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K-space thermodynamic funneling of light via heat exchange
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We provide a thermodynamic approach to channel light into a single mode, i.e., the fundamental mode or the
highest-order mode in the nonlinear multimode optical systems, via Rayleigh-Jeans condensation on both sides
of the optical spectrum. Essentially, such K-space light funneling is driven by the effective thermodynamics force,
i.e., the gradient of effective temperature or effective chemical potential, which can be manipulated through heat
exchange via an external optical thermodynamic system. In a sandwich structure of optical nonlinear waveguide
lattices, the temperature gradient between two subsystems with orthogonal polarization of light gives rise to
the heat diffusion through an intermediate layer with cross-phase modulation, which cools down or warms up
one of subsystems approaching zero temperature. Even though 100% funneling rate is unattainable as bounded
by the third law of thermodynamics, we show that more than 90% occupation rate of fundamental mode or
highest-order mode can be achieved via supercooling or superheating in this sandwich structure.
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I. INTRODUCTION

In weak nonlinear regime, K-space funneling of light
into lowest- or highest-order mode has a deep connection
to optical thermodynamics [1-6], which was developed very
recently and provides an alternative yet interesting play-
ground for probing fundamental issues in thermodynamics.
In application-orientated scenarios, K-space funneling of light
might be useful in the construction of an all-optical Ising ma-
chine, where the ground state can be approximately reached
during the thermalization process, instead of complicated op-
toelectronic feedback in a spatial optical Ising machine [7-10]
and photonic recurrent Ising sampler [11,12], or suffering
scaling limitation due to dispersion and decoherence in co-
herent Ising machines [13—-17].

Recent works [18,19] reported Rayleigh-Jeans (R-J) con-
densation, a classical counterpart of Bose-Einstein con-
densation (BEC) in multimode optical systems, where the
singularity occurs as the effective chemical potential reaches
the lowest or highest-energy level. Notably, such photon-
photon interaction-induced condensation is largely different
from BEC of photons [20-25] and exciton-polaritons [26,27]
in quantum systems, where the temperature is essentially dic-
tated by the thermal bath or environment. Inspired by those
findings, we find R-J condensation can occur at both sides
of the optical spectrum by properly tuning the spectrum of
input light to the nonlinear waveguide lattice. Consequently,
K-space thermodynamic funneling of light into the highest or
lowest-order mode can be realized, regardless of the detailed
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arrangement of the waveguide, as well as nonlinear hopping
of the light among the normal modes. Furthermore, we can
heat or cool a system to induce K-space light funneling by
heat exchanging in a sandwich structure.

II. SCHEME

From the optical thermodynamics theory, the normal-
ized power distribution of modes at equilibrium in highly
multimode optical systems with weak nonlinearity is R-J dis-
tribution |c;|> = —T/(s; + w) [1-3,6], where ¢; and &; are the
amplitude and effective energy of the ith mode, respectively.
Accordingly [1,2], the effective temperature 7' and effective
chemical potential u can been well defined (“effective” is
omitted for simplicity onwards). As illustrated in Fig. 1, the
optical temperature of the system can be changed by a nearby
auxiliary optical system, which extracts (injects) “internal
energy”’ from (into) the main system via heat conduction.
As such, the optical thermodynamics force induced by the
temperature gradient of the main optical system essentially
drives the power flow funneled into the target mode in K
space.

Specifically, the nonlinear optical system considered here
is a nonlinear waveguide lattice [i.e., the inset in Fig. 2(a)],
where each site contains self-phase modulation (SPM) that
normally exists in nonlinear optical crystals, waveguides, and
cavities. The rationale behind the thermodynamic funneling
can be understood from R-J distribution of the nonlinear
optical system at equilibrium. Essentially, the parameters T
and p in R-J distribution reveal the condition of the equili-
brated nonlinear multimode system. Under the conserved total
normalized power P = Zi‘il —T/(ei + 1) (M is the mode
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FIG. 1. Thermodynamics funneling of light in optical complex
system with highly multimoded nonlinear wave interaction. The
color coding indicates the temperature of the optical thermodynam-
ical system. The contour lines denote the macroscopic states under
the same temperature with exactly identical modal distribution {|c;|?}
yet different phases. With a suitable auxiliary system in contact, the
system can be cooled down (warmed up in negative temperature)
towards zero temperature; most of the optical power will be funneled
into the lowest- (or highest-) order mode, indicated by the solid blue
(red) circle, which will be narrowed down to a single point at zero
temperature (lowest- and highest-order modes have same intensity
profile but different phase in adjacent sites). By conducting with a

suitable auxiliary system, cooled down or warmed up this system
towards zero temperature is available.
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number of system), the normalized internal energy (which
accounts for the momentum flow) U = Zf‘il eT/(ei+ ) €
[—e1P, —ey P] increases from 7 = 0% to 0~ as shown in
Fig. 2(a), where T = *o0 is the transition point. The dif-
ference between positive and negative temperature regime is
the power occupation rate among the eigenmodes, i.e., the
lower-order modes dominate in the positive temperature re-
gion while larger occupation rate of higher-order modes leads
to negative temperature [28-33]. At T = o0, the occupation
rates of all modes are the same. In contrast, at 7 = 0, the
system condenses into the ground state or highest-order state,
where entropy S = Zf‘il In |¢;|? (defined in Ref. [1]) reaches
minimal value.

III. CONDENSATION

Similar to BEC, as u goes to the lowest-energy level (—¢;),
the temperature T tends to 0" and U reaches its minimal
value, which leads to a singular value in R-J distribution and
has profound consequences. Indeed, the optical nonlinearity
drives the optical system to condensate in the ground state
[18]. By the same token, as p approaches the highest-energy
level (—ey), T tends to O~ and U reaches its maximal value,
where the R-J distribution also has a singularity and conse-
quently the optical system condensates in the highest-order
mode [19].

The macroscopic occupancy, i.e., the power distribution
{|ci|*}, as a function of the spectrum {g;} on either side of the
spectrum, is shown in Fig. 2(b). We study a rectangular lattice
with 20 x 20 waveguides with normalized linear coupling
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FIG. 2. (a) Temperature dependence of the occupation rate [the
lowest-order mode in red (dark-gray) line, highest-order mode in
blue (dark-gray) dashed line], internal energy [orange (light-gray)
dashed line], and entropy [purple (light-gray) line] in a nonlinear
waveguide lattice. Inset shows the schematic diagram of optical
waveguide lattice with propagating direction along z axis, and the
normalized linear coupling coefficients between waveguides are
denoted by «; in x direction and «, in y direction, respectively.
(b) Condensation in lowest- (highest-) order mode. The initial modal
distribution launched into the waveguide lattice is indicated by light-
gray rectangle region; red (dark-gray) and pink (light-gray) points
show R-J distributions at thermal equilibrium. Blue solid (dashed)
lines (dark-gray lines) show the predicted R-J distributions. The
inset shows the variation of fundamental- [red (light-gray) line)]
and highest-order [blue (dark-gray) line] mode occupation. All the
simulation results are the average of 1000 ensemble copies; all the
quantities are normalized and dimensionless.

k1 =1 and x, = 1.5. Two types of initial input field with
rectangular line-shape function (solid and dashed light-gray
lines, normalized input power P = 5 and input internal energy
U = F19.12) are launched. Evidently, in the initial condi-
tion, the portion of supermodes where the optical power is in
the lowest- (highest)-order mode are negligible. As the light
beam propagates, the nonlinear hopping of the optical power
among the supermodes occurs and drives the optical system
into thermal equilibrium, wherein the equilibrium temperature
is T* = 4+0.0141, chemical potential is u = —1.001&y,y as
predicted from R-J distribution [1-3]. Condensation occurs in
the fundamental (highest-order) mode as the lower- (higher-)
order modes dominate. As evident from the inset of Fig. 2(b),
the power of the lowest- (highest-)order mode increases from
zero to 53%.

Despite that the thermalization process can be seen as a
K-space funneling process at low temperature, it is difficult
to achieve high funneling rate due to two reasons. Firstly, the
final occupation rate is fixed by the internal energy and total
power of the initial incidence, since the power distribution
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{|ci|*} obeys the R-J distribution that is merely determined
by the initial condition. Secondly, the input condition with
low equilibrated temperature by itself requires the input power
concentrated on the lower modes, which in turn hinders the
extra power funneling to fundamental mode. Such dilemma
can be overcome by introducing an auxiliary system, which is
contact with the main system to provide thermodynamic force
that drives power flux in the main system flowing to target
mode sets.

IV. THERMODYNAMIC FUNNELING

Conceptually, the occupation of the lowest- (highest-)
order mode rises as the absolute value of the temperature de-
creases, as evident from Fig. 2(a). We consider two nonlinear
waveguide lattices with completely orthogonal polarization,
where the first system is coupled to the second optical system
via an interlayer. As shown in Fig. 3(a), the two subsystems
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FIG. 3. K-space thermodynamic funneling of light by superheat-
ing. (a) Sketch of heat exchanging in a canonical ensemble system.
Black lines indicate the spatial distribution of optical power. (b) The
variation of equilibrium temperatures in left (red) and right (blue
dashed) systems. (c) The evolution of modal occupation rate for
target system as the light beam propagates along z axis. Atz = 6000,
more than 90% optical power is funneled into the highest-order
mode.

are indicated by the red and blue boxes, in which either
horizontal or vertical polarization is supported by properly ad-
justing the waveguide cross section. The interlayer indicated
by the purple waveguides in the middle supports both two
polarizations. In the presence of the cross-phase modulation
(XPM), two subsystems are coupled together via the inter-
layer with exchanged internal energy but conserved power,
thereby forming a rigorous canonical ensemble system [1].
Accordingly, even though the large differences between the
subsystems, i.e., waveguides number, spectrum, and input
power, may exist, the two subsystems shall have the same
temperature as the whole system tends to equilibrium. In the
presence of the temperature gradient between two waveguide
lattices, the heat flow streams from the higher-temperature
side to the lower side. As for the negative temperature, the heat
flows from negative temperature to positive temperature since
the negative temperature is hotter than positive temperature,
ie., T — 07 is the hottest temperature [2]. Therefore, the
well-designed auxiliary (right) subsystem can be used to heat
up or cool down the main (left) systems via heat conduction.
Consequently, by times heat conduction [we call it superheat-
ing (-cooling)], the temperature of the left subsystem can be
approximately decreased to zero, wherein the singular behav-
ior of the R-J distribution occurs and the significant funneling
of optical power into the lowest- (highest-) order mode can
be observed. As illustrated in Fig. 3(a), black lines represent
the electric fields. After several iterations, the main subsystem
condensates as output black line closing to lowest- (highest-)
order mode, implying that the optical power distributed chaot-
ically over the spectrum {¢;} at z = 0 is eventually funneled
into the lowest- (highest-) order mode; thereby, the thermody-
namically funneling is achieved as the gray line raises over
90%. Since the heat flow between two subsystems is only
forced by temperature gradient rather than the occupation rate
of modes, we can avoid using one already condensed subsys-
tem to condense another one by designing the parameters of
the auxiliary subsystem; black lines are chaotic in the right
subsystem in Fig. 3(a), implying the lowest- (highest-) order
mode keeps a very low occupation rate.

We illustrate the idea of thermodynamically funneling of
optical power to the highest-order mode via superheating
the main system that is close to negative temperature
condensation in Fig. 3. The left (right) waveguide lattice is
10 x 10 (10 x 120), the normalized linear coupling between
waveguides are both «; = 1 and «, = 1.5, the normalized
input power is 40 (80), and the ensemble copies is 1000.
As for the main system, the temperature of the input state
is Ty, = —2.41, with T} = —0.11 for 90% occupation of
highest mode, while the temperature in equilibrium of the
auxiliary lattice is around 7;, = —0.073 with 7, = —0.0074
for 90% occupation. After three iterations, i.e., z = 6000,
the temperature of the main subsystem is increased to
Tiena = —0.076 as shown in Fig. 3(a). Remarkably, more
than 90% optical power is thermodynamically funneled
into the highest-order mode, as evident in Fig. 3(c). The
temperature and the occupation rate in highest-order mode
in the main system are (—0.1971, —0.0831, —0.0740)
and (82.36%, 92.53%, 93.24%) by optical thermo-
dynamic theory [1], in comparison with numerically
simulated values being (—0.2041, —0.0854, —0.0760)
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and  (80%, 89.31%, 90.07%), as the heat exchange is
finished in the three iterations. The theoretical prediction is a
bit larger than real simulation results due to the assumption
that the total internal energy is conserved, which does not
hold exactly and part of the internal energy is converted into
nonlinear counterpart as discussed shortly. Notably, after
two iterations with z = 4000, the occupation rate exceeds
90%, as shown in Fig. 3(c). Further increasing the occupation
rate of the target mode requires more iterations and longer
equilibrium time (not shown here), which diverge as the
temperature approaches absolute zero. The rationale behind
this is the third law of thermodynamics, which leads to the
fact that the condensation into absolute-zero temperature is
impossible in a finite number of steps [34,35] and thus the
unitary thermodynamic funneling of light into the highest- or
lowest-order mode is unattainable. Nevertheless, without any
parameter optimization, we show that more than 90% optical
power can be thermodynamically funneled into the target
mode in our simple setting via heat exchange.

V. DISCUSSION

The condensation phenomenon does not necessarily occur
in the nonlinear waveguide lattice system due to the existence
of modulation instability (MI) and the generation of the spatial
soliton for larger input power [36]. The optical thermody-
namics theory only admits low-input optical power, where
the internal energy, i.e., the linear part of total Hamiltonian
U = —H;, is approximately conserved. Otherwise, the non-
linear part Hy; dominates, and the spatial soliton might appear
[36]. The precursor of spatial soliton is MI, which depends
on the balance between nonlinearity [represented by y in
Eq. (1)] and diffraction coefficient [D(k,) = d*p /dkf] [36].
According to the band dispersion, there are two types of dis-
persion regions: (1) D < 0 (normal diffraction) at low-order
modes, and (2) D > 0 (anomalous diffraction) at high-order
modes. Most of the photonic waveguide system has a focusing
Kerr nonlinearity (y > 0); the thermodynamic funneling into
ground state fails due to the MI condition (Dy < 0) for mode
group with normal diffraction being satisfied such that the
change of nonlinear Hamiltonian is not negligible. Instead,
the thermodynamic funneling into the highest mode which
bears anomalous diffraction still works. If the optical system
has a defocusing nonlinearity, i.e., y < 0, the thermodynamic
funneling works for fundamental mode but fails for highest-
order mode, as summarized in Fig. 4(a).

Indeed, Fig. 4(b) shows the light propagation in the non-
linear coupled waveguide lattice with the identical settings
as that in Fig. 2, except that the normalized input power is
increased to 20. The z-dependent occupation rate of highest
mode (solid pink line) increases from zero to 0.53 (black
line), overlapped exactly with the prediction from optical
thermodynamic theory. In contrast, the final occupation rate
of the ground state (solid red line) is less than 2%, where the
prediction from R-J distribution fails. In addition, the internal
energy in the negative temperature regime (pink dashed line)
with yD > 0 is conserved during the propagation. In sharp
contrast, the internal energy in positive temperature regime
(red dashed line) with yD < 0 decreases as light beam prop-
agates, due to the transfer of internal energy to the nonlinear
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FIG. 4. Funneling and soliton formation in the lowest- and
highest-order modes, respectively. (a) The funneling condition with
the sign of nonlinearity y and the sign of diffusion D. (b) Input
and output power distributions with P increasing to 20 for the same
system in Fig. 2 (y > 0). All the simulation results are the averaged
results of 1000 ensembles. Inset: Occupation rates (lines) and abso-
lute internal energy (dashed lines) along the propagation.

Hamiltonian, which is confirmed by the space soliton forma-
tion at the lattice center in each ensemble copy in the full
simulation. Therefore, in this typically chosen scenario shown
in Fig. 4(b), the condensation to highest-order mode still exists
the same as Fig. 2(b), evidenced by the excellent agreement
of the ¢;-dependent power distribution between the prediction
from optical thermodynamic theory (the blue-dashed line) and
the full simulations (pink dots). As for the ground state, the
prediction from R-J distribution (blue line) fails due to the
internal energy not being conserved; thus, optical thermody-
namic theory is not applicable.

VI. CONCLUSION

In conclusion, we proposed an optical thermodynamically
approach to funnel light into single mode in a nonlinear
multimode optical system. The nonlinear optical waveguide
lattice has a finite spectrum, featuring two different types of
condensation on the two sides of the spectrum, which are
used to realize the thermodynamic funneling of light into the
lowest- and highest-order mode via heat conduction. Consid-
ering the thermal isolation of the nonlinear waveguide lattice,
we use a sandwich structure with two orthometric polarization
to realize the heat exchange without changing the optical
power. Importantly, with properly designed auxiliary waveg-
uide lattice, any optical waveguide lattice can be cooled down
or heated up such that the optical power is funneled to the
fundamental- or highest-order mode, up to 90% if the MI and
the spatial soliton formation can be well suppressed.

As an outlook, our work of realizing the thermodynamic
funneling into the highest-order mode explicitly reveals the
possibility of negative temperature condensation, which in-
dicates that an optical thermodynamic system provides an
alternative yet interesting playground to address fundamental
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issues in thermodynamics and quantum thermodynamics. In
addition, our work might be useful in realizing an all-optical
Ising machine in nonlinear photonic pseudospin systems like
nonlinear ring resonator lattice [37] or spatial photonic Ising
machine [7-10], where the ground state might be approached
simply by a pure heat-exchanging process rather than hybrid
feedback with complicated algorithms.
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APPENDIX

In a (24-1)-dimensional rectangular waveguide lattice [the
inset in Fig. 2(a)], the normalized nonlinear Schrodinger equa-
tion (NSE) can be written as [1,2]

l.dam.n

+ Kl(am—l,n + aWH—l,n) + K2(am,n—l + am,n+l)
+ V|am,n|2am,n =0, (A1)

where a,,, is the amplitude of optical modal field in the
single-mode waveguide indexed by two subscripts m and
n along the x and y direction, respectively; x; and «;
are coupling constants in the x and y direction, respec-
tively; y describes the strength of self-phase modulation
in each waveguide; and z is normalized propagating dis-
tance. The linear part of the waveguide lattice (the linear
Hamiltonian H}) is characterized by linear spectrum, i.e., a
series of waveguide supermodes with propagation constants

Bi (Bi>Pr>-->0>--> By > fu}). By defining
effective energy &; = B;, then the optical ground state has
the largest energy level while the highest-order state has the
smallest energy level. The total power P = Zf‘il lci]* and
total Hamiltonian H = H; + Hy; (Hy. represents nonlinear
part of Hamiltonian) are two conserved quantities, where
ci (|ci|2) is the amplitude (power) of the ith supermode. Since
the nonlinearity is weak, H; > Hy, relative momentum flow
U=-H = Zf‘i] —é&ilci|* can be seen as an approximate
conserved internal energy. The total power P and momentum
flow U (coined as the internal energy onwards) play identical
roles as the particle number and internal energy in thermo-
dynamics, where the optical nonlinearity irreversibly drives
the optical system towards the equilibrium state with the
highest entropy during light propagation [1]. In equilibrium,
one could find the power distribution (particle occupation
distribution) on the supermode spectrum is an R-J distribution,
lcil* = =T /(i + p) [1-3].

For the sandwich lattice in Fig. 3(a), the NSE for the sites
on the left (red) or right (blue) lattice is just Eq. (Al), but
we need to add an XPM term in the NSE for the sites in the
interlayer lattice (purple):

day,,
l_

dz
+ YspPm |am,n|2am,n + VXPM|bm,n|2am,n - 07 (A2)

+ Kl(amfl,n + am+l,n) + KZ(am,nfl + am,n+1)

where b, , is the amplitude of another polarization at site
(m, n); yspy and yyxpy are the strength of SPM and XPM,
respectively.

Given the initial temperature and internal energy of
two subsystems, one can predict the final temperature
of two subsystems with heat capacity. For a regular 1D
lattice, an approximation heat capacity is Cy(T) =M —
|T|\M?*(T*M? + 4«*P?)~1/2 [4]. For 2D lattice, there is no
explicit formulation of heat capacity, but we could use
a numerical heat capacity from U = Zfil &T/(ei+ (U —
TM)/P) and use a graphical way of predicting the final tem-
perature [1]. For instance, the total energy of total systems
Uy = U, + U, (where U, and U, are the energy of two subsys-
tems) is assumed as a conserved quantity, we draw the curve
T1(Uy) and curve T,(U,) = T>(Uy — Uy), and find the crossing
point T'(U;) as the final temperature.
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