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Nonlinear highly multimode photonic systems are ubiquitous in optics. Yet, the sheer complexity arising
from the action of nonlinearity in multimode environments has posed theoretical challenges in describing these
systems. In this work, we deploy concepts from optical thermodynamics to investigate the near- and far-field
emission intensity patterns emerging from nonlinear waveguide arrays. An exact equation dictating the response
of a nonlinear array is derived in terms of the system’s invariants that act as extensive thermodynamic variables.
In this respect, the near- and far-field characteristics emerging from a weakly nonlinear waveguide lattice
are analytically addressed. We show that statistically, these patterns and the resulting far-field brightness are
governed by the optical temperature and its corresponding chemical potential. The extensivity associated with
the entropy of such configurations is discussed. The thermodynamic results presented here were found to be in
good agreement with numerical simulations obtained from nonlinear coupled-mode theory.
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I. INTRODUCTION

During the last few years, nonlinear multimode optical
systems have attracted considerable attention [1–5]. Along
these lines, a host of new effects has been successfully ob-
served. These include geometric parametric instabilities [6,7],
beam self-cleaning [8], spatiotemporal mode-locking [9], and
supercontinuum generation [10], to mention a few. The mul-
titude of modes supported by these systems provides not
only new physical settings but also rich and complex en-
vironments where new classes of nonlinear spatiotemporal
interactions can emerge [11]. To some extent, this convoluted
and chaotic nonlinear energy exchange among optical modes
is akin to that encountered in many-body problems [12,13],
the investigation of which typically requires considerable
computational power. Quite recently, a thermodynamic for-
malism has been developed that can describe in an effortless
manner the classical behavior of highly multimode weakly
nonlinear bosonic systems whose dynamics involve two con-
served quantities [14,15]. This approach is universal and
applicable to both multimode waveguide and cavity arrange-
ments, irrespective of the type of nonlinearity used, as long as
ergodicity is at play [16].

An important and versatile family of multimode struc-
tures is that pertaining to one- and two-dimensional photonic
waveguide lattices. In the tight-binding regime, these systems
are known to display wave dynamics that are mathematically
isomorphic to electron transport in solid-state physics [17].
Some of these effects include, for example, Bloch os-
cillations [18,19], topologically protected edge states and
supersymmetric dynamics [20], highly degenerate flat band
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Lieb lattices [21], Zenner tunneling [22], and dynamic lo-
calization processes [23]. Interestingly, when such a lattice
is nonlinear, the propagation dynamics can be fundamen-
tally altered, leading to discrete soliton formation and the
appearance of novel topological phases [4,24]. On the other
hand, in the weakly nonlinear regime, as the number of
modes increases, these self-organized patterns tend to dissolve
because of nonlinear multiwave mixing effects [15,25]—an
inherently complex process that has so far remained unex-
plored. In general, the near- and far-field intensity patterns
at the output are known to play an important role in several
applications [26,27]. As such, of interest will be to develop
a formalism that could capture the macroscopic behavior
of these weakly nonlinear waveguide arrays using notions
from statistical mechanics. Along these lines, previous studies
have shown that an optical Sackur-Tetrode equation can be
utilized to describe nonlinear chain networks under thermal
equilibrium conditions—an equation that explicitly provides
in closed form the optical temperature and chemical po-
tential of such systems [28,29]. In general, this formalism
is based on the assumption that these networks are highly
multimoded—an aspect that is not always met in deploying
such a statistical approach. In addition, to our knowledge, no
analytical expression has been obtained that could describe
the nonlinear waveguide array’s near- and far-field intensity
patterns at thermal equilibrium. It is important to emphasize
that the optical thermodynamic theory outlined here deals
with photon-photon interactions mediated by Kerr nonlineari-
ties. This is in contrast to photon-matter interactions [30–35],
where the temperature is dictated by the temperature of the
thermal bath or environment. As we will see, the optical tem-
perature in the multimode nonlinear arrangements discussed
here is uniquely determined by the initial optical power,
“internal energy,” and the number of modes.
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FIG. 1. An on-chip photonic lattice consisting of several iden-
tical waveguide channels. Each channel is designed to be single-
moded at the operating wavelength.

In this manuscript, by means of optical thermodynamics,
we provide a methodology for analytically predicting and
describing the near- and far-field radiation patterns emerg-
ing from waveguide chain networks. We formally derive the
main equations for the aforementioned nonlinear waveguide
systems in terms of the extensive variables involved (total
power, internal energy, and the number of modes) [15] and the
intensive quantities associated with the optical temperature
and chemical potential. In addition, we clarify the mode range
over which the system is entropically extensive. In general,
we find that the temperature and chemical potential govern
the near- and far-field intensity distributions via a Rayleigh-
Jeans law. In all cases, the analytical results from this optical
thermodynamic theory have been augmented with numerical
simulations.

II. GENERAL ANALYSIS

We begin our analysis by considering an array of M cou-
pled waveguides, as shown in Fig. 1. The system is governed
by the following normalized discrete nonlinear Schrödinger
equation:

id!n

dz
+ κ (!n+1 + !n−1) + |!n|2!n = 0, (1)

where !n is the complex amplitude of the optical field
at site n, and κ is the normalized coupling coefficient. In
the linear regime, this arrangement supports M eigenmodes
which can be obtained from the following Hamiltonian prob-
lem HL|ψ j〉 = ε j |ψ j〉, where HL is the linear Hamiltonian of
the system, and ε j represents the eigenvalue associated with
the eigenmode |ψ j〉. For convenience, we assume ε1 ! ε2 !
ε3 ! · · · ! εM , where ε1 and εM denote the highest-order and
lowest-order mode, respectively. In this case, the optical field
can be expressed as a superposition of these eigenstates, i.e.,
|!〉 =

∑M
j=1 c jψ j . Under weakly nonlinear conditions, both

the optical power P =
∑M

j=1 |c j |2 and the internal energy
U = −

∑M
j=1 ε j |c j |2 are conserved and are determined from

the initial excitation conditions |c j0|2 = |〈ψ j | !(0)〉|2. In this
respect, the sole role of nonlinearity is to chaotically reshuffle
via multiwave mixing processes [36] the optical power among
modes |c j |2, while respecting the constraints of power and

energy conservation manifolds. Such ergodic dynamics lead
to a thermal equilibrium state that obeys a Rayleigh-Jeans
distribution |c j |2 = −T/(ε j + µ) [15,37,38], where T and µ
represent the optical temperature and chemical potential, re-
spectively. Interestingly, these thermodynamic properties are
linked to each other via a global equation of state U − µP =
MT [15], and thus the final temperature and chemical poten-
tial can be uniquely determined from initial conditions [14].

The column elements of the supermodes |ψ j〉 associated
with this one-dimensional (1D) waveguide array can be
expressed as ψ j (n) =

√
2/(M + 1)sin( n jπ

M+1 ) [39,40]. The cor-
responding eigenvalue of each supermode is given by ε j =
2κcos( jπ

M+1 ) [40]. In this case, upon thermal equilibrium, the
total optical power in the system can be rewritten as

P = −
M∑

j=1

T/µ

Acos
( jπ

M+1

)
+ 1

, (2)

where A = 2κ
µ

. The quantity |A| is always less than unity [28]
and can be regarded as the zero temperature limit of the sys-
tem since, as we will see in the upcoming sections, when |A|
approaches unity, the power in the nonlinear waveguide array
system tends to occupy the lowest- or the highest-order mode.
To explicitly evaluate the sum in Eq. (2), we use a polynomial
expansion (see Appendix). By employing the global equation
of state along with the following identity [41,42],

∞∑

v=0

(
2v + s

v

)
yv = 2s

(1 +
√

1 − 4y)s√1 − 4y
, (3)

one can show that Eq. (2) can be expressed as follows:

1√
1 − A2

[1 − ζ (A, M )] = 2Pκ

2κP − AU
, (4)

where ζ (A, M ) = 2r2

M(1−r2 ) − 2(M+1)r2(M+1)

M(1−r2(M+1) ) and r = A
(1+

√
1−A2 )

.

In order to obtain the optical temperature and chemical po-
tential, one has to first obtain A from Eq. (4). In all cases,
we ignore the trivial solution A = 0 and we only invoke
the second root (obtained numerically) which stands for the
only physical solution of this problem. Figures 2(a) and 2(b)
provide a parametric plot of the variable A as a function of
the internal energy U and the optical power P . Note that
throughout this paper, for simplicity we set κ = 1.

From here, the chemical potential µ = 2κ
A and the optical

temperature T = U
M − µP

M [15] can be subsequently found. It
is worth noting that Eq. (4) is exact in the sense that it is
applicable for any temperature T . On the other hand, as the
number of modes becomes very large (M & 1) the quantity A
can be analytically obtained using the procedure in Ref. [28]
[A = 4κPU/(U 2 + 4κ2P2)]. By keeping in mind that A =

2κP
U−MT , we get

1√
1 − A2

= 2Pκ

2κP − AU
. (5)

Equation (4) reduces to Eq. (5) for highly multimoded
systems (M & 1) and provided that A lies away from the
limit |A| = 1, and hence, the function ζ (A, M ) can be ig-
nored. In fact, the ζ (A, M ) term reflects the contribution of
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FIG. 2. (a) Parametric curves depicting the dependence of the
quantity A on the internal energy U for various optical power levels
P . (b) Dependence of A on P for different values of U .

discreetness in the kinetic energy U arising at low tempera-
tures whenever the number of modes is very low, an aspect
that was unimportant and hence ignored in [28]. Figure 3
depicts the logarithm of the function ζ (A, M ), which itself

FIG. 3. A contour plot of log10 |ζ (A, M )|. The solid line indicates
the boundary between the regions where ζ (A, M ) is above or below
1%. In this diagram M > 10.

represents a departure from Eq. (5). The boundary between
the regions where ζ (A, M ) is above or below 1% is also shown
for M > 10.

According to the second law of thermodynamics, at ther-
mal equilibrium, the entropy of the system should be at
maximum. In a photonic system, the thermodynamic entropy
can be expressed as follows [15]:

S =
M∑

j=1

ln|c j |2 =
M∑

j=1

ln
(−T

µ

)
− ln

[
Acos

( jπ
M + 1

)
+ 1

]
.

(6)
By using the following identity [43],

N−1∏

k=0

[
z2

1 − 2z1z2cos
(

γ + 2kπ

N

)
+ z2

2

]

= z2N
1 − 2zN

1 zN
2 cos(Nγ ) + z2N

2 , (7)

with z2
1 = A2

2(1+
√

1−A2 )
and z2

2 = 1+
√

1−A2

2 , the photonic entropy
can then be simplified (see Appendix):

S = Mln
(−T

µ

)
− ln

∣∣∣∣
AM+1

2M+1

(
rM+1 − r−M−1)

∣∣∣∣+ ln
√

1 − A2.

(8)

Note that the global equation of state also dictates that
T
µ

= AU−2κP
2Mκ

. Given that A can be obtained from Eq. (4), the
system’s entropy can now be readily determined from the
initial conditions that uniquely specify U and P . Figure 4(a)
depicts the dependence of the entropy S on the parameter A.
Overall, as A approaches the limits 1 or −1, the photonic
entropy S tends to negative infinity while the temperature
goes to zero. This zero temperature behavior is very similar
to that expected from the Sackur-Tetrode equation describing
an ideal photon gas [28]. On the other hand, the entropy is
maximum at A → 0. In this latter limit, the temperature is
infinite (T → ±∞) and the system is in its most chaotic state.
As a result, all the waveguide modes are equally occupied
(power equipartition). At this point, it is worth emphasizing
that within the framework of optical thermodynamics one
relies on the premise that a very large (yet finite) number of
modes is involved. In fact, violation of this very assumption
could lead to a scenario where the entropy is not extensive,
i.e., S(λU, λP, λM ) (= λS(U, P, M ). This aspect is explicitly
accounted for by the second term in Eq. (8) where the ex-
tensivity of the entropy is broken as |A| → 1 andM → 0
[see Fig. 4(b)]. On the other hand, if the system is operated
away from this extreme regime, Eq. (6) reduces to the optical
Sackur-Tetrode equation obtained in Ref. [28] that provides
the entropy of the photon gas in nonlinear chain systems:

S(U, M,P ) ≈ Mln
(

4κ2P2 − U 2

4Mκ2P

)
. (9)

It can be seen that the entropy of Eq. (9) is extensive in
terms of the variables (U, M,P). Figure 4(c) depicts a com-
parison between the exact expression for the entropy [Eq. (8)]
and the approximate entropy given by Eq. (9) when A = 0.99.
As the number of modes increases, the two expressions tend
to be asymptotically the same. Interestingly, these two forms
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FIG. 4. (a) Optical thermodynamic entropy when P= 1 and
M = 100. The entropy is maximum at T →±∞ where A = 0. (b) A
contour plot for the function S(2U, 2P, 2M )/S(U,P, M ), where a
value of 2 indicates perfect extensivity of the entropy function.
Note that the extensivity of this system is preserved for M!20.
(c) A comparison between the entropy provided by Eqs. (8) and (9)
when A = 0.99 and P= 1. The two curves coincide with each other
for M!10.

are in very close agreement, even though the temperature is
very low (A → 1) and the number of modes M is rather small.

Next, we derive the equations of the state pertaining to the
entropy of the array as given by Eq. (8). To do so, we first
note that

∂S(U, M,P; A)
∂U

∣∣∣∣
P,M

= ∂S
∂U

+ ∂S
∂A

∂A
∂U

= ∂S
∂U

, (10)
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FIG. 5. Optical temperature versus A. These results are obtained
for M = 100 and κ= 1.

given that ∂S/∂A = 0 as shown in the Appendix. From here,
the temperature T , chemical potential µ and optical pressure
p̂ can be directly obtained via

∂S
∂U

∣∣∣∣
P,M

= − MA
2κP − AU

= 1
T

, (11a)

∂S
∂P

∣∣∣∣
U,M

= 2Mκ

2κP − AU
= −µ

T
, (11b)

p̂
T

= ln
(

−AU − 2κP
2Mκe

)

− ∂

∂M

M∑

j=1

ln
[
Acos

( jπ
M + 1

)
+ 1

]
, (11c)

where e is Euler’s number. Figure 5 shows the relationship
between the temperature and the parameter A as obtained
from Eq. (11a) for different optical power P . Note that the
first two equations [Eqs. (11a) and (11b)] are equivalent to
the global equation of state U − µP = MT as one should
expect. In addition, if the system is operated away from zero
temperatures and provided that the number of modes is large,
Eq. (10) reduces to Eqs. (2)–(4) of Ref. [28]

III. NEAR-FIELD INTENSITY PATTERNS EMERGING
FROM WAVEGUIDE ARRAYS UNDER THERMAL

EQUILIBRIUM CONDITIONS

We next use the aforementioned thermodynamic descrip-
tion in order to obtain the near-field pattern emerging from
a nonlinear waveguide array when it has attained thermal
equilibrium at a temperature T and chemical potential µ. In
this respect, let us keep in mind that the normalized near-field
intensity distribution (among elements n) corresponding to
each supermode |ψ j〉 is given by I j (n) = 2

M+1 sin2( n jπ
M+1 ). In

view of the fact that the power distribution among modes is
governed by a Rayleigh-Jeans law |c j |2 = −T/(ε j + µ), one
can then conclude that the envelope of the thermalized near-
field intensity pattern INF(n) emerging from the nth output
site of a nonlinear multimode waveguide array is given by
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FIG. 6. Theoretical near-field patterns at (a) positive and (b) neg-
ative temperatures. Note that the near-field intensity distributions
are even functions of temperature. These results were obtained for
M = 100, κ= 1, and P= 5. For simplicity, in all the figures dis-
played in this section, only the envelope of the intensity near-field
patterns is provided. In an actual waveguide array system, these pat-
terns are modulated in space by the mode profiles of the waveguide
elements involved.

the sum,

INF(n) =
M∑

j=1

|c j |2I j (n)

= − 2
M + 1

M∑

j=1

T/µ

Acos
( jπ

M+1

)
+ 1

sin2
(

n jπ
M + 1

)
. (12)

Using the sum identities outlined in the Appendix, and
provided that the array is heavily multimoded (M & 1) and
is operated away from zero temperatures (|A| (= 1), one can
show that the near-field intensity profile can be approximately
expressed as follows:

INF(n) ≈
{ −T

µ
√

1−A2

(
1 − Mr2n

M+1

)
1 ! n ! L

−T
µ

√
1−A2

(
1 − Mr2M+2−2n

M+1

)
L + 1 ! n ! M,

(13)

where L is the closest integer less than or equal to M/2. The
near-field intensity patterns as obtained from Eq. (12) are de-
picted in Fig. 6, under different temperature conditions when
P= 5. In general, as the magnitude of the optical temperature
|T | increases, the entropy is larger and as a result the beam
intensity pattern tends to be flatter. On the other hand, when
the temperature approaches 0±, the intensity profile is solely
represented by the fundamental or the highest-order mode.
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FIG. 7. Near-field intensity distribution at the output of a nonlin-
ear waveguide array as the temperature increases. For these figures
P= 5 and M = 100.

Interestingly, regardless of the sign of the temperature, as
long as the entropy is the same, the system exhibits the same
near-field pattern. This is due to the fact that optical entropy
S is an even function of temperature T in 1D waveguide array
systems.

We next show that the near-field distribution can be con-
trolled at will by judiciously varying the initial excitation
conditions. Figure 7 shows that for a given input power
(P= 5), the output intensity profile tends to become rela-
tively constant across the array as the internal energy U
approaches zero, in which case the temperature tends to in-
finity. This is because as T → ±∞ equipartition of power
takes place among modes and therefore the intensity profile
flattens out.

To corroborate the aforementioned thermodynamic results,
we performed numerical simulations based on direct nu-
merical integration of Eq. (1). In these simulations M =
100, κ = 1, and P = 5. Figures 8(a) and 8(b) depict the
equilibrium Rayleigh-Jeans distributions when the array sys-
tem is excited with internal energies U = ∓6.33. In the first
scenario [Fig. 8(a)], the lowest-order modes (dotted blue
curve) are excited while in the second the power is injected
in higher-order states [Fig. 8(b)]. In both cases, there is excel-
lent agreement between simulations and the thermodynamic
formalism used above. Under these conditions, the system
attains thermal equilibrium at a temperature of T = ±0.047,
corresponding to U = ∓6.33. In all cases, the resulting site
intensity distributions INF(n) across the array are obtained
by numerically solving Eq. (1), and after averaging the re-
sults of several ensembles, all initiated with the same modal
amplitudes |c j0| but with different random phases [arg(c j0)].
These results are then compared to the intensity distribu-
tion INF(n) predicted by Eq. (13). As indicated in Figs. 8(c)
and 8(d), in both cases the near-field intensity patterns ob-
tained from numerical simulations are in very close agreement
with theoretical predictions. The small fluctuations appearing
in Fig. 8(c) are due to weak modulational instability effects
that tend to affect lower-order in-phase modes under self-
focusing nonlinearities, which is the case examined in this
paper.
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FIG. 8. (a) Resulting modal Rayleigh-Jeans distributions when a nonlinear waveguide array is mostly excited in its lowest-order modes
(dotted blue curve), corresponding to the internal energy of U = −6.33. (b) Same as in (a) but with the highest-order modes excited
(U = 6.33). (c) Near-field intensity pattern corresponding to (a). The theoretical intensity distribution expected from Eq. (13) is compared
to direct numerical simulations, as obtained after averaging over several statistical ensembles. (d) Same as in (c). In this case, the near-field
intensity pattern corresponds to the initial conditions used in (b). These results were obtained for M = 100, P= 5, and κ= 1.

IV. ARRAY FAR-FIELD INTENSITY PATTERNS UNDER
THERMAL EQUILIBRIUM CONDITIONS

In this section, we investigate the far-field intensity pat-
terns emitted by a nonlinear waveguide array system once it
attains thermal equilibrium. As opposed to near-field intensity
distributions, the far-field patterns can be obtained by invok-
ing diffraction effects. Given that the relative phases among
modes vary in a stochastic manner, the far-field intensity can
be determined by incoherently superimposing the diffraction
pattern of each array supermode. In this case, the electric field
distribution of each mode can be obtained by convolving the
array supermode with the mode profile of each single-mode
waveguide channel g(x) (the local mode) [44]. Therefore,
the electric field distribution for each mode j can be
written as

Ej (x) = c j

√
2

M + 1

M∑

n=1

∫
dηsin

( n jπ
M + 1

)

× δ(η − nD)g(x − η), (14)

where D is the waveguide separation distance and x is the
transverse coordinate in the waveguide array plane. Here, for
simplicity, we assume that the modal field profile is Gaussian
with a spot size w, i.e., g(x) = exp(−x2/w2). By adopting,
the results of Ref. [39], the Fraunhofer far-field intensity pat-
tern IFF(θ ) resulting from incoherent superposition of all the

supermodes is given by

IFF(θ ) = f (θ )
M∑

j=1

|c j |2 ×
{

sin
[
(φ j + αθ ) M

2

]

sin
(φ j

2 + αθ
2

)

−
(−1) jsin

[
(αθ − φ j ) M

2

]

sin
(

αθ
2 − φ j

2

)

}2

, (15)

where θ is the far-field diffraction angle, α = 2π
λo

D,

φ j = jπ
M+1 . Since the mode in each waveguide is Gaussian,

f (θ ) ∝ exp(−2θ2/θ2
o ), where θo = λo/(πw). Under thermal

equilibrium conditions, the far-field intensity distribution
emitted by a nonlinear waveguide array is dictated by Eq. (15)
provided that the modal occupancies |c j |2 obey the Rayleigh-
Jeans law. As an example, let us consider a nonlinear
waveguide array operated at a wavelength of λo = 1 µm.
The separation among waveguides is 4.7 µm and the mode
spot size of each element is w ≈ 1.9 µm. As indicated
by Figs. 9(a) and 9(b), the far-field intensity patterns di-
rectly depend on the optical temperature of this system at
equilibrium. It is worth emphasizing that as the magnitude
of the optical temperature increases, the beam divergence
in the far-field also increases. At positive temperatures, the
far-field pattern is dominated by a central lobe [Fig. 9(a)]
since lower-order modes are favored in the array. Con-
versely, at negative temperatures, the far field is split into
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FIG. 9. Far-field intensity patterns as a function of the diffraction
angle θ at (a) positive and (b) negative optical temperatures. For the
cases considered here M = 100 and P= 5. The insets provide the
full far-field patterns while a magnification of the main lobe(s) is
displayed in the main panels.

two lobes [Fig. 9(b)], as expected from higher-order modal
states.

The dependence of the far-field intensity on the internal
energy U is shown in Figs. 10(a) and 10(b) when the power
level is kept constant P = 5. As these figures suggest, the far-
field lobes tend to broaden as the magnitude of internal energy
|U | decreases. This is because the system progressively moves
towards higher absolute temperatures—thus spoiling the spa-
tial coherence of the light emitted. Similarly, Figs. 10(c) and
10(d) depict how the same patterns vary as the power P in
the array increases while keeping U constant. In this case,
the pattern broadens at high powers, in both temperature
regimes.

In order to validate the predictions of the optical ther-
modynamic theory, the theoretical results in this section
are compared to those obtained numerically after integrat-
ing Eq. (1). To do so, as in Sec. III, statistical ensembles
have been used. Figure 11 depicts the far-field patterns
emerging from a nonlinear waveguide array at two different
excitation conditions. Figure 11(a) compares the numeri-
cal simulations (after summing incoherently the Fraunhofer
patterns of each spatial supermode or by summing the
Fraunhofer diffraction patterns of near-field intensity profile
over many ensembles) with our analytical results [Eq. (15)].
The excitation conditions used are those corresponding to
Fig. 8(a). In the same vein, Fig. 11(b) compares these
simulations with the results predicted by Eq. (15), under
the same conditions used in Fig. 8(b). In all cases, good
agreement was found between the numerical and theoretical
results.
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FIG. 10. Far-field intensity patterns as a function of internal energy U at (a) positive and (b) negative temperatures when P= 5. (c) and
(d) Same as in (a) and (b) with the power varying while U is equal to −5 and 5, respectively.
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FIG. 11. Numerically validating the far-field intensity patterns,
as predicted by the optical thermodynamic theory. Theoretical
and numerical results are plotted together for (a) T ≈ +0.047
and (b) T ≈ −0.047. These results were obtained for M = 100,
U = ∓6.33, P = 5, κ = 1, and D = 4.7 µm.

V. CONCLUSION

In conclusion, by means of optical thermodynamics, we
provided a systematic approach for analytically predicting and
describing the near- and far-field radiation patterns emerging
from waveguide chain networks. In general, we found that
the temperature and chemical potential govern the near- and
far-field intensity distributions. Issues related to the extensiv-
ity of the system’s entropy have also been addressed. In all
cases, good agreement between the analytical results obtained
from the optical thermodynamic theory and the numerical
simulations has been demonstrated.
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APPENDIX

We here derive Eq. (4) from Eq. (2). By using a Taylor series expansion, Eq. (2) can be written as

P = −T
µ

M∑

j=1

[1 − Acos(φ j ) + A2cos2(φ j ) − · · · ], (A1)

where φ j = jπ
M+1 . By using the identities [45],

cos2va = 1
22v

(
2v
v

)
+ 1

22v−1

v−1∑

k=0

(
2v
k

)
cos[2(v − k)a], (A2)

cos2v+1b = 1
4v

v∑

k=0

(
2v + 1

k

)
cos[(2v + 1 − 2k)b], (A3)

with (2v
k ) representing the binomial coefficient {i.e., (2v

k ) = 2v!/[k!(2v − k)!)]}, we can then expand Eq. (A1) as

P = −T
µ

M∑

j=1

[
1 + 1

22

(
2
1

)
A2 + 1

24

(
4
2

)
A4 + 1

26

(
6
3

)
A6 + · · ·

]
−

[
A
40

(
1
0

)
+ A3

41

(
3
1

)
+ A6

42

(
5
2

)
+ · · ·

]
cos(φ j )

+
[

A2

21

(
2
0

)
+ A4

23

(
4
1

)
+ A6

25

(
6
2

)
+ · · ·

]
cos (2φ j ) − · · · . (A4)

Now, let us rewrite the term
∑M

j=1 cos( m jπ
M+1 ) using Euler’s formula,

M∑

j=1

cos
( m jπ

M + 1

)
= 1

2

M∑

j=1

ei m jπ
M+1 + e−i m jπ

M+1 . (A5)
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The geometric series identity
∑M

j=1 bj = b(1 − bM )/(1 − b) leads to

M∑

j=1

cos
( m jπ

M + 1

)
= 1

2

(
ei mπ

M+1 − eimπ

1 − ei mπ
M+1

+ e−i mπ
M+1 − e−imπ

1 − e−i mπ
M+1

)
, (A6)

which can be further simplified using
∑M

j=1 cos( m jπ
M+1 ) = [−1, 0] if m is [even, odd], respectively, as long as m is not an even

multiple of (M + 1). If on the other hand, m = 2q(M + 1) then
∑M

j=1 cos( m jπ
M+1 ) = M. Hence, Eq. (A4) is rewritten as

P = −T
µ

∞∑

v=0

M
22v

(
2v
v

)
A2v−A2(v+1)

22v+1

(
2v + 2

v

)
− A2(v+2)

22v+3

(
2v + 4

v

)
− · · · + M

[
A2v+2M+2

22v+2M+1

(
2v + 2M + 2

v

)]
+ · · · . (A7)

By directly substituting Eq. (3) into Eq. (A7) we find

P = − T
µ

( 1√
1−A2

)
{M − 2[r2 + r4 + r6 + · · · ] + 2(M + 1)[r2(M+1) + r4(M+1) + r6(M+1) + · · · ]}, (A8)

where r = A
(1+

√
1−A2 )

. By reorganizing the geometric series in Eq. (A8) and by using the relations, µ = 2κ
A and T

µ
= AU−2κP

2Mκ
, one

can obtain Eq. (4).
Next, we derive Eq. (8) from Eq. (6). To this end, Eq. (6) is rewritten as

S = Mln
(−T

µ

)
− ln

M∏

j=1

[
Acos

( jπ
M + 1

)
+ 1

]
. (A9)

By utilizing the symmetry of the cosine function, we can get

M∏

j=0

[
Acos

( jπ
M + 1

)
+ 1

]
=

√
1

1 − A

√√√√
M+1∏

j=0

[
Acos

(
2 jπ

M + 1

)
+ 1

]√√√√
M+1∏

j=1

[
Acos

(
(2 j − 1)π

M + 1

)
+ 1

]
. (A10)

By using Eq. (7) and after setting z2
1 = A2

2(1+
√

1−A2 )
, z2

2 = 1+
√

1−A2

2 , one can obtain Eq. (8). In the process, γ = 0 and γ = −π
M+1

are used in the second and third product on the right-hand side of Eq. (A10), respectively.
We next derive Eq. (13). By employing the trigonometric identity sin2 p= [1 − cos(2p)]/2, Eq. (12) can be rewritten as

INF(n) = − 1
M + 1

M∑

j=1

T
µ

Acos
( jπ

M+1

)
+ 1

[
1 − cos

(
2n jπ
M + 1

)]
. (A11)

The first term [
∑M

j=1
T/µ

Acos( jπ/(M+1))+1 ] can be recast in the same way Eq. (4) was derived. For M & 1 and |A| (= 1, we find

that 1
M+1

∑M
j=1

T
µ

Acos( jπ
M+1 )+1

≈ T
µ

1√
1−A2 . This strategy can also be used in evaluating the second term in Eq. (A11) by employing

the discrete Fourier transform identity,

M∑

j=1

(
ei2n jπ

M+1 + e−i2n jπ
M+1

)
cos(2mφ j ) ≈ M[δ(2n − 2m) + δ(2n − 2M − 2m + 2)]. (A12)

From here, one can obtain Eq. (13).
Finally, we show that ∂S

∂A = 0. By directly substituting T
µ

= (AU − 2κP )/2Mκ into Eq. (6) and after differentiating both sides
with respect to A, Eq. (6) reads

∂S
∂A

= UM
AU − 2κP

−
M∑

j=1

cos
( jπ

M+1

)
[
Acos

( jπ
M+1

)
+ 1

] . (A13)

Upon substituting U = −
∑M

j=1 ε j |c j |2 =
∑M

j=1
2κcos( jπ

M+1 )T

2κcos( jπ
M+1 )+µ

into the latter expression, one finds that

∂S
∂A

= UM
AU − 2κP

− UM
AU − 2κP

= 0. (A14)
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