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Floquet engineering provides a powerful tool for shaping 
the topological structure of fermionic and bosonic settings 
alike1–12. At its core, it relies on the fact that a proper periodic 

modulation can induce chirality to arrangements of non-interacting 
particles, thereby giving rise to a wide range of topological insu-
lators (TIs). Under these conditions, symmetry-protected states 
emerge along the boundaries of a modulated lattice, allowing for 
scatter-free transport on edges or interfaces with static (topo-
logically trivial) domains. As such, helical transport constitutes a 
hallmark signature of complex topological order, and its presence 
in Floquet-driven systems highlights how periodic modulations 
can systematically extend the original classification of topological 
phases13–19 beyond static systems with spin–orbit coupling or mag-
netic order. Along these lines, different topological invariants such 
as the winding number20 are required to describe the topological 
nature of gaps with vanishing Chern numbers C = 0 (refs. 21–23). 
These new degrees of freedom have enabled the experimental real-
ization of a wide variety of topological systems in photonic lattices, 
ranging from anomalous Floquet TIs1–3 to systems exhibiting Weyl 
point dynamics24, Anderson TIs25, TIs in synthetic dimensions26, 
photonic Z

2

 TIs exhibiting fermionic time-reversal symmetry27 and 
topological lasers28. Quite recently, anomalous driving protocols 
have enabled the observation of solitons in topological bandgaps29, 
the creation of nonlinearity-induced TIs30 and investigations into 
the nonlinear dynamics of higher-order topological insulators31.

Historically, photonic waveguide Floquet insulators can be 
divided into two distinct categories according to the character of 
the modulation involved. The first class is based on diatomic lat-
tices (Fig. 1a), whereby a topological regime may be brought about 
by helical trajectories of the individual waveguide sites (Fig. 1b), 
introducing an effective chiral gauge field and, in turn, a non-trivial 
Chern insulating phase to the system4. On the other hand, more 
complex Floquet phases can be synthesized by step-wise coupling 
protocols that periodically allow for the selective interaction between 
neighbouring sites (along different lattice vectors) by varying their 

corresponding separations (Fig. 1c)1,2. Approaching the synthesis of 
topological phases from two opposite directions, namely discrete 
coupling steps as opposed to the effective-medium strategy of rap-
idly spiralling waveguides, these two regimes would appear to be 
mutually exclusive. In this work, we introduce a third paradigm that 
embodies the distinctive characteristics of both aforementioned 
classes while overcoming their most pressing physical constraints. 
To this end, we introduce interstitial elements32 between the sites 
of a static periodic lattice that act as Floquet drivers for the system 
(Fig. 1d). In doing so, these sites allow us to leverage the periodic 
modulation of their on-site potentials in order to synthesize hybrid 
topological systems whose band structure simultaneously hosts 
both conventional Chern insulator bands (C = 1) and anomalous 
topological bands (C = 0), and is even capable of supporting topo-
logical phases with higher ranked invariants (C = 2), in lattices 
with z-invariant site positions.

Floquet potentials in a chained honeycomb lattice. To exem-
plify our approach, let us consider a honeycomb lattice of weakly 
coupled elements, in which the three nearest-neighbour couplings 
vary independently in a cyclic fashion along the time (or propaga-
tion) coordinate. Despite a vanishing Chern number C = 0, such 
arrangements are known to be capable of supporting different 
insulating and non-trivial Floquet topological phases10. The topo-
logical properties of this anomalous system are characterized by 
a three-dimensional winding number W , which considers the 
temporal evolution of the system and counts the edge states that 
cross a particular bandgap20. The Chern number of any band can 
be associated with the difference between the adjacent gaps’ wind-
ing numbers, C = W

above

−W
below

 (refs. 20,21). A spatially fixed 
implementation of a non-trivial Floquet phase is forbidden by the 
symmetry rules of a diatomic lattice. In other words, no conceiv-
able modulation of their two on-site potentials is capable of imbuing 
the Hamiltonian with helicity. In addition, any imbalance between 
the potentials inadvertently breaks the sublattice symmetry, and 
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in turn introduces a trivial bandgap that prevents the topological  
transition.

To overcome these limitations, we introduce interstitial elements 
between the main sites of the potential lattice, one in each coupling 
path between adjacent sites of the two sublattices. Figure 2 illus-
trates how the band structure of the honeycomb system (Fig. 2a) is 
altered in the presence of these interstitial sites (Fig. 2b). Two cop-
ies of the honeycomb spectrum (Fig. 2a), each of which features a 
pair of Dirac cones in the first Brillouin zone, coexist symmetrically 
around multiple degenerate flat bands located at zero energy. The 
latter are composed of compact localized states that reside exclu-
sively within the chain elements, locked by the destructive inter-
ference of light at the main sites. This particular modal structure 
is supported by the presence of additional symmetries in a system 
that hosts an odd total number of fundamental eigenmodes33,34, here 
originating from the 5 × 5 bulk Hamiltonian

H(k) =
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where k is the Bloch vector momentum, t is the time variable, ψ

† 
and ψ  are the creation and annihilation operators on the lattice sites 
and δjA and δjB are lattice vector displacements between the jth chain 
element and the main site of sublattices A and B, respectively. Here, 
h.c. stands for the Hermitian conjugate. Out of the fifteen inde-
pendent terms of the Hermitian Hamiltonian, only nine remain 
in equation (1), six involving nearest-neighbour interactions (with 
couplings c1, c2 and c3) and three involving on-site potential shifts 
exclusively at the interstitial sites (β1, β2, β3 ≠ 0; βA, βB = 0). Each of 
these terms can be addressed independently without perturbing the 

balance between sites A and B, thus fully preserving sublattice sym-
metry in the unit cell. In a continuous representation of the sys-
tem (that is, the Schrödinger equation with a continuous refractive 
index profile), the time variation of both cj and βj can be realized 
via modification of the potential contrast at the interstitial sites—
in other words, it is specifically these sites that can be leveraged to 
bring about a topological phase transition.

We consider how the system responds under sinusoidal modula-
tions that are chirally phase-shifted by 2π/3 between the three inter-
stitial sites surrounding each primary site. In this case, the potential 
at the site between elements A and B of the jth chain is given by 
Vj(t) = 1 + sin(2πt/T + 2πj/3), where j ∈ {1,2,3} and T denotes the 
Floquet period. Note that, by using an effective 2 × 2 tight-binding 
representation of the system (Supplementary Section I), this is 
equivalent to a continuous helical rotation of the principal direction 
of maximal coupling, despite the spatially static arrangement of the 
lattice sites. The topological changes due to the periodic drive can 
be traced by means of the unitary k-space evolution operator

U(k, t) = T exp



−i

t

∫

0

dt

′
H(k, t

′
)





where T  denotes time-ordering and H corresponds to the 
time-dependent Hamiltonian integrated over time t′. In this respect, 
we decompose U = UsUd into a product of a quasi-static term 
Us = exp(–iHefft) with Heff = i/T log(U(k,T)) and a dynamic term Ud 
that accounts for the periodic micro-motion of the mode during the 
period of the drive with U

d

(k, T) = I the identity operator35. Note 
that the effective Hamiltonian conforms to the traditional ten-fold 
way classification15, which, in this two-dimensional setting, is char-
acterized by a Z topological invariant. As depicted in the exam-
ple of Fig. 2c, for a Floquet period of T = 2π/7, the quasi-energy  
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Fig. 1 | A new road to topological lattices. a, In the absence of magnetic interactions, periodic systems such as the honeycomb lattice in a can be 
rendered topologically non-trivial by appropriate periodic modulations. b, Conventional Floquet TIs achieve this by inducing a virtual magnetic flux via 
a global helical motion of the entire lattice, yielding a Chern-type topological phase. c, Anomalous Floquet TIs instead are based on multistep driving 
protocols that impose helicity by independently modulating the coupling strengths c between specific neighbours. Their topological properties are 
characterized by a winding number. Despite their different physical mechanisms, both of these approaches involve continual dynamic changes to the 
positions of the individual lattice sites—the main source of losses in Floquet waveguide systems. d, The ‘chain-driven’ Floquet TIs presented here instead 
leverage connective interstitial elements whose on-site potentials ΔV are modulated in a cyclical fashion. Such systems offer rich topological phases that 
simultaneously support both Chern-type and anomalous topological states in a geometrically static arrangement.
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spectrum ε(k) of Heff exhibits C = 1 in the upper- and lowermost 
bands, indicating the formation of a pair of Chern-type topological 
bandgaps around the Dirac points. In turn, these gaps support heli-
cal edge states on the zigzag edge similar to the ones in a conven-
tional photonic Floquet TI4. At the same time, however, the action 
of the periodic chain drive opens another gap around ε = 0. Being 
nested between bulk bands with C = 0, its anomalous topological 
nature is revealed only by the value of the winding number, that is 
W = 1. While the topological edge states traversing this gap with 
constant slope are likewise helical, they inherit a key characteris-
tic of the zero-energy flat band that they emerge from: the power 
in these states exclusively resides within the three interstitial sites 
of the edge unit cells (Supplementary Fig. 3). Finally, the remain-
ing degenerate flat band at ε = 0 shows that the quasi-energies of 
the chained lattice’s bulk compact localized states remain on aver-
age unaffected by the presence of the periodic modulation; that 
is, the self-locking property of the flat-band modes clearly sur-
vives the topological phase transition. As a result, these bimorphic 
chain-driven lattices can both host compact localized states in the 
bulk and provide virtually dispersion-free mobility for tightly con-
fined wave packets along the edge.

Observation of topological compact localized states. To experi-
mentally probe the propagation dynamics of the different topo-
logical states in chain-driven lattices, we employ femtosecond 
laser direct-written photonic lattices36 as a platform for their 
implementation (Methods). The evolution of light in such systems 

is governed by a Schrödinger equation in which the propagation 
coordinate z represents time and the refractive index profiles of 
the individual waveguides act as interacting potential wells. In this 
context, the effective refractive index Δneff of each waveguide pro-
vides direct control over the on-site potential and can be seamlessly 
tuned by modulating the inscription velocity along the propaga-
tion coordinate z. In turn, evanescent coupling between adjacent 
waveguides instantiates the required hopping terms. Having con-
firmed numerically that the desired characteristics of the 5 × 5 
tight-binding model can be faithfully reproduced (Supplementary 
Section II) within the experimentally accessible parameter range 
of our platform, we fabricated triangular chain-driven lattices 
composed of 42 unit cells (Fig. 3a). Despite its decidedly bristly 
appearance, the lattice is in fact terminated by the chained general-
ization of three zigzag-type edges, since the outermost waveguides 
represent interstitial sites. In a first set of experiments, we targeted 
the dispersive Chern states in the vicinity of the Dirac points by 
synthesizing a spectrally narrow wave packet of an appropriate 
wave vector via a tripartite excitation pattern with alternating 
phases injected into three consecutive primary sites along the ver-
tical edge of the system. A series of measurements for different ini-
tial positions (Fig. 3c) clearly shows a systematic counterclockwise 
transport that is confirmed by extended-range numerical simu-
lations (Fig. 3d) and allows light to circumnavigate the corners 
of the waveguide array. By contrast, when the alternating phase 
is removed from the excitation pattern, strong bulk diffraction 
was observed (Extended Data Fig. 1), highlighting the absence 
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Fig. 2 | Band structures and topological characterization. a, The zigzag-terminated edges of a conventional static honeycomb lattice support edge 
states that emerge from the Dirac points and extend towards the boundaries of the first Brillouin zone. b, A static chained honeycomb lattice is obtained 
by introducing interstitial elements between each adjacent pair of principal sites. The resulting band structure manifests multiple degenerate flat-band 
states that are interposed between two copies of the diatomic spectrum. c, A chain-driven honeycomb lattice. By modulating the on-site potential of 
the interstitial sites in a sinusoidal fashion with clockwise-rotating relative phases, a total of four gaps open in the bulk, as indicated by the light grey 
shading. The edges support four pairs of helical states (thick lines), one for each topological gap. In all band structure diagrams, the wave number is 
expressed in terms of the inverse unit cell size d. The values of the Chern (C) and winding (W) invariants, marked on the right, reveal the topological 
nature of each bandgap. Notably, the edge states that emerge from the flat band resemble an anomalous topological phase, characterized by a non-trivial 
winding number (W = 1) and a trivial Chern invariant (C = 0). Details on the modal amplitudes of the Chern states in the C = 1 phase are provided in 
Supplementary Fig. 4.
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of the Chern state in the centre of the Brillouin zone (at Bloch  
momenta kx,y ≈ 0).

Owing to their flat-band origins and Brillouin-zone-spanning 
nature (Fig. 4a), the anomalous topological edge states of the 
chain-driven lattice can be readily populated by injecting light into 
individual outermost interstitial sites. In a second set of experi-
ments, we therefore traced the propagation of such single-site 
excitations along the edge and around two corners of the system  
(Fig. 4b), and observed helical topological transport in a counter-
clockwise direction that, in contrast to the dispersive Chern chan-
nel, maintains the narrow width of the edge wave packet. This 
behaviour is also confirmed by numerical extended-range propaga-
tion simulations (Fig. 4c). Single-site excitations of bulk interstitial 
sites instead remain localized at their initial positions (Fig. 4d,e) as 
dictated by the quasi-static part Uq of the evolution operator, despite 
the fact that the dynamic part Ud intermittently allows light to enter 
the neighbouring sites during each Floquet cycle. Comparing these 
results to the discrete diffraction in a reference lattice of identical 
geometry implemented without the periodic modulation, we find 
that light injected into the interstitial sites on the edge as well as 
within the bulk of the non-driven lattice remains localized by vir-
tue of the flat-band states residing there (Fig. 4f–j). This comple-
mentary behaviour opens up the possibility of imprinting arbitrary 
excitation patterns in the edge channels of chain-driven Floquet 
TIs. The fact that the Floquet drive can be temporarily frozen and 
resumed at will without any changes to the lattice geometry pro-
vides exceptional control over their topological transport dynamics: 
once synthesized, compact wave packets can propagate along the 
edge without being subjected to dispersive broadening, while the 
unique properties of the flat band allow them to be freely shifted 
between travelling and localized states without ever rendering them 
vulnerable to bulk diffraction (Supplementary Video 1).

Discussion
Notably, the chained lattice exhibits a number of higher-order topo-
logical phases that may occur for alternate periods of the drive. 
Changing the period T of the modulation, in relation to the scale 
given by the inverse coupling in the system, allows adjacent unit cells 
of the 2π/T-periodic quasi-energy spectrum to overlap in a topolog-
ically non-trivial fashion. In the conventional coupling-modulated 
honeycomb system, a critical period TC = π/3 separates the Chern 
phase (C = ±1

 and W = 0 for T > TC) and the anomalous phase 
(C = 0 and W = 1 for T < TC), as illustrated in Extended Data  
Fig. 2. By contrast, the upper- and lowermost bands of the 
chain-driven lattice exhibit |C| > 1 for any finite value of T, allowing 
for the Chern-type and anomalous regimes to naturally coexist and 
interact in new and interesting ways: as T is increased above a new 
critical point T′C = π > TC, the bands closer to zero energy enter a 
higher-order Chern phase (C = ±2

) as additional pairs of topologi-
cal edge states emerge in their neighbouring gaps (Extended Data 
Fig. 3 and Supplementary Fig. 5).

In this work, we proposed and experimentally demonstrated a 
bimorphic class of Floquet TIs based on periodic modulations of 
certain on-site potentials. We showed how a ‘chained’ honeycomb 
lattice, in which the exchange of population between primary sites 
is mediated by interstitial sites, can be endowed with rich topologi-
cal features without resorting to magnetic interactions, helical lat-
tice motion4 or complex coupling protocols1,2. Beyond providing a 
complementary route towards inducing topology, our ‘chain-driven’ 
systems synergistically combine the characteristic features of con-
ventional and anomalous Floquet TIs, allowing for the simultane-
ous existence of Chern-type chiral states and transport without 
dispersion in quasi-localized wave packets. These anomalous modes 
bifurcate from the flat band of the static system and, as such, can 
be readily converted into their likewise topologically protected,  
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Fig. 3 | Probing the Chern edge state of a photonic chain-driven honeycomb lattice. a,b, In order to selectively populate the topological state supported 
by the Chern gap, indicated by thick magenta branches in the ribbon band structure plot (a), three consecutive primary sites along the zigzag edge are 
excited with identical amplitudes but alternating phases, synthesizing a spectrally narrow wave packet at the edge of the Brillouin zone (b).  
c, Experimentally observed output intensity patterns at 633!nm after a propagation length of 150!mm for various placements of the initial excitation along 
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respective lattice are indicated by a semi-transparent overlay. The white arrows indicate the propagation path of the wavepacket from its initial injection 
site. Norm., normalized. d, As confirmed by extended-range beam-propagation method simulations shown for consecutive multiples of the sample length, 
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for equivalent flat-phase excitations along the vertical edge are shown in Extended Data Fig. 1. Without the staggered phase, light inevitably diffracts freely 
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compact localized counterparts. While our findings are general and 
can be readily adapted to any topological platform that offers the 
means to dynamically control the on-site potential, such as cold 
atoms37, electronic circuits38 or even mechanics39, the capability to 
affect topological phase transitions without changes to the lattice 
geometry is of particular importance in the context of topological 
photonics, where curved waveguide trajectories inevitably entail 
additional losses. Moreover, it paves the way towards sophisticated 
designs involving several coexisting modulation periods and even 
regions with opposite helicity that can seamlessly interact without 
associated local coupling defects that would be inevitable in sys-
tems with modulated waveguide trajectories. Along these lines, we 
envision a new generation of low-loss robust photonic circuitry in 
which optically encoded packets of information can be transported, 
steered and even reshuffled without compromising their topological 
protection at any point.
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Methods
Experimental con!guration. $e photonic structures used in our experiments 
are inscribed by focusing ultrashort laser pulses from a frequency-doubled "bre 
ampli"er system (Coherent Monaco, wavelength 517 nm, repetition rate 333 kHz, 
pulse duration 270 fs) into the volume of a fused silica sample (Corning 7980, 
dimensions 1 mm × 20 mm × 150 mm, bulk refractive index n0 = 1.457 at 633 nm), 
inducing permanent refractive index changes along arbitrary three-dimensional 
trajectories as de"ned by the motion of a precision translation system (Aerotech 
ALS130). Due to the focusing conditions, these waveguides exhibit slightly elliptical 
mode "elds with a typical refractive index contrast of up to Δn0 = 2 × 10–3. $e 
selective modulation of the interstitial sites’ index in a range of ±10% around this 
value was achieved by an appropriate modulation of the inscription speed between 
92 and 156 mm min–1. $e ideal pro"le of the sinusoidal index modulation was 
approximated by twelve constant-index segments per Floquet period. Waveguide 
#uorescence imaging40 shows that even for such a relatively coarse discretization, 
the modulated channels exhibit excess losses of only 0.096 ± 0.010 dB cm–1 relative 
to the static waveguides (compare with Extended Data Fig. 4). With half of the 
lattice sites being modulated, the mean excess losses of the bimorphic Floquet TI 
are 0.048 ± 0.005 dB cm–1, substantially below the 1.7 dB cm–1 of bending losses 
reported for conventional Floquet TIs based on helically modulated waveguides4. 
$e topological propagation dynamics were probed with coherent light from 
a tuneable supercontinuum source (NKT SuperK Extreme), allowing us to 
compensate for the micro-motion of the wave packets within the Floquet period 
and faithfully capture the dynamics according to the quasi-static evolution operator 
by varying the excitation wavelength between 570 nm and 633 nm. $e appropriate 
intensity and phase distributions for the desired excitation conditions were 
synthesized with a spatial light modulator (Hamamatsu LCOS-SLM).

Numerical simulations. The numerical results are obtained by solving the paraxial 
Schrödinger equation as an eigenvalue problem (for computations of the band 
structure, via the finite-difference method) and as a propagation problem (for 
computations of the field dynamics, via the beam-propagation method). In this 
context, the ribbon band diagrams of Figs. 2 and 3 provide the necessary validation 
for the tight-binding chain approximation. The robustness of the chiral transport 
against a variety of defects was verified by beam-propagation method simulations 
(Supplementary Fig. 6).

To efficiently reduce the computational burden of the time-dependent 
eigenvalue problem, we decompose the solution space into a sinusoidal basis 
along the propagation axis. This approach relies on the expectation that the 
time-periodic part of the eigenmode solution will be related to the driving protocol 
used for the time-dependent modulation of the refractive index. This strategy leads 
into a solution space that is numerically large in the transverse plane (discretized 
by finite differences) but highly reduced along the z dimension. The size of the 
matrix generated through this process is optimally minimized so that it remains 
within reach of common eigenvalue decomposing techniques. More information is 
in Supplementary Section II.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available from 
M.H. upon reasonable request (matthias.heinrich@uni-rostock.de).

Code availability
The MATLAB codes corresponding to the beam-propagation method and band 
structure algorithms are available from G.G.P. upon reasonable request  
(pyrialak@knights.ucf.edu).

References
 40. Szameit, A. et al. Quasi-incoherent propagation in waveguide arrays.  

Appl. Phys. Lett. 90, 241113 (2007).

Acknowledgements
We thank C. Otto for preparing the high-quality fused silica samples used for the 
inscription of all photonic structures employed in the experiments presented here. 
G.G.P. acknowledges the support of the Bodossaki Foundation. This work was partially 
supported by Defense Advanced Research Projects Agency (DARPA; D18AP00058), 
Office of Naval Research (ONR) Multidisciplinary University Research Initiative  
(MURI; N00014-16-1-2640, N00014-18-1-2347, N00014-19-1-2052, N00014-20-1-2522, 
N00014-20-1-2789), Air Force Office of Scientific Research (AFOSR MURI; FA9550-
20-1-0322, FA9550-21-1-0202), the National Science Foundation (DMR-1420620, 
EECS-1711230, ECCS-1454531, DMR-1420620, ECCS-1757025, CBET-1805200, 
ECCS-2000538, ECCS-2011171), Mathematics and Physical Sciences (MPS) Simons 
collaboration (Simons grant 733682), W. M. Keck Foundation, US–Israel Binational 
Science Foundation (BSF 2016381) and the US Air Force Research Laboratory (FA9550-
14-1-0037, FA9550-20-1-0322, FA9550-21-1-0202, FA86511820019). We furthermore 
acknowledge funding from the Deutsche Forschungsgemeinschaft (SCHE 612/6-1, SZ 
276/12-1, BL 574/13-1, SZ 276/15-1, SZ 276/20-1) and the Alfried Krupp von Bohlen 
and Halbach Foundation.

Author contributions
G.G.P. initiated the idea, formulated the index-modulated lattice and performed 
the theoretical calculations and simulations. J.B. developed the experimental 
implementation, fabricated the samples and conducted the measurements. J.B., L.J.M. 
and M.H. evaluated the measurements and interpreted the data. M.K., N.V.K., A.S. and 
D.N.C. supervised the efforts of their respective groups. All authors discussed the results 
and cowrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41563-022-01238-w.
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41563-022-01238-w.
Correspondence and requests for materials should be addressed to 
Demetrios N. Christodoulides.
Peer review information Nature Materials thanks Alexander Khanikaev, Sunil Mittal 
and the other, anonymous, reviewer(s) for their contribution to the peer review of  
this work.
Reprints and permissions information is available at www.nature.com/reprints.

NATURE MATERIALS | www.nature.com/naturematerials

https://doi.org/10.1038/s41563-022-01238-w
https://doi.org/10.1038/s41563-022-01238-w
http://www.nature.com/reprints
http://www.nature.com/naturematerials


ARTICLES NATURE MATERIALS

Extended Data Fig. 1 | Comparison of staggered and flat-phased broad excitations. (a-d): Staggered excitations of the primary waveguides of edge unit 
cells successfully populate the topological Chern mode near the edge of the Brillouin zone. (e-h) Absent the appropriate phase modulation, the injected 
wave packets instead represent a superposition of the bulk bands near the center of the Brillouin zone. As a result, the light diffracts freely across the 
entire lattice instead of being captured in the helical Chern channel.
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Extended Data Fig. 2 | Honeycomb helical FTI. A driven honeycomb lattice with sinusoidally modulated time-periodic coupling terms exhibits a secondary 
topological phase in response to an increase of the driving period. At the critical driving period T

C

= π/3 the gap at the Floquet zone collapses and 
reopens with a topologically non-trivial winding number. This corresponds to an anomalous phase with a trivial Chern number, signifying a topological 
phase transition.
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Extended Data Fig. 3 | Chained honeycomb FTI. Above its critical modulation period T′
C

= π, the chain-driven honeycomb lattice enters a secondary 
topological phase characterized by the band diagram shown on the right. In this configuration, the bands manifest a non-trivial topological structure 
characterized by higher order Chern invariants (C = 2), and, in turn, the Chern gaps host an increased number of unidirectional edge states. Details on the 
modal amplitudes and propagation dynamics of the Chern states in the C = 2 phase are provided in Supplementary Fig. 5.
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Extended Data Fig. 4 | Losses in index-modulated waveguides. Waveguide fluorescence40 characterization confirms that even coarsely discretized index 
modulation (twelve constant-index segments approximating the ideal cosine Floquet cycle) only introduces excess losses of (0.096 ± 0.010)dB/cm 
relative to a straight constant-index waveguide. With half of the lattice sites being modulated, the mean excess losses of the bimorphic FTI are (0.048 
± 0.005)dB/cm, substantially below the value of 1.7 dB/cm reported for bending losses in conventional FTIs based on helically modulated waveguides4. 
Note that the apparent oscillations in the normalized intensity of the modulated waveguide are due to the different concentration of color centers formed 
at different writing speeds, resulting in a modulation of the fluorescence efficiency between the individual segments of each modulation period. Due 
to the large number of periods, this oscillation does not notably impact the measurement of the loss coefficient γ. The fluorescence itself is a feature of 
femtosecond laser-written waveguides in fused silica, and does not pose a substantial source of propagation losses40.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
Policy information about availability of computer code

Data collection The exerimental data (output intensity distributions) shown in this work were collected with a resolution of 12bit via standard LabView image 
acquisition routines.

Data analysis Using Matlab, the recorded images were normalized to their respective peak values and subsequently exported as PNG files (8bit color map).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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