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Abstract: Palladium(II) catalysts promote oxidative dehydrogenation and dehydrogenative 

coupling of many organic molecules. Oxidations of alcohols to aldehydes or ketones are prominent 

examples. Hydroquinone (H2Q) oxidation to benzoquinone (BQ) is conceptually related to alcohol 

oxidation, but it is significantly more challenging thermodynamically. The BQ/H2Q redox 

potential is sufficiently high that BQ is often used as an oxidant in Pd-catalyzed oxidation 

reactions. A recent report (J. Am Chem. Soc. 2020, 142, 19678-19688) showed that certain 

ancillary ligands can raise the PdII/0 redox potential sufficiently to reverse this reactivity, enabling 

(L)PdII(OAc)2 to oxidize hydroquinone to benzoquinone. Here, we investigate the oxidation of 

tert-butylhydroquinone (tBuH2Q) and 4-fluorobenzyl alcohol (4FBnOH), mediated by 

(bc)Pd(OAc)2 (bc = bathocuproine). Although alcohol oxidation is thermodynamically favored 

over H2Q oxidation by more than 400 mV, the oxidation of tBuH2Q proceeds several orders of 

magnitude faster than 4FBnOH oxidation. Kinetic and mechanistic studies reveal that these 

reactions feature different rate-limiting steps. Alcohol oxidation proceeds via rate-limiting b-

hydride elimination from a PdII–alkoxide intermediate, while H2Q oxidation features rate-limiting 

isomerization from an O-to-C-bound PdII–hydroquinonate species. The enhanced rate of H2Q 

oxidation reflects the kinetic facility of O–H relative to C–H bond cleavage.  



 

 2 

Introduction 

Palladium(II)-catalyzed oxidation reactions are a versatile class of reactions in organic 

chemistry that enable diverse transformations, including alcohol oxidation, oxidative coupling of 

alkenes with heteroatom nucleophiles, oxidative C–C coupling reactions, among others. 1–15 These 

reactions typically feature two redox half-reactions, consisting of PdII-mediated substrate 

oxidation and reoxidation of Pd0 to PdII by various oxidants,16 including O217 and benzoquinone 

(BQ) (Scheme 1). 18 , 19  Ancillary ligands, such as amines and mono- and bidentate pyridine 

derivatives, are increasingly common in Pd-catalyzed oxidation reactions. These ligands can 

influence both redox half-reactions, for example, by stabilizing the Pd catalyst, enhancing the rate 

of catalyst reoxidation, or modulating the chemo-, regio-, or stereoselectivity of substrate 

oxidation.15  

 

Scheme 1. Redox Half Reactions in Pd-catalyzed Oxidations with Benzoquinone as the Oxidant. 

 

 

We recently reported an experimental and computational study of the influence of ancillary 

ligands on the PdII/0 redox potential.20 This study was made possible by the unexpected finding 

that certain ligands, such as bathocuproine (bc), increase the PdII/0 potential sufficiently to allow 

oxidation of hydroquinone (H2Q) by (L)PdII(OAc)2, inverting the typical redox reactivity between 

PdII/0 and BQ/H2Q.21–23  Analysis of equilibria between (L)PdII(OAc)2/H2Q and (L)Pd0(BQ)/2 

AcOH provided the basis for determination of formal redox potentials for various (L)PdII(OAc)2 
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complexes (Scheme 2A) relative to potentials associated with the BQ/H2Q and PhCHO/PhCH2OH 

redox reactions (Scheme 2B and 2C).20,24,25 

 

Scheme 2. Comparison of Redox Potentials for PdII/0, BQ/H2Q, and PhCHO/PhCH2OH.  

 

 

Observation of (bc)Pd(OAc)2-mediated oxidation of hydroquinone provides a unique 

opportunity to compare thermodynamic-kinetic relationships between oxidative dehydrogenation 

of H2Q and alcohols. The redox potential for BQ/H2Q is ~400-500 mV higher than that of 

PhCHO/PhCH2OH (Scheme 2),25 but qualitative observations revealed that H2Q oxidation is much 

more rapid than PhCH2OH oxidation. This contra-thermodynamic kinetic behavior prompted us 

to pursue a quantitative comparison of the relative rates and probe the mechanisms of these two 

conceptually similar dehydrogenation reactions. Here, we report an investigation of stoichiometric 

oxidation of tert-butylhydroquinone (tBuH2Q) to tert-butylbenzoquinone (tBuBQ) and 4-

fluorobenzyl alcohol (4FBnOH) to 4-fluorobenzaldehyde, mediated by (bc)Pd(OAc)2 (Scheme 3). 

Both reactions are conducted in the presence of tert-butylbenzoquinone (tBuBQ) to ensure that 

they have identical PdII/0 reagents/products, [(bc)Pd(OAc)2]/[(bc)Pd0(BQ)]. This study of 

stoichiometric alcohol oxidation by PdII complements multiple mechanistic studies of catalytic 
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alcohol oxidation with PdII catalysts,6,26–33 while mechanistic studies of PdII-mediated oxidation of 

hydroquinone in the absence of a secondary oxidant are unprecedented.22 

 

Scheme 3. (bc)Pd(OAc)2-Mediated Oxidation of tBuH2Q and 4FBnOH.  

  

 

Results and Discussion 

Kinetic investigation of (bc)Pd(OAc)2-mediated hydroquinone oxidation. We initiated our 

investigation with a kinetic analysis of (bc)Pd(OAc)2-mediated oxidation of tBuH2Q at -30 °C in 

chloroform by UV-visible spectroscopy (monitoring appearance of an absorption band at 420 nM; 

see Figure S7 in the Supporting Information). This hydroquinone derivative was used instead of 

the parent H2Q because of its higher solubility in chloroform. The reaction forms the known 

complex, (bc)Pd0(tBuBQ).20 The concentration of (bc)Pd(OAc)2 was varied from 0.25-1.25 mM, 

with [tBuH2Q] fixed at 4 mM and [tBuBQ] at 1 mM. Then, [tBuH2Q] was varied from 1-10 mM, 

with [(bc)Pd(OAc)2] and [tBuBQ] fixed at 1 mM each. Comparison of the initial rates under each 

of these conditions revealed a first-order dependence on [(bc)Pd(OAc)2] and [tBuH2Q] (Figures 1a 

and 1b). The reaction was unaffected by changes to [tBuBQ] over a range of 1-8 mM concentration 

(See Supporting Information, Figure S9). No deuterium kinetic isotope effect was evident from 

independent rate measurements with tBuH2Q and tBuD2Q (kH/kD = 1.0 ± 0.2, Figure 1c; care was 
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taken to avoid O–D exchange with sources of "H" in the glassware; see section 8 in the Supporting 

Information for details). 

 
Figure 1. Kinetic analysis of (bc)Pd(OAc)2-mediated oxidation of tBuH2Q, including (a) 
[(bc)Pd(OAc)2] dependence, (b) [tBuH2Q] dependence, and (c) kinetic isotope effect obtained via 
independent rate measurement. See sections 7 and 8 in the Supporting Information for 
experimental details. 
 

Kinetic investigation of (bc)Pd(OAc)2-mediated alcohol oxidation. Similar kinetic analysis 

was conducted for (bc)Pd(OAc)2-mediated oxidation of 4FBnOH. Use of this substrate facilitated 

analysis of the reaction by 19F NMR spectroscopy, although most kinetic data were acquired by 

UPLC analysis of reaction aliquots. The concentration of (bc)Pd(OAc)2 was varied from 2-12 mM, 

[4FBnOH] and [tBuBQ] fixed at 40 mM and 10 mM. Then, [4FBnOH] was varied from 10-160 mM, 

while fixing [(bc)Pd(OAc)2] and [tBuBQ] at 10 mM each. Comparison of the initial rates under 

each of these conditions revealed a first-order dependence on [(bc)Pd(OAc)2] and [4FBnOH] 

(Figures 2a and 2b). The reaction was unaffected by changes to [tBuBQ] (see Supporting 

Information, Figure S3). A deuterium kinetic isotope effect of kH/kD = 2.0 ± 0.3 was observed from 

the comparison of independent rates measured with 4FBnOH and 4FPhCD2OH as the substrate. An 

intramolecular kinetic isotope of kH/kD = 2.8 ± 0.3 was obtained from oxidation of 4FPhC(H)(D)OH 
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(Figure 2c and 2d). These KIEs are similar to those observed for Pd-catalyzed alcohol oxidation 

with bc-ligated Pd catalysts.26 Hammett analysis of 4-substituted benzyl alcohols revealed that the 

reaction is slightly faster with more electron-rich alcohols (r = –0.33) (see Figure S6 in the 

Supporting Information). 

 

 

Figure 2. Kinetic analysis of (bc)Pd(OAc)2-mediated oxidation of 4FBnOH, including (a) 
[(bc)Pd(OAc)2] dependence (b) [4FBnOH] dependence, and kinetic isotopic effects determined by 
(c) independent rate measurements of 4FBnOH and 4FPhCD2OH and (d) an intramolecular 
competition experiment with 4FPhC(H)(D)OH. See sections 2 and 3 in the Supporting Information 
for experimental details.  
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and pivalate. Electronic parameters correspond to the pKa values of the conjugate acids of the 

carboxylates, which range from 10.1 to 12.6 (DMSO values).34–37 Relative steric effects were 

assessed by using a proxy value corresponding to the percent buried volume reported for PR3 

groups (R = 4CF3Ph, Ph, 4tBuPh, Me, tBu) at 2 Å in (R3P)AuCl complexes.38,39 

Initial rates of tBuH2Q oxidation were obtained with the different (bc)Pd(O2CR)2 complexes. 

A plot of log(rate) versus carboxylate pKa values revealed a slope of 0.06 with a poor correlation 

(R2 = 0.04) (Figure 3a), indicating the rate is not strongly correlated with the basicity of the 

carboxylate ligand. A relatively good correlation was observed, however, between log(rate) versus 

the buried volume parameter for the carboxylate ligands (R2 = 0.86) (Figure 3b), indicating that 

the rate of tBuH2Q oxidation by (bc)Pd(O2CR)2 is sensitive to the steric profile of the carboxylate 

ligand. 

An analogous set of experiments was performed for 4FBnOH oxidation. In this case, the 

Brønsted plot exhibits a much better correlation (R2 = 0.99) with a positive slope (0.37) (Figure 

3c), indicating that the reaction is promoted by more basic carboxylate ligands. On the other hand, 

the corresponding assessment of steric effects (Figure 3d) exhibits a very poor correlation (R2 = 

0.02), indicating that steric effects of the carboxylate ligand play little role in 4FBnOH oxidation.  
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Figure 3. Rate dependence of 4FBnOH oxidation by (bc)Pd(O2CR)2 on (a) pKa (DMSO) of RCO2H 
and (b) on percent buried volume. Rate dependence of tBuH2Q oxidation by (bc)Pd(O2CR)2 on (c) 
pKa (DMSO) of RCO2H and (d) on percent buried volume. ‡Percent buried volume values obtained 
from PR3 ligands (see text for details).  
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over 4FBnOH oxidation may be compared to the overall reaction free energies of reaction with 

(bc)Pd(OAc)2, which strongly favor 4FBnOH over tBuH2Q oxidation: ∆G°tBuH2Q(298 K) = –2.9 

kcal/mol20 and ∆G°4FBnOH(298 K) = approx. –22 kcal/mol (the latter estimated from the difference 

in reported reduction potentials of tBuBQ and benzaldehyde24,25). Both sets of energetic values are 

depicted in the energy diagram in Figure 4. 

 

 

Figure 4. Free energy diagram for (bc)Pd(OAc)2-mediated oxidation of 4FBnOH and tBuH2Q.  
 

 

Mechanistic analysis. The kinetic data elaborated above provide a foundation for 

understanding the origin of the contra-thermodynamic outcome depicted in Figure 4. The data 
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Scheme 4. Proposed Mechanisms for (A) Hydroquinone and Benzyl Alcohol Oxidation Mediated 
by (bc)Pd(OAc)2 and (B) Oxidation of Pd0 by Benzoquinone in the Presence of Acid21  
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forms the (bc)Pd0(BQ) product 3. This mechanism corresponds to the microscopic reverse of the 

mechanism proposed by Bäckvall for acid-promoted oxidation of well-defined Pd0(BQ) 

complexes (Scheme 4B).21  

The oxidation of 4FBnOH (Scheme 4A, bottom) is similarly proposed to begin with proton-

coupled exchange of 4FBnOH with acetate at (bc)Pd(OAc)2 to generate Pd-alkoxide 1b. The kinetic 

isotope effect data, however, suggest that b-hydride elimination to generate PdII-hydride 2b is rate-

limiting. The electronic dependence on the carboxylate ligand suggests that formation of the PdII-

alkoxide 2a also contributes the reaction rate.6 Subsequent loss (formally, reductive elimination) 

of acetic acid from 2b in the presence of tBuBQ forms the Pd-quinone product 3. The kinetic 

facility of this step,40 enhanced further by the ability of quinones to promote H–O2CR reductive 

elimination from PdII(H)(O2CR) complexes, 41  rationalizes the zero-order dependence of the 

reaction rate on [tBuBQ].  

To summarize, 4FBnOH oxidation has a significantly higher kinetic barrier than tBuH2Q 

oxidation, even though the net reaction of 4FBnOH is more favorable by approximately 20 

kcal/mol. At least two factors support faster rates of tBuH2Q oxidation. The first step in both 

reactions involves proton-coupled ligand substitution between the substrate and a carboxylate 

ligand, and H2Q is significantly more acidic than benzyl alcohol (aqueous pKa value of H2Q is ~5 

units lower than the pKa of benzyl alcohol).42,43 Thus, the pre-equilibrium formation of a PdII-

hydroquinonate intermediate will be strongly favored relative to formation of a PdII-alkoxide. The 

difference in relative rates, however, ultimately arises from the difference in relative energies of 

the rate-limiting transition states. The data indicate that the transition state for hydroquinonate 

isomerization is lower in energy than the transition state for PdII-alkoxide b-hydride elimination. 

Net hydride transfer from the hydroquinonate intermediate, involving proton transfer to 
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carboxylate and two-electron transfer to Pd, is sufficiently facile that it proceeds after the rate-

limiting isomerization step. This step is undoubtedly facilitated by the polarity of the O–H bond 

of the hydroquinonate, which facilitates proton transfer, relative to cleavage of the C–H bond 

involved in b-hydride elimination from the alkoxide.44  

Conclusions 

The mechanistic studies of (bc)Pd(OAc)2-mediated oxidation of 4FBnOH and tBuH2Q outlined 

above illuminate the kinetic and thermodynamic relationships between these reactions. The 

oxidation of 4FBnOH is approximately 20 kcal/mol more favorable than the oxidation of tBuH2Q. 

Nonetheless, the activation energy for 4FBnOH oxidation is substantially higher than that for 

tBuH2Q oxidation (DDG‡ = 6 kcal/mol), resulting in tBuH2Q oxidation proceeding several orders 

of magnitude faster than 4FBnOH oxidation at room temperature. Mechanistic data provide insights 

into the different rate-limiting steps for these reactions, which feature b-hydride elimination for 

4FBnOH oxidation and isomerization from an O-to-C-bound hydroquinonate in tBuH2Q oxidation. 

This study represents the first mechanistic analysis of hydroquinone by PdII complexes, and it was 

made possible by the identification of ancillary ligands that increasing the PdII/0 redox potential 

sufficiently to support oxidation of hydroquinones.  
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