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Abstract

Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap
estimators. We consider bagging for inference from noisy or incomplete measurements
on a collection of interacting stochastic dynamic systems. Each system is called a unit,
and each unit is associated with a spatial location. A motivating example arises in epi-
demiology, where each unit is a city: the majority of transmission occurs within a city,
with smaller yet epidemiologically important interactions arising from disease trans-
mission between cities. Monte Carlo filtering methods used for inference on nonlinear
non-Gaussian systems can suffer from a curse of dimensionality as the number of units
increases. We introduce bagged filter (BF) methodology which combines an ensemble
of Monte Carlo filters, using spatiotemporally localized weights to select successful fil-
ters at each unit and time. We obtain conditions under which likelihood evaluation
using a BF algorithm can beat a curse of dimensionality, and we demonstrate appli-
cability even when these conditions do not hold. BF can out-perform an ensemble
Kalman filter on a coupled population dynamics model describing infectious disease
transmission. A block particle filter also performs well on this task, though the bagged
filter respects smoothness and conservation laws that a block particle filter can violate.
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1 Introduction

Bagging is a technique to improve numerically unstable estimators by combining an ensemble

of replicated bootstrap calculations (Breiman, 1996). In the context of nonlinear partially

observed dynamic systems, the bootstrap filter of Gordon et al. (1993) has led to a variety

of particle filter (PF) methodologies (Doucet et al., 2001; Doucet and Johansen, 2011);

Here, we consider algorithms combining an ensemble of replicated particle filters, which we

term bagged filter algorithms. Standard PF methods suffer from a curse of dimensionality

(COD), defined as an exponential increase in computational requirement as the problem size

grows, limiting its applicability to large systems (Bengtsson et al., 2008; Snyder et al., 2015;

Rebeschini and van Handel, 2015). The COD presents empirically as numerical instability of

the Monte Carlo algorithm for affordable numbers of particles. Much previous research has

investigated scalable approaches to filtering and inference with applications to spatiotemporal

systems. Our bagged filters are in the class of plug-and-play algorithms, meaning that they

require as input a simulator for the latent dynamic process but not an evaluator of transition

probabilities (Bretó et al., 2009; He et al., 2010). Similar properties to plug-and-play are

likelihood-free (Brehmer et al., 2020) and equation-free (Kevrekidis and Samaey, 2009). The

ensemble Kalman filter (Evensen, 2009; Lei et al., 2010; Katzfuss et al., 2020) is a widely used

plug-and-play method which uses simulations to construct a nonlinear filter that is exact for

a linear Gaussian model. Another plug-and-play approach to combat the COD is the block

particle filter (Rebeschini and van Handel, 2015; Ng et al., 2002). Both ensemble Kalman

filter and block particle filter methods construct trajectories that can violate smoothness

and conservation properties of the dynamic model. By contrast, our bagged filters are built

using valid trajectories of the dynamic model, making localization approximations only when

comparing these trajectories to data.

The replicated stochastic trajectories in a bagged filter form an ensemble of representa-

tions of the dynamic system. Unlike the particles in a particle filter or ensemble Kalman

filter, the bagged replicates are independent in a Monte Carlo sense. Bagged filters therefore

bear some resemblance to poor man’s ensemble forecasting methodology in which a collec-
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tion of independently constructed forecasts is generated using different models and methods

(Ebert, 2001). Poor man’s ensembles have sometimes been found to have greater forecasting

skill than any one forecast (Leutbecher and Palmer, 2008; Palmer, 2002; Chandler, 2013).

One explanation for this phenomenon is that even a hypothetically perfect model cannot

provide effective filtering using methodology afflicted by the COD. We show that bagged

filter methodology can relieve this limitation. From this perspective, the independence of

the forecasts in the poor man’s ensemble, rather than the diversity of model structures, may

be the key to its success.

We first consider a simple bagged filter where each replicate is an independent simulation

of the latent process model. We call this the unadapted bagged filter (UBF) since the

replicates in the ensemble depend on the model but not on the data. UBF is described in

Sec. 2, with a theoretical analysis presented in Sec. 2.1. Each UBF replicate corresponds to a

basic PF algorithm with a single particle. We show that UBF formally beats the COD under

a weak mixing assumption, though UBF can have poor numerical behavior if a very large

number of replicates are needed to reach this happy asymptotic limit. Subsequent empirical

results show that UBF may nevertheless be a useful algorithm in some situations. In Sec. 3,

we generalize UBF to construct an adapted bagged filter (ABF) where each replicate tracks

the data. The price of adaptation is that ABF no longer avoids the COD, a limitation

that can be controlled in certain situations by supplementing ABF with a technique called

intermediate resampling, to obtain the ABF-IR algorithm. Theoretical results for ABF and

ABF-IR algorithms are developed in Sec. 3.1. The algorithms are demonstrated in action

and compared with alternative approaches in Sec. 4.

2 The unadapted bagged filter (UBF)

Suppose the collection of units is indexed by the set {1, 2, . . . , U}, which is written as 1 :U .

The latent Markov process is denoted by {Xn, n ∈ 0 :N}, with Xn = X1:U,n taking values

in a product space XU . This discrete time process may arise from a continuous time Markov

process {X(t), t0 ≤ t ≤ tN} observed at times t1:N , and in this case we set Xn = X(tn).
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The initial value X0 may be stochastic or deterministic. Observations are made on each

unit, modeled by an observable process {Y n = Y1:U,n, n ∈ 1 :N} which takes values in a

product space YU . Observations are modeled as being conditionally independent given the

latent process. The conditional independence of measurements applies over both time and

the unit structure, so the collection
{
Yu,n, u ∈ 1 :U, n ∈ 1 :N

}
is conditionally independent

given
{
Xu,n, u ∈ 1 : U, n ∈ 1 : N

}
. The unit structure for the observation process is not

necessary for all that follows (see Sec. S1). We suppose the existence of a joint density

fX0:N ,Y 1:N
of X1:U,0:N and Y1:U,1:N with respect to some appropriate measure, following a

notational convention that the subscripts of f denote the joint or conditional density under

consideration. The data are y∗u,n for unit u at time n. This model is a special case of a

partially observed Markov process (POMP, Bretó et al., 2009), also known as a state space

model or hidden Markov model. The additional unit structure, not generally required for

a POMP, is appropriate for modeling interactions between units characterized by a spatial

location, and so we call the model a SpatPOMP. In the following, we use a lexicographical

ordering on the set of observations; Specifically, we define the set of observations preceding

unit u at time n as

Au,n =
{

(ũ, ñ) : 1 ≤ ñ < n or (ñ = n and ũ < u)
}
. (1)

The ordering of the spatial locations in (1) might seem artificial, and indeed densities such as

fXu,n|XAu,n
will frequently be hard to compute or simulate from. The bagged filter algorithms

we study do not evaluate or simulate such transition densities but only compute the mea-

surement model on neighborhoods, unlike the filter of Beskos et al. (2017) built on a similar

factorization. If sufficiently distant units are approximately independent, we say the system

is weakly coupled. In this case, we suppose there is a neighborhood Bu,n ⊂ Au,n such that the

latent process on Au,n \ Bu,n is approximately conditionally independent of Xu,n given data

on Bu,n.

Our primary interest is estimation of the log likelihood for the data given the model,

` = log fY 1:N
(y∗1:N), which is of fundamental importance in both Bayesian and non-Bayesian

statistical inference. A general filtering problem is to evaluate E
[
h(Xu,n) |YAu,n = y∗Au,n

]
for
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some function h : X→ R. Taking h(x) = fYu,n|Xu,n

(
y∗u,n | x

)
gives a filtering representation of

the likelihood evaluation problem. Further discussion on bagged filtering for other filtering

problems is given in Sec. S10. For likelihood-based inference, maximization plays an impor-

tant role in point estimation, confidence interval construction, hypothesis testing and model

selection. An extension of bagged filtering to likelihood maximization is demonstrated in

Sec. 4.3 following the approach described in Sec. S11.

Pseudocode for a UBF algorithm for likelihood evaluation is given below. The prediction

weight wPu,n,i gives an appropriate weighting for replicate i for predicting y∗u,n based on the

most relevant data, y∗Bu,n
. Conditional log likelihoods are estimated using an approximation

`u,n = log fYu,n|YAu,n

(
y∗u,n | y∗Au,n

)
= log

(∫
fYu,n|Xu,n(y∗u,n | x) fXu,n|YAu,n

(x | y∗Au,n
) dx

)
≈ log

(∫
fYu,n|Xu,n(y∗u,n | x) fXu,n|YBu,n

(x | y∗Bu,n
) dx

)
.

The choice of Bu,n is determined empirically, with a bias-variance trade-off used to compare

small neighborhoods such as Bu,n = {(u, n− 1), (u− 1, n)} or Bu,n = {(u, n− 1), (u, n− 2)}

against larger neighborhoods. The plug-and-play property is evident because UBF requires

as input a simulator for the latent coupled dynamic process but not an evaluator of transition

probabilities.
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Algorithm 1: Unadapted bagged filter (UBF).

input: simulator for fXn|Xn−1(xn |xn−1) and fX0(x0); evaluator for

fYu,n|Xu,n(yu,n | xu,n); data, y∗1:N ; number of replicates, I; neighborhood

structure, Bu,n

1 for i in 1 :I do

2 initialize simulation, X0,i ∼ fX0(·)

3 for n in 1 :N do

4 simulate, Xn,i ∼ fXn|Xn−1

(
· |Xn−1,i

)
5 measurement weights, wMu,ñ,i = fYu,n|Xu,n

(
y∗u,n |Xu,n,i

)
for u in 1 :U

6 prediction weights, wPu,n,i =
∏

(ũ,ñ)∈Bu,n
wMũ,ñ,i for u in 1 :U

7 end

8 end

9 `MC
u,n = log

(∑I
i=1w

M
u,n,iw

P
u,n,i

)
− log

(∑I
i=1w

P
u,n,i

)
for u in 1 :U , n in 1 :N

output: log likelihood estimate, `MC =
∑N

n=1

∑U
u=1 `

MC
u,n

2.1 UBF theory

A dataset y∗1:N with U units is modeled via a joint density fX0:N ,Y 1:N
. We consider non-

asymptotic bounds that apply for all values of U and N . To impose a requirement that

distant regions of space-time behave similarly and have only weak dependence, we assert

the following conditions which define constants εA1, εA4 and Q used to bound the bias and

variance in Theorem 1. Stronger bounds are obtained when the conditions hold for small

εA1, εA4 and Q.

Assumption A1. There is an εA1 > 0, independent of U and N , and a collection of neigh-

borhoods {Bu,n ⊂ Au,n, u ∈ 1 :U, n ∈ 1 :N} such that, for all u and n, any bounded real-valued
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function |h(x)| ≤ 1, and any value of xBc
u,n

,∣∣∣∣∣
∫
h(xu,n)fXu,n|YBu,n ,XBc

u,n
(xu,n | y∗Bu,n

, xBc
u,n

) dxu,n

−
∫
h(xu,n)fXu,n|YBu,n

(xu,n | y∗Bu,n
) dxu,n

∣∣∣∣∣ < εA1.

Assumption A2. For the collection of neighborhoods in Assumption A1, with B+
u,n = Bu,n∪

(u, n), there is a constant b, depending on εA1 but not on U and N , such that

sup
u∈1:U, n∈1:N

∣∣B+
u,n

∣∣ ≤ b.

Assumption A3. There is a constant Q, independent of U and N , such that, for all u and

n,

Q−1 < fYu,n|Xu,n(y∗u,n | xu,n) < Q

Assumption A4. There exists εA4 > 0, independent of U and N , such that the following

holds. For each u, n, a set Cu,n ⊂ (1 :U) × (0 :N) exists such that (ũ, ñ) /∈ Cu,n implies

B+
u,n ∩ B+

ũ,ñ = ∅ and ∣∣fX
B+
ũ,ñ
|X

B+
u,n

− fX
B+
ũ,ñ

∣∣ < εA4 fXB+
ũ,ñ

Further, there is a uniform bound |Cu,n| ≤ c.

The two mixing conditions in Assumptions A1 and A4 are subtly different. Assump-

tion A1 describes a conditional mixing property dependent on the data, whereas A4 asserts

a form of unconditional mixing. Although both capture a similar concept of weak coupling,

conditional and unconditional mixing properties do not readily imply one another. Assump-

tion A3 is a compactness condition of a type that has proved useful in the theory of particle

filters despite the rarity of its holding exactly. Theorem 1 shows that these conditions let

UBF compute the likelihood with a Monte Carlo variance of order UNI−1 with a bias of

order UNε.
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Theorem 1. Let `MC denote the Monte Carlo likelihood approximation constructed by UBF.

Consider a limit with a growing number of bootstrap replicates, I → ∞, and suppose assump-

tions A1, A2 and A3. There are quantities ε(U,N) and V (U,N), with bounds |ε| < εA1Q
2

and V < Q4b U2N2, such that

I1/2
[
`MC − `− εUN

] d−−−→
I→∞

N
[
0, V

]
, (2)

where
d−−−→

I→∞
denotes convergence in distribution and N [µ,Σ] is the normal distribution with

mean µ and variance Σ. If additionally Assumption A4 holds, we obtain an improved vari-

ance bound

V < Q4b UN
(
c+ εA4 (UN − c)

)
. (3)

Proof. A complete proof is given in Sec. S3. Briefly, the assumptions imply a multivariate

central limit theorem for {`MC
u,n , (u, n) ∈ 1 :U×1 :N} as I → ∞. The limiting variances

and covariances are uniformly bounded, using Assumptions A2 and A3. Assumption A1

provides a uniform bound on the discrepancy between `u,n and mean of the Gaussian limit.

This is enough to derive (2). Assumption A4 gives a stronger bound on covariances between

sufficiently distant units, leading to (3).

Theorem 1 does not guarantee uniformity over U and N of the rate of convergence as I →

∞. However, it does guarantee that the polynomial bounds in (2) and (3) hold for sufficiently

large I. The COD is characterized by exponential bounds, and so Theorem 1 shows a specific

sense in which UBF can avoid COD. Uniformity of the central limit convergence in Theorem 1

may be expected to hold via a Berry-Esseen theorem, but extension of existing Berry-Esseen

results for dependent processes (Bentkus et al., 1997; Jirak, 2016) is beyond the scope of this

article.

The approximation error for UBF can be divided into two sources: a localization bias

due to conditioning on a finite neighborhood, and Monte Carlo error. The localization bias

does not disappear in the limit as Monte Carlo effort increases. It does become small as

the conditioning neighborhood increases, but the Monte Carlo effort grows exponentially in
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the size of this neighborhood. Although the filtering inference is carried out using localiza-

tion, the simulation of the process is carried out globally which avoids the introduction of

additional boundary effects and ensures that the simulations comply with any constraints

satisfied by the model for the latent process.

3 Adaptation and intermediate resampling

Theorem 1 shows that UBF can beat COD. However, UBF can perform poorly on long time

series unless weak temporal dependence allows simulated sample paths to remain relevant

over the course of a long time series. For example, we will find that UBF performs well

on an epidemiological model (Sec. 5) but less well on a geophysical model (Sec. S8). It is

sometimes necessary to select simulations consistent with the data, much as standard PF

algorithms do. We look for approaches that build on the basic insight of UBF while having

superior practical performance.

Whereas the full global filtering problem of drawing from fXn|Y 1:n may be intractable

via importance sampling methods, a version of this problem localized in space and time

may nevertheless be feasible. The conditional density, fXn|Y n,Xn−1 , is called the adapted

density, and simulating from this density is called adapted simulation. For models where

Xn−1 is highly informative about Xn, importance sampling for adapted simulation may be

much easier than the full filter calculation. The following adapted bagged filter (ABF) is

constructed under a hypothesis that the adapted simulation problem is tractable, and it is

applicable when the number of units is prohibitive for Monte Carlo sampling from the full

filter distribution but not for sampling from the adapted distribution. In ABF, the adapted

simulations are reweighted in a neighborhood of each unit and time point to construct a

local approximation to the filtering problem which leads to an estimate of the likelihood.

The pseudocode for ABF, below, reduces to UBF when using a single particle per repicate,

J = 1.
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Algorithm 2: Adapted bagged filter (ABF)

input: simulator for fXn|Xn−1(xn |xn−1) and fX0(x0); evaluator for

fYu,n|Xu,n(yu,n | xu,n); data, y∗1:N ; number of particles per replicate, J ; number

of replicates, I; neighborhood structure, Bu,n

1 for i in 1 :I do

2 initialize adapted simulation, XA
0,i ∼ fX0(·)

3 for n in 1 :N do

4 proposals: XP
n,i,j ∼ fXn|X1:U,n−1

(
xn |XA

n−1,i
)

for j in 1 :J

5 wMu,n,i,j = fYu,n|Xu,n

(
y∗u,n |XP

u,n,i,j

)
for u in 1 :U , j in 1 :J

6 adapted resampling weights, wA
n,i,j =

∏U
u=1w

M
u,n,i,j for u in 1 :U , j in 1 :J

7 XA
n,i = XP

n,i,r(i) with P
[
r(i) = a

]
= wA

n,i,a

(∑J
k=1w

A
n,i,k

)−1
8 wP

u,n,i,j =
n−1∏
ñ=1

[ 1

J

J∑
k=1

∏
(ũ,ñ)∈Bu,n

wMũ,ñ,i,k

] ∏
(ũ,n)∈Bu,n

wMũ,n,i,j for u in 1 :U , j in 1 :J

9 end

10 end

11 `MC

u,n = log

(∑I
i=1

∑J
j=1w

M
u,n,i,jw

P
u,n,i,j∑I

i=1

∑J
j=1w

P
u,n,i,j

)
for u in 1 :U , n in 1 :N

output: log likelihood estimate, `MC =
∑N

n=1

∑U
u=1 `

MC
u,n

ABF remedies a weakness of UBF by making each boostrap filter adapted to the data.

However, this benefit carries a cost, since adapted simulation is not immune from the curse of

dimensionality. Therefore, we also consider an algorithm called ABF-IR which uses an inter-

mediate resampling technique to carry out the adapted simulation. Intermediate resampling

involves assessing the satisfactory progress of particles toward the subsequent observation

at a collection of times between observations. This is well defined when the latent process

has a continuous time representation, {X(t)}, with observation times t1:N . We write S

intermediate resampling times as

tn−1 = tn,0 < tn,1 < · · · < tn,S = tn.

Carrying out an intermediate resampling procedure can have favorable scaling properties
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when S is proportional to U (Park and Ionides, 2020). In the case S = 1, ABF-IR re-

duces to ABF. Intermediate resampling was developed in the context of sequential Monte

Carlo (Del Moral and Murray, 2015; Park and Ionides, 2020); however, the same theory

and methodology can be applied to the simpler and easier problem of adapted simulation.

ABF-IR employs a guide function to gauge the compatibility of each particle with future

data. This is a generalization of the popular auxiliary particle filter (Pitt and Shepard,

1999). Only an ideal guide function fully addresses COD (Park and Ionides, 2020) and on

nontrivial problems this is not available. However, practical guide functions can nevertheless

improve performance.

The implementation in the ABF-IR pseudocode constructs the guide gn,s,i,j using a sim-

ulated moment method proposed by Park and Ionides (2020). The quantities XG
n,i,j , Vu,n,i,

µIP
n,s,i,j , V

meas
u,n,s,i,j , V

proc
u,n,s,i and θu,n,s,i,j constructed in ABF-IR are used only to construct gn,s,i,j .

Heuristically, we use guide simulations to approximate the variance of the increment in

each particle between time points, and we augment the measurement variance to account

for both dynamic variability and measurement error. The guide function affects numerical

performance of the algorithm but not its correctness: it enables a computationally conve-

nient approximation to improve performance on the intractable target problem. Our guide

function supposes the availability of a deterministic function approximating evolution of the

mean of the latent process, written as

µ(x, s, t) ≈ E
[
X(t) |X(s) = x

]
.

Further, the guide requires that the measurement model has known conditional mean and

variance as a function of the model parameter vector θ, written as

hu,n(xu,n) = E
[
Yu,n |Xu,n = xu,n

]
→
vu,n(xu,n, θ) = Var

(
Yu,n |Xu,n = xu,n ;θ

)
Also required for ABF-IR is an inverse function

←
vu,n
(
V, xu,n, θ

)
such that

←
vu,n
(
V, xu,n, θ

)
= φ

implies
→
vu,n
(
xu,n, φ

)
= V.
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Algorithm 3: ABF with intermediate resampling (ABF-IR)

input: same as Algorithm 2 (ABF) plus: intermediate timesteps, S; measurement

variance functions,
←
vu,n and

→
vu,n; approximate mean functions, µ and hu,n

1 for i in 1 :I do

2 initialize adapted simulation, XA
0,i ∼ fX0(·)

3 for n in 1 :N do

4 guide simulations: XG
n,i,j ∼ fXn|Xn−1

(
xn |XA

n−1,i
)

for j in 1 :J

5 Vu,n,i = Var
{
hu,n
(
XG
u,n,i,j

)
, j in 1 :J

}
6 gRn,0,i,j = 1 and X IR

n,0,i,j = XA
n−1,i for j in 1 :J

7 for s in 1 :S do

8 X IP
n,s,i,j ∼ fXn,s|Xn,s−1

(
· |X IR

n,s−1,i,j
)

for j in 1 :J

9 µIP
n,s,i,j = µ

(
X IP

n,s,i,j , tn,s, tn
)

for j in 1 :J

10 V meas
u,n,s,i,j =

→
v u(θ, µ

IP
u,n,s,i,j) for u in 1 :U , j in 1 :J

11 V proc
u,n,s,i = Vu,n,i

(
tn − tn,s

)/(
tn − tn,0

)
for u in 1 :U

12 θu,n,s,i,j =
←
v u

(
V meas
u,n,s,i,j + V proc

u,n,s,i, µ
IP
u,n,s,i,j

)
for u in 1 :U , j in 1 :J

13 gn,s,i,j =
∏U

u=1 fYu,n|Xu,n

(
y∗u,n |µIP

u,n,s,i,j ;θu,n,s,i,j
)

for j in 1 :J

14 guide weights: wGn,s,i,j = gn,s,i,j
/
gRn,s−1,i,j for j in 1 :J

15 resampling: P
[
r(i, j) = a

]
= wGn,s,i,a

(∑J
k=1w

G
n,s,i,k

)−1
for j in 1 :J

16 X IR
n,s,i,j = X IP

n,s,i,r(i,j) and gRn,s,i,j = gn,s,i,r(i,j) for j in 1 :J

17 end

18 XA
n,i = X IR

n,S,i,1

19 wMu,n,i,j = fYu,n|Xu,n

(
y∗u,n |XG

u,n,i,j

)
for u in 1 :U , j in 1 :J

20 wP
u,n,i,j =

n−1∏
ñ=1

[ 1

J

J∑
a=1

∏
ũ:(ũ,ñ)∈Bu,n

wMũ,ñ,i,a

] ∏
ũ:(ũ,n)∈Bu,n

wMũ,n,i,j for u in 1 :U , j in 1 :J

21 end

22 end

output: `MC =
U∑
u=1

N∑
n=1

log

(∑I
i=1

∑J
j=1w

M
u,n,i,jw

P
u,n,i,j∑I

i=1

∑J
j=1w

P
u,n,i,j

)
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This guide function is applicable to spatiotemporal versions of a broad range of population

and compartment models used to model dynamic systems in ecology, epidemiology, and

elsewhere. Other guide functions could be developed and inserted into the ABF-IR algorithm,

including other constructions considered by Park and Ionides (2020).

One might wonder why it is appropriate to keep many particle representations at inter-

mediate timesteps while resampling down to a single representative at each observation time.

An answer is that adaptive simulation can fail to track the observation sequence when one

resamples down to a single particle too often (Sec. S2).

3.1 ABF-IR theory

We start by considering a deterministic limit for infinite Monte Carlo effort and explaining

why the ABF and ABF-IR algorithms approximately target the likelihood function, subject

to suitable mixing behavior. Subsequently, we consider the scaling properties as Monte Carlo

effort increases. We adopt a convention that densities involving Yu,n are implicitly evaluated

at the data, y∗u,n, and densities involving Xu,n are implicitly evaluated at xu,n unless otherwise

specified. We write A+
u,n = Au,n ∪ (u, n), matching the defintion B+

u,n = Bu,n ∪ (u, n). The

essential ingredient in all the algorithms is a localization of the likelihood, which may be

factorized sequentially as

fY1:U,1:N
=

N∏
n=1

U∏
u=1

fYu,n|YAu,n
=

N∏
n=1

U∏
u=1

fY
A+
u,n

fYAu,n

.

In particular, the approximations assume that the full history Au,n can be well approximated

by a neighborhood Bu,n ⊂ Au,n. UBF approximates fYu,n|YAu,n
by

fYu,n|YBu,n
=

fY
B+
u,n

fYBu,n

=

∫
fY

B+
u,n
|X

B+
u,n

fX
B+
u,n
dxB+

u,n∫
fYBu,n |XBu,n

fXBu,n
dxBu,n

.

For B ⊂ 1 : U × 1 : N , define B[m] = B ∩
(
1 :U × {m}

)
. ABF and ABF-IR build on the

following identity,

fYAu,n
=

∫
fX0

[
n∏

m=1

fXm|Xm−1,YmfY
A
[m]
u,n
|Xm−1

]
dx0:n,
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where fXm|Xm−1,Y m is called the adapted transition density. The adapted process (i.e., a

stochastic process following the adapted transition density) can be interpreted as a one-step

greedy procedure using the data to guide the latent process. Let g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N) be

the joint density of the adapted process and the proposal process,

g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N) = fX0(x0)×

N∏
n=1

fXn|Xn−1,Y n

(
xn |xn−1,y∗n

)
fXn|Xn−1

(
xPn |xn−1

)
. (4)

Using the convention that an empty density fY∅ evaluates to 1, we define

γB =
N∏
m=1

fY
B[m] |Xm−1

(
y∗B[m] |Xm−1

)
.

Denoting Eg for expectation for (X0:N ,X
P
1:N) having density gX0:N ,X

P
1:N

, we have fYAu,n
=

Eg
[
γAu,n

]
and thus

fYu,n|YAu,n
=

Eg
[
γ
A+

u,n

]
Eg
[
γAu,n

] .
Estimating this ratio by Monte Carlo sampling from g is problematic due to the growing

size of Au,n. Thus, ABF and ABF-IR make a localized approximation,

Eg
[
γ
A+

u,n

]
Eg
[
γAu,n

] ≈ Eg
[
γ
B+

u,n

]
Eg
[
γBu,n

] . (5)

The conditional log likelihood estimate `MC
u,n in ABF and ABF-IR come from replacing the

expectations on the right hand side of (5) with averages over Monte Carlo replicates of

simulations from the adapted process. To see that we expect the approximation in (5) to

hold when dependence decays across spatiotemporal distance, we can write

γAu,n
= γBu,n

γBc
u,n

γ
A+

u,n
= γ

B+
u,n
γBc

u,n
,

where Bc
u,n is the complement of Bu,n in Au,n. Under our assumptions, the term corresponding

to γBc
u,n

approximately cancels in the numerator and denominator of the right hand side of

(5).
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The localized likelihood estimate in ABF and ABF-IR has similar structure to UBF.

However, ABF and ABF-IR additionally require the capability to satisfactorily implement

adapted simulation. Adapted simulation is a local calculation, making it an easier task

than the global operation of filtering. Nevertheless, adapted simulation via importance

sampling (as carried out by ABF) is vulnerable to COD. For a continuous time model, the

use of intermediate resampling in ABF-IR is motivated by a result that this can reduce

the COD, or avoid it entirely for an ideal guide function (Park and Ionides, 2020). Without

intermediate resampling even an ideal proposal distribution does not avoid COD for a particle

filter (Snyder et al., 2015). Assumptions B1–B4 below are analogous to A1–A4 and are non-

asymptotic assumptions involving εB1 > 0, εB4 > 0 and Q > 1 which are required to hold

uniformly over space and [time. Assumptions B5–B7 control the Monte Carlo error arising

from adapted simulation. B5 is a stability property which asserts that the effect of the

latent process on the future of the adapted process decays over time. Assumption B6 is a

non-asymptotic bound on Monte Carlo error for a single step of adapted simulation. The

scaling of the constant C0 with U , N and S in Assumption B6 has been studied by Park and

Ionides (2020), where it was established that setting S = U can lead to C0 being polynomial

in U and N when using an ideal guide function. This property is critical to enable ABF-

IR to avoid COD. Since ABF has S = 1 it suffers from COD, albeit at an empirically

slower rate than PF. The ε−3B6 error rate in Assumption B6 follows from balancing the two

sources of error defined in the statement of Theorem 2 of Park and Ionides (2020) (details

are provided in Sec. S15). Assumption B7 can be guaranteed by the construction of the

algorithm, if independently generated Monte Carlo random variables are used for building

the guide function and the one-step prediction particles. The asymptotic limit in Theorem 2

arises as the number of replicates increases.

Assumption B1. There is an εB1 > 0, independent of U and N , and a collection of

neighborhoods {Bu,n ⊂ Au,n, u ∈ 1 :U, n ∈ 1 :N} such that the following holds for all u

and n, and any bounded real-valued function |h(x)| ≤ 1. Setting A = Au,n, B = Bu,n,
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fA(xA) = fYA|XA
(y∗A|xA), and fB(xB) = fYB |XB

(y∗B|xB), so that we have the identity

fXu,n|YA(x|y∗A) =
Eg
[
fA
(
XP
A

)
fXu,n|XA[n] ,Xn−1

(
x|XP

A[n] ,Xn−1
)]

Eg
[
fA
(
XP
A

)] ,

we require that∣∣∣∣∣
∫
h(x)

{
Eg
[
fA
(
XP
A

)
fXu,n|XA[n] ,Xn−1

(
x|XP

A[n] ,Xn−1
)]

Eg
[
fA
(
XP
A

)] −

Eg
[
fB
(
XP
B

)
fXu,n|XB[n] ,Xn−1

(
x|XP

B[n] ,Xn−1
)]

Eg
[
fB
(
XP
B

)] }
dx

∣∣∣∣∣ < εB1.

Assumption B2. The bound supu∈1:U,n∈1:N
∣∣B+

u,n

∣∣ ≤ b in Assumption A2 applies for the

neighborhoods defined in Assumption B1. This also implies there is a finite maximum tem-

poral depth for the collection of neighborhoods, defined as

dmax = sup
(u,n)

sup
(ũ,ñ)∈Bu,n

|n− ñ|.

Assumption B3. Identically to Assumption A3, Q−1 < fYu,n|Xu,n(y∗u,n | xu,n) < Q.

Assumption B4. We use subscripts of g to denote marginal and conditional densities de-

rived from (4). Suppose there is an εB4, independent of U and N , such that the following

holds. For each u and n, a set Cu,n ⊂ (1 :U) × (0 :N) exists such that (ũ, ñ) /∈ Cu,n implies

B+
u,n ∩B+

ũ,ñ = ∅ and ∣∣gXP
B
ũ,ñ
∪Bu,n

− gXP
B
ũ,ñ

gXP
Bu,n

∣∣ < (1/2) εB4 gXP
B
ũ,ñ
∪Bu,n∣∣gXP

B
ũ,ñ
|X0:N

gXP
Bu,n
|X0:N

− gXP
B
ũ,ñ
∪Bu,n

|X0:N

∣∣
< (1/2) εB4 gXP

B
ũ,ñ
∪Bu,n

|X0:N

Further, there is a uniform bound |Cu,n| ≤ c.

Assumption B5. There is a constant K, independent of U and N , such that, for any

0 ≤ d ≤ dmax, any n ≥ K + d, and any set D ⊂ (1 :U)× (n :n− d),∣∣gXD|Xn−d−K
(xD |x

(1)
n−d−K)− gXD|Xn−d−K

(xD |x
(2)
n−d−K)

∣∣
< εB5 gXD|Xn−d−K

(xD |x
(1)
n−d−K)

holds for all x
(1)
n−d−K , x

(2)
n−d−K , and xD.
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Assumption B6. Let h be a bounded function with |h(x)| ≤ 1. Let X IR
n,S,j,i be the Monte

Carlo quantity constructed in ABF-IR, conditional on XA
n−1,S,i = xA

n−1,S,i. There is a con-

stant C0(U,N, S) such that, for all εB6 > 0 and xA
n−1,S,i, whenever the number of particles

satisfies J > C0(U,N, S)/ε3B6,

E

∣∣∣∣∣ 1

J

J∑
j=1

h(X IR
n,S,j,i)− Eg

[
h(Xn) |Xn−1 = xA

n−1,S,i
]∣∣∣∣∣< εB6.

Assumption B7. For 1 ≤ n ≤ N , the Monte Carlo random variable XA
n,i is independent of

wMu,n,i,j conditional on XA
n−1,i.

Theorem 2. Let `MC denote the Monte Carlo likelihood approximation constructed by ABF-

IR, or by ABF since this is the special case of ABF-IR with S = 1. Consider a limit

with a growing number of bootstrap replicates, I → ∞, and suppose assumptions B1, B2,

B3, B5, B6 and B7. Suppose the number of particles J exceeds the requirement for B6.

There are quantities ε(U,N) and V (U,N) with |ε| < Q2εB1 + 2Q2b
(
εB5 + (K + dmax)εB6

)
and

V < Q4bU2N2 such that

I1/2
[
`MC − `− εUN

] d−−−→
I→∞

N
[
0, V

]
.

If additionally Assumption B4 holds, we obtain an improved rate of

V < Q4bNU
{
c+

(
εB4 + 3εB5 + 4(K + dmax) εB6

)(
NU − c

)}
Proof. A full proof is provided in Sec. S4. The extra work to prove Theorem 2 beyond

the argument for Theorem 1 is to bound the error arising from the importance sampling

approximation to a draw from the adapted transition density. This bound is constructed

using Assumptions B5, B6 and B7. The remainder of the proof follows the same approach

as Theorem 1, with the adapted process replacing the unconditional latent process.

The theoretical results foreshadow our empirical observations (Sec. 4) that the relative

performance of UBF, ABF and ABF-IR is situation-dependent. Assumption A4 is a mixing

assumption for the unconditional latent process, whereas Assumption B4 replaces this with
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a mixing assumption for the adapted process conditional on the data. For a non-stationary

process, Assumption A4 may fail to hold uniformly in U whereas the adapted process may

provide stable tracking of the latent process (Sec. S2). When Assumption A4 holds, UBF

can benefit from not requiring Assumptions B5, B6 and B7. Adapted simulation is an

easier problem than filtering, but nevertheless can become difficult in high dimensions, with

the consequence that Assumption B6 could require large C0. The tradeoff between ABF

and ABF-IR depends on the effectiveness of the guide function for the problem at hand.

Intermediate resampling and guide function calculation require additional computational

resources, which will necessitate smaller values of I and J . In some situations, the improved

scaling properties of ABF-IR compared to ABF, corresponding to a lower value of C0, will

outweigh this cost.

4 Examples

We compare the performance of the three bagged filters (UBF, ABF and ABF-IR) against

each other and against alternative plug-and-play approaches. The plug-and-play property

facilitates numerical implementation for general classes of models, and all the algorithms and

models under consideration are implemented in the R packages pomp (King et al., 2016) and

spatPomp (Asfaw et al., 2021b). Ensemble Kalman filter (EnKF) methods propagate the

ensemble members by simulation from the dynamic model and then update the ensemble to

assimilate observations using a Gaussian-inspired rule (Evensen, 2009; Lei et al., 2010). The

block particle filter (BPF, Rebeschini and van Handel, 2015; Ng et al., 2002) partitions the

latent space and combines independently drawn components from each partition. BPF over-

comes COD under weak coupling assumptions (Rebeschini and van Handel, 2015). Unlike

these two methods, our bagged filters modify particles only according to the latent dynam-

ics. Thus, our methods respect conservation laws and continuity or smoothness conditions

obeyed by the dynamic model. We also compare with a guided intermediate resampling filter

(GIRF, Park and Ionides, 2019), one of many variants of the particle filter designed to scale
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to larger numbers of units than are possible with a basic particle filter.

First, in Sec. 4.1, we consider a spatiotemporal Gaussian process for which the exact

likelihood is available via a Kalman filter. We see in Fig. 1 that ABF-IR can have a consid-

erable advantages over UBF and ABF for problems with an intermediate level of coupling.

Then, in Sec. 4.2, we develop a model for measles transmission within and between cities.

The measles model is weakly coupled, leading to successful performance for all three bagged

filters. This class of metapopulation models was the primary motivation for the development

of these methodologies. In Sec. 4.3 we demonstrate an extension from likelihood evaluation

to likelihood maximization for the measles model. Additionally, in Sec. S8, we compare per-

formance on the Lorenz-96 model, a highly coupled system used to test inference methods

for geophysical applications.

4.1 Correlated Brownian motion

SupposeX(t) = ΩW (t) whereW (t) = W1:U(t) comprises U independent standard Brownian

motions, and Ωu,ũ = ρd(u,ũ) with d(u, ũ) being the circle distance,

d(u, ũ) = min
(
|u− ũ|, |u− ũ+ U |, |u− ũ− U |

)
.

Set tn = n for n = 0, 1, . . . , N with initial value X(0) = 0 and suppose measurement errors

are independent and normally distributed, Yu,n = Xu,n + ηu,n with ηu,n ∼ N (0, τ 2). The

parameter ρ determines the strength of the spatial coupling.

Fig. 1 shows how the bagged filters scale on this Gaussian model, compared to a standard

particle filter (PF), a guided intermediate resampling filter (GIRF), a block particle filter

(BPF), and an ensemble Kalman filter. For our numerical results, we use τ = 1, ρ = 0.4

and N = 50. The algorithmic parameters and run times are listed in Sec. S5, together

with a plot of the simulated data and supplementary discussion. In this case, the exact

likelihood is computable via the Kalman filter (KF). Since EnKF is based on a Gaussian

approximation, it is also exact in this case, up to a small Monte Carlo error. The GIRF

framework encompasses lookahead particle filter techniques, such as the auxiliary particle
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Figure 1: log likelihood estimates for a correlated Brownian motion model of various dimen-

sions. UBF, ABF and ABF-IR are compared with a guided intermediate resampling filter

(GIRF), standard particle filter (PF), block particle filter (BPF) and ensemble Kalman filter

(EnKF). The exact likelihood was computed via a Kalman filter (KF).
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filter (Pitt and Shepard, 1999), and intermediate resampling techniques (Del Moral et al.,

2017). GIRF methods combining these techniques were found to perform better than either

of these component techniques alone (Park and Ionides, 2020). Thus, GIRF here represents

a state-of-the-art auxiliary particle filter that targets the complete joint filter density for all

units. We use the general-purpose, plug-and-play implementation of GIRF provided by the

spatPomp R package (Asfaw et al., 2021a); for a Gaussian model, one can calculate an ideal

guide function for GIRF but that was not used. PF works well for small values of U in Fig. 1

and rapidly starts struggling as U increases. GIRF behaves comparably to PF for small U but

its performance is maintained for larger U . ABF and ABF-IR have some efficiency loss, for

small U , relative to PF and GIRF due to the localization involved in the filter weighting, but

for large U this cost is paid back by the benefit of the reduced Monte Carlo variability. UBF

has a larger efficiency loss for small U , but its favorable scaling properties lead it to overtake

ABF for larger U . BPF shows stable scaling and modest efficiency loss. This linear Gaussian

SpatPOMP model provides a simple scenario to demonstrate scaling behavior. For filters

that cannot take direct advantage of the Gaussian property of the model, we see that there

is a tradeoff between efficiency at low U and scalability. This is unavoidable, since there is

no known algorithm that is simultaneously fully efficient (up to Monte Carlo error), scalable,

and applicable to general SpatPOMP models. We now explore this tradeoff empirically on

to a more complex SpatPOMP exemplifying the nonlinear non-Gaussian models motivating

our new filtering approach.

4.2 Spatiotemporal measles epidemics

Data analysis for spatiotemporal systems featuring nonlinear, nonstationary mechanisms

and partial observability has been a longstanding open challenge for ecological and epidemi-

ological analysis (Bjørnstad and Grenfell, 2001). A compartment modeling framework for

spatiotemporal population dynamics divides the population at each spatial location into

categories, called compartments, which are modeled as homogeneous. Spatiotemporal com-

partment models can be called patch models or metapopulation models in an ecological
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context. Ensemble Kalman filter (EnKF) methods provide a state-of-the-art approach to

inference for metapopulation models (Li et al., 2020) despite concerns that the approxi-

mations inherent in the EnKF can be problematic for models that are highly nonlinear or

non-Gaussian (Ades and Van Leeuwen, 2015). Our bagged filter methodologies have theo-

retical guarantees for arbitrarily nonlinear and non-Gaussian models, while having improved

scaling properties compared to particle filters.

We consider a spatiotemporal model for disease transmission dynamics of measles within

and between multiple cities, based on the model of Park and Ionides (2020) which adds

spatial interaction to the compartment model presented by He et al. (2010). The model

compartmentalizes the population of each city into susceptible (S), exposed (E), infectious

(I), and recovered/removed (R) categories. The number of individuals in each compart-

ment city u at time t are denoted by integer-valued random variables Su(t), Eu(t), Iu(t),

and Ru(t). The population dynamics are written in terms of counting processes N••,u(t)

enumerating cumulative transitions in city u, up to time t, between compartments identified

by the subscripts. We model the U largest cities in the UK, ordered in decreasing size so

that u = 1 corresponds to London. We vary U to test methodologies on a hierarchy of

filtering challenges. Our model is described by the following system of stochastic differential

equations, for u = 1, . . . , U ,

dSu(t) = dNBS,u(t) − dNSE,u(t) − dNSD,u(t)

dEu(t) = dNSE,u(t) − dNEI,u(t) − dNED,u(t)

dIu(t) = dNEI,u(t) − dNIR,u(t) − dNID,u(t)

Here, NBS,u(t) models recruitment into the susceptible population, and N•D,u(t) models

emigration and death. The total population Pu(t) = Su(t)+Eu(t)+Iu(t)+Ru(t) is calculated

by smoothing census data and is treated as known. The number of recovered individuals

Ru(t) in city u is therefore defined implicitly. NSE,u(t) is modeled as negative binomial death

processes (Bretó et al., 2009; Bretó and Ionides, 2011) with over-dispersion parameter σSE,
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and rate given by

E
[
NSE,u(t+ dt)−NSE,u(t)

]
= β(t)Su(t)

[(Iu + ι

Pu

)α
+
∑
ũ6=u

vuũ
Pu

{(
Iũ
Pũ

)α
−
(
Iu
Pu

)α}]
dt+ o(dt), (6)

where β(t) models seasonality driven by high contact rates between children at school, de-

scribed by

β(t) =


(
1 + a(1− p)p−1

)
β̄ during school term,(

1− a
)
β̄ during vacation

with p = 0.759 being the proportion of the year taken up by the school terms, β̄ is the mean

transmission rate, and a measures the reduction of transmission during school holidays. In

(6), α is a mixing exponent modeling inhomogeneous contact rates within a city, and ι

models immigration of infected individuals which is appropriate when analyzing a subset of

cities that cannot be treated as a closed system. The number of travelers from city u to ũ is

denoted by vuũ. Here, vuũ is constructed using the gravity model of Xia et al. (2004),

vuũ = G · d
P̄ 2
· Pu · Pũ
d(u, ũ)

,

where d(u, ũ) denotes the distance between city u and city ũ, Pu is the average population

for city u across time, P̄ is the average population across cities, and d is the average distance

between a randomly chosen pair of cities. Here, we model vuũ as fixed through time and

symmetric between any two arbitrary cities, though a natural extension would allow for

temporal variation and asymmetric movement between two cities. The transition processes

NEI,u(t), NIR,u(t) and N•D,u(t) are modeled as conditional Poisson processes with per-capita

rates µEI , µIR and µ•D respectively, and we fix µ•D = 50 year−1. The birth process NBS,u(t)

is an inhomogeneous Poisson processes with rate µBS,u(t), given by interpolated census data.

To complete the model specification, we must describe the measurement process. Let

Zu,n = NIR,u(tn) − NIR,u(tn−1) be the number of removed infected individuals in the nth

reporting interval. Suppose that cases are quarantined once they are identified, so that
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reported cases comprise a fraction ρ of these removal events. The case report y∗u,n is modeled

as a realization of a discretized conditionally Gaussian random variable Yu,n, defined for y > 0

via

P
[
Yu,n=y | Zu,n=z

]
= Φ

(
y + 0.5; ρz, ρ(1− ρ)z + ψ2ρ2z2

)
−Φ
(
y − 0.5; ρz, ρ(1− ρ)z + ψ2ρ2z2

)
(7)

where Φ(·;µ, σ2) is the N (µ, σ2) cumulative distribution function, and ψ models overdis-

persion relative to the binomial distribution. For y = 0, we replace y − 0.5 by −∞ in

(7).

This model includes many features that have been proposed to be relevant for under-

standing measles transmission dynamics (He et al., 2010). Our plug-and-play methodology

permits consideration of all these features, and readily extends to the investigation of further

variations. Likelihood-based inference via plug-and-play methodology therefore provides a

framework for evaluating which features of a dynamical model are critical for explaining the

data (King et al., 2008). By contrast, Xia et al. (2004) developed a linearization for a specific

spatiotemporal measles model which is numerically convenient but not readily adaptable to

assess alternative model choices. Fig. 2 shows a simulation from our model, showing that

trajectories from this model can capture some features of the system that have been hard

to understand: how can it be that disease transmission dynamics between locations have

important levels of interaction yet are not locked in synchrony (Becker et al., 2020)? Here,

we are testing statistical tools rather than engaging directly in the scientific debate so we

test methods on the simulated data.

We first assess the scaling properties of the filters on the measles model by evaluating

the likelihood over varying numbers of units, U , for fixed parameters. The results are given

in Fig. 3, with additional information about timing, algorithmic choices, parameter values

and a plot of the data provided in Sec. S6. In Fig. 3, the log likelihood per unit per time

increases with U because city size decreases with U . Smaller cities have fewer measles

cases, resulting in a narrower and taller probability density function. Fig. 3 shows a rapid

decline in the performance of the particle filter (PF) beyond U = 4. This is a challenging
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Figure 2: Log(reported cases + 1) for (A) the measles simulation used for the likelihood

slice; (B) the corresponding UK measles data. The simulation shares the biennial pattern,

with most but not all cities locked in phase most of the time.
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Figure 3: log likelihood estimates for simulated data from the measles model of various

dimensions. UBF, ABF and ABF-IR are compared with a guided intermediate resampling

filter (GIRF), a standard particle filter (PF), a block particle filter (BPF) and an ensemble

Kalman filter (EnKF).

filtering problem, with dynamics including local fadeouts and high stochasticity in each city

stabilized at the metapopulation level by the coupling. In this example, GIRF performs

poorly suggesting that the simulated moment guide function is less than successful. We used

the general-purpose implementation of GIRF in the spatPomp package, and there might

be room for improvement by developing a model-specific guide function. ABF-IR uses the

same guide function, and this may explain why ABF-IR performs worse than ABF here,

though ABF-IR is much less sensitive than GIRF to the quality of the guide. ABF and

UBF are competing with BPF as winners on this challenge. The bagged filters and BPF

have substantial advantages compared to EnKF, amounting to more than 0.2 log likelihood

units per observation. We suspect that the limitations of EnKF on this problem are due to

the nonlinearity, non-Gaussianity, and discreteness of fadeout and reintroduction dynamics.

Thus, EnKF is relatively effective with small ensemble size but soon reaches the limit of

its capabilities (Sec. S13). By contrast, the bagged filters and block particle filter perform

substantially better than EnKF for larger ensemble size (Sec. S13). All the algorithms have
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various other tuning parameters that could influence the results. Some investigations of

alternatives are presented in Secs. S6, S7 and S12. Generalizable conclusions are hard to infer

from numerical comparisons of complex algorithms on complex models. Experimentation

with different methods, and their tuning parameters, is recommended when investigating a

new model.

Fig. 4(A) demonstrates an application of ABF to the task of computing a slice of the like-

lihood function over the coupling parameter, G, for simulated data. This slice varies G while

fixing the other parameters at the values used for the simulation. Fig. 4(B) shows a similar

plot calculated using BPF with comparable computational effort. Both ABF and BPF are

successful here, though BPF is more computationally efficient. By contrast, Fig. 4(C) shows

that EnKF has substantial bias in estimating G, as well as considerably lower likelihood.

Likelihood slices have less inferential value than likelihood profiles, but provide a computa-

tionally and conceptually simpler setting that can be insightful. Scientifically, the slices in

Fig. 4 give an upper bound on the identifiability of G from such data, since the likelihood

slice provides statistically efficient inference when all other parameters are known.

4.3 Likelihood maximization and profile likelihood

Likelihood evaluation via filtering does not by itself enable parameter estimation for POMP

models, however it provides a foundation for Bayesian and likelihood-based inference. In

particular, filtering algorithms can be modified to carry out likelihood maximization by

stochastically perturbing parameters in a sequence of filtering operations with decreasing

perturbation variance (Ionides et al., 2015). We demonstrate this for the measles model in

Fig. 5 using an iterated bagged filter algorithm which is fully described in Sec. S11.

Monte Carlo methods for computing and maximizing the log likelihood suffer from bias

and variance, both of which can be considerable for large datasets and complex models.

Appropriate inference methodology, such as Monte Carlo adjusted profile (MCAP) confidence

intervals, can accommodate substantial Monte Carlo variance so long as the bias is slowly

varying across the statistically plausible region of the parameter space (Ionides et al., 2017;
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Figure 4: Likelihood slices varying the coupling parameter, for the measles model with

U = 40 cities, computed via (A) ABF; (B) BPF; (C) EnKF. The solid perpendicular lines

construct 95% Monte Carlo adjusted confidence intervals (Ionides et al., 2017). The true

parameter value is identified by a blue dashed line.
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Figure 5: An iterated bagged filter used to maximize the likelihood, compute a profile

likelihood, and hence construct a confidence interval. The profiling is carried out over the

coupling parameter, G.

Ning et al., 2021). Fig. 5 constructs an MCAP 95% confidence interval for the coupling

parameter, G, using an iterated unadapted bagged filter to maximize over the parameters,

a, β̄, σSE, ψ, µEI and µIR. This simulation study, carried out with U = 20 and N = 208,

shows that G is identifiable via likelihood-based inference in the absence of assumptions

about these parameters.

The likelihood estimate provided by bagged filters could be viewed as a composite like-

lihood (Varin et al., 2011) rather than an approximation to the likelihood. However, in

situations where the likelihood approximation is found to be adequate, it is convenient to

take advantage of the tools of likelihood-based inference.

5 Discussion

The nested loops used in the pseudocode for the bagged filters can be computed in various

different orders to give mathematically equivalent results. There is scope for implementa-

tions to trade off memory, computation and communication by varying decisions on how the

loops defined in the pseudocode are coded, including decisions on memory over-writing and
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parallelization. This article focuses on the properties of the quantities calculated by the algo-

rithms, leaving room for future research on implementation-specific considerations, though

some supplementary discussion of memory-efficient implementation is given in Sec. S9.

Plug-and-play inference based on sequential Monte Carlo likelihood evaluation has proved

successful for investigating highly nonlinear partially observed dynamic systems of low di-

mension arising in analysis of epidemiological and ecological population dynamics (Bretó,

2018; Pons-Salort and Grassly, 2018; de Cellès et al., 2018; Marino et al., 2019). This arti-

cle develops a methodological extension motivated by the analysis of interacting biological

populations. Similar challenges related to nonlinear non-Gaussian dynamic models arise in

geophysical modeling. Relative to biological systems, geophysical applications are charac-

terized by a greater number of spatial locations, better mathematical understanding of the

underlying processes, and lower stochasticity. From this literature, the locally weighted par-

ticle filter of Poterjoy (2016); Poterjoy et al. (2019) is perhaps closest to our approach, but

the local weights of Poterjoy (2016); Poterjoy et al. (2019) are used to construct a localized

Kalman gain which is motivated by a Gaussian approximation comparable to EnKF. EnKF

arose originally via geophysical research (Evensen, 1994) and has since become used more

widely for inference on SpatPOMP models (Katzfuss et al., 2020; Li et al., 2020). How-

ever, EnKF can fail entirely even on simple POMP models if the structure is sufficiently

non-Gaussian. For example, let Xn be a one-dimensional Gaussian random walk, and let Yn

given Xn = xn be normally distributed with mean 0 and variance x2n. The linear filter rule

used by EnKF to update the estimate of Xn given Yn has mean zero for any value of Xn,

since Xn and Yn are uncorrelated. Therefore, the EnKF filter estimate of the latent process

remains essentially constant regardless of the data. Models of this form are used in finance to

describe stochastic volatility. EnKF could be applied more successfully by modifying model,

such as replacing Yn by |Yn|, but for complex models it may be unclear whether and where

such problems are arising. Our results show that there is room for improvement over EnKF

on a spatiotemporal epidemiology model, though in our example there is no clear advantage

for BF methods over BPF.
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Latent state trajectories constructed in our BF algorithms are all generated from the

model simulator, appropriately reweighted and resampled, and so they are necessarily valid

sample paths of the model. For example, spatial smoothness properties of the model through

space, or conservation properties where some function of the system remains unchanged

through time, are maintained in the BF trajectories. This is not true for the block particle

filter, due to the indepdent resampling of the blocks (see Sec. S14). EnKF preserves linear

constraints, since the filter procedure perturbs particles using a linear update rule, but cannot

respect nonlinear relationships. The practical importance of smoothness and conservation

considerations will vary with the system under investigation, but this property of BF gives

the scientific investigator one less thing to worry about.

The algorithms UBF, ABF, ABF-IR, GIRF, PF, BPF, and EnKF compared in this article

all enjoy the plug-and-play property, facilitating their implementations in general-purpose

software. The numerical results for this paper use the abf, abfir, girf, pfilter, bpfilter

and enkf functions via the open-source R package spatPomp (Asfaw et al., 2021b) that

provides a spatiotemporal extension of the R package pomp (King et al., 2016). UBF was

implemented using abf with J = 1 particles per replicate. The source code for this article

is available as supplementary material.
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weighted particle islands with application to the double bootstrap algorithm. Stochastic

Systems, 6(2):367–419.

Del Moral, P. and Murray, L. M. (2015). Sequential Monte Carlo with highly informative

observations. Journal on Uncertainty Quantification, 3:969–997.

Doucet, A., de Freitas, N., and Gordon, N. J. (2001). Sequential Monte Carlo Methods in

Practice. Springer, New York.

Doucet, A. and Johansen, A. (2011). A tutorial on particle filtering and smoothing: Fif-

teen years later. In Crisan, D. and Rozovsky, B., editors, Oxford Handbook of Nonlinear

Filtering. Oxford University Press.

Ebert, E. E. (2001). Ability of a poor man’s ensemble to predict the probability and distri-

bution of precipitation. Monthly Weather Review, 129(10):2461–2480.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model

using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:

Oceans, 99(C5):10143–10162.

33



Evensen, G. (2009). Data assimilation: The ensemble Kalman filter. Springer Science &

Business Media.

Gordon, N., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEE Proceedings–F, 140(2):107–113.

He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics:

Measles in large and small towns as a case study. Journal of the Royal Society Interface,

7:271–283.

Ionides, E. L., Breto, C., Park, J., Smith, R. A., and King, A. A. (2017). Monte Carlo profile

confidence intervals for dynamic systems. Journal of the Royal Society Interface, 14:1–10.
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