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Abstract

Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap
estimators. We consider bagging for inference from noisy or incomplete measurements
on a collection of interacting stochastic dynamic systems. Each system is called a unit,
and each unit is associated with a spatial location. A motivating example arises in epi-
demiology, where each unit is a city: the majority of transmission occurs within a city,
with smaller yet epidemiologically important interactions arising from disease trans-
mission between cities. Monte Carlo filtering methods used for inference on nonlinear
non-Gaussian systems can suffer from a curse of dimensionality as the number of units
increases. We introduce bagged filter (BF) methodology which combines an ensemble
of Monte Carlo filters, using spatiotemporally localized weights to select successful fil-
ters at each unit and time. We obtain conditions under which likelihood evaluation
using a BF algorithm can beat a curse of dimensionality, and we demonstrate appli-
cability even when these conditions do not hold. BF can out-perform an ensemble
Kalman filter on a coupled population dynamics model describing infectious disease
transmission. A block particle filter also performs well on this task, though the bagged
filter respects smoothness and conservation laws that a block particle filter can violate.
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1 Introduction

Bagging is a technique to improve numerically unstable estimators by combining an ensemble
of replicated bootstrap calculations (Breiman, 1996). In the context of nonlinear partially
observed dynamic systems, the bootstrap filter of Gordon et al. (1993) has led to a variety
of particle filter (PF) methodologies (Doucet et al., 2001; Doucet and Johansen, 2011);
Here, we consider algorithms combining an ensemble of replicated particle filters, which we
term bagged filter algorithms. Standard PF methods suffer from a curse of dimensionality
(COD), defined as an exponential increase in computational requirement as the problem size
grows, limiting its applicability to large systems (Bengtsson et al., 2008; Snyder et al., 2015;
Rebeschini and van Handel, 2015). The COD presents empirically as numerical instability of
the Monte Carlo algorithm for affordable numbers of particles. Much previous research has
investigated scalable approaches to filtering and inference with applications to spatiotemporal
systems. Our bagged filters are in the class of plug-and-play algorithms, meaning that they
require as input a simulator for the latent dynamic process but not an evaluator of transition
probabilities (Bret6 et al., 2009; He et al., 2010). Similar properties to plug-and-play are
likelihood-free (Brehmer et al., 2020) and equation-free (Kevrekidis and Samaey, 2009). The
ensemble Kalman filter (Evensen, 2009; Lei et al., 2010; Katzfuss et al., 2020) is a widely used
plug-and-play method which uses simulations to construct a nonlinear filter that is exact for
a linear Gaussian model. Another plug-and-play approach to combat the COD is the block
particle filter (Rebeschini and van Handel, 2015; Ng et al., 2002). Both ensemble Kalman
filter and block particle filter methods construct trajectories that can violate smoothness
and conservation properties of the dynamic model. By contrast, our bagged filters are built
using valid trajectories of the dynamic model, making localization approximations only when
comparing these trajectories to data.

The replicated stochastic trajectories in a bagged filter form an ensemble of representa-
tions of the dynamic system. Unlike the particles in a particle filter or ensemble Kalman
filter, the bagged replicates are independent in a Monte Carlo sense. Bagged filters therefore

bear some resemblance to poor man’s ensemble forecasting methodology in which a collec-



tion of independently constructed forecasts is generated using different models and methods
(Ebert, 2001). Poor man’s ensembles have sometimes been found to have greater forecasting
skill than any one forecast (Leutbecher and Palmer, 2008; Palmer, 2002; Chandler, 2013).
One explanation for this phenomenon is that even a hypothetically perfect model cannot
provide effective filtering using methodology afflicted by the COD. We show that bagged
filter methodology can relieve this limitation. From this perspective, the independence of
the forecasts in the poor man’s ensemble, rather than the diversity of model structures, may
be the key to its success.

We first consider a simple bagged filter where each replicate is an independent simulation
of the latent process model. We call this the unadapted bagged filter (UBF) since the
replicates in the ensemble depend on the model but not on the data. UBF is described in
Sec. 2, with a theoretical analysis presented in Sec. 2.1. Each UBF replicate corresponds to a
basic PF algorithm with a single particle. We show that UBF formally beats the COD under
a weak mixing assumption, though UBF can have poor numerical behavior if a very large
number of replicates are needed to reach this happy asymptotic limit. Subsequent empirical
results show that UBF may nevertheless be a useful algorithm in some situations. In Sec. 3,
we generalize UBF to construct an adapted bagged filter (ABF) where each replicate tracks
the data. The price of adaptation is that ABF no longer avoids the COD, a limitation
that can be controlled in certain situations by supplementing ABF with a technique called
intermediate resampling, to obtain the ABF-IR algorithm. Theoretical results for ABF and
ABF-IR algorithms are developed in Sec. 3.1. The algorithms are demonstrated in action

and compared with alternative approaches in Sec. 4.

2 The unadapted bagged filter (UBF)

Suppose the collection of units is indexed by the set {1,2,..., U}, which is written as 1:U.
The latent Markov process is denoted by {X,,n € 0: N}, with X,, = X;.¢y,, taking values
in a product space XV. This discrete time process may arise from a continuous time Markov

process {X (t),tg < t < ty} observed at times ¢;.y, and in this case we set X, = X(t,).
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The initial value Xy may be stochastic or deterministic. Observations are made on each
unit, modeled by an observable process {Y,, = Yi.p,,n € 1: N} which takes values in a
product space YY. Observations are modeled as being conditionally independent given the
latent process. The conditional independence of measurements applies over both time and
the unit structure, so the collection {Yu,n, uel:Unel:N } is conditionally independent
given {Xum,u €cl:Unel:N } The unit structure for the observation process is not
necessary for all that follows (see Sec. S1). We suppose the existence of a joint density
[xon Yy of Xivon and Yi.p1.x with respect to some appropriate measure, following a
notational convention that the subscripts of f denote the joint or conditional density under
consideration. The data are y;,, for unit u at time n. This model is a special case of a
partially observed Markov process (POMP, Breté et al., 2009), also known as a state space
model or hidden Markov model. The additional unit structure, not generally required for
a POMP, is appropriate for modeling interactions between units characterized by a spatial
location, and so we call the model a SpatPOMP. In the following, we use a lexicographical
ordering on the set of observations; Specifically, we define the set of observations preceding

unit v at time n as

Ay ={(@,n):1<n<nor(R=nand @ <u)}. (1)

)

The ordering of the spatial locations in (1) might seem artificial, and indeed densities such as
JXumlX A will frequently be hard to compute or simulate from. The bagged filter algorithms
we study do not evaluate or simulate such transition densities but only compute the mea-
surement model on neighborhoods, unlike the filter of Beskos et al. (2017) built on a similar
factorization. If sufficiently distant units are approximately independent, we say the system
is weakly coupled. In this case, we suppose there is a neighborhood B,, C A,, such that the
latent process on A, \ By, is approximately conditionally independent of X, given data
on By,.

Our primary interest is estimation of the log likelihood for the data given the model,
¢ =1og fy,.(yi.y), which is of fundamental importance in both Bayesian and non-Bayesian

statistical inference. A general filtering problem is to evaluate E[h(X,,) | Ya,, = v, ] for
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some function h : X — R. Taking h(x) = fy, . |x.. (y,l*m | :v) gives a filtering representation of
the likelihood evaluation problem. Further discussion on bagged filtering for other filtering
problems is given in Sec. S10. For likelihood-based inference, maximization plays an impor-
tant role in point estimation, confidence interval construction, hypothesis testing and model
selection. An extension of bagged filtering to likelihood maximization is demonstrated in
Sec. 4.3 following the approach described in Sec. S11.

Pseudocode for a UBF algorithm for likelihood evaluation is given below. The prediction
weight wi i gives an appropriate weighting for replicate ¢ for predicting y;, ,, based on the

most relevant data, yp . Conditional log likelihoods are estimated using an approximation

gu{n} = log qu,nIYAu,n (y'z,n | yzu’n) = log (/ qu,n‘Xu,n (y:;,n | l‘) qu,n‘YAu7n (.CE | y:zu’n) dm)

~ log (/ qu,n‘Xu,n (yz,n | x) qu,n‘YBu’n ('I | y*Bu’n) dl’) :

The choice of B, ,, is determined empirically, with a bias-variance trade-off used to compare
small neighborhoods such as B, , = {(u,n — 1), (u —1,n)} or B, = {(u,n —1), (u,n —2)}
against larger neighborhoods. The plug-and-play property is evident because UBF requires
as input a simulator for the latent coupled dynamic process but not an evaluator of transition

probabilities.



Algorithm 1: Unadapted bagged filter (UBF).
input: simulator for fx x, ,(Tn|2Zn-1) and fx,(x0); evaluator for

qu,n\Xu,n(yum | T ); data, y}.y; number of replicates, Z; neighborhood
structure, B, ,

1 for¢in 1:7Z do

2 initialize simulation, X, ~ fx,(-)

3 for nin 1: N do

4 simulate, X, ; ~ an|Xn_1(- |Xn_171~)

5 measurement weights, wfm = [Yun|Xum (y;’;n | Xum) for win 1:U
6 prediction weights, w;,,,; = [[44ep, , Win for uwin 1:U

7 end

8 end

9 £, =log (211:1 wﬂ{n,iwim) — log <Zi1:1 wim) foruin 1:U, nin 1: N
output: log likelihood estimate, (M = 32N S~V o

u=1 "~un

2.1 UBEF theory

A dataset yi., with U units is modeled via a joint density fx, .v,y- We consider non-
asymptotic bounds that apply for all values of U and N. To impose a requirement that
distant regions of space-time behave similarly and have only weak dependence, we assert
the following conditions which define constants €,,, €,, and @) used to bound the bias and

variance in Theorem 1. Stronger bounds are obtained when the conditions hold for small

€a1> €aq and Q.

Assumption Al. There is an €y, > 0, independent of U and N, and a collection of neigh-
borhoods { By, C Ayn,u € 1:U,n € 1: N} such that, for all w and n, any bounded real-valued



function |h(x)| <1, and any value of p; ,
‘ / h(xu,n)qu,nlYBu,n,XB;im (Tup | y*Bu,na ngm) dTyp

_ / Mun) [X Vi, (Tun | YB,,.) ATun| < €as-

Assumption A2. For the collection of neighborhoods in Assumption A1, with B}, = B,,, U
(u,n), there is a constant b, depending on €y, but not on U and N, such that
sup | Bl,| <b.
uel:U,nel:N
Assumption A3. There is a constant @), independent of U and N, such that, for all u and
n?

Q_l < qu,n|Xu,n (y;,n | xu7n) < Q

Assumption A4. There exists €, > 0, independent of U and N, such that the following
holds. For each u,n, a set C,,, C (1:U) x (0:N) exists such that (a,n) ¢ Cy, implies
B, N B, =0 and

|fXB;:ﬁ‘XB$n a fXB;fﬁ‘ < fXB;fﬁ

Further, there is a uniform bound |C,,| < c.

The two mixing conditions in Assumptions Al and A4 are subtly different. Assump-
tion A1l describes a conditional mixing property dependent on the data, whereas A4 asserts
a form of unconditional mixing. Although both capture a similar concept of weak coupling,
conditional and unconditional mixing properties do not readily imply one another. Assump-
tion A3 is a compactness condition of a type that has proved useful in the theory of particle
filters despite the rarity of its holding exactly. Theorem 1 shows that these conditions let
UBF compute the likelihood with a Monte Carlo variance of order UNZ~! with a bias of
order U Ne.



Theorem 1. Let ("¢ denote the Monte Carlo likelihood approximation constructed by UBF.
Consider a limit with a growing number of bootstrap replicates, T — oo, and suppose assump-
tions A1, A2 and A3. There are quantities ¢(U, N) and V (U, N), with bounds |e| < ey, Q>
and V < Q* U2N?, such that

1/2[pmc _ oy d
TE[eM — L= eUN] —— N[0, V], (2)

where IL> denotes convergence in distribution and N[u,X] is the normal distribution with
— 00
mean p and variance X. If additionally Assumption A4 holds, we obtain an improved vari-

ance bound

V<QYUN(c+ ey (UN —0)). (3)

Proof. A complete proof is given in Sec. S3. Briefly, the assumptions imply a multivariate
central limit theorem for {£}}7,(u,n) € 1:Ux1:N} as Z — oo. The limiting variances
and covariances are uniformly bounded, using Assumptions A2 and A3. Assumption Al
provides a uniform bound on the discrepancy between /,,, and mean of the Gaussian limit.
This is enough to derive (2). Assumption A4 gives a stronger bound on covariances between

sufficiently distant units, leading to (3). O

Theorem 1 does not guarantee uniformity over U and N of the rate of convergence as Z —
oo. However, it does guarantee that the polynomial bounds in (2) and (3) hold for sufficiently
large Z. The COD is characterized by exponential bounds, and so Theorem 1 shows a specific
sense in which UBF can avoid COD. Uniformity of the central limit convergence in Theorem 1
may be expected to hold via a Berry-Esseen theorem, but extension of existing Berry-Esseen
results for dependent processes (Bentkus et al., 1997; Jirak, 2016) is beyond the scope of this
article.

The approximation error for UBF can be divided into two sources: a localization bias
due to conditioning on a finite neighborhood, and Monte Carlo error. The localization bias
does not disappear in the limit as Monte Carlo effort increases. It does become small as

the conditioning neighborhood increases, but the Monte Carlo effort grows exponentially in



the size of this neighborhood. Although the filtering inference is carried out using localiza-
tion, the simulation of the process is carried out globally which avoids the introduction of
additional boundary effects and ensures that the simulations comply with any constraints

satisfied by the model for the latent process.

3 Adaptation and intermediate resampling

Theorem 1 shows that UBF can beat COD. However, UBF can perform poorly on long time
series unless weak temporal dependence allows simulated sample paths to remain relevant
over the course of a long time series. For example, we will find that UBF performs well
on an epidemiological model (Sec. 5) but less well on a geophysical model (Sec. S8). It is
sometimes necessary to select simulations consistent with the data, much as standard PF
algorithms do. We look for approaches that build on the basic insight of UBF while having
superior practical performance.

Whereas the full global filtering problem of drawing from fx,y,, may be intractable
via importance sampling methods, a version of this problem localized in space and time

may nevertheless be feasible. The conditional density, fx, v, x is called the adapted

ne1
density, and simulating from this density is called adapted simulation. For models where
X ,,_1 is highly informative about X,,, importance sampling for adapted simulation may be
much easier than the full filter calculation. The following adapted bagged filter (ABF) is
constructed under a hypothesis that the adapted simulation problem is tractable, and it is
applicable when the number of units is prohibitive for Monte Carlo sampling from the full
filter distribution but not for sampling from the adapted distribution. In ABF, the adapted
simulations are reweighted in a neighborhood of each unit and time point to construct a
local approximation to the filtering problem which leads to an estimate of the likelihood.

The pseudocode for ABF, below, reduces to UBF when using a single particle per repicate,

J =1



Algorithm 2: Adapted bagged filter (ABF)
input: simulator for fx x, ,(Tn|2Zn-1) and fx,(x0); evaluator for

Sl Xum Wun | Tun); data, yi.y; number of particles per replicate, .J; number
of replicates, Z; neighborhood structure, B, ,,

1 for i in 1:7 do

2 initialize adapted simulation, X g, ~ fx,(-)

3 for nin 1: N do

4 proposals: XSM- ~ XX 1vn (azn | Xﬁ_u) for jin1:J

5 wq]yni,j:qun|Xun(nyn|X5nij) foruin 1:U, jin 1:J

6 adapted resampling weights, w}; ; = Hg 1 wun” foruin 1:U, jin 1:J
-1

7 X, er(l) with ]P’[?“(z) = a] = w$i7a< et wrﬁi’k>

8 w57n7i7j:H[ Z H ﬁm-k] H wé\/’[n’i’j foruin 1:U, jin 1:J

=1 (@,7)EBu,n (@,n)EBun
9 end
10 end

D it 2ot Wi W,

1 1 uni,' u,mi,' . .

1 L, = log - ] < 2| forwin 1:U, nin 1: N
Zz IZ] 1 un,z,]

output: log likelihood estimate, (M = 32 S™V o

u=1"~un

ABF remedies a weakness of UBF by making each boostrap filter adapted to the data.
However, this benefit carries a cost, since adapted simulation is not immune from the curse of
dimensionality. Therefore, we also consider an algorithm called ABF-IR which uses an inter-
mediate resampling technique to carry out the adapted simulation. Intermediate resampling
involves assessing the satisfactory progress of particles toward the subsequent observation
at a collection of times between observations. This is well defined when the latent process
has a continuous time representation, {X(¢)}, with observation times t;.y. We write S

intermediate resampling times as
tho1 = tn,O < tn,l < K th =1,
Carrying out an intermediate resampling procedure can have favorable scaling properties
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when S is proportional to U (Park and Ionides, 2020). In the case S = 1, ABF-IR re-
duces to ABF. Intermediate resampling was developed in the context of sequential Monte
Carlo (Del Moral and Murray, 2015; Park and Ionides, 2020); however, the same theory
and methodology can be applied to the simpler and easier problem of adapted simulation.
ABF-IR employs a guide function to gauge the compatibility of each particle with future
data. This is a generalization of the popular auxiliary particle filter (Pitt and Shepard,
1999). Only an ideal guide function fully addresses COD (Park and Ionides, 2020) and on
nontrivial problems this is not available. However, practical guide functions can nevertheless
improve performance.

The implementation in the ABF-IR pseudocode constructs the guide g, s, ; using a sim-
ulated moment method proposed by Park and Tonides (2020). The quantities X< . Vi,

n7l’] ’

meas VPTOC )

Py iy VoS, o Ve and 0y ;5 constructed in ABF-IR are used only to construct gy ;-

Heuristically, we use guide simulations to approximate the variance of the increment in
each particle between time points, and we augment the measurement variance to account
for both dynamic variability and measurement error. The guide function affects numerical
performance of the algorithm but not its correctness: it enables a computationally conve-
nient approximation to improve performance on the intractable target problem. Our guide
function supposes the availability of a deterministic function approximating evolution of the

mean of the latent process, written as
p(x,s,t) ~E[X(t)]| X(s) =x].

Further, the guide requires that the measurement model has known conditional mean and

variance as a function of the model parameter vector 6, written as

hu,n(xu,n> = ]E[Yu,n ’ Xu,n = xu,n]

—

Vu,n(mzmw 9) = Var (Yu,n ‘ Xu,n = Tun 9)

Also required for ABF-IR is an inverse function ?un (V, T, 0) such that %n (V, Tuns 9) =¢
implies

‘_;u,n (xu,ny (b) =V
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Algorithm 3: ABF with intermediate resampling (ABF-IR)

10

11

12

13

14

15

16

17

18

19

20

21

22

input: same as Algorithm 2 (ABF) plus: intermediate timesteps, S; measurement

. . — - . .
variance functions, Vun and Vy,; approximate mean functions, p and Non

1 foriin 1:7 do

-1
) for jin 1:J

foruin 1:U, jin 1:J

initialize adapted simulation, X fil- ~ fx,()
for nin 1: N do
guide simulations: ij Ixn X0 (@0 | Xﬁflﬂ-) for jin 1:J
Vami = Var{hy, (X&), jin1:J}
gnOz]_l a’nd XﬂO’L]_X’Vé—Li fOI"jin 1J
for sin 1:5 do
XL,S,Z,] an,s\Xn,s—l( |an 11]) for Jin 1:J
ums’i’j = u(X;PSij,tms,tn) for jin 1:J
i =v w0, iy i) foruwin 1:U, jin 1:J
Vupzogz = Vunz (tn - tn,s)/(tn - tn,O) for win 1:U
Oun,sij =V (Vum,f?” Vi s Muns”) foruin1:U, jin 1:J
gn»svi’j = Hu 1 qu n‘Xu n (yun | :uun 18,8, ;euns,l,j) for j ln 1 : J
guide weights: wgs’i’j = gn7s7i7j/gn,s_1’i’j for jin1:J
resampling: P[r(i,j) = a] = w,(.isma( ) wfism
X}fbs,w XLPSM( .5 and 975{,5 15 = In.sir(i) for jin 1:J
end
A
Xn,i XS?S% 1
qynw quanun(yun| un”) foruin 1:U, jin 1:J
P _ M
wu,n,i,j - H |:j Z H wﬂ,ﬁ,i,a] H unzy
n=1 a=1 @:(a,n)EBu,n @:(,n)EBu,n
end
end
U N z T M P
output: EMC _ Zzlog (Zz 12] 1 unz,J u,n,x,g)
u=1 n=1 Zz 123 1 un,z,]
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This guide function is applicable to spatiotemporal versions of a broad range of population
and compartment models used to model dynamic systems in ecology, epidemiology, and
elsewhere. Other guide functions could be developed and inserted into the ABF-IR algorithm,
including other constructions considered by Park and Ionides (2020).

One might wonder why it is appropriate to keep many particle representations at inter-
mediate timesteps while resampling down to a single representative at each observation time.
An answer is that adaptive simulation can fail to track the observation sequence when one

resamples down to a single particle too often (Sec. S2).

3.1 ABF-IR theory

We start by considering a deterministic limit for infinite Monte Carlo effort and explaining
why the ABF and ABF-IR algorithms approximately target the likelihood function, subject
to suitable mixing behavior. Subsequently, we consider the scaling properties as Monte Carlo
effort increases. We adopt a convention that densities involving Y,,,, are implicitly evaluated
at the data, Yums and densities involving X,,,, are implicitly evaluated at z,, unless otherwise
specified. We write A}, = A,, U (u,n), matching the defintion By, = By, U (u,n). The
essential ingredient in all the algorithms is a localization of the likelihood, which may be

factorized sequentially as

N U N U fy
AL,
fY1:U,1;N = H H qu,n\YAu,n - H H f ’
n=1u=1 n=1u=1 YAu,n

In particular, the approximations assume that the full history A,,, can be well approximated

by a neighborhood B,, C A,,. UBF approximates JYunlYa,, DY

Moo S P 1%y Py dogy,

u,mn

fY |Y = — = .
v B fYBun f fYBu,n |XBu,n fXBu,n deuv”

For B C 1:U x 1: N, define B = BN (1:U x {m}). ABF and ABF-IR build on the
following identity,

n
fYAu,nZ/fX()[H fxm\xm,l,ymfYA[m]\Xm,1 dTo.p,
m:l u,mn

13



where fx,.x,. .y, is called the adapted transition density. The adapted process (i.e., a

stochastic process following the adapted transition density) can be interpreted as a one-step

greedy procedure using the data to guide the latent process. Let Ixy N XP (o, x1 ) be
NN

the joint density of the adapted process and the proposal process,

gX0:N7XJ1P:N(wO:N7mf:N) = J[xo(®o) x
N
H anIXn—hYn (wn | wn—l) y:L) anIXn—l (CL'S | wn_l)' (4)
n=1

Using the convention that an empty density fy, evaluates to 1, we define

N
B = H fYB[m]‘mel (y*B[m] |Xm—1)'
m=1

Denoting E, for expectation for (X .y, X1 ) having density Ixon.xT s We have fy, =
Eq[y AM] and thus

Eq [VAIJ

Ey [’VAW} .

Estimating this ratio by Monte Carlo sampling from ¢ is problematic due to the growing

size of A,,. Thus, ABF and ABF-IR make a localized approximation,

qu,n |YA u,n =

E, hAJr ] N Eq [VB;J

un

Eo[va,] Eolvs,]

The conditional log likelihood estimate £, in ABF and ABF-IR come from replacing the

(5)

expectations on the right hand side of (5) with averages over Monte Carlo replicates of
simulations from the adapted process. To see that we expect the approximation in (5) to

hold when dependence decays across spatiotemporal distance, we can write

TAwn = By, VBS,

IYA;L-,” e ’quj—,n ’yBﬁ’n I

where B, is the complement of B, in A,,. Under our assumptions, the term corresponding

to vpe, approximately cancels in the numerator and denominator of the right hand side of
(5).
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The localized likelihood estimate in ABF and ABF-IR has similar structure to UBF.
However, ABF and ABF-IR additionally require the capability to satisfactorily implement
adapted simulation. Adapted simulation is a local calculation, making it an easier task
than the global operation of filtering. Nevertheless, adapted simulation via importance
sampling (as carried out by ABF) is vulnerable to COD. For a continuous time model, the
use of intermediate resampling in ABF-IR is motivated by a result that this can reduce
the COD, or avoid it entirely for an ideal guide function (Park and Ionides, 2020). Without
intermediate resampling even an ideal proposal distribution does not avoid COD for a particle
filter (Snyder et al., 2015). Assumptions B1-B4 below are analogous to A1-A4 and are non-
asymptotic assumptions involving ez, > 0, €, > 0 and @) > 1 which are required to hold
uniformly over space and [time. Assumptions B5-B7 control the Monte Carlo error arising
from adapted simulation. Bb5 is a stability property which asserts that the effect of the
latent process on the future of the adapted process decays over time. Assumption B6 is a
non-asymptotic bound on Monte Carlo error for a single step of adapted simulation. The
scaling of the constant Cy with U, N and S in Assumption B6 has been studied by Park and
Ionides (2020), where it was established that setting S = U can lead to Cy being polynomial
in U and N when using an ideal guide function. This property is critical to enable ABF-
IR to avoid COD. Since ABF has S = 1 it suffers from COD, albeit at an empirically
slower rate than PF. The egg error rate in Assumption B6 follows from balancing the two
sources of error defined in the statement of Theorem 2 of Park and Ionides (2020) (details
are provided in Sec. S15). Assumption B7 can be guaranteed by the construction of the
algorithm, if independently generated Monte Carlo random variables are used for building
the guide function and the one-step prediction particles. The asymptotic limit in Theorem 2

arises as the number of replicates increases.

Assumption B1l. There is an eg; > 0, independent of U and N, and a collection of
neighborhoods {By, C Aun,u € 1:Un € 1:N} such that the following holds for all u
and n, and any bounded real-valued function |h(z)| < 1. Setting A = Ayn, B = Bun,

15



fa(xa) = fraxaWilza), and fe(zp) = fyyx, (Yilrs), so that we have the identity
Eg[fA(Xf\))qu,n‘XA[n],Xn—l (w|X§[vz]aXn—1)]
Eg[fA(Xfﬂ ’

we require that
/h(x) {Eg[fA (X)Xt g X (2] X g X )] B
Eg[fA(Xf)}
By f5(XE5) £x0 015 1y X (21X g, X )] }dx
Eg[fB (Xg)}

Assumption B2. The bound sup,cq.ype1.n |B;rn| < b in Assumption A2 applies for the

< €gy-

netghborhoods defined in Assumption B1. This also implies there is a finite maximum tem-

poral depth for the collection of neighborhoods, defined as

dmax = SUp  sup |n — 7.
(u,n) (4,mn)EBu,n

Assumption B3. Identically to Assumption A3, Q™" < fv, .| Xun Wi | Tun) < Q.

Assumption B4. We use subscripts of g to denote marginal and conditional densities de-
rived from (4). Suppose there is an eg,, independent of U and N, such that the following
holds. For each u and n, a set C,,, C (1:U) x (0: N) exists such that (u,n) ¢ Cy, implies
B, N B, =0 and

P
’gXB~ UB

~ . - ~UB
u,n un u,n u,n a,n u,m

|gX§_ . |X0:N ngun|X0:N B gxg_ _UBuanO'N‘
a,n > a,n 5

Further, there is a uniform bound |C.,| < c.
Assumption B5. There is a constant K, independent of U and N, such that, for any
0<d<dna, anyn > K +d, and any set D C (1:U) x (n:n —d),
1 2
QXD|Xn_d_K($D | mng)de) - gXD\Xn_d_K(ID | mgzd#{”
1
< €gs QXD|Xn,d,K(xD | w7(1—)d—K>

holds for all azfll_)d_K, :cff_)d_K, and .
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Assumption B6. Let h be a bounded function with |h(z)| < 1. Let X . be the Monte

n,S,7,1
Carlo quantity constructed in ABF-IR, conditional on Xn—l,S,i = :I:ﬁfl’syi. There is a con-
stant Co(U, N, S) such that, for all egg > 0 and x_, g;, whenever the number of particles

satisfies J > Co(U, N, S) /e,

J
Z X}”LRSJZ - 9[ (X)) [ X1 :"Bﬁ—l,s,i} < €gg-

K‘ |

Assumption B7. For1 <n < N, the Monte Carlo random variable Xf’i 1s independent of

M

A
Wy iy conditional on X7 4 ;.

Theorem 2. Let £ denote the Monte Carlo likelihood approximation constructed by ABF-
IR, or by ABF since this is the special case of ABF-IR with S = 1. Consider a limit
with a growing number of bootstrap replicates, T — oo, and suppose assumptions B1, B2,
B3, B5, B6 and B7. Suppose the number of particles J exceeds the requirement for B6.
There are quantities e(U, N) and V (U, N) with |e] < Q%eg; +2Q% (eps + (K + dmax)€ns) and
V < QYU%N? such that

TV2[(Me —{ — UN] —2= N[0, V].
IT—o0
If additionally Assumption B4 holds, we obtain an improved rate of
V < Q4bNU{c + (€B4 + 3eps + 4(K + dimax) 636) (NU — c)}

Proof. A full proof is provided in Sec. S4. The extra work to prove Theorem 2 beyond
the argument for Theorem 1 is to bound the error arising from the importance sampling
approximation to a draw from the adapted transition density. This bound is constructed
using Assumptions B5, B6 and B7. The remainder of the proof follows the same approach

as Theorem 1, with the adapted process replacing the unconditional latent process. O

The theoretical results foreshadow our empirical observations (Sec. 4) that the relative
performance of UBF, ABF and ABF-IR is situation-dependent. Assumption A4 is a mixing

assumption for the unconditional latent process, whereas Assumption B4 replaces this with
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a mixing assumption for the adapted process conditional on the data. For a non-stationary
process, Assumption A4 may fail to hold uniformly in U whereas the adapted process may
provide stable tracking of the latent process (Sec. S2). When Assumption A4 holds, UBF
can benefit from not requiring Assumptions B5, B6 and B7. Adapted simulation is an
easier problem than filtering, but nevertheless can become difficult in high dimensions, with
the consequence that Assumption B6 could require large Cy. The tradeoff between ABF
and ABF-IR depends on the effectiveness of the guide function for the problem at hand.
Intermediate resampling and guide function calculation require additional computational
resources, which will necessitate smaller values of Z and J. In some situations, the improved
scaling properties of ABF-IR compared to ABF, corresponding to a lower value of Cy, will

outweigh this cost.

4 Examples

We compare the performance of the three bagged filters (UBF, ABF and ABF-IR) against
each other and against alternative plug-and-play approaches. The plug-and-play property
facilitates numerical implementation for general classes of models, and all the algorithms and
models under consideration are implemented in the R packages pomp (King et al., 2016) and
spatPomp (Asfaw et al., 2021b). Ensemble Kalman filter (EnKF) methods propagate the
ensemble members by simulation from the dynamic model and then update the ensemble to
assimilate observations using a Gaussian-inspired rule (Evensen, 2009; Lei et al., 2010). The
block particle filter (BPF, Rebeschini and van Handel, 2015; Ng et al., 2002) partitions the
latent space and combines independently drawn components from each partition. BPF over-
comes COD under weak coupling assumptions (Rebeschini and van Handel, 2015). Unlike
these two methods, our bagged filters modify particles only according to the latent dynam-
ics. Thus, our methods respect conservation laws and continuity or smoothness conditions
obeyed by the dynamic model. We also compare with a guided intermediate resampling filter

(GIRF, Park and lonides, 2019), one of many variants of the particle filter designed to scale
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to larger numbers of units than are possible with a basic particle filter.

First, in Sec. 4.1, we consider a spatiotemporal Gaussian process for which the exact
likelihood is available via a Kalman filter. We see in Fig. 1 that ABF-IR can have a consid-
erable advantages over UBF and ABF for problems with an intermediate level of coupling.
Then, in Sec. 4.2, we develop a model for measles transmission within and between cities.
The measles model is weakly coupled, leading to successful performance for all three bagged
filters. This class of metapopulation models was the primary motivation for the development
of these methodologies. In Sec. 4.3 we demonstrate an extension from likelihood evaluation
to likelihood maximization for the measles model. Additionally, in Sec. S8, we compare per-
formance on the Lorenz-96 model, a highly coupled system used to test inference methods

for geophysical applications.

4.1 Correlated Brownian motion

Suppose X (t) = QW (t) where W (t) = Wy, (t) comprises U independent standard Brownian
u7

motions, and €, 5 = pX®“® with d(u, @) being the circle distance,
d(u, @) = min (|u — @|, |u — @ + U|, |u — @ — U]).

Set t, =n forn =0,1,..., N with initial value X (0) = 0 and suppose measurement errors
are independent and normally distributed, Y., = Xun + Nupn With 0y, ~ N (0,7%). The
parameter p determines the strength of the spatial coupling.

Fig. 1 shows how the bagged filters scale on this Gaussian model, compared to a standard
particle filter (PF), a guided intermediate resampling filter (GIRF), a block particle filter
(BPF), and an ensemble Kalman filter. For our numerical results, we use 7 = 1, p = 0.4
and N = 50. The algorithmic parameters and run times are listed in Sec. S5, together
with a plot of the simulated data and supplementary discussion. In this case, the exact
likelihood is computable via the Kalman filter (KF). Since EnKF is based on a Gaussian
approximation, it is also exact in this case, up to a small Monte Carlo error. The GIRF

framework encompasses lookahead particle filter techniques, such as the auxiliary particle
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Figure 1: log likelihood estimates for a correlated Brownian motion model of various dimen-
sions. UBF, ABF and ABF-IR are compared with a guided intermediate resampling filter
(GIRF), standard particle filter (PF), block particle filter (BPF) and ensemble Kalman filter
(EnKF). The exact likelihood was computed via a Kalman filter (KF).
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filter (Pitt and Shepard, 1999), and intermediate resampling techniques (Del Moral et al.,
2017). GIRF methods combining these techniques were found to perform better than either
of these component techniques alone (Park and Ionides, 2020). Thus, GIRF here represents
a state-of-the-art auxiliary particle filter that targets the complete joint filter density for all
units. We use the general-purpose, plug-and-play implementation of GIRF provided by the
spatPomp R package (Asfaw et al., 2021a); for a Gaussian model, one can calculate an ideal
guide function for GIRF but that was not used. PF works well for small values of U in Fig. 1
and rapidly starts struggling as U increases. GIRF behaves comparably to PF for small U but
its performance is maintained for larger U. ABF and ABF-IR have some efficiency loss, for
small U, relative to PF and GIRF due to the localization involved in the filter weighting, but
for large U this cost is paid back by the benefit of the reduced Monte Carlo variability. UBF
has a larger efficiency loss for small U, but its favorable scaling properties lead it to overtake
ABF for larger U. BPF shows stable scaling and modest efficiency loss. This linear Gaussian
SpatPOMP model provides a simple scenario to demonstrate scaling behavior. For filters
that cannot take direct advantage of the Gaussian property of the model, we see that there
is a tradeoff between efficiency at low U and scalability. This is unavoidable, since there is
no known algorithm that is simultaneously fully efficient (up to Monte Carlo error), scalable,
and applicable to general SpatPOMP models. We now explore this tradeoff empirically on
to a more complex SpatPOMP exemplifying the nonlinear non-Gaussian models motivating

our new filtering approach.

4.2 Spatiotemporal measles epidemics

Data analysis for spatiotemporal systems featuring nonlinear, nonstationary mechanisms
and partial observability has been a longstanding open challenge for ecological and epidemi-
ological analysis (Bjornstad and Grenfell, 2001). A compartment modeling framework for
spatiotemporal population dynamics divides the population at each spatial location into
categories, called compartments, which are modeled as homogeneous. Spatiotemporal com-

partment models can be called patch models or metapopulation models in an ecological
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context. Ensemble Kalman filter (EnKF) methods provide a state-of-the-art approach to
inference for metapopulation models (Li et al., 2020) despite concerns that the approxi-
mations inherent in the EnKF can be problematic for models that are highly nonlinear or
non-Gaussian (Ades and Van Leeuwen, 2015). Our bagged filter methodologies have theo-
retical guarantees for arbitrarily nonlinear and non-Gaussian models, while having improved
scaling properties compared to particle filters.

We consider a spatiotemporal model for disease transmission dynamics of measles within
and between multiple cities, based on the model of Park and Ionides (2020) which adds
spatial interaction to the compartment model presented by He et al. (2010). The model
compartmentalizes the population of each city into susceptible (.S), exposed (E), infectious
(I), and recovered/removed (R) categories. The number of individuals in each compart-
ment city u at time ¢ are denoted by integer-valued random variables S,(t), E,(t), 1,(t),
and R,(t). The population dynamics are written in terms of counting processes Neo (%)
enumerating cumulative transitions in city u, up to time ¢, between compartments identified
by the subscripts. We model the U largest cities in the UK, ordered in decreasing size so
that « = 1 corresponds to London. We vary U to test methodologies on a hierarchy of
filtering challenges. Our model is described by the following system of stochastic differential

equations, for u =1,...,U,

dSu(t) = dNpsu(t) — dNgsgu.(t) — dNgp.(t)
dE,(t) = dNsg.(t) — dNgr.(t) — dNgpu(t)
dl,(t) = dNgr.(t) — dNigu(t) — dNipu(t)

Here, Npg,(t) models recruitment into the susceptible population, and Nep,(t) models
emigration and death. The total population P,(t) = S, (t)+ E,(t)+1,.(t)+ R.(t) is calculated
by smoothing census data and is treated as known. The number of recovered individuals
R, (t) in city u is therefore defined implicitly. Ngg ,(t) is modeled as negative binomial death

processes (Breté et al., 2009; Bret6 and Ionides, 2011) with over-dispersion parameter ogg,
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and rate given by

E[Nspa(t +dt) — Nsga(t)] = B(0) Su(t)[ (Iuﬂ)a

P,
+Z%

I_ff (Y Va4 ofan), (6)
Si{(n) - (#) }]

where [3(t) models seasonality driven by high contact rates between children at school, de-

scribed by

B0 (1+a(l—p)p™)B during school term,
t p—

(1 — a) B during vacation
with p = 0.759 being the proportion of the year taken up by the school terms, /3 is the mean
transmission rate, and a measures the reduction of transmission during school holidays. In
(6), a is a mixing exponent modeling inhomogeneous contact rates within a city, and ¢
models immigration of infected individuals which is appropriate when analyzing a subset of
cities that cannot be treated as a closed system. The number of travelers from city u to « is
denoted by v,;. Here, v,4 is constructed using the gravity model of Xia et al. (2004),

d P, -P;
P2 d(u,u)’

’Uuﬁ:G

where d(u, @) denotes the distance between city u and city @, P, is the average population
for city u across time, P is the average population across cities, and d is the average distance
between a randomly chosen pair of cities. Here, we model v,; as fixed through time and
symmetric between any two arbitrary cities, though a natural extension would allow for
temporal variation and asymmetric movement between two cities. The transition processes
Ngru(t), Niru(t) and Nep,(t) are modeled as conditional Poisson processes with per-capita
rates pgr, prr and pep respectively, and we fix pep = 50 year—!. The birth process Ngg ()
is an inhomogeneous Poisson processes with rate ugg,(t), given by interpolated census data.

To complete the model specification, we must describe the measurement process. Let
Zun = Nigu(tn) — Nigu(tn—1) be the number of removed infected individuals in the nth

reporting interval. Suppose that cases are quarantined once they are identified, so that
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reported cases comprise a fraction p of these removal events. The case report y;,,, is modeled
as a realization of a discretized conditionally Gaussian random variable Y,,,,, defined for y > 0

via

—®(y — 0.5; pz, p(1 — p)z +¢*p*2?) (7)

where ®(-; 1, 0?) is the N (p,0?) cumulative distribution function, and  models overdis-
persion relative to the binomial distribution. For y = 0, we replace y — 0.5 by —o0o in
(7).

This model includes many features that have been proposed to be relevant for under-
standing measles transmission dynamics (He et al., 2010). Our plug-and-play methodology
permits consideration of all these features, and readily extends to the investigation of further
variations. Likelihood-based inference via plug-and-play methodology therefore provides a
framework for evaluating which features of a dynamical model are critical for explaining the
data (King et al., 2008). By contrast, Xia et al. (2004) developed a linearization for a specific
spatiotemporal measles model which is numerically convenient but not readily adaptable to
assess alternative model choices. Fig. 2 shows a simulation from our model, showing that
trajectories from this model can capture some features of the system that have been hard
to understand: how can it be that disease transmission dynamics between locations have
important levels of interaction yet are not locked in synchrony (Becker et al., 2020)7 Here,
we are testing statistical tools rather than engaging directly in the scientific debate so we
test methods on the simulated data.

We first assess the scaling properties of the filters on the measles model by evaluating
the likelihood over varying numbers of units, U, for fixed parameters. The results are given
in Fig. 3, with additional information about timing, algorithmic choices, parameter values
and a plot of the data provided in Sec. S6. In Fig. 3, the log likelihood per unit per time
increases with U because city size decreases with U. Smaller cities have fewer measles
cases, resulting in a narrower and taller probability density function. Fig. 3 shows a rapid

decline in the performance of the particle filter (PF) beyond U = 4. This is a challenging
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Figure 2: Log(reported cases + 1) for (A) the measles simulation used for the likelihood
slice; (B) the corresponding UK measles data. The simulation shares the biennial pattern,

with most but not all cities locked in phase most of the time.
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Figure 3: log likelihood estimates for simulated data from the measles model of various
dimensions. UBF, ABF and ABF-IR are compared with a guided intermediate resampling
filter (GIRF), a standard particle filter (PF), a block particle filter (BPF) and an ensemble
Kalman filter (EnKF).

filtering problem, with dynamics including local fadeouts and high stochasticity in each city
stabilized at the metapopulation level by the coupling. In this example, GIRF performs
poorly suggesting that the simulated moment guide function is less than successful. We used
the general-purpose implementation of GIRF in the spatPomp package, and there might
be room for improvement by developing a model-specific guide function. ABF-IR uses the
same guide function, and this may explain why ABF-IR performs worse than ABF here,
though ABF-IR is much less sensitive than GIRF to the quality of the guide. ABF and
UBF are competing with BPF as winners on this challenge. The bagged filters and BPF
have substantial advantages compared to EnKF, amounting to more than 0.2 log likelihood
units per observation. We suspect that the limitations of EnKF on this problem are due to
the nonlinearity, non-Gaussianity, and discreteness of fadeout and reintroduction dynamics.
Thus, EnKF is relatively effective with small ensemble size but soon reaches the limit of
its capabilities (Sec. S13). By contrast, the bagged filters and block particle filter perform
substantially better than EnKF for larger ensemble size (Sec. S13). All the algorithms have
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various other tuning parameters that could influence the results. Some investigations of
alternatives are presented in Secs. S6, S7 and S12. Generalizable conclusions are hard to infer
from numerical comparisons of complex algorithms on complex models. Experimentation
with different methods, and their tuning parameters, is recommended when investigating a
new model.

Fig. 4(A) demonstrates an application of ABF to the task of computing a slice of the like-
lihood function over the coupling parameter, GG, for simulated data. This slice varies G while
fixing the other parameters at the values used for the simulation. Fig. 4(B) shows a similar
plot calculated using BPF with comparable computational effort. Both ABF and BPF are
successful here, though BPF is more computationally efficient. By contrast, Fig. 4(C) shows
that EnKF has substantial bias in estimating G, as well as considerably lower likelihood.
Likelihood slices have less inferential value than likelihood profiles, but provide a computa-
tionally and conceptually simpler setting that can be insightful. Scientifically, the slices in
Fig. 4 give an upper bound on the identifiability of G from such data, since the likelihood

slice provides statistically efficient inference when all other parameters are known.

4.3 Likelihood maximization and profile likelihood

Likelihood evaluation via filtering does not by itself enable parameter estimation for POMP
models, however it provides a foundation for Bayesian and likelihood-based inference. In
particular, filtering algorithms can be modified to carry out likelihood maximization by
stochastically perturbing parameters in a sequence of filtering operations with decreasing
perturbation variance (Ionides et al., 2015). We demonstrate this for the measles model in
Fig. 5 using an iterated bagged filter algorithm which is fully described in Sec. S11.

Monte Carlo methods for computing and maximizing the log likelihood suffer from bias
and variance, both of which can be considerable for large datasets and complex models.
Appropriate inference methodology, such as Monte Carlo adjusted profile (MCAP) confidence
intervals, can accommodate substantial Monte Carlo variance so long as the bias is slowly

varying across the statistically plausible region of the parameter space (Ionides et al., 2017;
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Figure 4: Likelihood slices varying the coupling parameter, for the measles model with
U = 40 cities, computed via (A) ABF; (B) BPF; (C) EnKF. The solid perpendicular lines
construct 95% Monte Carlo adjusted confidence intervals (Ionides et al., 2017). The true

parameter value is identified by a blue dashed line.

28



[o] 1
~16450 1 oo
o) o 8
3 © g ST
£ -165001 ro° .
2 I 8
o —165501 |
S 0 © .
o I
% 16600 o |
o 1
o 1
-166501 . .
0 300 600 900
G

Figure 5: An iterated bagged filter used to maximize the likelihood, compute a profile
likelihood, and hence construct a confidence interval. The profiling is carried out over the

coupling parameter, G.

Ning et al., 2021). Fig. 5 constructs an MCAP 95% confidence interval for the coupling
parameter, GG, using an iterated unadapted bagged filter to maximize over the parameters,
a, B, osg, ¥, per and prp. This simulation study, carried out with U = 20 and N = 208,
shows that G is identifiable via likelihood-based inference in the absence of assumptions
about these parameters.

The likelihood estimate provided by bagged filters could be viewed as a composite like-
lihood (Varin et al., 2011) rather than an approximation to the likelihood. However, in
situations where the likelihood approximation is found to be adequate, it is convenient to

take advantage of the tools of likelihood-based inference.

5 Discussion

The nested loops used in the pseudocode for the bagged filters can be computed in various
different orders to give mathematically equivalent results. There is scope for implementa-
tions to trade off memory, computation and communication by varying decisions on how the

loops defined in the pseudocode are coded, including decisions on memory over-writing and
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parallelization. This article focuses on the properties of the quantities calculated by the algo-
rithms, leaving room for future research on implementation-specific considerations, though
some supplementary discussion of memory-efficient implementation is given in Sec. S9.
Plug-and-play inference based on sequential Monte Carlo likelihood evaluation has proved
successful for investigating highly nonlinear partially observed dynamic systems of low di-
mension arising in analysis of epidemiological and ecological population dynamics (Breto,
2018; Pons-Salort and Grassly, 2018; de Celles et al., 2018; Marino et al., 2019). This arti-
cle develops a methodological extension motivated by the analysis of interacting biological
populations. Similar challenges related to nonlinear non-Gaussian dynamic models arise in
geophysical modeling. Relative to biological systems, geophysical applications are charac-
terized by a greater number of spatial locations, better mathematical understanding of the
underlying processes, and lower stochasticity. From this literature, the locally weighted par-
ticle filter of Poterjoy (2016); Poterjoy et al. (2019) is perhaps closest to our approach, but
the local weights of Poterjoy (2016); Poterjoy et al. (2019) are used to construct a localized
Kalman gain which is motivated by a Gaussian approximation comparable to EnKF. EnKF
arose originally via geophysical research (Evensen, 1994) and has since become used more
widely for inference on SpatPOMP models (Katzfuss et al., 2020; Li et al., 2020). How-
ever, EnKF can fail entirely even on simple POMP models if the structure is sufficiently
non-Gaussian. For example, let X,, be a one-dimensional Gaussian random walk, and let Y,
given X,, = z,, be normally distributed with mean 0 and variance 2. The linear filter rule
used by EnKF to update the estimate of X,, given Y,, has mean zero for any value of X,
since X,, and Y,, are uncorrelated. Therefore, the EnKF filter estimate of the latent process
remains essentially constant regardless of the data. Models of this form are used in finance to
describe stochastic volatility. EnKF could be applied more successfully by modifying model,
such as replacing Y,, by |Y,,|, but for complex models it may be unclear whether and where
such problems are arising. Our results show that there is room for improvement over EnKF

on a spatiotemporal epidemiology model, though in our example there is no clear advantage

for BF methods over BPF.
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Latent state trajectories constructed in our BF algorithms are all generated from the
model simulator, appropriately reweighted and resampled, and so they are necessarily valid
sample paths of the model. For example, spatial smoothness properties of the model through
space, or conservation properties where some function of the system remains unchanged
through time, are maintained in the BF trajectories. This is not true for the block particle
filter, due to the indepdent resampling of the blocks (see Sec. S14). EnKF preserves linear
constraints, since the filter procedure perturbs particles using a linear update rule, but cannot
respect nonlinear relationships. The practical importance of smoothness and conservation
considerations will vary with the system under investigation, but this property of BF gives
the scientific investigator one less thing to worry about.

The algorithms UBF, ABF, ABF-IR, GIRF, PF, BPF, and EnKF compared in this article
all enjoy the plug-and-play property, facilitating their implementations in general-purpose
software. The numerical results for this paper use the abf, abfir, girf, pfilter, bpfilter
and enkf functions via the open-source R package spatPomp (Asfaw et al., 2021b) that
provides a spatiotemporal extension of the R package pomp (King et al., 2016). UBF was
implemented using abf with J = 1 particles per replicate. The source code for this article

is available as supplementary material.
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