U )→ C such that

ρα,N |(N×M2)∩Ux = χα ◦ (σN |(N×M2)∩Ux ) for all x ∈ M2. (6.5.3)

Indeed, we first note that the lemma is local on M1, so we may assume that M1 is an open subset
of Cd . Then Gr1 T M1 can be canonically identified with the set of pairs (w, H), where w ∈ M1 and H is
a hyperplane in Cd passing through w.

For all (w, H) ∈ Gr1 T M1 and all x ∈ M2 such that (w, x) ∈U , let

χα(w, H, x)=
(

α|(H×{x})∩U

p∗ψ |(H×{x})∩U

)
(w, x),
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where the quotient refers to (6.5.2). Let (w, x)∈ (N×M2)∩U and let H be the hyperplane in Cd tangent
to N at w. Then σN ,1(w)= (w, H); combining this with (6.5.2) gives

(χα ◦ σN )(w, x)= χα(w, H, x)

=

(
α|(H×{x})∩U

p∗ψ |(H×{x})∩U

)
(w, x)

=

(
α|(N×{x})∩U

p∗ψ |(N×{x})∩U

)
(w, x)

= ρα,N (w, x).

This gives (6.5.3).
Then (6.5.1) follows by combining (6.5.2) and (6.5.3). �

Corollary 6.6. Let X , 1, and g1 be as in Proposition 6.3, and let d = dim X. Then, for each positive
smooth (d − 1, d − 1)-form ψ on X , there is a χg1 such that

gD(x)=
∫
w∈Dreg

χg1(σDreg,1(w), x) ·ψ(w) (6.6.1)

for all D and gD as in Proposition 6.3(b) and all x ∈ X \ D.

Proof. This follows from (6.4.1), by applying Lemma 6.5 with M1 = M2 = X , U = (X × X)\1, α = g1,
and ψ as above. �

The first application of this construction will be to give bounds on the behavior of α and β in
Proposition 6.3 near 1.

Lemma 6.7. Let V be an open subset of Cd with d ≥ 1, and let ψ be a positive smooth (d−1, d−1)-form
on V . Let π : WV → V × V be the (analytic) blowing-up of V × V along the diagonal 1, and let
α be a smooth (d − 1, d − 1)-form on U := (V × V ) \1 that extends to a smooth form on WV . Let
τ : (Gr1 T V )× V → V × V and χα : τ−1(U )→ C be as in Lemma 6.5.

We have T V ∼= V ×Cd and therefore Gr1 T V ∼= V × (Pd−1)∗, canonically (where (Pd−1)∗ is taken to
be a point if d = 1). Thus we let pairs (w, H) ∈ V × (Pd−1)∗ denote points in Gr1 T V .

Let L1 and L2 be compact subsets of V . Then, for all (w, z) ∈ (L1× L2)∩U and all H ∈ (Pd−1)∗, we
have

|χα(w, H, z)| ≤ O
(

1
|w− z|2d−2

)
, (6.7.1)∣∣∣∣∂χα(w, H, z)

∂zi

∣∣∣∣≤ O
(

1
|w− z|2d−1

)
, i = 1, . . . , d, (6.7.2)

and ∣∣∣∣∂χα(w, H, z)
∂zi

∣∣∣∣≤ O
(

1
|w− z|2d−1

)
, i = 1, . . . , d, (6.7.3)

where z1, . . . , zd are the coordinates of z. Moreover, the implicit constants in O(·) are uniform over
τ−1((L1× L2)∩U ).
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Proof. If d = 1, then π is an isomorphism and α is a smooth function on V × V , so (6.7.1)–(6.7.3) are
trivial.

Therefore, we assume from now on that d ≥ 2.
For points (w, z)∈U , write w= (w1, . . . , wd) and z= (z1, . . . , zd). Let vi =wi− zi for i = 1, . . . , d;

then (v1, . . . , vd , z1, . . . , zd) is a (global) coordinate system on V ×V in which 1 is given by v1 = · · · =

vd = 0.
For each l = 1, . . . , d let Ul be the subset of points P ∈U such that

max{|v1(P)|, . . . , |vd(P)|} = |vl(P)|. (6.7.4)

Note that U1∪· · ·∪Ud =U (and that the sets Ul are not open). From now on, for convenience of notation,
we assume that l = 1 unless otherwise specified.

Let u1= v1 and ui = vi/v1 for i = 2, . . . , d . Then (u1, . . . , ud , z1, . . . , zd) is a local coordinate system
on WV near all points of π−1(U1). Let W1 be the largest open subset of WV on which the functions ui

are regular for all i 6= 1. Then (u1, . . . , ud , z1, . . . , zd) is a coordinate system on W1, and

π−1(U1)= {P ∈W1 : |ui (P)| ≤ 1 for all i 6= 1}.

As l varies, the similarly defined sets Wl cover all of WV .
Let q : V × V → V denote the projection to the second factor. Then, on fibers of q ◦ π , we have

du1 = dv1 = dw1 and

dui = d
(
vi

v1

)
=
v1 dvi − vi dv1

v2
1

=
v1 dwi − vi dw1

v2
1

, i = 2, . . . , d. (6.7.5)

By (6.7.4), we have |v1| ≤ |w− z| ≤
√

d|v1| over U1. Then all coefficients 1, 1/v1, and −vi/v
2
1 above are

bounded in absolute value by max{1,
√

d/|w− z|} over U1 (again using |vi | ≤ |v1|). The same estimates
hold for the coefficients obtained when writing dui in terms of dw1 and dwi for all i = 1, . . . , d.

Next, for all z ∈ V , let Wz denote the fiber of q ◦π over z; it is isomorphic to the blowing-up of V
at z. For all z ∈ V , we have

α|W1∩Wz =

d∑
i=1

d∑
j=1

αi j du1 ∧ · · · ∧ d̂ui ∧ · · · ∧ dud ∧ du1 ∧ · · · ∧ d̂u j ∧ · · · ∧ dud ,

where ̂ denotes omission and αi j : W1→ C are smooth. Using the above substitutions for dui in terms
of dw1 and dwi , and letting Uz = (V \ {z})×{z}, we then have

α|W1∩π−1(Uz) =

d∑
ı̃=1

d∑
̃=1

α̃ı̃ ̃ dw1 ∧ · · · ∧ d̂wı̃ ∧ · · · ∧ dwd ∧ dw1 ∧ · · · ∧ d̂w̃ ∧ · · · ∧ dwd ,

where

α̃ı̃ ̃ =
∑
i, j

αi j · Pi j ı̃ ̃ (1/v1, 1/v1, v2/v
2
1, v2/v

2
1, . . . , vd/v

2
1, vd/v

2
1) (6.7.6)
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and each Pi j ı̃ ̃ is a polynomial of degree 2d−2 with constant coefficients, which depends only on d , i , j ,
ı̃ , and ̃ .

Now we restrict to a hyperplane H ⊆ TwV . This hyperplane is given by the vanishing of a nontrivial
linear combination of dw1, . . . , dwd . Therefore there is an index m such that H is given by

dwm =
∑
i 6=m

ci dwi with ci ∈ C and |ci | ≤ 1 for all i 6= m. (6.7.7)

Then, for any locally closed submanifold N of Uz of dimension d − 1 tangent to H at w, we have

α|N = αm(w, H, z) dw1, · · · ∧ d̂wm, · · · ∧ dwd ∧ dw1, · · · ∧ d̂wm, · · · ∧ dwd at w, (6.7.8)

where

αm =

d∑
ı̃=1

d∑
̃=1

σı̃mσ̃mcı̃ c̃ (α̃ı̃ ̃ ◦ τ), (6.7.9)

σkm =±1 depending on k and m, and cm = 1.
Now let K1 = {P ∈W1 ∩π

−1(L1× L2) : |ui (P)| ≤ 1 for all i 6= 1}. This set is compact. For all i and
j let Mi j be the maximum value of |αi j | over K1. By (6.7.6) there is a constant Cd , depending only on d ,
such that

|α̃ı̃ ̃ | ≤
Cd

min{1, |w− z|}2d−2

∑
i, j

Mi j on K1 ∩π
−1(U ). (6.7.10)

Let K1,m be the set of elements of τ−1(π(K1) ∩U ) such that the hyperplane H satisfies (6.7.7). By
(6.7.9) and (6.7.10), we then have

|αm | ≤
d2Cd

min{1, |w− z|}2d−2

∑
i, j

Mi j on K1,m . (6.7.11)

Let K ′m be the set of all points (w, H)∈ τ−1
1 (L1) for which H satisfies (6.7.7). This set is compact and

K ′m × L2 contains K1,m . For all (w, H) ∈ K ′m and all locally closed submanifolds N of V of dimension
d − 1 tangent to H at w, we have

ψ |N = (
√
−1)d−1ψm(w, H) dw1 ∧ dw1, · · · ∧
∧

dwm ∧ dwm, · · · ∧ dwd ∧ dwd at w, (6.7.12)

where ψm : K ′m→ R is continuous and positive. Let Dm > 0 be the minimum value of ψm on K ′m .
Combining (6.7.8) and (6.7.12) gives

α|N =
(−1)(d−2)(d−1)/2αm(w, H, z)

(
√
−1)d−1ψm(w, H)

ψ |N at (w, H, z)

for all (w, H, z) ∈ K1,m . By (6.5.1) and the fact that σN (w, z)= (w, H, z), we have

χα(w, H, z)=
(−1)(d−2)(d−1)/2αm(w, H, z)
(
√
−1)d−1ψm(w, H, z)

,
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and therefore, by (6.7.11) and the definition of Dm ,

|χα(w, H, z)| ≤
d2Cd

Dm

∑
i, j

Mi j ·
1

min{1, |w− z|}2d−2

for all (w, H, z) ∈ K1,m .
Combining these estimates for all l and all m then gives (6.7.1), uniformly over τ−1((L1× L2)∩U ).
Now consider (6.7.2) and (6.7.3).
First of all, it is important to note that the notation ∂/∂zk is ambiguous. If taken with respect to

the coordinate system u1, . . . , ud , z1, . . . , zd , then u = (u1, . . . , ud) is kept fixed (as well as all zh with
h 6= k), whereas if taken with respect to the coordinate system w1, . . . , wd , z1, . . . , zd then w is kept
fixed. We denote these (different) partials ∂u/∂zk and ∂w/∂zk , respectively, and define ∂u/∂zk and ∂w/∂zk

similarly.
The proof of (6.7.2) and (6.7.3) is similar to that of (6.7.1), but is more complicated due to the presence

of partial derivatives.
First look at (6.7.5). Recalling that vi =wi − zi , we have ∂wvi/∂zk =−δik (using the Kronecker delta),

and therefore

∂w

∂zk

(
1
v1

)
=

{
1/v2

1 if k = 1,
0 otherwise,

and
∂w

∂zk

(
−
vi

v2
1

)
=


−vi/v

3
1 if k = 1,

1/v2
1 if k = i,

0 otherwise.

This gives

max
{∣∣∣∣ ∂w∂zk

(1)
∣∣∣∣, ∣∣∣∣ ∂w∂zk

(
1
v1

)∣∣∣∣, ∣∣∣∣ ∂w∂zk

(
−
vi

v2
1

)∣∣∣∣}≤ 2
d · |w− z|2

. (6.7.13)

A similar bound holds for (∂w/∂zk)(1/v1) and for (∂w/∂zk)(−vi/v
2
1). (Of course we also have that

(∂w/∂zk)(1/v1)= 0, etc.).
Next we need bounds for |∂wαi j/∂zk | and |∂wαi j/∂zk |.
From the formulas u1 = v1 = w1− z1 and uh = vh/v1 = (wh − zh)/(w1− z1) for all h 6= 1 and the

multivariable chain rule, we have

∂wαi j

∂zk
=
∂uαi j

∂zk
+

{
−
∂αi j
∂u1
+
∑d

h=2
vh
v2

1

∂αi j
∂uh

if k = 1,

−
1
v1

∂αi j
∂uk

if k 6= 1

on W1 ∩π
−1(U ). Using bounds for |∂αi j/∂uh| and |∂uαi j/∂zk | on K1, we find constants Mi jk such that

|∂wαi j∂zk | ≤
Mi jk

min{1, |w− z|}
(6.7.14)

on K1∩π
−1(U ). A similar argument gives the same bound for |∂wαi j/∂zk | (after possibly enlarging Mi jk).

By (6.7.13) and (6.7.14), we then have∣∣∣∣∂wα̃ı̃ ̃

∂zk

∣∣∣∣≤ 1
min{1, |w− z|}2d−1

(
C ′d
∑
i, j

Mi j +C ′′d
∑
i, j

Mi jk

)
on K1 ∩π

−1(U ) (6.7.15)
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(corresponding to (6.7.10)), where again C ′d and C ′′d depend only on d. Again, the same bound is true
for |∂wα̃ı̃ ̃/∂zk | by the same argument.

(Note that the bounds (6.7.13) and (6.7.14) are worse than the corresponding bounds used when proving
(6.7.1) by a factor 1/|w− z| or 1/min{1, |w− z|}, so the bound in (6.7.15) is worse than (6.7.10) by that
same amount since each term in Leibniz’s rule contains only one derivative.)

The rest of the proofs of (6.7.2) and (6.7.3) proceed as for (6.7.1). �

The following lemma applies the preceding lemma to give local information on forms of type (6.3.1).

Lemma 6.8. Let V ′′ b V ′ b V be open subsets of Cd with d ≥ 1 and V ′′ convex. Let 1, U , and
π : WV → V × V be as in Lemma 6.7. Let α, β, and γ be smooth (d − 1, d − 1)-forms on U such that

γ = (− log|z−w|2)α+β (6.8.1)

at all (w, z) ∈U , and such that π∗α and π∗β extend to smooth forms on WV . Let τ : (Gr1 T V )× V →
V × V , ψ , and χγ : τ−1(U )→ C be as in Lemma 6.5. Then there exist real constants r0 ∈ (0, 1], c2,
and c3, depending only on V ′′, V ′, ψ , α, and β, such that the bound

|χγ (w, H, z)−χγ (w, H, z′)| ≤max
{

c2+ c3(− log ρ)
ρ2d−1 ,

c2+ c3(− log ρ ′)
(ρ ′)2d−1

}
|z− z′|

holds for all (w, H) ∈ Gr1 T V and all z, z′ ∈ V ′′ such that w ∈ V ′ \ {z, z′}, where

ρ =min{r0, |z−w|} and ρ ′ =min{r0, |z′−w|}.

Proof. Fix r0 > 0 such that r0 ≤ 1 and r0 is at most the distance between V ′′ and Cd
\ V ′.

Let w, H , z, and z′ be as in the statement of the lemma. We may assume that |z−w| ≤ |z′−w|. Then
ρ ≤ ρ ′.

Let B be the open ball of radius ρ centered at w.
We first claim that there is a piecewise smooth path from z to z′ of length at most (π/2)|z− z′| and

lying entirely in V ′ \B. Indeed, start with the straight-line path from z to z′. It lies entirely in V ′′. If it
does not pass through B, then we are done. Otherwise, replace the segment in B with a path along a great
circle on ∂B of minimal length that joins the endpoints of that segment. This increases the length of that
segment by a factor of at most π/2, so the revised path has length at most (π/2)|z− z′|. Also, no point
on the great circle is further than ρ ≤ r0 from a point on the original line segment, so the revised path
stays entirely in V ′. (This rerouting can take place within a plane in Cd

= R2d that contains the three
points w, z, and z′.)

Let y : [0, `] → V ′ \B be this path, parametrized by arc length. It will then suffice to show that∣∣∣∣ d
dt
χγ (w, H, y(t))

∣∣∣∣≤ 2
π
·

c2+ c3(− log ρ)
ρ2d−1 (6.8.2)

at smooth points of the path, since that would give

|χγ (w, H, z)−χγ (w, H, z′)| ≤
c2+ c3(− log ρ)

ρ2d−1 |z− z′|.
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To see (6.8.2), let χα and χβ be as in Lemma 6.5. Then

χγ (w, H, y)= (− log| y−w|2)χα(w, H, y)+χβ(w, H, y)

for all y ∈ V . Then (6.8.2) follows from the bounds (6.7.1)–(6.7.3) applied to χα and χβ , together with
the inequality |(d/dt)(− log| y(t)−w|)| ≤ 1/ρ at smooth points of the path. �

This can be translated to a result on the complex manifold X .

Corollary 6.9. Let X be a smooth complex projective variety of dimension d ≥ 1. Let ψ be a positive
smooth (d − 1, d − 1)-form on X. Let (U, φ) be a coordinate chart on X , and let U ′′ bU be a nonempty
open subset such that φ(U ′′) is convex. Then there is a measurable function f : X ×U ′′→ [0,∞] such
that

(i) for all ξ ∈ κ(X)∗, the inequality∣∣− log|ξ(x)| + log|ξ(x ′)|
∣∣≤ |φ(x)−φ(x ′)|

2

∑
D

|nD|

∫
Dreg

( f (w, x)+ f (w, x ′)) ·ψ(w) (6.9.1)

holds for all x, x ′ ∈U ′′, where (ξ)=
∑

D nD D as in Proposition 6.3(c); and

(ii) there exists a constant c4, depending only on X , γ , ψ , U , U ′′, and φ, such that∫
U ′′

f (w, x) dφ∗µ(x)≤ c4 (6.9.2)

for all w ∈ X , where µ is the standard measure on Cd .

Proof. Let g1 be as in Proposition 6.3, write γ = g1, and let χγ be as in Lemma 6.5 (applied with
M1 = M2 = X and α = γ ).

We first claim that there exists a function f for which the inequality

|χγ (w, H, x)−χγ (w, H, x ′)| ≤ 2 max{ f (w, x), f (w, x ′)}|φ(x)−φ(x ′)| (6.9.3)

holds for all w ∈ X and all x, x ′ ∈U ′′ \ {w}.
Pick an open subset U ′ such that U ′′ bU ′ bU . Let τ1 : Gr1 T X→ X be as in Lemma 6.5.
Note that

χ(φ−1)∗γ (φ(w), H, φ(x))= χγ (w, H, x) (6.9.4)

for all (w, H) ∈ τ−1
1 (U ) and all x ∈U \{w}, and that (φ−1)∗γ is of the form (6.8.1) (using the fact that if

s and ‖·‖ are as in Proposition 6.3 then the function (w, z) 7→ − log‖s(φ−1(w), φ−1(z))‖2+ log|z−w|2

extends to a smooth function on φ(U )×φ(U )).
Then, by Lemma 6.8, there are real constants r0 > 0, c2, and c3, such that, letting

f (w, x)=
c2+ c3(− log min{r0, |φ(x)−φ(w)|})

2 min{r0, |φ(x)−φ(w)|}2d−1

for all w ∈U ′ and all x ∈U ′′ \ {w}, (6.9.3) holds whenever w ∈U ′.
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Since the set τ−1
1 (X \U ′)×U ′′ is compact and χγ is smooth on an open neighborhood of this set,

there is a constant c4 such that

|Dz((w, H, z) 7→ χγ (w, H, φ−1(z)))| ≤ c4

for all (w, H) ∈ τ−1
1 (X \U ′) and all z ∈ φ(U ′′). Here Dz means the vector consisting of all partial

derivatives in the coordinates of z. Then, letting

f (w, x)= c4

for all w /∈U ′, it now follows that (6.9.3) holds without additional restrictions on w.
By (6.3.3), (6.6.1), and (6.9.3), we then have

2
∣∣− log|ξ(x)| + log|ξ(x ′)|

∣∣= ∣∣∣∣∑
D

nD(gD(x)− gD(x ′))
∣∣∣∣

≤

∑
D

|nD|

∫
Dreg

|χγ (σDreg,1(w), x)−χγ (σDreg,1(w), x ′)| ·ψ(w)

≤ 2|φ(x)−φ(x ′)|
∑

D

|nD|

∫
Dreg

max{ f (w, x), f (w, x ′)} ·ψ(w),

and this gives (6.9.1).
Finally, (6.9.2) follows from the fact that φ(U ′′) is bounded and that the integrals∫

Dd

dµ(z)
|z|2d−1 and

∫
Dd

log|z|
|z|2d−1 dµ(z)

converge. �

The next lemma combines Corollaries 6.6 and 6.9 to show that − log|ξ | obeys a Lipshitz condition
after removing a set of arbitrarily small (but nonzero) measure, with prescribed uniformities.

We start with a definition.

Definition 6.10. Let X be a smooth projective variety of dimension d ≥ 1, and let M be an ample line
sheaf on X :

(a) For all divisors D on X , let

degM D = c1(M )·(d−1)
· D.

(b) For all ξ ∈ κ(X)∗, write (ξ)=
∑

D nD D as in Proposition 6.3(c). Then we let

degM ξ = 1
2

∑
D

|nD| degM D. (6.10.1)

If, moreover, X is a variety over C and if M is a smoothly metrized line sheaf on X such that Mfin is
ample, then degM is defined to be degMfin

in the above two contexts.
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Remark 6.11. Let X , M , and ξ be as above. Then the divisors

(ξ)0 :=
∑

D

max{0, nD}D and (ξ)∞ :=
∑

D

max{0,−nD}D

are linearly equivalent, so
degM ξ = degM (ξ)∞. (6.11.1)

In particular, if X =P1 and M =O(1), then degM ξ coincides with the degree of ξ as a rational function.

Remark 6.12. Let X be a smooth complex projective variety of dimension d ≥ 1, let M be a smoothly
metrized line sheaf on X such that Mfin is ample, and let D be a prime divisor on X . Then

degM D =
∫

D
c1(‖·‖M )

∧(d−1)
=

∫
Dreg

c1(‖·‖M )
∧(d−1). (6.12.1)

Therefore if ξ ∈ κ(X)∗, then by (6.10.1)

degM ξ = 1
2

∑
D

|nD|

∫
Dreg

c1(‖·‖M )
∧(d−1). (6.12.2)

Lemma 6.13. Let X , U , U ′′ and φ be as in Corollary 6.9, and let M be a smoothly metrized line sheaf
on X with positive metric. Then for all ε1 > 0 there is a constant c5 such that the following is true. For
each ξ ∈ κ(X)∗ there is a closed subset T of U ′′ such that µ(φ(T ))≤ ε1 and such that the inequality∣∣− log|ξ(x)| + log|ξ(x ′)|

∣∣≤ c5(degM ξ)|φ(x)−φ(x ′)| (6.13.1)

holds for all x, x ′ ∈U ′′ \ T .

Proof. We apply Corollary 6.9 with ψ = c1(‖·‖M )
∧(d−1) (note that ψ is positive by Proposition 1.5(a)).

This gives a function f : X ×U ′′→ [0,∞] and a constant c4 that satisfy (6.9.1) and (6.9.2). Let

c5 =
4c4

ε1
.

Let ξ ∈ κ(X)∗, and write (ξ) =
∑

D nD D as in Proposition 6.3(c). By (6.9.1), it then suffices to
construct a suitable set T such that∑

D

|nD|

∫
Dreg

( f (w, x)+ f (w, x ′)) ·ψ(w)≤ c5 degM ξ

for all x, x ′ ∈U ′′ \ T . For this, in turn, it suffices to find T such that∑
D

|nD|

∫
Dreg

f (w, x) ·ψ(w)≤
c5

2
degM ξ (6.13.2)

for all x ∈U ′′ \ T .
Let g : U ′′→ [0,∞] be the function defined by

g(x)=
∑

D

|nD|

∫
Dreg

f (w, x) ·ψ(w).
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Then (6.13.2) holds with

T =
{

x ∈U ′′ : g(x)≥
c5

2
degM ξ

}
.

It remains only to show that µ(φ(T ))≤ ε1. Indeed, by Tonelli’s theorem, (6.9.2), and (6.12.2), we have∫
U ′′

g(x) dφ∗µ=
∑

D

|nD|

∫
x∈U ′′

∫
w∈Dreg

f (w, x) ·ψ(w) dφ∗µ(x)

=

∑
D

|nD|

∫
w∈Dreg

∫
x∈U ′′

f (w, x) dφ∗µ(x) ·ψ(w)

≤

∑
D

|nD|

∫
Dreg

c4ψ

= 2c4 degM ξ

=
ε1c5

2
degM ξ.

Then µ(φ(T ))≤ ε1 by Lemma 6.1. �

Coordinate charts as in Corollary 6.9 and Lemma 6.13 will now be used to obtain global results on X ,
via the following construction.

Let X be a smooth complex projective variety of dimension d ≥ 1. Since X is compact, there exists a
finite collection

{(Ui , φi ,U ′′i ) : i = 1, . . . , n} (6.14)

with U ′′1 , . . . ,U
′′
n covering X , such that for each i , (Ui , φi ) is a coordinate chart on X , U ′′i b Ui is a

nonempty open subset, and φi (U ′′i ) is convex.
Let M be a smoothly metrized line sheaf on X with positive metric, and let θ = c1(‖·‖M )

∧d . This is a
positive (d, d)-form by Proposition 1.5(a), so it defines a measure µθ on X . For all i , the measures µθ
and φ∗i µ on Ui are related by µθ = ρi ·φ

∗

i µ, where ρi : Ui → R>0 is smooth. Since U ′′i is compact, there
are constants c6,i and c7,i such that

c6,iφ
∗

i µ≤ µθ ≤ c7,iφ
∗

i µ (6.15)

on U ′′i .
This construction then leads to the main result of this section.

Proposition 6.16. Let X be a smooth complex projective variety of dimension d ≥ 1, let M be a smoothly
metrized line sheaf on X with positive metric, let θ = c1(‖·‖M )

∧d , and let µθ be the corresponding
measure on X. Then, for all ε2 > 0 and ε3 > 0 there is a finite collection of subsets C1, . . . ,C3 of X such
that

⋃
l Cl = X and such that the following is true. For each ξ ∈ κ(X)∗ there is a measurable subset T of

X such that µθ (T )≤ ε2 and such that∣∣− log−|ξ(x)| + log−|ξ(x ′)|
∣∣≤ ε3 degM ξ (6.16.1)

for all x, x ′ ∈ Cl \ T and all l = 1, . . . , 3.
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Proof. Choose triples (Ui , φi ,U ′′i ) as in (6.14), and fix for now an index i . Let c7,i be as in (6.15).
By Lemma 6.13, there is a constant c5,i such that for each ξ ∈ κ(X)∗ there is a subset Ti ⊆U ′′i such

that µ(φi (Ti ))≤ ε2/nc7,i and such that (6.13.1) holds for all x, x ′ ∈U ′′i \ Ti .
Choose subsets Ci,1, . . . ,Ci,3i of U ′′i such that

⋃
l Ci,l = U ′′i and such that φ(Ci,l) has diameter at

most ε3/c5,i for all l. Let ξ ∈ κ(X)∗. The function f (y)=min{0, y} satisfies | f (y)− f (y′)| ≤ |y− y′|
for all y, y′ ∈ R. Combining this with (6.13.1) and the above diameter bound, we have∣∣− log−|ξ(x)| + log−|ξ(x ′)|

∣∣≤ ∣∣− log|ξ(x)| + log|ξ(x ′)|
∣∣

≤ c5,i (degM ξ)|φ(x)−φ(x ′)|

≤ ε3 degM ξ

for all l = 1, . . . , 3i and all x, x ′ ∈ Ci,l \ Ti , where Ti is the subset chosen above for the given ξ .
Now, letting i vary, let C1, . . . ,C3 be the collection of all Ci,l . Given ξ as above, let T =

⋃
i Ti ; then

µθ (T )≤
n∑

i=1

c7,iµ(φi (Ti ))≤

n∑
i=1

ε2

n
= ε2,

and (6.16.1) holds for T . �

7. Reduction to simultaneous approximation: The excluded set T

Proposition 6.16 in the previous section involved excluding a set T , which can be chosen to have arbitrarily
small measure. This section provides the key estimate needed in order to show that excluding this set
does not affect the diophantine estimates excessively.

7.1. Throughout this section, X is a smooth complex projective variety of dimension d ≥ 1, M is a
smoothly metrized line sheaf on X with positive metric, θ = c1(‖·‖M )

∧d , ψ = c1(‖·‖M )
∧(d−1), and µθ is

the measure on X associated to θ .

We start with some definitions.

Definition 7.2. Let

degM X = c1(Mfin)
·d
=

∫
X
θ,

and let

h X (ξ)=

∫
X
− log−|ξ |2 · θ

for all ξ ∈ κ(X)∗.

The main result of this section is then the following.

Proposition 7.3. Let X , d , M , θ , and µθ be as in 7.1. Then for all ε4 > 0 there is an ε5 > 0 such that the
inequality ∫

T
− log−|ξ |2 · θ ≤ ε4 degM ξ +

µθ (T )
degM X

(2h X (ξ)+ c8 degM ξ) (7.3.1)
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holds for all ξ ∈ κ(X)∗ and all measurable T ⊆ X with µθ (T )≤ ε5. Here c8 is a constant that depends
only on X and M .

To prove the proposition, we write

− log|ξ |2 =
∑

D

nDgD + cξ (7.4)

for all ξ ∈ κ(X)∗ as in (6.3.3), and bound the integrals of each term on the right-hand side separately.

Lemma 7.5. Let (U, φ) be a coordinate chart on X , and let U ′′ bU be a nonempty open subset. Then
for all ε6 > 0 there is an ε7 > 0 such that the following is true. Let ξ ∈ κ(X)∗, and write (ξ)=

∑
D nD D

in the notation of (7.4). Then for all measurable subsets T ⊆U ′′ such that µ(φ(T ))≤ ε7, we have∑
D

nD

∫
T

gD(x) dφ∗µ(x)≤ ε6 degM ξ. (7.5.1)

Proof. Let γ = g1 and let χγ be as in Lemma 6.5. By (6.6.1) and Tonelli’s theorem, (7.5.1) is equivalent
to ∑

D

nD

∫
Dreg

∫
T
χγ (σDreg,1(w), x) dφ∗µ(x) ·ψ(w)≤ ε6 degM ξ. (7.5.2)

To prove this, it suffices to show that the inequality∫
T
|χγ (w, H, x)| dφ∗µ(x)≤ ε6

2
(7.5.3)

holds for all w ∈ X , all H , and all T ⊆U ′′ with µ(φ(T ))≤ ε7 (where ε7 is to be chosen later). Indeed,
integrating (7.5.3) and applying (6.12.2) implies (7.5.2).

To show (7.5.3), choose an open subset U ′⊆U such that U ′′bU ′bU , and let V =φ(U ), V ′=φ(U ′),
and V ′′ = φ(U ′′). Fix r0 ∈ (0, 1] such that r0 is at most the distance between V ′′ and Cd

\ V ′. By (6.9.4)
and the fact that (φ−1)∗γ is of the form (6.8.1), we obtain from (6.7.1) that there are constants c and c′,
depending only on X , γ , ψ , U , U ′, U ′′, φ, and r0, such that

|χγ (w, H, x)| ≤
c+ c′(− log ρ)

ρ2d−2 (7.5.4)

for all w ∈U ′, all H , and all x ∈U ′′ \ {w}, where

ρ =min{r0, |φ(w)−φ(x)|}.

We may assume that c, c′ ≥ 0.
Next, we claim that for all ε6 > 0 there is an ε7 > 0 such that, for all T̃ ⊆ V ′′ with µ(T̃ )≤ ε7 and for

all w ∈ V ′, we have ∫
T̃

c+ c′(− log min{r0, |w− z|})
min{r0, |w− z|}2d−2 dµ(z)≤

ε6

2
. (7.5.5)

Basically, this follows from the fact that the integrand is a function of w− z, and that the latter function
is locally L1.
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In more detail, let Dd
r = {z ∈ Cd

: |z|< r}. The integral in (7.5.6) converges for all r > 0; therefore
there is a number r > 0 such that∫

Dd
r

c+ c′(− log min{r0, |z|})
min{r0, |z|}2d−2 dµ(z)≤

ε6

2
. (7.5.6)

Pick such an r and let ε7 = µ(D
r
d). Then∫

T̃

c+ c′(− log min{r0, |z|})
min{r0, |z|}2d−2 dµ(z)≤

∫
Dd

r

c+ c′(− log min{r0, |z|})
min{r0, |z|}2d−2 dµ(z)≤

ε6

2

for all T̃ ⊆ Cd with µ(T̃ )≤ ε7. This then gives (7.5.5) by translation.
Combining (7.5.5) with (7.5.4) then gives (7.5.3) for all w ∈U ′.
Next consider w /∈U ′. Let τ1 : Gr1 T X→ X be as in Lemma 6.5, and let c′′ be the maximum of |χγ |

over the compact set τ−1
1 (X \U ′)×U ′′. We then have∫

T
|χγ (w, H, x)| dφ∗µ(x)≤ c′′ε7

for all w ∈ X \U ′, all H , and all T ⊆U ′′ for which µ(φ(T ))≤ ε7.
Assume now that ε7 has been chosen so that c′′ε7 ≤ ε6/2. Then (7.5.3) holds also for all w /∈U ′, so it

holds for all w ∈ X . �

The following lemma translates the above lemma into the global setting.

Lemma 7.6. For all ε4 > 0 there is an ε5 > 0 such that the following is true. Let ξ ∈ κ(X)∗, and write
(ξ) =

∑
D nD D in the notation of (7.4). Then for all measurable subsets T ⊆ X such that µθ (T ) ≤ ε5,

we have ∑
D

nD

∫
T

gD(x) dµθ (x)≤ ε4 degM ξ. (7.6.1)

Proof. Choose triples (Ui , φi ,U ′′i ) as in (6.14), and fix for now an index i . Let c6,i and c7,i be as in (6.15).
By Lemma 7.5 there is an ε7,i > 0 such that (7.5.1) holds with ε6 = ε4/nc7,i for all T ⊆ U ′′i with

µ(φi (T ))≤ ε7,i and all ξ ∈ κ(X)∗. By (7.5.1) and (6.15),∑
D

nD

∫
T

gD(x) dµθ (x)≤
ε4

n
degM ξ

for all such T and ξ .
Now let

ε5 = min
1≤i≤n

c6,iε7,i .

Let T be a measurable subset of X with µθ (T )≤ ε5. By (6.15), we have

µ(φi (T ∩U ′′i ))≤ ε5/c6,i ≤ ε7,i
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for all i , and therefore ∑
D

nD

∫
T∩U ′′i

gD(x) dµθ (x)≤
ε4

n
degM ξ

holds for all ξ and all i . Summing over i then gives (7.6.1). �

The next step in proving Proposition 7.3 is to find an upper bound for cξ .
To find this bound, we first find an upper bound for

c′ξ :=
1

degM X

∫
X
− log|ξ |2 · θ (7.7)

(this is the average value of − log|ξ |2 over X ).

Lemma 7.8. Let ξ ∈ κ(X)∗. Then

c′ξ ≤
2

degM X
h X (ξ).

Proof. Let ξ0 = ec′ξ /2ξ , so that − log|ξ(x)|2 =− log|ξ0(x)|2+ c′ξ and therefore∫
X
− log|ξ0|

2
· θ = 0.

Hence

h X (ξ0)=

∫
X
− log−|ξ0|

2
· θ =

∫
X

log+|ξ0|
2
· θ. (7.8.1)

Let λ(x)=− log|ξ0(x)|2 for all x ∈ X outside of the support of the principal divisor (ξ0)= (ξ), and for
t ∈ R let

f (t)=
∫

X
max{0, λ+ t} · θ.

Then h X (ξ)= f (c′ξ ), so it suffices to show that

f (t)≥
degM X

2
t (7.8.2)

for all t ∈ R.
Note that f is continuous, and is differentiable outside a countable set. Also

f ′(t)= µθ ({x ∈ X : λ(x)+ t ≥ 0}) (7.8.3)

wherever f ′(t) is defined. By abuse of notation, we use (7.8.3) to extend f ′ to a function on all of R.
Note that f ′ is an increasing function of t , so f is concave upward. Also

lim
t→−∞

f (t)= lim
t→−∞

f ′(t)= 0 and lim
t→∞

f ′(t)= degM X.

Let

β = sup
{

t : f ′(t)≤
degM X

2

}
.

Then, by concavity, it suffices to show that (7.8.2) holds when t = β.
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This is trivial when β ≤ 0, so assume that β > 0.
We have

µθ ({x : λ(x)+β > 0})= lim
n→∞

f ′
(
β −

1
n

)
≤

degM X
2
;

hence

µθ ({x : log|ξ0(x)|2 ≥ β})= µ({x : λ(x)≤−β})≥
degM X

2
.

Then, by (7.8.1) and trivial properties of integration,

f (β)≥ f (0)= h X (ξ0)=

∫
X

log+|ξ0(x)|2 · θ ≥
degM X

2
β.

�

To bound cξ , it then suffices to compare cξ and c′ξ .

Lemma 7.9. There is a constant c8, depending only on X and M , such that

|c′ξ − cξ | ≤
c8 degM ξ

degM X

for all ξ ∈ κ(X)∗.

Proof. Let V ′′ b V ′ b V , γ , and χγ be as in Lemma 6.8. By (6.8.1) and (6.7.1),

|χγ (w, H, z)| ≤ O
(

max{1,− log|z−w|}
|z−w|2d−2

)
for all w ∈ V ′′ and all z ∈ V ′ \ {w}, where the implicit constant is independent of z and w. Therefore∫

V ′
|χγ (w, H, z)| dµ(z)≤ O(1)

for all w ∈ V ′′ and all H , uniformly in w and H .
Let U ′′bU ⊂ X and φ : U→Cd be as in Corollary 6.9, let γ and χγ be as in the proof of Corollary 6.9,

and let U ′ be an open subset of X with U ′′ bU ′ bU . Then, by (6.15),∫
U ′
|χγ (w, H, x)| · θ(x)≤ O(1)

for allw∈U ′′ and all H , uniformly inw and H . A standard compactness argument on τ−1
1 (U ′′)×(X \U ′)

gives a similar bound on
∫

X |χγ (w, H, x)| · θ(x) for all w ∈U ′′ and all H .
Applying this bound to all charts in a finite set of charts as in (6.15) then gives a constant c8 such that∫

X
|χγ (w, H, x)| · θ(x)≤

c8

2
(7.9.1)

for all w ∈ X and all H .
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By (7.7), (7.4), (6.6.1), Tonelli’s theorem, (7.9.1), and (6.12.2), we then have

|c′ξ − cξ | =
1

degM X

∣∣∣∣∫
X

∑
D

nDgD · θ

∣∣∣∣
=

1
degM X

∣∣∣∣∫
X

(∑
D

nD

∫
Dreg

χγ (σDreg,1(w), x) ·ψ(w)
)
· θ

∣∣∣∣
≤

1
degM X

∑
D

|nD|

∫
Dreg

∫
X

∣∣∣∣χγ (σDreg,1(w), x)
∣∣∣∣ · θ(x) ·ψ(w)

≤
1

degM X

∑
D

|nD|

∫
Dreg

c8

2
·ψ(w)

=
c8 degM ξ

degM X
. �

The proof of Proposition 7.3 is then a matter of combining these lemmas, as follows.

Proof of Proposition 7.3. Let ξ ∈ κ(X)∗, and let T be as in the statement of the proposition. Let
T ′ = {x ∈ T : |ξ(x)|< 1}. Then µθ (T ′)≤ µθ (T ) and∫

T ′
− log|ξ |2 · θ =

∫
T
− log−|ξ |2 · θ,

so instead of (7.3.1) it will suffice to prove∫
T
− log|ξ |2 · θ ≤ ε4 degM ξ +

µθ (T )
degM X

(2h X (ξ)+ c8 degM ξ) (7.10)

for all T as in the proposition.
Given ε4 > 0, let ε5 > 0 be as in Lemma 7.6. Then (7.10) follows from (7.4) and Lemmas 7.6, 7.8

and 7.9. �

8. Reduction to simultaneous approximation: Arithmetic

This section translates Propositions 6.16 and 7.3 into the arithmetic setting, and proves a result on reduction
to simultaneous approximation (Proposition 8.12) that will be sufficient to prove Roth’s theorem.

Recall from 4.1 that K is an arithmetic function field, that M = (B;M ) is a (big) polarization of K ,
and that S ⊆ MK is a subset of finite measure. Also recall from 5.1–5.4 that S contains all archimedean
places of K , that B is generically smooth, and that M is ample with positive metric. Finally, let d be the
transcendence degree of K over Q.

Let F be the algebraic closure of Q in K (i.e., the set of all elements of K that are algebraic over Q).
It is a number field (by [Lang 2002, Chapter VIII, Exercise 4] it is finitely generated over Q, and by
definition it is algebraic over Q; hence [F :Q]<∞).
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Since B is normal and OF is integral over Z, the canonical morphism B→ Spec Z factors uniquely
through a morphism π : B → Spec OF . Also, we write BF = B ×OF F , and if L is a continuously
metrized line sheaf on B then LF will denote the pull-back of Lfin to BF .

For any embedding σ : F→ C, we let Cσ denote the field C, viewed as an extension field of F via σ ,
and let Bσ = (BF ×F Cσ )

an. We then have

B(C)=
∐

σ : F→C

Bσ .

By [EGA IV2 1965, EGA IV, 4.5.10], BF is geometrically integral over F . Therefore the schemes
BF ×F Cσ are integral for all σ , and the Bσ correspond to the irreducible components of B×Z C.

Let L be a continuously metrized line sheaf on B. For all σ : F ↪→C, we let Lσ denote the restriction
LC|Bσ . Then, for example, a global section of L is strictly small if and only if its pull-back to Lσ is
strictly small for all σ .

Definition 8.1. If d ≥ 1 then for all ξ ∈ K ∗, we define

deg ξ = degM ξ = degMF
(ξ)∞|BF , (8.1.1)

where degMF
(ξ)∞|BF is as in Definition 6.10. (In the latter, note that the intersection degree is taken

relative to F .)
For all d ≥ 0 we also let

deg B = degM B = µ(M∞K ). (8.1.2)

For all σ : F ↪→ C, let Mσ denote the pull-back of M to Bσ , and for all ξ ∈ K ∗ let ξσ denote the
pull-back of ξ to an element of κ(Bσ ). Then

deg ξ = degMσ
ξσ for all σ . (8.2)

Also, µθ in 7.1 coincides with µ on Bσ ⊆ B(C) for all σ . Therefore

µ(Bσ )= degMσ
Bσ = c1(MF )

·d
=
µ(M∞K )
[F :Q]

=
deg B
[F :Q]

(8.3)

by (3.4) and (8.1.2).
Next we show that deg ξ is bounded by a linear function of the height.

Lemma 8.4. If d ≥ 1 then

deg ξ � hK (ξ) (8.4.1)

for all ξ ∈ K , where the implicit constant depends only on K and the polarization.

Proof. For all a ∈ R let Va be the line sheaf on B given by Definition 2.11. By Proposition 2.12, there is
an ε > 0 such that N :=M ⊗V−ε is ample. Let h′K denote the height on K defined using the polarization
M ′ := (B;N ).
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As noted below (3.6),

h′K (ξ)≥ 0 (8.4.2)

for all ξ ∈ K .
Since c1(‖·‖V−ε )= 0, the measure µ on M∞K is the same for M ′ as for the polarization M = (B,M ).

Now consider Y ∈ B(1). Since c1(V−ε |Y ) · c1(V−ε |Y )= 0 by (1.11.4), we have

hM ′(Y )− hM(Y )= d c1(M |Y )
·(d−1)

· c1(V−ε |Y )

= d c1(M |Y )
·(d−1)

· (0,−2ε)

=−εd
∫

YC

c1(‖·‖M )
∧(d−1)

by (1.7). If Y is vertical then this is zero; otherwise it equals −εd[F :Q] degM Y by (6.12.1) and (8.2).
By (3.6), (8.1.1), and (8.4.2), we then have

hK (ξ)= h′K (ξ)+ εd[F :Q] deg ξ � deg ξ. �

Note that µθ coincides with µ on Bσ ⊆ B(C). Therefore, by (3.6) and the product formula (3.5),∑
σ : F↪→C

hBσ (ξ)≤ hK (1/ξ)= hK (ξ) (8.5)

for all ξ ∈ K ∗, where hBσ is as in Definition 7.2.
Also, we note that

hK (ξ ±α)≤ hK (ξ)+ hK (α)+ (log 2) deg B (8.6)

for all ξ, α ∈ K . Indeed, this follows from the elementary inequality

max{1, ‖ξ ±α‖v} ≤max{1, ‖ξ‖v} ·max{1, ‖α‖v} ·
{

2 if v is archimedean,
1 if v is nonarchimedean,

together with (3.6) and (8.1.2).
Finally, we note the closely related inequality

‖α1+ · · ·+αN‖v ≤max{‖α1‖v, . . . , ‖αN‖v} ·

{
N if v is archimedean,
1 if v is nonarchimedean

(8.7)

for all α1, . . . , αN ∈ K and all N ∈ Z>0. This inequality is often used in diophantine geometry.
The following lemma adapts Proposition 7.3 to K and its polarization.

Lemma 8.8. For each ε8 > 0 there is an ε5 > 0 such that∫
T
− log−‖ξ‖v dµ(v)≤ ε8hK (ξ) (8.8.1)

holds for all ξ ∈ K ∗ and all measurable T ⊆ M∞K for which µ(T )≤ ε5.
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Proof. If d = 0 then M∞K is a finite set and µ is the counting measure, so the result is trivial with ε5 =
1
2 .

Now assume that d ≥ 1.
For each σ : F ↪→ C, Proposition 7.3, (8.2), and (8.3) imply that for each ε4 > 0 there is an ε5 > 0

such that ∫
T∩Bσ
− log−‖ξ‖v dµ(v)≤

ε4

2
deg ξ +

µ(T ∩ Bσ )
µ(Bσ )

(
hBσ (ξ)+

c8

2
deg ξ

)
(8.8.2)

holds for all ξ ∈ K ∗ and all measurable T ⊆ B(C) with µ(T ∩ Bσ )≤ ε5.
Let c′ be the implicit constant in (8.4.1). Choose ε4 > 0 and shrink ε5 if necessary so that

c′ε4[F :Q]
2

+
ε5[F :Q]

deg B

(
1+

c8

2
c′
)
≤ ε8.

Summing (8.8.2) over all σ then gives (8.8.1), by (8.3) and (8.5). �

The following proposition gives a similar adaptation of Proposition 6.16.

Proposition 8.9. For all ε9 > 0 and all ε10 > 0 there is a cover of S by measurable subsets C1, . . . ,C3,
such that the following condition is true. For all ξ ∈ K ∗ there is a measurable subset T ⊆ M∞K such that
µ(T )≤ ε9, and such that ∣∣− log−‖ξ‖v + log−‖ξ‖v′

∣∣≤ ε10hK (ξ) (8.9.1)

for all v, v′ ∈ Cl \ T and all l = 1, . . . , 3.

Proof. If d = 0 then S is a finite set, and we can let C1, . . . ,C3 be disjoint one-element sets whose union
is S. Then the proposition holds trivially with T =∅ for all ξ .

Therefore, assume from now on that d ≥ 1.
Let c′ be the implicit constant in (8.4.1). Applying Proposition 6.16 with X = Bσ for all σ , and with

ε2 = ε9/[F :Q] and ε3 = ε10/c′, gives a cover of B(C) by measurable subsets C0,1, . . . ,C0,30 , such that
for all ξ ∈ K ∗ there is a measurable subset Tξ of B(C) such that µ(Tξ )≤ ε9, and such that∣∣− log−|ξ(x)| + log−|ξ(x ′)|

∣∣≤ ε10hK (ξ)

for all x, x ′ ∈ C0,l \ Tξ and all l = 1, . . . , 30.
Let Cl = C0,l ∩ S for all l = 1, . . . , 30, and let C30+1, . . . ,C3 be disjoint one-element sets whose

union is S ∩M0
K . Then C1, . . . ,C3 are measurable subsets of S that cover S. Moreover (8.9.1) holds for

each ξ ∈ K ∗, with T = Tξ ∩ S. �

We are now ready to prove the main result of this section. The following lemma carries out the main
pigeonhole argument. It is phrased in more general terms in order to use it in later work. Later in this
section it will be applied with 4⊆ K and λξ, j (v)=− log−‖ξ −α j‖v.

Lemma 8.10. Let 4 be a set, let (S, 6,µ) be a measure space of finite measure, let h : 4→ [h0,∞) be
an unbounded function with h0 > 0, let q > 0 be an integer, let λξ,1, . . . , λξ,q : S→ R≥0 be measurable
functions for all ξ ∈4, let c9 ∈ R≥0, and let ε10 > 0. Assume that these satisfy the following hypotheses:
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(i) For all ξ ∈4 and all j = 1, . . . , q ,∫
S
λξ, j dµ≤ h(ξ)+ c9. (8.10.1)

(ii) For all ε9 > 0 there is a cover of S by subsets C1, . . . ,C3 ∈6 such that for each ξ ∈4 there is a set
Tξ ∈6 with µ(Tξ )≤ ε9, such that

|λξ, j (v)− λξ, j (v
′)| ≤ ε10(h(ξ)+ c9)

for all j = 1, . . . , q , all v, v′ ∈ Cl \ T , and all l = 1, . . . , 3.

Then for every ε11 > 0 there is a subset 4′ ⊆4, together with subsets Tξ ∈6 for all ξ ∈4′, such that h is
unbounded on 4′, such that µ(Tξ )≤ ε11 for all ξ ∈4′, and such that∣∣∣∣λη, j (v)

h(η)
−
λζ, j (v)

h(ζ )

∣∣∣∣≤ (4+
c9

h(η)
+

c9

h(ζ )

)
ε10 (8.10.2)

for all η, ζ ∈4′, all v ∈ S \ (Tη ∪ Tζ ), and all j = 1, . . . , q.

Proof. First, we note that it suffices to prove the special case q = 1. Indeed, the general case follows
from this case by applying the special case to each of the λξ, j , with ε11 replaced by ε11/q, successively
shrinking the set 4′ for each j .

We now show the special case q = 1. Let λξ = λξ,1 for all ξ ∈4.
Let ε9 = ε11/2. By (ii) there is a cover of S by subsets C1, . . . ,C3 ∈6 such that for each ξ ∈4 there

is a subset T 0
ξ ∈6 with µ(T 0

ξ )≤ ε9 such that

|λξ (v)− λξ (v
′)| ≤ ε10(h(ξ)+ c9) (8.10.3)

for all v, v′ ∈ Cl \ T 0
ξ and all l = 1, . . . , 3.

We may assume that C1, . . . ,C3 are mutually disjoint.
For each ξ ∈4 and each l = 1, . . . , 3 for which µ(Cl) > 0, let

mξ,l = inf
{

t ∈ R : µ({v ∈ Cl : λξ (v)≥ th(ξ)})≤
µ(Cl)

2

}
.

(One can think of this as “a median value of λξ (v)/h(ξ) on Cl .”) Note that, for all ξ and l, both sets

{v ∈ Cl : λξ (v)≤ mξ,lh(ξ)} and {v ∈ Cl : λξ (v)≥ mξ,lh(ξ)} (8.10.4)

have measure at least µ(Cl)/2.
For the next step, we claim that there are constants c10,l , l = 1, . . . , 3, independent of ξ , such that

mξ,l ≤ c10,l for all ξ and l that satisfy µ(Cl ∩ T 0
ξ ) < µ(Cl)/2. Indeed, for all such ξ and l, the statement

about the second set in (8.10.4), together with (8.10.1), gives

µ(Cl)

2
mξ,lh(ξ)≤

∫
S
λξ dµ≤ h(ξ)+ c9 ≤

(
1+

c9

h0

)
h(ξ),

and the claim follows. (Note that the condition on ξ and l implies µ(Cl) > 0.)
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Next comes a pigeonhole argument.
For each ξ ∈4 let mξ be the vector in R3 whose l-th coordinate is

m′ξ,l :=
{

mξ,l if µ(Cl ∩ T 0
ξ ) < µ(Cl)/2,

0 otherwise.

Then mξ ∈
∏3

l=1[0,c10,l] for all ξ ∈4. By a pigeonhole argument, there is a vector m0
=(m0

1, . . . ,m0
3)∈R3

such that h is unbounded on the set 4′ of all ξ ∈4 for which

mξ ∈

3∏
l=1

[m0
l − ε10,m0

l + ε10]. (8.10.5)

For each ξ ∈ 4′ let Tξ be the union of T 0
ξ and all Cl for which µ(Cl ∩ T 0

ξ ) ≥ µ(Cl)/2. Then
µ(Tξ )≤ 2µ(T 0

ξ )≤ ε11.
It remains only to show that (8.10.2) holds.
To show this, let η, ζ ∈4′ and let v ∈ S \ (Tη ∪ Tζ ).
Let l be the (unique) index such that v ∈ Cl . By the definitions of Tη and Tζ , we have µ(Cl ∩ T 0

η ) <

µ(Cl)/2 and µ(Cl ∩ T 0
ζ ) < µ(Cl)/2. Therefore, by (8.10.4), there are v′ ∈ Cl \ Tη and v′′ ∈ Cl \ Tζ such

that λη(v′)≤ mη,lh(η) and λζ (v′′)≥ mζ,lh(ζ ).
By (8.10.3), the choice of v′, (8.10.5), the choice of v′′, and (8.10.3) again, we then have

λη(v)

h(η)
≤
λη(v

′)

h(η)
+

(
1+

c9

h(η)

)
ε10

≤ mη,l +

(
1+

c9

h(η)

)
ε10

≤ mζ,l +

(
3+

c9

h(η)

)
ε10

≤
λζ (v

′′)

h(ζ )
+

(
3+

c9

h(η)

)
ε10

≤
λζ (v)

h(ζ )
+

(
4+

c9

h(η)
+

c9

h(ζ )

)
ε10.

A similar inequality holds with η and ζ interchanged, and this gives (8.10.2). �

The next step gives an upper bound for the “cost” of reducing to simultaneous approximation.

Lemma 8.11. Let 4, (S, 6,µ), h, h0, λξ, j (ξ ∈ 4, j = 1, . . . , q), and c9 be as in Lemma 8.10, and
assume that the conclusion of Lemma 8.10 is true for all ε10 > 0 (hypotheses (i) and (ii) are not assumed
here). Assume also that the following hypothesis is satisfied:

(iii) For each ε8 > 0 there is an ε5 > 0 such that∫
T
λξ, j dµ≤ ε8(h(ξ)+ c9) (8.11.1)

for all j = 1, . . . , q , all ξ ∈4, and all T ∈6 with µ(T )≤ ε5.
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For all ξ ∈4 define λξ : S→ R by

λξ (v)=max{λξ,1(v), . . . , λξ,q(v)}, v ∈ S. (8.11.2)

Then, for all n ∈ Z>0, all ε′′ > 0, all c′′ ∈ R, and all rmin ∈ [1,∞), there exist ξ1, . . . , ξn ∈ 4, a subset
T ∈6, and a measurable function J : S \ T → {1, . . . , q} such that

h(ξi )

h(ξi−1)
≥ rmin for all i = 2, . . . , n (8.11.3)

and ∫
S

λξi

h(ξi )
dµ−

∫
S\T

min
1≤i ′≤n

λξi ′ ,J (v)(v)

h(ξi ′)
dµ(v)+

c′′

h(ξ1)
≤ ε′′ for all i = 1, . . . , n. (8.11.4)

Proof. Let n, ε′′, c′′, and rmin be given. We may assume that c′′ ≥ 0.
Choose ε8 > 0, ε10 > 0, and hmin > 0 such that

qε8

(
1+

c9

hmin

)
+

(
4+

2c9

hmin

)
ε10µ(S)+

c′′

hmin
≤ ε′′. (8.11.5)

Choose ε5 > 0 such that (8.11.1) holds, and let ε11 = ε5/n.
Let 4′ ⊆ 4 be as in the conclusion to Lemma 8.10. Choose ξ1 ∈ 4

′ with h(ξ1) ≥ hmin and choose
ξ2, . . . , ξn ∈4

′ to satisfy (8.11.3). Let T = Tξ1 ∪ · · · ∪ Tξn ; then µ(T )≤ ε5. Since λξ ≤ λξ,1+ · · ·+λξ,q ,
by (8.11.1) we have∫

T
λξ dµ≤

q∑
j=1

∫
T
λξ, j dµ≤ qε8(h(ξ)+ c9)≤ qε8

(
1+

c9

hmin

)
h(ξ) (8.11.6)

for all ξ ∈ {ξ1, . . . , ξn}.
Now let v ∈ S \ T . For conciseness and readability, let λi j = λξi , j (v)/h(ξi ) for all 1≤ i ≤ n and all

1≤ j ≤ q , and let ε12 = (4+ 2c9/h(ξ1))ε10. Then, by (8.10.2),

|λi j − λi ′ j | ≤ ε12 (8.11.7)

for all i, i ′ ∈ {1, . . . , n} and all j ∈ {1, . . . , q}. We then claim that there is a j ∈ {1, . . . , q} such that

max
1≤ j ′≤q

λi j ′ − min
1≤i ′≤n

λi ′ j ≤ ε12 for all i = 1, . . . , n. (8.11.8)

Indeed, this is equivalent to the existence of j such that

max
1≤i≤n

max
1≤ j ′≤q

λi j ′ − min
1≤i ′≤n

λi ′ j ≤ ε12. (8.11.9)

The first term is equal to max1≤ j ′≤q max1≤i≤n λi j ′ ; pick j such that this equals λi j for some i . If there
are more than one such values of j , choose the smallest one (this ensures that v 7→ j is a measurable
function). Then (8.11.9) reduces to

max
1≤i≤n

λi j − min
1≤i ′≤n

λi ′ j ≤ ε12,

and this follows from (8.11.7).
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Let J : S \ T → {1, . . . , q} be the function defined by letting J (v) be the above choice of j for each
v ∈ S \ T . Then, by (8.11.6), (8.11.8), the choice of ξ1, and (8.11.5),∫

S

λξi

h(ξi )
dµ−

∫
S\T

min
1≤i ′≤n

λξi ′ ,J (v)(v)

h(ξi ′)
dµ(v)+

c′′

h(ξ1)

=

∫
T

λξi

h(ξi )
dµ+

∫
S\T

(
λξi (v)

h(ξi )
− min

1≤i ′≤n

λξi ′ ,J (v)(v)

h(ξi ′)

)
dµ(v)+

c′′

h(ξ1)

≤ qε8

(
1+

c9

hmin

)
+

(
4+

2c9

h(ξ1)

)
ε10µ(S \ T )+

c′′

h(ξ1)

≤ ε′′

for all i = 1, . . . , n. This implies (8.11.4). �

The main result of this section now follows easily from Lemmas 8.10 and 8.11.

Proposition 8.12. Let α1, . . . , αq be distinct elements of K , let ε > 0, and let c ∈ R. Assume that
Theorem 4.5 is false for these values. Let n be a positive integer, let ε′ ∈ (0, ε), let c′ ∈ R, and let
rmin ∈ [1,∞). Then there exist ξ1, . . . , ξn ∈ K and mutually disjoint measurable subsets T1, . . . , Tq of S
such that

hK (ξi )

hK (ξi−1)
≥ rmin for all i = 2, . . . , n (8.12.1)

and
q∑

j=1

∫
T j

min
1≤i≤n

− log−‖ξi −α j‖v

hK (ξi )
dµ(v)≥ 2+ ε′+

c′

hK (ξ1)
. (8.12.2)

Proof. By the assumption that Theorem 4.5 is false, there is an infinite subset

4⊆ K \ {α1, . . . , αq}

such that (4.5.1) is false for all ξ ∈4, using the above choices of α1, . . . , αq , ε, and c. By Northcott’s
theorem (Theorem 3.16) we may assume that there is some h0 > 0 such that hK (ξ)≥ h0 for all ξ ∈4.
Also hK is unbounded on this set.

We will apply Lemmas 8.10 and 8.11 to this choice of 4, with h = hK , with λξ, j : S→ R given by

λξ, j (v)=− log−‖ξ −α j‖v,

and with

c9 = max
1≤ j≤q

hK (α j )+ (log 2) deg B. (8.12.3)

Note that, defining λξ =max{λξ, j : j = 1, . . . , q} as in (8.11.2), by the definition of 4 we have∫
S

λξ

hK (ξ)
dµ > 2+ ε+

c
hK (ξ)

for all ξ ∈4. (8.12.4)
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Assumption (i) of Lemma 8.10 holds, since∫
S
− log−‖ξ −α j‖v dµ(v)≤ hK

(
1

ξ −α j

)
= hK (ξ −α j )≤ hK (ξ)+ c9

by (3.6), the product formula (3.5), (8.6), and (8.12.3). Assumption (ii) holds by Proposition 8.9, and
assumption (iii) of Lemma 8.11 holds by Lemma 8.8.

Therefore Lemma 8.11 applies, and there exist ξ1, . . . , ξn ∈ 4, a measurable subset T ⊆ S, and
a measurable function J : S \ T → {1, . . . , q} such that (8.11.4) holds with ε′′ = ε − ε′ and c′′ =
c′+max{−c, 0}, and such that (8.12.1) holds.

Subtracting (8.11.4) from (8.12.4) with ξ = ξi then gives∫
S\T

min
1≤i ′≤n

λξi ′ ,J (v)(v)

h(ξi ′)
dµ(v) > 2+ ε− ε′′+

c
h(ξi )

+
c′′

h(ξ1)
for all i

= 2+ ε′+
c′

h(ξ1)
+

c
h(ξi )

+
max{−c, 0}

h(ξ1)
for all i

≥ 2+ ε′+
c′

h(ξ1)
.

Upon letting T j = J−1( j) for all j , this gives (8.12.2). �

9. Siegel’s lemma and the auxiliary polynomial

Since M is ample, work of X. Yuan and (independently) H. Chen allows one to control the number of
small global sections of M⊗m as m→∞, providing a counterpart to Axioms 1a and 1b of [Lang 1983,
Chapter 7, Section 1].

In more detail, by [Yuan 2009, Section 1.1 and Theorem 2.7] (see also [Chen 2008]), we have

lim
m→∞

h0(B,M⊗m)

md+1/(d + 1)!
= c1(M )·(d+1) > 0,

since M is ample by assumption 5.3. (Recall Definition 2.3(a) and that dim B = d + 1.)
Therefore there are constants c11 and c12, with c12 > c11 > 0, and an integer m0 (depending on c11,

c12, and M ), such that the inequality

c11md+1
≤ h0(B,M⊗m)≤ c12md+1 (9.1)

holds for all integers m ≥ m0. (Also, c11 and c12 can be taken so that c12/c11 is arbitrarily close to 1,
although this fact will not be used here.)

This estimate is sufficient for proving the following Siegel lemma for arithmetic function fields.

Theorem 9.2. Let c11, c12, and m0 be as in (9.1). Let h and b be positive integers, and let A be an M×N
matrix with entries in H 0(B,M⊗h

⊗V− log N ). Assume that b ≥ m0 and that(
1+

h
b

)d+1

<
Nc11

Mc12
. (9.2.1)

Then there is a nonzero vector v ∈ H 0(B,M⊗b
⊗Vlog 2)

N such that Av = 0 (in H 0(B,M⊗(h+b)
fin )M ).
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Proof. By (9.1),

log #H 0(B,M⊗b)N
≥ Nc11bd+1.

On the other hand, if v ∈ H 0(B,M⊗b)N then Av lies in H 0(B,M⊗(b+h))M by (8.7), and

log #H 0(B,M⊗(b+h))M
≤ Mc12(b+ h)d+1.

Therefore, by (9.2.1),

H 0(B,M⊗b)N > H 0(B,M⊗(b+h))M ,

so there are distinct vectors v1, v2 ∈ H 0(B,M⊗b)N such that Av1 = Av2. Let v = v1− v2. Then v 6= 0,
Av = 0, and

v ∈ H 0(B,M⊗b
⊗Vlog 2)

N

by (8.7), as was to be shown. �

Now we recall the index of a polynomial in K [x1, . . . , xn].

Definition 9.3. Let n, d1, . . . , dn ∈ Z>0, let P ∈ K [x1, . . . , xn] be a nonzero polynomial, and let ξ =
(ξ1, . . . , ξn) be a point in K n . Write P as a polynomial in x1− ξ1, . . . , xn − ξn:

P(x1, . . . , xn)=
∑
k∈Nn

ak(x1− ξ1)
k1 · · · (xn − ξn)

kn , (9.3.1)

with ak ∈ K for all k, where k = (k1, . . . , kn). Then the index of P at ξ with respect to d = (d1, . . . , dn)

is the number

td(P, ξ)=min
{

k1

d1
+ · · ·+

kn

dn
: ak 6= 0

}
.

Following [Lang 1983, Chapter 7, Section 3], we may express the definition of index using (repeated)
divided partial derivatives of P , as follows. The expansion (9.3.1) is just the Taylor expansion of P at ξ ,
so ak = ∂k P(ξ), where

∂k =
1

k1! · · · kn!

(
∂

∂x1

)k1

· · ·

(
∂

∂xn

)kn

.

In particular, the coefficients of ∂k P are integral multiples of the coefficients of P .
Assume from now on that for all i the degree of P with respect to xi is at most di . Then the integral

factors in question are nonnegative and bounded by(d1
k1

)
· · ·

(dn
kn

)
≤ 2d1+···+dn . (9.4)
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For any τ ∈ R, a polynomial P as above has index ≥ τ at ξ if and only if ∂k P(ξ) = 0 for all
k = (k1, . . . , kn) such that ki ≤ di for all i and

∑
i ki/di < τ . Let Jd(τ ) denote the number of such

conditions.
Following [Esnault and Viehweg 1984, Section 9], let Voln(τ ) be the Lebesgue measure of the set
{x = (x1, . . . , xn) ∈ [0, 1]n : x1+ · · ·+ xn < τ }. Then

Jd(τ )

d1 · · · dn
= Voln(τ )+ O

(
1
d1
+ · · ·+

1
dn

)
,

where the implicit constant depends only on n.
Now we introduce (as is typical of proofs of Roth’s theorem) an auxiliary polynomial. The degree

of this polynomial will be taken large, depending on a real number D which in the end will be taken
sufficiently large depending on everything else in the proof (except for things defined using D).

Proposition 9.5. Let n be a positive integer, and let τ be a positive real number such that Voln(τ ) < 1/q.
Let c11 and c12 be as in (9.1), let β be a positive real number such that(

1+
1
β

)d+1

<
c11

qc12 Voln(τ )
, (9.5.1)

and let h1, . . . , hn be positive real numbers. Then there exist a positive integer u, depending only on
α1, . . . , αq and M , and a real number D0 > 0, depending on all of the foregoing, such that the following
is true for all D ≥ D0. Let di = bD/hic for all i , let d = (d1, . . . , dn), let h = u(d1+ · · · + dn), and let
b = bβhc. Then there is a nonzero polynomial

P ∈ H 0(B,M⊗b
⊗Vlog 2)[x1, . . . , xn], (9.5.2)

of degree at most di in xi for all i , such that

td(P, (α j , . . . , α j ))≥ τ for all j = 1 . . . , q. (9.5.3)

Proof. Let E be an effective divisor on BQ such that E + (α j ) is effective for all j = 1, . . . , q . Let F be
a smoothly metrized line sheaf on B such that FQ

∼= O(E), and such that the canonical section 1E of
O(E) satisfies

‖1E‖v ≤
1
2 and |α j |v‖1E‖v ≤

1
2

for all v ∈ M∞K and all j . For all j let s j = αv1E , so that s j is a global section of F and ‖s j‖v ≤
1
2 for

all v ∈ M∞K . By [Moriwaki 2014, Proposition 5.43], there is a positive integer u such that F∨⊗M⊗u

has a nonzero strictly small global section ρ.
Now let h1, . . . , hn , D, d1, . . . , dn , d, h, and b be as in the statement of the proposition. We aim to

use Theorem 9.2 (Siegel’s lemma) to construct P , by letting the coefficients of P be the unknowns in the
linear algebra problem and using the conditions ∂k P(α j , . . . , α j )= 0 ( j = 1, . . . , q) as the equations.
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Let N be the number of terms in P and M be the number of constraints (as mentioned above). Then

N =
n∏

i=1

(di + 1) and M = q Jd(τ ).

Since N/
∏

di = 1+O
(∑

d−1
i

)
and M/

∏
di = q Voln(τ )+O

(∑
d−1

i

)
, (9.2.1) follows from (9.5.1) for

all sufficiently large D.
For all k and all j , ∂k P(α j , . . . , α j ) is a homogeneous linear form in the coefficients of P . The

coefficients of this linear form are elements of K of the form(d1
k1

)
· · ·

(dn
kn

)
α

l1+···+ln
j

with 0 ≤ ki ≤ di and 0 ≤ li ≤ di for all i = 1, . . . , n. By (9.4), multiplying these latter coefficients by
1d1+···+dn

E gives small global sections of F⊗(d1+···+dn); tensoring these with ρd1+···+dn then gives (strictly)
small sections of M⊗h . Since ρ is a strictly small section and since log N = o(D)= o(h), all of these
products lie in H 0(B,M⊗h

⊗V− log N ) for sufficiently large D.
Finally, since b grows roughly linearly in D, we have b ≥ m0 for all sufficiently large D. Therefore

Theorem 9.2 applies, and this gives the polynomial P that satisfies (9.5.2) and (9.5.3). �

10. Conclusion of the proof

The remainder of the proof of Roth’s theorem consists of choosing ξ1, . . . , ξn ∈ K , constructing an
auxiliary polynomial P , finding a lower bound for the index of P at (ξ1, . . . , ξn), and finally putting
everything together to produce a contradiction. The last step in obtaining a contradiction usually involves
Roth’s lemma. Although Roth’s lemma is almost certainly true over arithmetic function fields, here it is
more expedient to use Dyson’s lemma [Esnault and Viehweg 1984], simply because it is already proved
over all fields of characteristic zero.

We start by finding a lower bound for the index. Since this involves a polynomial whose coeffi-
cients are global sections of a line sheaf, it involves metrics on that line sheaf at all places, including
nonarchimedean places.

Definition 10.1. Let L be a smoothly metrized line sheaf on B, let s be a nonzero rational section of L ,
let v be a nonarchimedean place of K , and let Y be the prime divisor on B corresponding to v. Let nY

be the multiplicity of Y in div(s). Then we define ‖s‖v = exp(−nY hM(Y )). (Recall also that ‖s‖v at an
archimedean place v is defined using the metric of L .)

The following lemma may be regarded as an extension of the product formula (which is the case d = 0
here).

Lemma 10.2. Let b ∈ Z and let s be a nonzero rational section of M⊗b on B. Then∫
MK

− log‖s‖v dµ(v)= bc1(M )·(d+1). (10.2.1)
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Proof. Write div(s)fin =
∑

nY · Y . Then, by Lemma 1.11,

bc1(M )·(d+1)
=

∑
Y

nY c1(M |Y )
·d
−

∫
B(C)

log‖s‖ c1(‖·‖M )
∧d

=

∑
Y

nY hM(Y )−
∫

M∞K

log‖s‖v dµ(v)

=

∑
v∈M0

K

− log‖s‖v −
∫

M∞K

log‖s‖v dµ(v)

=

∫
MK

− log‖s‖v dµ(v) �

We are now ready to prove a lower bound for the index of the polynomial P constructed in Proposition 9.5
at a point ξ satisfying certain conditions. This will involve using the approximation condition (8.12.2) to
obtain bounds on ‖P(ξ)‖v for all v.

Proposition 10.3. Let n, τ , u, and D0 be as in Proposition 9.5. Let σ > 0 be a real number such that

(2+ ε′)(τ − σ) > n, (10.3.1)

let rmin ≥ 1 be a real number, and let

c′ =
n

τ − σ

(
(log 12) deg B+

q∑
j=1

hK (α j )

)
. (10.3.2)

Let ξ1, . . . , ξn be elements of K that satisfy (8.12.1) and (8.12.2) for some ε′> 0 and some T1, . . . , Tq ⊆ S.
Let hi = hK (ξi ) for all i = 1, . . . , n. Let d = (d1, . . . , dn), b, and P be as in Proposition 9.5. Then the
polynomial P also satisfies

td(P, (ξ1, . . . , ξn))≥ σ. (10.3.3)

Proof. This proof is adapted from the argument at the end of [Lang 1983, Chapter 7, Section 3].
It will suffice to show that ∂k P(ξ1, . . . , ξn)= 0 for all k = (k1, . . . , kn) ∈ Nn satisfying

k1

d1
+ · · ·+

kn

dn
< σ.

Assume by way of contradiction that k is an n-tuple that satisfies the above inequality, but that

∂k P(ξ1, . . . , ξn) 6= 0. (10.3.4)

To avoid cluttered notation, let Q = ∂k P .
Note that

td(Q, (α j , . . . , α j ))≥ τ − σ
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for all j = 1, . . . , q , and therefore ∂`Q(α j , . . . , α j ) 6= 0 only if

`1

d1
+ · · ·+

`n

dn
≥ τ − σ. (10.3.5)

We start by estimating ‖Q(ξ1, . . . , ξn)‖v for all v ∈ MK . Here we will think of the coefficients of P
as being global sections of M⊗b, having norms ≤ 2 at all archimedean places (and hence not necessarily
small sections). Coefficients of Q will then also be global sections of M⊗b, and values of Q such as
Q(ξ1, . . . , ξn) will be rational sections of M⊗b.

Let T1, . . . , Tq be as in Proposition 8.12. By shrinking T1, . . . , Tq if necessary, we may assume that

min
1≤i≤n

− log−‖ξi −α j‖v

hK (ξi )
> 0 (10.3.6)

for all v ∈ T j , j = 1, . . . , q . This does not affect (8.12.2).
First, let v be an archimedean place of K such that v ∈ T j for some j .
We consider the Taylor expansion

Q(x1, . . . , xn)=
∑
`∈3

∂`Q(α j , . . . , α j )(x1−α j )
`1 · · · (xn −α j )

`n , (10.3.7)

where 3 is the set of all n-tuples ` = (`1, . . . , `n) ∈ Nn with `i ≤ di for all i and satisfying (10.3.5).
Note that ∂`Q = ∂`∂k P , that the operator ∂`∂k takes xmi

i to
(mi−ki

`i

)(mi
ki

)
xmi−ki−`i

i , and that
(mi−ki

`i

)(mi
ki

)
is a

trinomial coefficient with mi ≤ di . Hence ∂`Q(α j , . . . , α j ) can be written as a sum of at most 2d1+···+dn

terms, each with an additional factor of at most 3d1+···+dn coming from ∂`∂k, so we have

‖∂`Q(α j , . . . , α j )‖v ≤ 2 · 2d1+···+dn · 3d1+···+dn ·max{1, ‖α j‖v}
d1+···+dn .

The Taylor expansion (10.3.7) then gives the bound

− log
‖Q(ξ1, . . . , ξn)‖v

2(12 max{1, ‖α j‖v})d1+···+dn
≥− log max

`∈3
‖(ξ1−α1)

`1 · · · (ξn −α j )
`n‖v

≥ (D+ o(D))min
`∈3

( n∑
i=1

`i

di
·
− log−‖ξi −α j‖v

hK (ξi )

)

≥ (D+ o(D))(τ − σ) min
1≤i≤n

− log−‖ξi −α j‖v

hK (ξi )
. (10.3.8)

Here we use the bound |3| ≤ 2d1+···+dn in the first step (this changes 6 to 12 in the left-hand side) and
(10.3.5) in the last step. Also, the limiting behavior of o(D) can be taken independent of k.

For nonarchimedean v ∈ T j satisfying (10.3.6), a similar argument gives

− log
‖Q(ξ1, . . . , ξn)‖v

(max{1, ‖α j‖v})d1+···+dn
≥ (D+ o(D))(τ − σ) min

1≤i≤n

− log−‖ξi −α j‖v

hK (ξi )
. (10.3.9)

Next consider archimedean v with v /∈ T1 ∪ · · · ∪ Tq .
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By bounds on binomial coefficients arising from applying ∂k to P , the norms of coefficients of Q at
archimedean places are bounded by 21+d1+···+dn . Since Q has at most 2d1+···+dn terms, we have

‖Q(ξ1, . . . , ξn)‖v ≤ 2 · 4d1+···+dn ·max{1, ‖ξ1‖v}
d1 · · ·max{1, ‖ξn‖v}

dn . (10.3.10)

Finally, for nonarchimedean v /∈ T1 ∪ · · · ∪ Tq , we have simply

‖Q(ξ1, . . . , ξn)‖v ≤max{1, ‖ξ1‖v}
d1 · · ·max{1, ‖ξn‖v}

dn . (10.3.11)

Combining (10.3.8)–(10.3.11) and (8.12.2), we then have∫
MK

− log‖Q(ξ1, . . . , ξn)‖v dµ(v)≥−
∫

M∞K

(
log 2+ (log 12)

∑
di

)
dµ(v)−

(∑
hK (α j )

)∑
di

+ (D+ o(D))(τ − σ)
(

2+ ε′+
c′

hK (ξ1)

)
−

∑
di hK (ξi ).

By (10.3.4) and Lemma 10.2, the left-hand side equals bc1(M )·(d+1). By (8.1.2) and (10.3.2), this then
becomes

bc1(M )·(d+1)
+
(τ − σ)c′

n

∑
di+(log 2) deg B ≥ (D+o(D))(τ−σ)

(
2+ε′+

c′

hK (ξ1)

)
−

∑
di hK (ξi ).

By definition of di , we have di hK (ξi )= D+o(D) for all i . Furthermore, (8.12.1) and the assumption that
rmin ≥ 1 imply that hK (ξi )≥ hK (ξ1) for all i ; hence

∑
di ≤ n(D+ o(D))/hK (ξ1). Therefore we have

bc1(M )·(d+1)
+ (log 2) deg B ≥ (D+ o(D))((τ − σ)(2+ ε′)− n).

By (10.3.1) this gives a contradiction for large enough D; hence (10.3.3) is true. �

The next (and next to last) step in the proof is to choose the main parameters of the proof. It is based
on [Esnault and Viehweg 1984, Lemma 9.7].

Lemma 10.4. Let q ≥ 2 be an integer and let ε′ > 0 be given. Then there is an integer n0 = n0(q, ε′)≥ 2
such that for all n ≥ n0 there are real numbers τ and σ such that

q Voln(τ ) < 1< q Voln(τ )+Voln(σ ) (10.4.1)

and
(2+ ε′)(τ − σ) > n. (10.4.2)

Proof. We will show that the lemma holds with σ = 1 and with τ chosen such that

q Voln(τ )= 1−
1

2 · n!
. (10.4.3)

For each n there is such a τ , and since Voln(1)= 1/n!, these choices satisfy (10.4.1).
Consider the inequality √

log q − log(1− 1/(2 · n!))
6n

+
1
n
<

1
2
−

1
2+ ε′

. (10.4.4)
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Its left-hand side tends to zero as n→∞, so there is an integer n0 ≥ 2 such that this inequality holds for
all n ≥ n0. It remains only to check that (10.4.2) holds for these values of n, τ , and σ .

Bombieri and Gubler [2006, Lemma 6.3.5] showed that

Voln

((
1
2
− η

)
n
)
≤ e−6nη2

for all η ≥ 0. If η satisfies
( 1

2 − η
)
n = τ and τ satisfies (10.4.3), then

η2
≤

log q − log(1− 1/(2 · n!))
6n

,

and therefore by (10.4.4)
1
2
− η−

1
n
>

1
2+ ε′

.

The left-hand side equals (τ − σ)/n, so (10.4.2) is true. �

We now introduce Dyson’s lemma, as extended by Esnault and Viehweg.

Theorem 10.5 [Esnault and Viehweg 1984, Theorem 0.4]. Let K be a field of characteristic zero. Let
ζ j = (ζ j,1, . . . , ζ j,n), j = 1, . . . ,M , be points in K n; let d ∈ Zn with d1 ≥ d2 ≥ · · · ≥ dn > 0; let
t1, . . . , tM ∈ [0,∞); and let P ∈ K [x1, . . . , xn]. Assume that

(i) ζ j,i 6= ζ j ′,i for all j 6= j ′ and i = 1, . . . , n;

(ii) P has degree at most di in xi for all i ;

(iii) td(P, ζ j )= t j for all j = 1, . . . ,M.

Then
M∑

j=1

Voln(t j )≤

n∏
i=1

(
1+max{M − 2, 0}

n∑
l=i+i

dl

di

)
. (10.5.1)

Remark 10.6. Esnault and Viehweg [1984] stated this theorem only with K = C, but it is true over
arbitrary fields of characteristic zero (as above) by the Lefschetz principle in algebraic geometry, or (in
the present situation) just by embedding K into C.

More generally, let B be an integral scheme whose function field K has characteristic zero, and let L

be a line sheaf on B. Then Dyson’s lemma also holds for polynomials with coefficients in H 0(B,L ).
Indeed, one can tensor all coefficients with a fixed nonzero element of the stalk of L ∨ at the generic
point of B. The resulting polynomial will have coefficients in K , and it will have the same degree and
index properties, so (10.5.1) will then apply to the original polynomial.

Proof of Theorem 4.5. The proof will be by contradiction. Let K , MK , S, α1, . . . , αq , ε > 0; and c ∈ R

be as in the statement of Theorem 4.5, and assume that (4.5.1) fails to hold for infinitely many ξ ∈ K .
Pick ε′ ∈ (0, ε), and choose n, τ , and σ such that (10.4.1) and (10.4.2) hold.

We shall apply Dyson’s lemma with M = q + 1, ζ j = (α j , . . . , α j ) ( j = 1, . . . , q), and ζM = ξ , with
ξ yet to be determined.
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First, by (10.4.1), we may choose rmin ≥ 1 such that

q Voln(τ )+Voln(σ ) >
n∏

i=1

(
1+ (q − 1)

n∑
l=i+1

1

r l−i
min

)
. (10.7)

By Propositions 8.12, 9.5, and 10.3, there are ξ1, . . . , ξn ∈ K satisfying (8.12.1), such that the following
is true for all sufficiently large D. Let hi = hK (ξi ) and di = bD/hic for all i = 1, . . . , n. Then there is a
nonzero polynomial P as in (9.5.2), of degree at most di in xi for all i , such that (9.5.3) and (10.3.3) hold.
By (8.12.1) and (10.7), we may also assume that D is sufficiently large so that

q Voln(τ )+Voln(σ ) >
n∏

i=1

(
1+ (q − 1)

n∑
l=i+i

dl

di

)
. (10.8)

Let ξ = (ξ1, . . . , ξn). Then, in the notation of Theorem 10.5, we have t j ≥ τ for all j = 1, . . . , q and
tq+1 ≥ σ by (9.5.3) and (10.3.3), respectively.

Thus (10.8) contradicts (10.5.1) (via Remark 10.6), and Theorem 4.5 is proved. �
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