
DeepGD: A Deep Learning
Framework for Graph Drawing
Using GNN

Xiaoqi Wang
The Ohio State University

Kevin Yen
Yahoo! Research

Yifan Hu
Yahoo! Research

Han-Wei Shen
The Ohio State University

Abstract—In the past decades, many graph drawing techniques have been proposed for
generating aesthetically pleasing graph layouts. However, it remains a challenging task since
different layout methods tend to highlight different characteristics of the graphs. Recently,
studies on deep learning based graph drawing algorithm have emerged but they are often not
generalizable to arbitrary graphs without re-training. In this paper, we propose a Convolutional
Graph Neural Network based deep learning framework, DeepGD, which can draw arbitrary
graphs once trained. It attempts to generate layouts by compromising among multiple
pre-specified aesthetics considering a good graph layout usually complies with multiple
aesthetics simultaneously. In order to balance the trade-off, we propose two adaptive training
strategies which adjust the weight factor of each aesthetic dynamically during training. The
quantitative and qualitative assessment of DeepGD demonstrates that it is capable of drawing
arbitrary graphs effectively, while being flexible at accommodating different aesthetic criteria.

THE INTRODUCTION A graph is a mathemat-
ical structure in which nodes represent entities
and edges indicate the relationships among the
entities. Graphs are widely used to represent
many different types of data such as transactions,
transportation networks, social relationship, etc.
The most popular way to visualize graphs is to
use node-link diagrams, where the topological
structure of the graph can be directly visualized.

However, graph drawing is a challenging
task. Different layout methods tend to highlight
different characteristics of a graph. Therefore,

choosing the most appropriate layout method
usually requires in-depth knowledge about layout
methods as well as the graph being drawn. This
leads to a question: what’s the most appropriate
layout method and how should we evaluate it?

The goodness of a graph layout can be evalu-
ated by aesthetic metrics such as edge length varia-
tion, stress, minimum angle, etc. Different metrics
focus on different visual properties and cater for
different human preferences. Nevertheless, there
is no single consensus on which metric is the best,
and some of the metrics are even contradictory to

IT Professional Published by the IEEE Computer Society © 2019 IEEE 1

each other. Therefore, a method that considers mul-
tiple aesthetic metrics simultaneously and makes
sensible compromises is more likely to generate
a visually pleasing graph layout [1]. Furthermore,
we are ultimately interested in learning human
preference automatically. Towards that goal, we
need a general framework that is able to optimize
an arbitrary objective function that represents the
human preference.

In recent years, new techniques have been
proposed to utilize machine learning algorithms
for graph layouts. However, some of these al-
gorithms require special training data for each
graph drawing task so that the model needs to be
re-trained with new training data. For example,
if it is trained to draw a star graph, the model
cannot properly draw a tree graph without re-
training on new data. To relax this constraint,
other layout methods involve human interaction
to collect data and to learn the graph drawing per
human preference. In short, among the machine
learning based graph drawing algorithms proposed
so far, it is not possible to train a general graph
drawing model that directly optimizes multiple
aesthetic criteria, as specified by a cost function.

In this paper, we propose DeepGD, a deep
learning framework for graph drawing, which
generates graph layouts complying with multiple
aesthetic metrics simultaneously. DeepGD can be
applied easily to optimize most of the commonly
agreed aesthetic metrics. Also, DeepGD only
needs to be trained once and can subsequently
be applied to draw arbitrary types of graphs.
In terms of the methodology, a Convolutional
Graph Neural Network (ConvGNN) is used to
produce the position of nodes such that the desired
aesthetic metrics are optimized in the resulting
layout. To accomplish this goal, a multi-objective
loss function is designed in a way that each of
the aesthetic aspects is represented by an indi-
vidual component in the composite loss function.
Additionally, two adaptive training strategies are
proposed to automatically adjust the weight factors
corresponding to each loss component such that
the human preference on aesthetics trade-off is
reflected in the weight factors.

The effectiveness and efficiency of the pro-
posed deep learning framework is evaluated both
qualitatively and quantitatively against baseline
including the stress majorization algorithm [2]

and PivotMDS [3]. The results from our extensive
experiments show that our work can generate aes-
thetically pleasing graphs layout by compromising
between multiple aesthetic metrics. In addition,
the robust performance of our model shows that
it has the ability to capture the latent patterns
and relationships in graph data, instead of merely
memorizing the training samples.

The primary contributions of this work are:
• A novel ConvGNN-based framework for

graph drawing capable of incorporating mul-
tiple aesthetic metrics simultaneously.
• A flexible model design which makes

DeepGD applicable to arbitrary types of
graphs once the model is trained.
• Two adaptive training strategies for graph

drawing that adjust the weight factors dy-
namically to balance the trade-off among
aesthetics.
• A comprehensive experimental study that

optimizes minimum angle, edge length varia-
tion, stress energy, t-SNE, and node occlusion
loss functions, either on their own or in
combination.

It is worth mentioning that scaling up for large
graphs is not the focus of this paper. Rather, our
work confirms that our proposed deep learning
framework can produce aesthetically pleasing
layouts that optimize arbitrary objective functions
for small general graphs. Further discussion is
given in the discussion section.

Related Work
Our work is related to three fields: graph

visualization, graph neural networks, and machine
learning approaches for graph visualization. The
previous work in each field is discussed and
summarized in this section.

Graph Visualization
There have been a multitude of graph visualiza-

tion techniques proposed in the past five decades.
The force-directed graph layout models the graph
as a physical system in which adjacent nodes are
pulled by the attractive force and all other nodes
are pushed away by the repulsive force following
energy minimization principles (e.g., [2]).

To evaluate the quality of a graph layout, there
are some commonly agreed aesthetic metrics, and
each of which highlights different visual properties.

2

However, aesthetics metrics often conflict with
each other [4]. As a result, most graph drawing
algorithms aim to satisfy only one or two aesthetic
criteria. It is widely recognized that a balance of
aesthetics yields the best graph layout [5]. Hence,
Huang et al. [1] propose a force-directed approach
to generate layout with the best compromise
between the spring force, crossing angle force, and
incident angle force. However, this force-directed
approach lacks the flexibility of accommodating
arbitrary combination of aesthetics. In this paper,
we propose a general deep learning framework
for graph drawing that is highly flexible over the
choice of the target aesthetics and is capable of
improving them simultaneously with adaptively
adjusted weights.

Graph Neural Network
Graph Neural Network (GNN) is designed to

adapt deep learning to the combinatorial nature
of graphs. Convolutional Graph Neural Network
(ConvGNNs), as one type of GNN, is employed
in our work. Encouraged by the success of Con-
volutional Neural Networks (CNN) in image data,
the convolution operation is extended to graph
data in Convolutional Graph Neural Networks
(ConvGNN). In general, ConvGNNs are designed
to generate node embeddings by aggregating
information from their neighboring nodes.

ConvGNNs can be divided into two main
streams: spectral-based approaches and spatial-
based approaches. In this work, a spatial-based
convolutional layer [6] is employed as the building
block of our model architecture. The graph convo-
lution layer aggregates neighbors’ information for
each node while considering the characteristics of
the connection between the node and its neighbors.
In our case, each message passed from a node’s
neighbor is weighted according to the direction
and magnitude of the difference between two node
embeddings.

Machine Learning Approaches for Graph
Visualization

The applications of machine learning for graph
drawing problem can be classified into three
categories: graph drawing with human interaction,
graph drawing without human interaction, and the
evaluation of graph drawing.

The earliest work [7] in the first category pro-

posed an interactive system which automatically
adjusts the objective function and the parameters
of a simulated annealing graph drawing method
obtained from the user preference. Since then,
many other approaches aimed at adjusting the
fitness function of genetic algorithms by collecting
information from human feedback. Specifically,
Spönemann et al. [8] collects human feedback by
designing a slider for user to indicate the desired
aesthetic criteria and a canvas to select the better
layout from a collection of layouts.

The approaches in second category focus on
generating graph layouts based upon the graph
structure per se or the result from other traditional
graph drawing methods. For example, Wang et
al. [9] proposed an LSTM-based neural network
which learns the layout characteristics from the
results of other graph drawing techniques, and
draws a graph in a similar drawing style as
the specific targeting technique. The limitation
is that this approach requires collecting new
training data and model re-training for different
targeting techniques and for different types of
graphs. Kwon and Ma [10] designed a deep
generative model, which systematically draws a
specific graph in diverse layouts. For each graph, a
two-dimensional latent layout space is constructed
that allows users to navigate and explore various
layouts. Nevertheless, a model trained on one
graph is only applicable to generating layouts
for that specific graph. DeepGD also falls into
this category. However, our approach is more
flexible because once the desired aesthetic criteria
are specified and the model is trained, it can be
applied to arbitrary types of graphs. Furthermore,
even though the model needs to be re-trained for
different aesthetic criteria, the same training data
set can be reused regardless of the chosen criteria.

The last category is evaluation of graph layouts
with machine learning approaches. Klammler et al.
[11] uses a Siamese neural network to identify a
more aesthetically pleasing layout from a pair
of layouts. A different evaluation approach is
proposed by Haleem et al. [12] who designs a
CNN-based model to predict various aesthetic
metrics for a graph layout without knowing the
node and edge coordinates.

3

Background
This background section introduces some pre-

liminary knowledge and basic concepts about
graph drawing and ConvGNN. We represent a
graph as G = (V,E), where V and E is the set of
vertices and edges. The layout is represented as
x : V →R2. The graph theoretic distance between
nodes u and v is denoted as duv.

Graph Drawing

We describe two popular graph drawing algo-
rithms including stress majorization [2] and t-SNE
[13] in this section. Both algorithms serves as the
bases to define our loss function.

Stress Majorization Stress majorization for-
mulates a graph as a physical system in which
there exists a spring between each pair of nodes.
The stress energy for G is computed as

Lstress = ∑
u,v∈V
u6=v

wuv (‖xu−xv‖−duv)
2 , (1)

where the weighting factor wuv is typically set to
1/d2

uv.
Gasner et al. [2] propose a stress majoriza-

tion algorithm which minimizes the stress by a
majorization-based optimization approach. This
approach iteratively updates position of nodes as
follows.

pu← ∑
v6=u

wuv

(
xv +duv

xu−xv

‖xu−xv‖

)/
∑
v6=u

wuv.

(2)

tsNET The t-distributed stochastic neighbor em-
bedding (t-SNE) is a dimensionality reduction
algorithm widely used for visualizing various
types of data. Kruiger et al. [13] adapted t-
SNE into the context of graph visualization and
proposed a dimensionality reduction based graph
drawing approach called tsNET.

tsNET aims at minimizing the divergence
between the graph space and the layout space.
Let di j ∈ N denotes the graph theoretic distance
between node i and j in a graph of size N. Then,
the graph space similarity pi j between node i
and j is computed from a normalized Gaussian
distribution as follows,

pi j = p ji =
p j|i + pi| j

2N
(3)

where p j|i =
exp(− d2

i j

2σ2
i
)

∑ k
k 6=i

exp(− d2
ik

2σ2
i
)

(4)

and σi is a hyper parameter representing the
Gaussian standard deviation for node i.

Similarly, in the layout space, the similarity
qi j between node i and j is derived from a t-
distribution as follows,

qi j = q ji =
(1+ ||xi−x j||2)−1

∑ k,l
k 6=l

(1+ ||xk−xl ||2)−1 . (5)

As a result, the optimal layout can be obtained
by minimizing the KL-divergence between pi j and
qi j, namely

Lt-SNE = ∑
i, j

i6= j

pi j log
pi j

qi j
. (6)

Convolutional Graph Neural Network
The proposed deep learning framework is built

upon a Convolutional Graph Neural Network
(ConvGNN) which utilizes the convolution op-
eration to aggregate messages from neighboring
nodes. Specifically, the spatial-based convolutional
network [6] lays the foundation of our model
architecture, and is described as follows.

Given a graph with N node and D node
features, a ConvGNN takes a node feature matrix
X̃ ∈RN×D and an adjacency matrix A ∈RN×N as
inputs. A hidden layer i with output feature length
F i in the ConvGNN can thus be written as,{

H0 = X̃,

Hi = f (Hi−1,A),
(7)

where Hi ∈ RN×F i
is the hidden node repre-

sentation after ith layer. The function f is the
propagation rule of choice, also known as the the
message aggregation function, which determines
how the messages are passed between connected
nodes.

In general, as shown in Figure 1, all prop-
agation rules follow a basic idea – the hidden
representation of each node in the current layer is
aggregated from the hidden representation of its
neighbors in the previous layer. In this case, after
i layers, each node can gather information from
nodes that are i graph-theoretic distance away.

4

Figure 1: A multi-layer ConvGNN. In each hidden
layer, arrow represents the direction of message
flow and the change of node color indicates that
the hidden node representation is updated by the
aggregator function.

At the end of training, ConvGNN learns a set
of aggregator functions that define the way of
combining feature information from a node’s local
neighborhood [14]. During the inference phase, the
network utilizes learned aggregators to generate
meaningful embeddings for unseen graphs.

Methodology
We propose a general deep learning frame-

work for generating graph layouts complying
with multiple aesthetics simultaneously. More
importantly, the proposed deep learning framework
can be easily generalized to adopt most of the
existing aesthetics. Our approach is described in
this section from the perspectives of training data,
model architecture, loss function, and training
strategy.

Training Data and Preprocessing
As a data-driven approach, the performance

of ConvGNN is impacted by the quality of the
training data. A training dataset that is diverse in
variety can make the model robust to a variety
of structural characteristics in the graphs, while
a homogeneous training data can inject bias into
the model. Rome graphs1, as a widely used and
publicly available benchmark data set, meets our
expectations. Rome contains 11,534 undirected
graphs each of which consists of 10 to 100
nodes with significantly different graph structures.
Therefore, our model can handle many unseen
graphs regardless of their structure, thanks to a
large number of graphs with different structures
seen by the model during training.

1http://www.graphdrawing.org/data.html

Since our deep learning framework is based
on ConvGNN in which the edges between nodes
in the input graphs defines the flow of message
passing, we made two modifications to the Rome
graphs in order to facilitate the message flow
within the graph. Firstly, we add virtual edges
for any pairs of unconnected nodes. As mentioned
in Section Convolutional Graph Neural Network,
every node will gather information from connected
nodes during convolution operation. Thus, adding
virtual edges allows information to propagate
through longer distances quickly even in a shallow
neural network [6], as messages can be directly
passed between any pair of nodes. In the mean
time, the original graph structure is still retained
by encoding the real edge information as edge
features. Secondly, even though Rome graphs are
undirected, the ConvGNN assumes its input graphs
are directed. During propagation, the message flow
direction is determined by the edge direction. To
avoid information asymmetry, we add duplicated
edges in the opposite direction of the original
edges for the connected nodes. After applying
these two modifications, the Rome graphs all
become complete graphs without self-loop such
that there exist two edges between any pairs of
nodes but in opposite directions.

The node features of graphs can also affect
the learned aggregator functions. The input node
features X̃ in (7) is defined as the initial node
position, which allows the model to find high-
quality layouts easier given a reasonable starting
point as a hint. We employ two initialization
strategies. The first strategy is randomly sampling
X̃ ∈ RN×2 from a uniform distribution in [0,1]2.
The second strategy is initializing X̃ as PivotMDS
[3] layouts.

The edge features play a key role of message
passing in our model. The propagation rule [6] in
our work aggregates messages from each node’s
neighbors based on the information passed from
the connecting edges. Accordingly, we encode the
information about the original graph structure in
an edge feature matrix Z∈RN(N−1)×1 because the
structural information of the original graphs is not
represented in the adjacency matrix A. For an edge
between node u and node v, the edge attribute is
specified as the graph-theoretic distance duv.

5

http://www.graphdrawing.org/data.html

Figure 2: The model architecture of DeepGD.

Model Architecture
The model we propose is a ConvGNN-based

deep learning framework which can generate graph
layouts complying with multiple aesthetic criteria
simultaneously. The high-level idea is that with
the graph structural characteristic captured by the
convolution operation, the model predicts the node
positions such that the resulted layout follows the
aesthetic criteria specified by the loss function.

The input to our model includes an adjacency
matrix A, a node feature matrix X̃, and an edge
feature matrix Z. Overall, the model is composed
of an input block, a sequence of residual blocks,
and an output block (see Figure 2). To be specific,
the input block processes and transforms the
input data; a sequence of residual blocks is
the key component for generating meaningful
hidden node representations; and the output block
is responsible for projecting the hidden node
representation generated by the last residual block
to two-dimensional space.

Propagation Rule As stated in Section Con-
volutional Graph Neural Network, the propagation
rule defines the way of aggregating messages from
local neighborhood of a node. Since the original
graph structure information is only maintained in
the edge feature matrix Z, our aggregator function
should take into account the corresponding edge
feature while aggregating messages. Therefore,
we incorporate an edge feature network into the
aggregator function such that the message passed
between nodes also depends on their correspond-
ing edge connection. This type of aggregation
function is originally proposed by Gilmer et al.
[6].

Our propagation rule is described in Algorithm
1. For line 2, mv carries the messages aggregated
from v’s neighbors in a complete graph G. Specif-
ically, the message hu from each neighbor u is
weighted by a transformation matrix which is
generated by a learned edge feature network φ

Algorithm 1: Message Aggregation
Input: Graph G(V,E); node embeddings

h = {hv|v ∈V}; edge features
e = {euv|(u,v) ∈ E}; weight
matrix W; edge feature network φ

Output: Updated node embeddings
{h̃v|v ∈V}

1 for v ∈V do
2 mv← 1

|N (v)| ∑u∈N (v) φ
(
euv) ·hu

3 h̃v←W ·hv +mv
4 end

according to the corresponding edge information.
As a result, this allows the model to judge the
importance of the message from a specific node
u even if u is not the close neighbor of v in
the original graph. After weighting the messages
from all neighbors, the message is aggregated and
normalized by the number of neighbors. Then,
the aggregated message mv is used to update
the hidden node embedding h̃v on line 3. The
entire message aggregation function represents the
mathematical operation of one ConvGNN layer.

Edge Feature Network In order to take the
edge information into consideration during mes-
sage aggregation, we design an edge feature
network φ to process the edge information. We
train a separate edge feature network for each
ConvGNN layer because the edge information
should be treated differently depending on the
depth of that ConvGNN layer. The edge feature
network is shared among all nodes within a single
ConvGNN layer.

Specifically, our edge feature network φ com-
prises of two dense layers. It predicts a projection
matrix Tuv ∈ (−1,1)F i×F i+1

based on the edge
feature vector zuv, where F i represents the node
feature length in layer i. Thus, the projection ma-
trix Tuv serves as a weighting factor for neighbor’s
message. Additionally, tanh is used as the output
activation function to confine each element in Tuv
inside the range between −1 and 1.

Residual Blocks The backbone of our model
is composed by a sequence of residual blocks
which is the key component for generating hidden
node embedding. Since the graph convolution

6

layer at a shallower depth of the network can
capture low-level features and the layer at a deeper
depth can learn a higher-level node representation,
the residual connection can help to combine
different levels of information together.

Specifically, each residual block contains 3
hidden layers, and the input node representation
of (k−1)th residual block will be directly added
to the input node representation of kth residual
block (see Figure 2). Thus, the node representation
at different levels can directly pass through the
model pipeline without hindrance. Moreover, skip
connections facilitate the back-propagation of
gradients so that vanishing gradient problem is
alleviated.

Inspired by the stress majorization ap-
proach [2], we add two additional input edge
features for each residual block. In the stress
majorization algorithm (see (2)), node positions
are iteratively updated by taking into account
the directions of edges between each pair of
node from last iteration. The reason being, the
direction of edges during iteration is an important
information for minimizing stress. Therefore, in
addition to the original edge feature duv, we add
the direction of edges hu−hv

‖hu−hv‖ and the Euclidean
distance ‖hu− hv‖ between each pair of nodes
as two additional edge features for each residual
block. These two additional edge features for block
kth are calculated according to the hidden node
representation output from residual block (k−1)th.
In this case, if we regard each residual block as one
iteration in (2), each block attempts to minimize
the loss function by taking the direction and edge
length from last block into consideration. The
entire model architecture including the residual
blocks with additional edge features is described
in Algorithm 2.

Loss Function
Our loss function design largely depends on

the desired aesthetics. That is, the desired aes-
thetics are specified in the loss function such that
minimizing the loss function will thus optimize the
aesthetic metrics. This enables our deep learning
framework to generalize to most of the known
aesthetic metrics.

For the loss function, we have explored to
optimize stress in (1), t-SNE in (6), and three
other commonly agreed aesthetic metrics including

minimum angle, edge length variation and node
occlusion.

Minimum Angle
The minimum angle is the sharpest angle formed
by any two edges that meet at a common vertex
of the drawing [15]. If a node v’s minimum angle
is maximized, all incident edges at node v will
form the same angle around node v. Therefore,
maximizing the minimum angle can help to
generate aesthetically pleasing layouts. Our loss
for maximizing minimum angle is computed as

Langle = ∑
v∈V

∑
θ
(i)
v ∈angles(v)

∣∣∣∣ 2π

deg(v)
−θ

(i)
v

∣∣∣∣, (8)

where angle(v) is the incident angles over node v
and deg(v) denotes the node degree of v.

Edge Length Variation
The edge length variation is the standard deviation
of edge length for all edges in a graph [12]. If it
is minimized for a graph, the length of all edges
in the graph tends to be equal. From the aesthetic
perspective, a graph layout with a smaller edge
length variation is always preferable. The loss
function for minimizing edge length variation is
defined as,

Ledge =
1
|E| ∑

(u,v)∈E

(luv− l̄)2

l̄2 ,

{
luv = ‖xu−xv‖
l̄ = 1

(9)
where luv denotes the edge length between u and
v, and l̄ is the expected edge length.

Node Occlusion
Node occlusion or node overlapping measures
how densely the nodes are clustered. The global
structure of graph is clearer with smaller node
occlusion. Inspired by Haleem et al. [12], who
defines node occlusion as the total pairs of nodes
closer than a threshold, we design a smooth
version of node occlusion by replacing hard
threshold function with a exponential function
as follows,

Lnode occlusion = ∑
u,v∈V
u6=v

e−‖xu−xv‖. (10)

Multi-objective Training Strategy
In order to consider multiple aesthetic criteria

at the same time, we compute a weighted sum of
loss components derived from corresponding aes-
thetic metrics as our multi-objective loss function.

7

Algorithm 2: DeepGD
Input: Graph G(V,E); initial node features x̃ = {x̃v|v ∈V}; edge features (graph theoretical

distances) d = {duv|(u,v) ∈ E}; total number of blocks B; number of layers in each
block L; weight matrices W(b,l); edge feature network φ (b,l),
∀b ∈ {1, ...,B},∀l ∈ {1, ...,L}.

Output: Node positions x = {xv|v ∈V}
1 h(1,0)← x̃
2 h(1,1)← ReLU(Message Aggregation(G,h(1,0),d,W(1,1),φ (1,1)))

3 h(1,2)← ReLU(Message Aggregation(G,h(1,1),d,W(1,2),φ (1,2)))

4 h(2,0)← h(1,2)

5 for b← 2...B−1 do
6 e(b)←

{(
duv,direction(h(b,0)

u ,h(b,0)
v),distance(h(b,0)

u ,h(b,0)
v)

)}
7 for l← 1...L do
8 h(b,l)← ReLU(Message Aggregation(G,h(b,l−1),e(b),W(b,l),φ (b,l)))
9 end

10 h(b+1,0)← h(b,L)+h(b,0)

11 end
12 h(B,1)← ReLU(Message Aggregation(G,h(B,0),d,W(B,1),φ (B,1)))

13 h(B,2)←Message Aggregation(G,h(B,1),d,W(B,2),φ (B,2))

14 x← h(B,2)

The multi-objective loss function for epoch t is
defined as

L(t) =
n

∑
k=1

α
(t)
k L(t)

k , (11)

where α
(t)
k (s.t. ∑k α

(t)
k = 1) represents the weight

factor for kth component and L(t)
k is the average

loss value for the kth component at epoch t.

Different combinations of weight factors will
result in different optimization results. Intuitively,
the weight factors should be specified based on
human preferences. In other words, if α1 is greater
than α2, more emphasize is put on optimizing
the first loss component. However, the weight
factors do not always directly reflect the human
preference of each loss component during opti-
mization, because different loss components may
have different numerical scales. So, one challenge
is how to determine the weight factor α for
each aesthetic while considering both the human
preference and the difference in the numerical
scale.

We discuss two multi-objective training strate-
gies to help find a compromise between multiple
aesthetics in the following.

Adaptive Weight Adaptive weight is to adap-
tively adjust α with respect to the numerical scale
of corresponding loss component for each epoch.
The weight factor for kth components at epoch t
is defined as

α
(t)
k =

γk

L(t−1)
k

∑
n
l=1

γl

L(t−1)
l

,
(12)

where γk represents the importance factor for kth

component and L(t−1)
k the average loss value for

kth component in epoch t−1.

The importance factor basically indicates the
human preference for each loss component without
considering the difference between numerical scale
for multiple loss components. The basic idea
is that, we normalize each component by its
numerical scale L(t)

k

/
L(t−1)

k and then multiply it
with their user-specified human preference γk. In
this case, the weight factor α

(t)
k will be decreased

if the numerical scale of kth component is greater
than that of other components, and vice versa.
Thus, the weight factor for each epoch takes into
account both the human preference specified as
importance factor and the numerical scale of all
loss components from previous epoch.

8

SoftAdapt by Importance The SoftAdapt by
Importance strategy is derived from the SoftAdapt
technique proposed by Heydari et al. [16]. Soft-
Adapt adaptively sets the weight factor for each
loss component according to their recent rate
of descent. Since the original SoftAdapt does
not consider different numerical scales for loss
components, we improve it by taking into account
the relative scale of each loss components and
incorporating the concept of importance factor γk.
Specifically, the weight factor α

(t)
k for kth loss

component during epoch t is computed as,

α
(t)
k =

γk

L(t−1)
k

exp(β ∗s(t)k)

∑
n
l=1

γl

L(t−1)
l

exp(β ∗s(t)l)
, (13)

s(t)k = normalizeL1
k∈{1...n}

(
L̃(t)

k − L̃(t−1)
k

L̃(t−1)
k

)
, (14)

L̃(t) =

{
L(1) t = 1
τ · L̃(t−1)+(1− τ) ·L(t) t > 1,

(15)

where β is the sensitivity factor that controls
how responsive the weight adjustment is to the
rate of descent; L̃k is the smoothed version of
Lk after exponential smoothing with smoothing
factor τ ; and s(t)k is the descending rate of kth loss
component at epoch t.

Evaluation
We conducted extensive experiments to evalu-

ate our approach quantitatively and qualitatively.
This section describes the experimental details and
evaluation results.

Experimental Setup
The proposed deep learning framework is im-

plemented with PyTorch and PyTorch Geometric
library2. Besides, in all of our experiments, the
models were trained on a single Tesla V100 GPU
with memory of 16 GB.

As mentioned in Section Training Data and
Preprocessing, our experiments are conducted over
Rome dataset, which contains 11,534 undirected
graphs each consisting of 10 to 100 nodes. We
excluded two disconnected graphs from the dataset.
Among the remaining graphs, we randomly se-
lected 10,000 graphs as training examples, 1,000
graphs as testing examples, and 532 graphs as

2https://github.com/rusty1s/PyTorch_geometric

validation examples. Validation data serve the
purpose of hyperparameter tuning. We only report
the model performance on testing data in this
paper.

Regarding model architecture, we conducted
a series of experiments/ablation studies to investi-
gate how does each component contribute to the
model performance. Those experiments explored
the effect of removing residual connection, remov-
ing all the virtual edges, removing different edge
features, different numbers of neurons for each
residual block, and different numbers of hidden
layers in the edge feature network. Given the
word limits, our model configuration and detailed
experimental results for comparing different model
architecture are presented in the supplemental
material.

Quantitative Evaluation
In this section, we quantitatively assess the

performance of DeepGD. For comparison, Pivot-
MDS [3] and the stress majorization [2] algorithm
neato implemented in Graphviz3 are chosen as
baseline methods.

In addition to Graphviz and PivotMDS, in-
spired by Tsitsulin et al. [17] who propose to use t-
SNE to project high dimensional node embedding
to 2D for graph visualization, we implemented
GNN+tSNE and GNN+UMAP. These two base-
lines used t-SNE and UMAP, respectively, to
project the latent node embedding generated by
the last hidden layer of DeepGD onto 2-D space.

To evaluate the relative difference, we com-
puted Symmetric Percent Change (SPC) with
respect to Graphviz as follows.

SPC = 100%× 1
Nt

Nt

∑
i=0

Di−Gi

max(Di,Gi)
, (16)

where Di and Gi denotes the same evaluation
metric computed on two layouts generated by a
certain model (i.e., DeepGD or PivotMDS) and
Graphviz respectively, for the ith test graph; Nt
is the total number of test graphs. SPC holds a
nice property that it ranges from −100% to 100%,
thus the value of SPC can be interpreted as how
many percent Gi outperforms Di.

Stress Optimization Since minimizing stress
is known to be an overall effective approach to

3https://graphviz.org/

9

https://github.com/rusty1s/PyTorch_geometric
https://graphviz.org/

improve many aesthetic aspects of graph layouts,
we first explored the effectiveness and efficiency
of optimizing stress only. In other words, the loss
function of DeepGD in this subsection contains
only one component which corresponds to stress.

Table 1: To assess the DeepGD with stress only,
average stress is computed over 1000 test graphs;
and the stress SPC (smaller is better) represents the
relative difference in stress compared to Graphviz.

Models Avg. Stress Stress SPC
w.r.t. Graphviz

DeepGD + Random Init 246.57 1.10%

DeepGD + PivotMDS Init 239.73 -5.43%
Graphviz [2] 251.93 0.00%

PivotMDS [3] 372.06 36.53%

GNN + t-SNE [18] 483.01 56.98%

GNN + UMAP [19] 379.88 41.40%

As shown in Table 1, DeepGD obtains bet-
ter stress than Graphviz on average, no matter
what the initialization strategy is. For stress SPC,
DeepGD initialized with PivotMDS outperforms
Graphviz by 5.43% whereas DeepGD with random
initialization achieves a comparable performance
as Graphviz. We observe that DeepGD initialized
randomly achieves a positive stress SPC but with
lower stress than Graphviz. The potential reason
is that DeepGD usually outperforms Graphviz
for large graphs but obtains higher stress than
Graphviz for drawing small graphs. Besides, if we
compare the three alternative baselines (PivotMDS,
GNN+t-SNE, and GNN+UMAP) with Graphviz,
their performance are much worse. In particular,
projecting the output of the last hidden layer using
t-SNE or UMAP is inferior to DeepGD, showing
the importance of end-to-end training by including
the final nonlinear layer. In conclusion, regarding
stress, DeepGD significantly outperforms Pivot-
MDS, GNN+ t-SNE, and GNN+ UMAP and is
5.43% better than Graphviz on average.

To evaluate the stability and robustness of
DeepGD, we performed 11-fold cross validation
over 11,000 Rome graphs. With random initial-
ization, DeepGD achieves stress SPC of 1.10%
on average. Additionally, the median stress SPC
for each folds are only slightly above zero, which
indicates that DeepGD with stress performs as
good as Graphviz regardless of the outliers. We
can conclude that DeepGD is able to consistently

perform well even with the variation in the training
data.

Optimization with Two Aesthetics We as-
sess the model capability of optimizing and
compromising between two aesthetics metrics in
this section. Since stress can improve the overall
aesthetic quality, we conducted experiments for
combining stress and one other aesthetic metrics
including t-SNE, edge length variation, minimum
angle, and node occlusion respectively. The follow-
ing three models are trained by adaptive weight
strategy mentioned in Section Adaptive Weight
with our choice of importance factors.

Stress + Minimum Angle Loss
In this DeepGD model, the stress and minimum
angle loss are optimized at the same time. From
the first row of Table 2, DeepGD with both
initialization strategies outperforms Graphviz by
at least 17% considering minimum angle loss.
However, the stress SPC of DeepGD with random
initialization and PivotMDS initialization increases
by 16.49% and 9.67%, respectively, compared to
the DeepGD with stress only in first two rows
of Table 1. The potential reason is that minimum
angle and stress are conflicting criterion so that
there is an unavoidable trade-off between them.

Stress + Edge Length Variation
We also conducted experiment to optimize stress
and edge length variation simultaneously. In the
second row of Table 2, the edge length variation
SPC of -20.28% and -32.92% shows that DeepGD
can draw a graph with much more uniform edge
length than Graphviz on average. It is interesting to
see that DeepGD with both initialization strategies
still obtains a reasonably good stress, even though
it has to compromise between stress and edge
length variation. This is because stress will be
minimized when the layout distance between each
node pairs equals to their graph theoretic distance.
Therefore, minimizing edge length variation could
also help with minimizing stress.

Stress + Node Occlusion
From the third row of Table 2, we observe that the
performances of DeepGD with two initialization
strategies are slightly different. With random ini-
tialization, DeepGD obtained 3.01% higher node
occlusion loss than Graphviz on average. Given
that Graphviz only optimizes stress, it indicates

10

Table 2: The quantitative evaluation of DeepGD with multiple aesthetics. Each row represents one
DeepGD model with our choice of aesthetics, which are weighted linear combinations of different loss
components (stress, occlusion etc.). Negative SPC indicates that DeepGD outperforms Graphviz with
certain percentage regarding that specific metric.

Importance Weighting
Factors of Loss Components

Metric SPC w.r.t. Graphviz

Random Initialization PivotMDS Initialization

Stress Angle Edge Occlusion t-SNE Stress Angle Edge Occlusion t-SNE Stress Angle Edge Occlusion t-SNE
0.6 0.4 17.59% -17.10% – – – 4.24% -22.66% – – –
0.8 0.2 4.88% – -20.28% – – 4.64% – -32.92% – –
0.6 0.4 0.72% – – 3.01% – -4.67% – – -2.70% –
0.7 0.3 1.88% – – – -5.18% -3.84% – – – -12.09%
0.5 0.1 0.1 0.3 4.19% -0.60% – 0.76% -7.29% -1.53% -7.36% – -2.09% -14.48%

that optimizing stress can help to avoid node
occlusion as well. With PivotMDS initialization,
we outperform Graphviz regards both stress and
node occlusion by 4.67% and 2.70%, respectively.
Overall, this experimental result again proves
that DeepGD has the capability and flexibility
of optimizing most of aesthetics.

Stress + t-SNE
To optimize stress and t-SNE simultaneously,
the loss function in this DeepGD model is the
weighted average of stress and t-SNE (see Section
Multi-objective Training Strategy). The quanti-
tative measurement shown in the fourth row of
Table 2 indicates that DeepGD with PivotMDS
outperforms Graphviz regarding both t-SNE and
stress. Also, with random initialization, we achieve
better t-SNE and comparable stress than Graphviz.
This result again shows that PivotMDS initializa-
tion indeed can help to improve the performance.

Optimization with Four Aesthetics To as-
sess the model’s capability of optimizing more
than two aesthetics, we conducted experiments
for optimizing stress, t-SNE, minimum angle,
and node occlusion simultaneously. The quan-
titative evaluation is presented in the fifth row
of Table 2. By initializing DeepGD with Pivot-
MDS, we achieved outstandingly better results
than Graphviz from four different aesthetic per-
spectives. This result clearly demonstrates that
DeepGD indeed can draw arbitrary graphs by
balancing among multiple aesthetics with the help
of adaptive importance training strategy, even
though t-SNE and minimum angle loss somehow
contradicts with stress. More importantly, since a
layout method that considers multiple aesthetics

simultaneously is more likely to generate a visu-
ally pleasing graph layout [1], DeepGD might be
aesthetically more attractive to human.

Qualitative Evaluation
For qualitative evaluation shown in Table 3,

we only present the results for DeepGD with
PivotMDS initialization due to the significantly
better result comparing to DeepGD with random
initialization. Among all 10 methods, PivotMDS,
GNN+t-SNE, and GNN+UMAP each have ob-
viously identifiable weaknesses that make them
not as visually pleasing as the rest, which is
consistent with the results shown in Table 1. In
contrast, DeepGD generated layouts on all sample
graphs are at least comparably good to Graphviz.
We also observe that, for DeepGD models, the
specific loss components involved indeed improve
the corresponding visual aspects of the resulting
layouts.

Multi-Objective Training Strategy
Different aesthetic metrics measure different

visual properties, and optimizing one metric some-
times cause others to worsen. For example, if
we try to optimize stress and minimum angle
simultaneously, the minimum angle metric will be
worsened when we put more effort in optimizing
stress. Hence, in this multi-objective settings, our
goal is to find the Pareto optimal between two
aesthetics such that no change can be made to
improve both aesthetics. The question we need to
answer in this section is which training strategies
can help us get closer to the Pareto optimal.

For the two multi-objective training strate-
gies proposed in Section Multi-objective Train-
ing Strategy, their effectiveness is assessed by

11

Baseline Methods DeepGD
Graphviz PivotMDS GNN+t-SNE GNN+UMAP Stress Stress + t-SNE Stress + Angle Stress + Edge Stress + Occlusion Four Aesthetics

Figure 3: The qualitative evaluation of DeepGD with PivotMDS initialization. Each row corresponds
to one test graph and each column represents one method. The colors of the nodes represent their
community within the graph.

comparing against the simplest training strategy
of setting the fixed weight factor for each epoch.
Taking stress and minimum angle as an example,
the Pareto frontier lines are drawn for these three
training strategies in Figure 4.

4000 4200 4400 4600 4800 5000

Minimum Angle Loss

130

140

150

160

S
tr

es
s

L
os

s

Fixed Weight

Adaptive Weight

SoftAdapt by Importance

Figure 4: The Pareto frontier for different training
strategies. The points on each line represents
one model with different importance/weight fac-
tors. The connections indicate that the start-
ing point of that connection has smaller stress
weight/importance than its ending point.

As our optimization goal is to minimize both
the minimum angle loss and the stress loss, the

Pareto optimal should locate at the bottom left
of the Pareto frontier plot. It is obvious that, the
adaptive weight and SoftAdapt by importance is
closer to the Pareto optimal for most of the points,
in comparison with the fixed weight strategy. In
conclusion, in this multi-objective optimization
problem, we are more likely to achieve the Pareto
optimal with adaptive weight and SoftAdapt by
importance.

Computation Time
For training, it takes 220 seconds on average

for each epoch. According to our observations,
for all models we trained, the validation loss
converges after around 400 epochs. After training,
the average testing time per graph is 0.049 seconds.
In a word, once trained, DeepGD can generate
layouts in real-time for any modest sized graphs
to optimize the desired aesthetics.

Scalability
Even though the main focus of this paper is

to draw small graphs (≤ 100 nodes), we still esti-
mated the model capability on large graphs from

12

SuiteSparse Matrix Collection4 with thousands of
nodes. Using 16GB of GPU memory, DeepGD
can draw graphs with at most 4000 nodes. For 8
large graphs with 3500-4000 nodes, DeepGD can
draw them in 28.14 seconds on average.

In terms of the visualization quality, the perfor-
mance of DeepGD cannot be guaranteed for large
graphs because DeepGD is only trained on small
graphs. Specifically, we observed that DeepGD
performs significantly better than Graphviz for
some large graphs (see Figure 5) but may fail to
outperform Graphviz for some other large graphs,
regardless of the graph size.

We note that DeepGD was not trained on large
graphs, due to the limitation of long training time
on these graphs. Nevertheless, we believe it is
possible to scale DeepGD to very large graphs by
considering only the original edges in the graph
plus a sparse subset of node pairs that are not
neighbors. We are currently working along this
direction.

Graph Graphviz DeepGD

msc00726
n = 726

rdist3a
n = 2398

heart1
n = 3557

Figure 5: The qualitative comparison between
Graphviz and DeepGD over three large graphs,
where n denotes the number of nodes in the graph.

Discussions
The evaluation section substantiates that the

DeepGD framework can generate visually pleasing

4https://sparse.tamu.edu/

layouts for unseen graphs by optimizing certain
aesthetic metrics simultaneously.

Choice of Importance Factor
In multi-objective settings, the importance factor
is specified by the user and is supposed to reflect
human preferences on different loss components.
However, it’s still difficult to quantify the ab-
stract human preference into a single number,
even though the difference in numerical scale
is already automatically taken into account by
the adaptive weight training strategy. We plan to
explore models that can learn human preference
automatically.

Training Data Representativity
A common issue of deep learning models is that
the representativity of training data constrains the
model capability of generalizing to unseen data.
If the model does not see a specific type of graph
during training, it is challenging for the model
to draw that type of graph during inference. For
example, we observed that DeepGD cannot draw
star graph well. We suspect the reason is that
Rome does not contain graphs with extremely
large node degree. Therefore, we conducted an
experiment of training DeepGD with Rome and
North5 graph dataset together. Since North data
includes many graphs with large node degree,
DeepGD trained by both Rome and North can
draw the star graph properly. In a word, if the
training data is not representative enough, the
generalization of model could be affected.

Conclusions
We propose a novel ConvGNN-based frame-

work, DeepGD, which can generate graph layouts
such that any desired combination of aesthetics
can be complied with, as long as the aesthetics can
be expressed as differentiable cost functions. To
balance among multiple aesthetics, two adaptive
training strategies for graph drawing are proposed
to dynamically adjust the weight factors. It is
worth mentioning that optimizing any aesthetic
metrics only requires a redefined loss function
without any algorithmic change. Compared to
other deep learning based graph drawing algo-
rithms, DeepGD only needs to be trained once
and can subsequently be applied to draw arbitrary
types of graphs.

5http://www.graphdrawing.org/data.html

13

https://sparse.tamu.edu/
http://www.graphdrawing.org/data.html

We explored the effectiveness and efficiency
of DeepGD by optimizing stress, minimum angle,
edge length variation, t-SNE, and node occlu-
sion. The quantitative and qualitative evaluation
demonstrate that DeepGD outperforms the base-
line models on all of the five aesthetic metrics
we experimented, especially for the DeepGD
initialized by PivotMDS with four aesthetics.

REFERENCES
1. W. Huang, P. Eades, S.-H. Hong, and C.-C. Lin, “Improv-

ing multiple aesthetics produces better graph drawings,”

Journal of Visual Languages & Computing, vol. 24, p.

262–272, 08 2013.

2. E. R. Gansner, Y. Koren, and S. North, “Graph drawing

by stress majorization,” Graph Drawing Lecture Notes in

Computer Science, p. 239–250, 2005.

3. U. Brandes and C. Pich, “Eigensolver methods for pro-

gressive multidimensional scaling of large data,” LNCS,

vol. 4372, 09 2006.

4. H. Nascimento, P. Eades, and C. Mendonça, “A multi-

agent approach using a-teams for graph drawing.”

Proceedings of the 9th International Conference on

Intelligent Systems, pp. 39–42, 01 2000.

5. W. Didimo, G. Liotta, and S. Romeo, “Topology-driven

force-directed algorithms,” Proc. of GD 2010, vol. 6502,

pp. 165–176, 09 2010.

6. J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and

G. Dahl, “Neural message passing for quantum chem-

istry,” 04 2017.

7. C. F. X. M. Neto and P. Eades, “Learning aesthetics

for visualization,” Anais do XX Semin´ario Integrado de

Software e Hardware, p. 76–88, 1993.

8. M. Spönemann, B. Duderstadt, and R. von Hanxleden,

“Evolutionary meta layout of graphs,” vol. 8578, pp. 16–

30, 07 2014.

9. Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu,

“Deepdrawing: A deep learning approach to graph draw-

ing,” IEEE Transactions on Visualization and Computer

Graphics, vol. PP, pp. 1–1, 08 2019.

10. O.-H. Kwon and K.-L. Ma, “A deep generative model for

graph layout,” IEEE Transactions on Visualization and

Computer Graphics, vol. 26, 01 2020.

11. T. Mchedlidze, A. Pak, and M. Klammler, “Aesthetic

discrimination of graph layouts,” Journal of Graph Algo-

rithms and Applications, vol. 23, pp. 525–552, 01 2019.

12. H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu,

“Evaluating the readability of force directed graph layouts:

A deep learning approach,” IEEE computer graphics and

applications, vol. 39, pp. 40–53, 07 2019.

13. J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren,

S. Kobourov, and A. C. Telea, “Graph layouts by t-sne,”

Computer Graphics Forum, vol. 36, no. 3, p. 283–294,

2017.

14. W. Hamilton, R. Ying, and J. Leskovec, “Inductive

representation learning on large graphs,” 06 2017.

15. H. Purchase, “Metrics for graph drawing aesthetics,”

Journal of Visual Languages & Computing, vol. 13, pp.

501–516, 10 2002.

16. A. A. Heydari, C. A. Thompson, and A. Mehmood,

“Softadapt: Techniques for adaptive loss weighting

of neural networks with multi-part loss functions,”

CoRR, vol. abs/1912.12355, 2019. [Online]. Available:

http://arxiv.org/abs/1912.12355

17. A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse:

Versatile graph embeddings from similarity measures,”

03 2018.

18. L. Van Der Maaten and G. Hinton, “Viualizing data using

t-sne,” Journal of Machine Learning Research, vol. 9, pp.

2579–2605, 11 2008.

19. L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform

Manifold Approximation and Projection for Dimension

Reduction,” ArXiv e-prints, Feb. 2018.

Xiaoqi Wang is a Ph.D. student in computer science
at the Ohio State University. She received a Bachelor
of Science in data analytics from the Ohio State Uni-
versity and a Master of Science in data science from
Columbia University. Her research interests include
visualization and machine learning. Contact her at
wang.5502@osu.edu.

Kevin Yen is a Research Engineer at Yahoo Re-
search. He works on various system design and
development that involves applying Natural Lan-
guage Processing, Computer Vision, and machine
learning to products and services. Contact him at
kevinyen@verizonmedia.com.

Yifan Hu is a Senior Director of Research at Yahoo
Research. Prior to joining Yahoo, he worked at ATT
Labs, Wolfram Research, and Daresbury Laboratory.
He received his B.S. and M.S. in applied mathematics
from Shanghai Jiao-Tong University, and Ph.D. in opti-
mization from Loughborough University. His research
interests include data mining, machine learning and
visualization. He is a co-author of a number of best
papers, including the 2017 ICDM 10-year highest
impact award paper on recommender systems. He is
the author of a number of functions in Mathematica
and contributes to the open source software Graphviz.
Contact him at yifanh@gmail.com.

14

http://arxiv.org/abs/1912.12355

Han-Wei Shen is a Full Professor at The Ohio
State University. He is currently an Associate Editor
in Chief for IEEE Transactions on Visualization and
Computer Graphics, and a member of IEEE Visual-
ization Academy. His primary research interests are
scientific visualization and computer graphics. Pro-
fessor Shen is a winner of National Science Foun-
dation’s CAREER award and US Department of En-
ergy’s Early Career Principal Investigator Award. He
received his BS degree from Department of Computer
Science and Information Engineering at National Tai-
wan University in 1988, the MS degree in computer
science from the State University of New York at
Stony Brook in 1992, and the PhD degree in computer
science from the University of Utah in 1998. From
1996 to 1999, he was a research scientist at NASA
Ames Research Center at Mountain View, California.
Contact him at shen.94@osu.edu.

15

	Related Work
	Graph Visualization
	Graph Neural Network
	Machine Learning Approaches for Graph Visualization

	Background
	Graph Drawing
	Stress Majorization
	tsNET

	Convolutional Graph Neural Network

	Methodology
	Training Data and Preprocessing
	Model Architecture
	Propagation Rule
	Edge Feature Network
	Residual Blocks

	Loss Function
	Multi-objective Training Strategy
	Adaptive Weight
	SoftAdapt by Importance

	Evaluation
	Experimental Setup
	Quantitative Evaluation
	Stress Optimization
	Optimization with Two Aesthetics
	Optimization with Four Aesthetics

	Qualitative Evaluation
	Multi-Objective Training Strategy
	Computation Time
	Scalability

	Discussions
	Conclusions
	REFERENCES
	Biographies
	Xiaoqi Wang
	Kevin Yen
	Yifan Hu
	Han-Wei Shen

