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Abstract—We propose STSRNet, a joint space-time super-resolution deep learning based model
for time-varying vector field data. Our method is designed to reconstruct high temporal
resolution (HTR) and high spatial resolution (HSR) vector fields sequence from the
corresponding low-resolution key frames. For large scale simulations, only data from a subset of
time steps with reduced spatial resolution can be stored for post-hoc analysis. In this paper, we
leverage a deep learning model to capture the non-linear complex changes of vector field data
with a two-stage architecture: the first stage deforms a pair of low spatial resolution (LSR) key
frames forward and backward to generate the intermediate LSR frames, and the second stage
performs spatial super-resolution to output the high-resolution sequence. Our method is
scalable and can handle different data sets. We demonstrate the effectiveness of our framework
with several data sets through quantitative and qualitative evaluations.

B THE INTRODUCTION Effective analysis of mate, and computational fluid dynamics. As the
vector fields plays a fundamental role in many power of high performance computers increases
scientific disciplines, such as aerodynamics, cli- rapidly in the recent years, physical simulations
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can produce vast amounts of data with finer
spatial and temporal resolutions to ensure bet-
ter reliability and reveal more detailed features.
However, due to the bandwidth and storage con-
straints, scientists could only transmit or store
very limited amount of data for post-hoc visual-
ization and analysis. Quality of visualization can
become problematic if the data are saved with
a coarser grid resolution and a small number of
time steps. Many recent efforts have been focused
on in-situ visualization where data are directly
visualized in real-time during the run of simula-
tion. While alleviating the big data problem, the
flexibility of post exploration is severely limited
without high-resolution data.

This study focuses on improving researchers’
ability in post-hoc analysis of time-varying vector
data with more detailed spatial-temporal features.
Instead of producing visualization results, we
aim at performing super-resolution and gener-
ating high-resolution data, which presents two
challenges: (1) Instabilities and complexity of
unsteady flow fields. Linear interpolation can
eliminate important details and hence suffers from
its inability to reconstruct data with plausible
evolution. It can be extremely hard to restore
the large fluctuating dynamics between the key
frames with long-range interpolation steps es-
pecially for unsteady flow. (2) Reconstruction
of spatial features removed from the original
simulation output to achieve high visual quality.
The spatial upscale interpolation kernels should
be data-dependent. For spatial or temporal super-
resolution, several works have been proposed us-
ing deep learning methods to reconstruct data. For
example, Guo et al. [6] focused on spatial super-
resolution for vector field data. Han and Wang [7]
generated temporally refined volumes. However,
few works focus on achieving spatial-temporal
super-resolution in vector fields to achieve better
exploration.

In this work, we propose a joint deep learning
framework to handle both spatial and temporal
super-resolution for time-varying vector fields
with neural networks. Our goal is to recover
detailed time-varying patterns and features from
reduced data to assist exploration of dynamic data
in large size and long-term sequence without stor-
ing massive data sets in disk. Using the simulation
output as the ground truth, we train a model

that is capable of mapping data of lower spatio-
temporal resolution to high-resolution data. The
down-sampled datasets and trained model can be
transmitted to local machines, where the high-
resolution data are then reconstructed for post-
hoc analysis. Our joint framework consists of two
stages to address the super-resolution challenges
in both spatial and temporal dimensions. The first
stage takes a pair of low-resolution key frames
as input and produce a sequence of spatial low-
resolution intermediate frames to fill the gaps in
time. Then the intermediate frames are input to
the spatial super-resolution stage to infer high-
resolution details in the vector field to generate
fine-grained visualization result. Different from
video enhancement task, our goal is to reconstruct
vector field data rather than scalar fields. In this
scenario, the directional features and high-order
information of the data need to be taken into
consideration.

We compare the accuracy and visualization
effect of our predicted vector fields with ground
truth and other alternative methods to demonstrate
the efficacy of our framework when applied to
different data sets. We also evaluate the effect
of hyperparameters of the framework. Our main
contributions are summarized as follows. First,
we propose a novel pipeline to address the chal-
lenge for post-hoc visualizations when data are
stored only at limited time steps and spatial
resolutions. Second, we apply a sophisticate deep
learning architecture for super-resolution tasks in
vector field data. Third, we propose a physically-
based loss function combined with temporal co-
herence for reconstructing vectors.

1. RELATED WORK

We review the topics related to our work in
video restoration, vector field reconstruction and
deep learning in scientific visualization.

1.1. Video restoration

Deep learning networks have proven to be
effective in the field of computer vision in various
tasks, including video restoration.

Video restoration aims at restoring the lost
information from the inputs. For video frame
interpolation, Niklaus et al. [13] used a CNN to
learn a spatially-varying kernel to synthesize the
intermediate frame. There are also some flow-
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based methods to explicitly estimate motions,
Jiang et al. [9] predicted forward and backward
optical flow maps between two images and use
another CNN to generate interpolated frames
based on the predicted optical flow. Another video
restoration task is video super-resolution aim-
ing to reconstruct high-resolution video from the
corresponding low-resolution one by exploiting
temporal information. Several methods [16] [4]
use optical flows to perform alignment between
consecutive frames. There are also works focus-
ing on both tasks of solving space-time super-
resolution for video [19] [15] [12] [2]. However,
it is difficult to obtain accurate flow with large
motions. To address this problem, TDAN [17]
introduces the defomable convolution for aligning
the temporal features implicitly without estimat-
ing optical flow. And EDVR [18] improves it by
performing it in a pyramid and cascading struc-
tures. We jointly achieve spatial and temporal
super-resolution. Different from video, our focus
is on vector field restoration, where we not only
consider the magnitude, but also the direction of
vectors.

1.2. Deep learning in scientific visualization

As the great advances and success of deep
learning in many areas, there have been increas-
ing efforts in incorporating these methods in
scientific visualization and physical simulation
fields. For simulations, Kim et al. [10] propose
a generative model to construct fluid simulation
velocities from a set of parameters. In scientific
visualization, Han et al. [7] applied a recurrent
generative model for generating temporal super-
resolution of a volume sequence data. Then Han
et al. [6] extends the work to spaital super-
resolution, where they used the generative adver-
sarial network to generate high-resolution time-
varying volumes. He et al. [8] trained a deep
learning model to learn the visualization images
from the simulation and viewing parameters to
support parameter exploration. To our knowledge,
there are no work on performing spatial-temporal
super-resolution on vector field to improve the
data reduction rate and post-hoc visualization
results, which is our focus.
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Figure 1. Overview of our pipeline.

2. Overview

We aim at performing super-resolution on
vector fields in both spatial and temporal domains
to address the problem that data are reduced at
simulation time due to disk space constrains, and
hence only a limited amount of data are stored
for post-hoc analysis. We frame this problem as a
supervised learning problem for training a neural
network on a pair of low-resolution inputs for the
purpose of high-resolution frames.

Figure 1 shows a high-level overview of the
pipeline. First, given the high-resolution simu-
lation data, we perform downsampling to gen-
erate training data pairs where we input low-
resolution vector fields and produce a sequence
of intermediate high-resolution vector fields to
train our model, which is done by handling the
super-resolution task both in spatial and temporal
dimensions. We conduct simulation and train our
model on high performance clusters. Second,
we save the model and low-resolution data to
portable visualization devices like laptops, then
at inference time we can perform temporal and
spatial super-resolution using the trained model to
reconstruct high-resolution vector fields for post-
hoc visualization.

3. STSRNet Architecture

In this section, we discuss our method for
restoring the lost information due to I/O and
storage constraints. The overall pipeline of our
proposed joint framework is shown in Figure 2.
We couple two different stages to tackle the
problem. The first stage (red dashed box in Fig-
ure 2) is to estimate intermediate frames at a
lower spatial resolution between the two end time
steps. We use the U-Net [14] to estimate the
motion between the frames at two end time steps
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and then deform them forward and backward
to synthesize the target frames. And the second
stage (blue dashed box in Figure 2) handles the
spatial super-resolution task to generate the final
high-resolution outputs with temporal coherence
maintained across these consecutive fields.

prediction™

5

Deformation
Module
Loss
Comparator

&

S

groundtruth™

T Temporal T Spatial
Super Resolution Super Resolution
Stage Stage

Figure 2. Framework of our method, having two
separate stages to perform spatial-temporal super-
resolution from low resolution inputs.

We denote the pair of input vector fields as
VI E(z) and VI (z), where € R" (n = 2
for 2-D and 3 for 3-D), and LR represents the
vector field V' in spatial low-resolution (a coarse
grid), and R means the high-resolution field.
Our ultimate goal is to use deep learning networks
to learn a function f that models the vector fields
between time step ¢ and ¢ + k, as

FOVER VIR~ (VIR ... VERL (k>1) (D)

3.1. Temporal Super-Resolution Stage

We first perform temporal super resolution
with motion estimation. We generate the inter-
mediate frames from both V; and V;,; bidirec-
tionally. This stage comprises of two components:
motion estimation and fusion. The architecture of
each component is described as below.

Deformation with motion estimation In-
spired by video frame interpolation works [3] [9],
where optical flow f is estimated to determine
the motion vector for each pixel in the frame. We
focus on the dynamic changes along time between
consecutive frames and aim to estimate the flow
motion field.

Let V;(z) denotes a time-varying vector field,
where = denotes the spatial coordinates (2 or
3 dimensions) and ¢ denotes time. In this way,
the intermediate vector field can be estimated by
aligning the previous frame with the flow motion

to the current step, and then adding the resid-
ual. Likewise it can also be generated from the
later frame. Wan write the forward and backward
alignments as:

\A/;f(x) =Vi—1(z — Fr-1(z)) + ARy
VP (x) = Vi1 (2 + Fi(x)) + ARy

where F(z) is the flow motion field.

Thus it is necessary to capture the forward
and backward motion fied F'(x), and the residual
A R. However, frame ¢ is not available to compute
the flow motion, so we estimate motion informa-
tion between the the pair of key frames ¢ and i+k,
denoted as F;_ ;. and Fj ;_,;, to approximate
the motion fields we need: Ftﬂi and Ft%Jrk. We
employ the U-Net architecture [14] as our motion
estimation network. Also, we use a rectify block
to learn the residual AR between the deformed
vector fields and the ground truth field.

Fusion After obtaining the forward and back-
ward deformed frames V,/ (') and V}?(z), we in-
troduce the visibility maps M; and M, ., where
M;(x) € {0,1} to denote the vector value from
either forward and backward deformed frame
contributing to the final result since generally
averaging will produce blurry frame with arti-
facts, it will be trained in the model. Considering
the temporal distance and the visibility map, the
blended frame is

Vi (@) = (1= A Mo () - V] (2) + AtM () - V() (3)
The synthesized low-resolution result V,2%(z)
will be used in the following spatial super-
resolution stage to generate the final high-
resolution frames. In this way, the whole model
will be trained jointly and enforces the estimated
VR (2) to the real low-resolution frame.

3.2. Spatial Super-Resolution Stage

Figure 3. The architecture of multi-scale alignment.
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To reconstruct spatial high-resolution frames,
we align the context information from the neigh-
boring frames instead of directly generating from
the single low-resolution frame since the temporal
information is indispensable. Deformable convo-
lutional network has been proved successful in
aligning frames to the reference without explicit
motion estimation [18] [17]. The network will
learn the offsets for convolution operation to fetch
the information far away from the fixed kernel
location in regular convolution. We also employ
multi-scale structure with deformable alignment
to handle the large displacement as in [18]. This
kind of pyramid mechanism performs alignment
from coarse to fine to improve accuracy as shown
in Figure 3. Then, we take the fusion feature
map th from the above module as input and
outputs the corresponding final high-resolution
frame utilizing a sub-pixel upscaling module with
PixelShuffle.

3.3. Loss function

We design a novel loss function considering
quality of reconstruction, directionality and struc-
tures of vector fields and temporal coherence. We
not only use magnitude but the cosine angle loss
to optimize the network. Moreover, the Jacobian
matrix is also important for vector analysis, thus
we introduce the jacobian loss to govern the
training.
Magnitude loss

The most straightforward design to measure
the difference between the generated field and the
ground truth is the magnitude loss.

ithk—1

1 N
Ly=—— Vv, — vET 4
kiltzzi;rlllt IF! )

Cosine distance loss

The directional loss function is defined as
below.

1 i+k—1 R
=11 cosine_distance(Vs, VtGT) 5)

t=i+1

where the cosine_distance is the mean value at
every grid point.
Jacobian loss

For the velocity field, this high-order function
needs multiple vector calculus operators such
as divergence and curl. Thus, we introduce the

Ly
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jacobian loss defined as V/, the gradient of it is
the n X n jacobian matrix:
i+k—1

i=5—7 2 IVVi=-vveTlh 6)
t=i+1
where the VV is the jacobian function, and the
size of jacobian matrix at every grid point is 2 x 2
for 2D and 3 x 3 for 3D. We calculate the mean
difference between two vector fields for all grid
points.
Temporal loss

To better maintain the temporal coherence and
improve the accuracy of motion estimation, we
introduce the temporal loss defined as

i+k—1

> IV (@) = down(VET)| 1
t=i+1 @)

+ [V (2) — down(V;ET)|1)

Lp=——
T 1

where down denotes the downscaling operation.
Combining the above loss functions, we de-
sign our total loss as

minl = MLy +A2Lg + +)\3ﬁj + ML (8)

which is used for optimizing the whole model
including temporal and spatial super-resolution
stages.

4. Evaluations and Comparison
4.1. Data Sets and Implementation

Table 1. The dimension and time steps information of

each simulation data set.

Data set Dimension Time Size(GB) Training
steps time(h)

Solar Plume 126 x 126 x 512 28 2.7 15

Smoke 112 x 64 x 32 200 1.5 15

ESG ocean 3600 x 2400 45 32 21

Red sea 500 x 500 x 50 60 1500 40

We evaluated our framework using four data
sets as shown in Table 1. In our implementa-
tion, the motion estimation module in the first
stage using a U-Net architecture. At the sec-
ond stage, we employed the Pyramid, Cascading
and Deformable (PCD) structure for deformable
alignment and residual blocks (RB) for the final
reconstruction module. All the convolution filters
have a 3 x 3 kernel size (3 X 3 x 3 in 3D).
75% of data is randomly sampled for training and
the rest is used for testing, where we randomly
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choose a time step and include its neighbors as
a subsequence training sample until the selected
time steps reaches 75% of the total data. For
spatial down-sampling, we uniformly down-scale
vector field using bicubic filter. We augmented the
training data with affine transformation contain-
ing randomized rotations and flips. We optimized
the model with the Adam optimizer. The learning
rate was initialized as 4 x 10~* and decayed as
the number of epochs grew. The mini-batch size
varied from 1 to 16 up to the data size. The scale
factor for spatial resolution reduction was 4 by
default along each dimension, and we synthesized
the intermediate 5 frames from a pair of start and
end frames. The model was implemented with
Pytorch and conducted on 8§ NVIDIA Tesla P100
GPUs.

4.2. Baselines and Metrics
Baselines. We compare our method with different
baselines for evaluation.

e LERP + BI: Temporal linear interpolation for
estimating intermediate frames and bicubic in-
terpolation for upscaling the spatial field data.

e BiLSTM + CNN: Bidirectional LSTM is used
for predicting intermediate frames, and we
choose SRResNet [11], a post-upsampling
method, as our CNN-based super-resolution
model, which has several residual blocks fol-
lowed by subpixel layers for upscaling results.

Evaluation Metrics. For quantitative evaluations,
we used peak signal-to-noise ratio (PSNR), and
mean of the closest point distancing (MCPD). We
also use the )\, parameter to detect critical points
to evaluate the differences in terms of features of
vector fields.

PSNR (higher is better) measures the aver-
age difference among every grid point using the
aggregated mean squared error between vector
values.

PSNR (V, V) = 20log; I(V) — 10log;y MSE (V, V)
®
where I(V) is the difference of the maximum
and minimum value in V.

A reconstructed vector field that yields high
PSNR may still generate a wrong streamline due
to the accumulation of errors during integration.
Hence, we consider the similarity of particle

trajectories(e.g., streamline, pathline) as another
quantitative metric.

MCPD (lower is better) is used as the similar-
ity measure for trajectories, which is the mean of
the Euclidean distances between pairs of points
formed by mapping each point of one trajectory
to the closest point of the other. In this case, we
use pathlines to evaluate the accumulated error
considering temporal coherence.

MCPD (S;, S;) = mean (dm (Si, S;) ,dm (S;,5:)) (10)

where S;(; is a set of points py (), and

dm(S;,Sj) = meany, e, min |pr —p|| (1)
PLEF;

4.3. Qualitative and Quantitative Analysis

As stated in section 3, STSRNet has two
stages that are trained as a whole. The first
temporal super-resolution stage will generate in-
temediate results that are the input to the next
spatial upscaling stage. Thus, to understand how
each stage performs, it is necessary to compare
the results separately.

4.3.1. Comparison of temporal super-
resolution results To validate the
effectiveness of our framework and the

two modules in our network, we conduct
a comprehensive study on the results. For
evaluating the first temporal super-resolution
module which generates low-resolution fields at
a higher temporal rate, we compare the results
against the baseline methods including linear
interpolation (LERP) and BiLSTM.

Table 2.
resolution results against baselines with PSNR and
MCPD.

Comparison of our first temporal super-

Data set Method PSNR MCPD
LERP 34.87 0.30
Solar plume  BiLSTM 35.11 0.28
ours 35.78 0.24
LERP 35.31 0.29
Smoke BILSTM 39.50 0.25
ours 39.56 0.23
LERP 27.32 0.37
ESG-Ocean BIiLSTM 29.21 0.34
ours 30.42 0.33
LERP 31.24 0.34
Red Sea BiLSTM 31.60 0.31
ours 3342 0.29

Table 2 reports the PSNR and MCPD re-
sults from using LERP, BiLSTM and first mod-
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() BiLSTM.

(d) STSRNet (Only Temporal
Stage).

Figure 4. Comparison of pathline results generated
by only performing temporal super-resolution using
plume data set under different methods.

ule in STSRNet with smoke data, plume data,
global ocean data and red sea data. MCPD is
computed from the pathlines we traced in the
generated vector fields, where we fix the same
seed points for all methods for a fair comparison
as in Figure 4. We found that our temporal
super-resolution method can generate results that
achieve high PSNR and lower MCPD values.

In Figure 4, we visually compare the path-
lines of high-resolution vector field generated by
LERP, BiLSTM and our module using the plume
dataset. We can see that in the purple circle,
the LERP method produces inaccurate pathlines
which is totally different from the ground truth.
We can also observe that the same problems hold
for BILSTM method.

4.3.2. Comparison of final results To
demonstrate the effectiveness of STSRNet, we
compare the final estimated high-resolution vec-
tor fields with other baselines.

In Figure 5, we show the quantitative results
at data level (PSNR) and feature level (MCPD)
comparing our STSRNet against LERP+BI and
BiLSTM+CNN. For PSNR, we can see that our
method achieves better results at every time step.
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We also observe that for these three data sets,
the closer the time step is to the ground truth
time steps, i.e. towards the two ends, the higher
PSNR value is. PSNR values fall when we move
away from the two ends to the middle time
step. For the solar plume data set, the curve is
much steadier and smoother since data set itself
changes relatively less. All three methods show
low PSNR values in the global ocean data set
because it exhibits fast-changing and complex
behavior which is hard to predict. For MCPD,
we can see that our method produces the lowest
MCPD values which means more accurate results
at the feature level. It is obvious that STSRNet is
a winner in all data sets, which means STSRNet
can preseve better temporal coherence when the
vector fields have complex changing patterns. We
can also see the similar trend that the results
perform better in both ends and fall off in the
middle.

Table 3. Comparison of our method against baselines

with quantitative metrics.

Data set Method PSNR MCPD
LERP+BI 35.72 0.35
Solar plume | BiLSTM+CNN 36.15 0.32
ours 36.60 0.30
LERP+ BI 34.70 0.29
Smoke BiLSTM+CNN 35.16 0.25
ours 35.66 0.23
LERP+ BI 25.0 0.37
ESG-Ocean BiLSTM+CNN 25.40 0.35
ours 25.83 0.32
LERP+ BI 32.35 0.36
Red sea BiLSTM+CNN 33.34 0.34
ours 34.49 0.33

In Table 3, we report the quantitative compar-
ison of our method with different datasets using
PSNR and MCPD. The PSNR are the average
value computed over the time sequence and the
MCPD is the distance between the pathline gen-
erated from the whole sequence of vector fields.
We can see that our method achieves higher
PSNR and lower MCPD compared with the two
baselines, which indicates our method can not
only learn the data values but also capture the
overall features.

In Figure 6, we compare the streamline ren-
dering results of a single vector field generated
by LERP+BI, BiILSTM+CNN and STSRNet. We
can see that STSRNet can preserve better features
such as critical points. For solar plume data set,
LERP+BI and BiLSTM+CNN produce non-exist
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(a) Solar Plume. (b) Smoke.
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(c) Global Ocean. (d) Red Sea.

Figure 5. Comparison of PSNR, and MCPD of generated streamline at each time step under LERP+BI and

BiLSTM+CNN and STSRNet with different data sets.
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Figure 6. Comparison of steamline results. Top to bottom: plume data set, smoke data set.

vortexes and fail to generate streamline in right
region, while STSRNet is closer to the ground
truth. We highlight the obvious error regions
made by LERP+BI and BiLSTM+CNN in red
and green boxes. For smoke data set, STSRNet
recover accurate streamlines around swirls at cen-
tral region highlighted in yellow box, while other
methods fail to recover the features.

In Figure 7, we compare the pathlines render-
ing results of the vector field sequence generated
by LERP+BI, BiLSTM+CNN and our STSRNet.
For fairness, we use the same seed points to
generate the pathlines for each data set. By com-
paring them with the ground truth, it is clear
that STSRNet yields better results. For the smoke
data set, we can see that in the red circles, our
method is the only one that preserves the similar

structure as in the ground truth. For solar plume
data set, as in the yellow and green circles, we
can observe that the linear interpolation method
fails to reconstruct the right direction of the vector
field. We can also see that in the black circles, our
method leads to the most similar structure to the
ground truth.

In Figure 8, we compare the volume rendering
results of RMSE of vector fields generated by
LERP+BI, BiLSTM+CNN, STSRNet compared
with ground truth. We use the middle time step of
the synthesized sequence of the vector fields since
it has the most significant differences. For the
global ocean data set, it is clear that our method
introduces smaller errors across the global region
especially around the vortices. For the red sea
data set, we can see that STSRNet produces
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(a) Ground truth.

(b) LERP+BI

/
\ PSNR: 35.77 @ \ PSNR: 36.16 @

(c) BILSTM+CNN (d) STSRNet

Figure 7. Comparison of pathline results. Top to bottom: plume data set, smoke data set. We also reports the

PSNR value for better comparison.

(a) LERP+BI  (b) BILSTM+CNN  (c) STSRNet

Figure 8. Comparison of volume rendering of errors.
Top to bottom: ocean data, red sea data, plume data,
smoke data.

smaller errors compared with LERP+BI and BiL-
STM+CNN. For the solar plume data set, both
LERP+BI and BiLSTM+CNN generate the errors
in the plume’s tail region, while STSRNet only
produces errors in the head region. For the smoke
data set, STSRNet has smaller region of errors
clearly.

One advantage of super-resolution is that the
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Table 4.

method against SZ for each data set.

Comparison of reconstruction PSNR for our

Data set Compression Rate Method PSNR
Solar plume 7680x STSRNGZIP | 36.60
Smoke 8697 STSRNGZIP | 3566
ESG-Ocean 396 STSR£§+GZIP ggg
Red sea 614x STSR;§+GZIP §Zj§3

size of data is reduced like compression methods
but better quality can be achieved after the data
are upscaled. Our method has no conflict with
compression merthods since we can further com-
press our low-resolution data. To confirm this,
we use lossless algorithm GZIP to compress our
low-resolution data and quantitatively compare it
against SZ compression method [5], a lossy com-
pression, under same compression rate. The com-
pression rate is the space for storing the original
vector field data from the simulation divided by
the space for storing the compressed data. From
Table 4, we can see that our method achieves
higher PSNR for all the data sets. Adding lossless
compression can bring us an impressive compres-
sion rate (like 7680x for 3D solar plume data)
without increasing error.

In our proposed framework, we first estimate
the flow motion, which is a displacement field
defined at the grid points, then we deform the
previous frame to generate the next frame, or the
other way round if the direction is backward. In
Figure 9, we compare estimated motion field with
the ground truth using plume and smoke data
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set, where we visualize the motion with arrows
to reveal its direction and magnitude. We slice
the 3D data and sample the grid points for better
clarity in the visualization. It is obvious that our
estimated motion can recover the ground truth
practically, apart from some arrows around the
swirls.

(a) Ground Truth Motion  (b) Estimated Motion (STSR-

Net)
Figure 9. Comparison of estimated flow motion re-
sults with ground truth and our method. The left is
ground truth and the right is our estimation. From top
to bottom: plume data set, smoke data set.

To evaluate the effectiveness and accuracy of
STSRNet in recovering flow specific featuresn.
We use A; parameter [1] for identifying the
vortexes in the flow fields using the solar plume
and smoke data sets. In Table 5, we calculate the
average errors of the positions of critical points
from the reconstructed data using our method
and the ground truth. Clealy, STSRNet introduces
smaller errors compared with the other two meth-
ods.

Table 5. Average errors of positions of critical points
for LERP+BI, BILSTM+CNN and STSRNet using plume

data and smoke data set

Data set ‘ LERP+BI ~ BiLSTM+CNN  STSRNet
Plume 0.377 0.373 0.017
Smoke 0.161 0.153 0.003

5. Conclusion and Future Work

We have presented a joint space-time super-
resolution framework for vector fields. It can
yield high-resolution intermediate frames with
only a pair of low-resolution frames in a time
interval as the input. Our framework consists of
two modules. The first performs motion estima-
tion and predicts the unavailable data frames at
any time steps in between. And the second mod-
ule reconstructs spatially high-resolution fields
with deformable alignment and attention fusion.
To achieve better performance, we introduce a
novel loss function for vectors to capture the
high-order feature of vector field. We explore
the hyperparameters in our model including the
loss function weights and network architecture.
Through qualitative and quantitative comparisons,
we validate the effectiveness of our module de-
sign for generating high quality results. In the
future, we will study how to choose the best scale
factors automatically, and our full model can be
more than 100 MB in size, we would like to
design lighter model without compromising the
quality of the results.
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Appendix

Evaluation for hyperparameters

In this section we validate the effectiveness
of our default hyperparameters settings. We study
the trade-off between different scaling factors in
space and time and evaluate our method trained
with different weighted combinations of loss
items. We use validation data that were not used
for training to inference the results.

Spatial and Temporal Scale Factors We an-
alyze the trade-off between the scale factors and
the results’ quality. In Figure 10, we compare the
results with different downscale factors in SSR
and different time intervals in TSR independently.
In the top row of the figure, each curve represents
a fixed spatial downscale factor. When increasing
the length of the time interval, we can see that
the PSNR values change very little. In the bottom
row, each curve represents a fixed time interval.
It is shown that the quality degrades with higher
scale factor. This means that the spatial super-
resolution scale has more impact to the model
performance, since it may lose more information.

o—scale=2x2 scale=4x4 scale=8x8 o—scale=2x2x2 scale=4x4x4 —e—scale=8x8x8

—e—time steps=5 time steps=7 o—time steps=5 time steps=7

time steps=9

Time steps 2x2 4x4 8x8 Space scale 2x2x2 4x4x4 8x8x8

(a) smoke (b) plume

Figure 10. Quantitative evaluation with of different
scale factors and time steps we use for model train-
ing.(a) smoke data set (b) solar plume data set.

Loss Functions In subsection 3.3 we demon-
strate that the overall loss is a linear combination
of the different loss terms with different weights
A; as in Equation 8. We tested the different
weights used in the loss function to analyze the
influence of the loss function to the reconstruction
quality. We use the fixed default scale factor and
time step data mentioned to validate the loss
function independently.

Table 6. Evaluation the different weight )\; settings for

the combination of loss functions.

Network | Losses PSNR  MCPD
M1 L, + Ly 29.46 0.64
M2 Ly+Lg+ LT 30.61 0.52
M3 10L, + La+5Lr +L; 3751 032

Table 6 shows the quantitative results with
different combinations of loss items trained on the
plume data set. It is shown that the M2 network
gives the better PSNR results comparing to the
M1 network since it involves temporal cohen-
rence. From the results in M2 and M3, we can see
that providing the high-order loss £; can improve
the MCPD metric. It is crucial to capture the
higher order differences so particle pathlines will
not drift far away from the ground truth. Given
the selected loss combinations, we find that the
M3 network gives the most reliable performance.
Therefore, we take it as our preferred model.
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