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In this paper, we analyze the tree reconstruction problem, to identify whether there is 
non-vanishing information of the root, as the level of the tree goes to infinity. Although it 
has been studied in numerous contexts, the existing literature with rigorous reconstruction 
thresholds established are very limited, and it becomes extremely challenging when the 
model under investigation has 4 states, one of whose interpretations is the four main 
bases found in Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA): guanine [G], 
cytosine [C], adenine [A], and thymine [T]. In this paper, we study a general DNA evolution 
model, which distinguishes between transitions and transversions, and allow transversions 
to occur at the same rate but that rate can be different from the rates for transitions. The 
sufficient condition for reconstruction is rigorously established.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We firstly give the background and motivation in Section 1.1 and then state our contributions in Section 1.2.

1.1. Background and motivation

The tree reconstruction problem, as an interdisciplinary subject, has been studied in numerous contexts including 
statistical physics, information theory, and computational biology. The reconstructability plays a crucial role in phyloge-
netic reconstruction in evolutionary biology (see Mossel [25], Daskalakis et al. [7]), communication theory in the study 
of noisy computation (see Evans et al. [10]), analogous investigations in the realm of network tomography (see Bhamidi 
et al. [4]), reconstructability and distinguishability in the clustering problem of the stochastic block model (see Mossel 
et al. [28,29], Neeman and Netrapalli [30]), trace reconstruction problem (see Andoni et al. [1]), investigations of the ran-
dom field models on sparse random graphs with replica symmetry breaking (see Lupo et al. [21]), etc. The reconstruction 
threshold, corresponds to the threshold for extremality of the infinite-volume Gibbs measure with free boundary conditions 
(see Georgii [13]), and is known to have a crucial determination effect on the efficiency of the Glauber dynamics on trees 
and random graphs (see Berger et al. [2], Martinelli et al. [22], Tetali et al. [34]).

The tree reconstruction model has two building blocks, with one being an irreducible aperiodic Markov chain on a finite 
characters set C and the other one being a rooted d-ary tree (every vertex having exactly d offspring). The tree is denoted 
as T = (V , E, ρ), where V stands for vertices, E stands for edges, and ρ ∈ V stands for the root. Denote σv as the state 
assigned to vertex v , and denote σρ specially for the state of the root ρ that is chosen according to an initial distribution 
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π on C . The root signal propagates in the tree according to a transition matrix P which is also called noisy channel, in 
a way that for each vertex v having u as its parent, the spin/configuration at v is assigned according to the probability 
Pij = P(σv = j | σu = i) for i, j ∈ C .

The reconstruction problem on an infinite tree is to analyze that given the configurations realized at the nth generation 
of the tree which is denoted as σ(n), whether there exists non-vanishing information on the letter transmitted by the 
root, as n goes to infinity. Define σ i(n) as σ(n) conditioned on σρ = i. We are ready to give the mathematical definitions 
regarding reconstruction.

Definition 1.1. We say that a model is reconstructible on an infinite tree T , if for some i, j ∈ C

limsup
n→∞

dT V (σ i(n),σ j(n)) > 0,

where dT V is the total variation distance, i.e.

dT V (σ i(n),σ j(n)) = sup
A

∣∣P(σ (n) = A | σρ = i) − P(σ (n) = A | σρ = j)
∣∣ .

When the limsup is 0, we say that the model is non-reconstructible on T .

The binary model with 2 states corresponds to the Ising model in statistical physics (see Giuliani and Mastropietro [14],
Giuliani and Seiringer [15] and the references therein for more information), whose transition matrix is given by

P = 1

2

(
1+ θ 1− θ

1− θ 1+ θ

)
+ �

2

(−1 1
−1 1

)
, |θ | + |�| � 1,

where � is used to describe the deviation from the symmetric channel, i.e. when � �= 0 the channel is asymmetric. Whether 
the model is reconstructible is closely related to, the second largest eigenvalue by absolute value of the transition matrix 
P, denoted as λ. For the binary symmetric channel, Bleher et al. [5] showed that the model is reconstructible if and only 
if dλ2 > 1 (see also Evans et al. [10]), which is known as the Kesten-Stigum bound. For the binary asymmetric channel 
with sufficiently large asymmetry, Mossel [24,26] showed that the Kesten-Stigum bound is not the bound for reconstruc-
tion. When the asymmetry is sufficiently small, Borgs et al. [6] established the first tightness result of the Kesten-Stigum 
reconstruction bound in roughly a decade, and later Liu and Ning [19] gave a complete answer to the question on how 
small the asymmetry is necessary for the tightness of the reconstruction threshold.

For non-binary models, the simplest case is the q-state symmetric channel which corresponds to the Potts model in 
statistical physics (see Derrida et al. [8], Dhar [9] and the references therein for more information), with the following 
transition matrix

P =

⎛
⎜⎜⎜⎝

p0 p1 · · · p1
p1 p0 · · · p1
...

...
. . .

...

p1 p1 · · · p0

⎞
⎟⎟⎟⎠

q×q

.

Sly [32] established the Kesten-Stigum bound for the 3-state Potts model on regular trees of large degree and showed that 
the Kesten-Stigum bound is not tight when q � 5. Liu et al. [20] proposed the following model to distinguish between 
transitions and transversions, whose transition matrix has two mutation classes with q states in each class

Pij =
⎧⎨
⎩

p0 if i = j,
p1 if i �= j and i, j are in the same category,
p2 if i �= j and i, j are in different categories.

When the number of states are more than or equal to 8, Liu et al. [20] showed that the Kesten-Stigum bound is not tight.
The 4-state cases give very important reconstruction on the tree models, especially for the applications in phylogenetic 

reconstruction since they correspond to some of the most basic phylogenetic evolutionary models (see the discussions in 
Section 2.5.1 of Mossel [27]). However, the 4-state case is much more challenging. The reason can be seen from equation 
(1) on page 1371 of Sly [32] where a key role is played by the sign of q − 4; when q � 5, it is positive and this allows us to 
show that if dλ2 is sufficiently close to 1 then the model is reconstructible beyond the Kesten–Stigum bound. Visualization 
of the challenge in handling 4-state cases can be seen from Figure 3 on page 042109 − 13 of Ricci-Tersenghi et al. [31]. Its 
reconstruction problem was open until very few new results established recently. For the symmetric model with 4 states, 
Ricci-Tersenghi et al. [31] showed that in the assortative (ferromagnetic) case the Kesten-Stigum bound is always tight, 
while in the disassortative (antiferromagnetic) case the Kesten-Stigum bound is tight in a large degree regime and not 
tight in a low degree regime. Later, Liu and Ning [18] investigated a 4-state asymmetric model based on the F81 model 
(Felsenstein [11]) and gave specific conditions under which the Kesten-Stigum bound is not tight.
2
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DNA is a molecule composed of two chains coiling around each other to form a double helix, and these two DNA strands 
are composed of simpler monomeric units called nucleotides, each of which is further composed of one of four nitrogen-
containing nucleobases (guanine [G], cytosine [C], adenine [A] or thymine [T]). Molecular phylogenetics is a branch of 
phylogeny to specially analyze the genetic or hereditary molecular differences in order to gain information on an organism’s 
evolutionary relationships. Markov models of DNA sequence evolution were proposed and widely used in phylogenetic 
reconstruction. We refer interested readers to the classical book Felsenstein [12] for more information.

1.2. Our contributions

In this paper, we consider a general DNA evolution model, which follows the K80 model (Kimura [17]) and the TN93 
model (Tamura and Nei [33]) in distinguishing between transitions (A↔ G, i.e. from purine to purine, or C ↔ T, i.e. from 
pyrimidine to pyrimidine) and transversions (from purine to pyrimidine or vice versa), and follows the TN93 model in 
designing that transversions occur at the same rate but that rate is allowed to be different from both of the rates for transi-
tions. Specifically, in this paper, we focus on a 4-state model with the transition matrix of {A, G, T , C}, or the configuration 
set {1, 2, 3, 4}, of the form

P =

⎛
⎜⎜⎝
p0 p1 p2 p2
p1 p0 p2 p2

p2 p2 p0 p1
p2 p2 p1 p0

⎞
⎟⎟⎠ . (1)

Besides different out-block transition probabilities p2, the model under investigation has different in-block transition 
probabilities: p0 and p1 in one block, p0 and p1 in the other block. It is easy to see that P has 4 eigenvalues: 1, λ1 = p0− p1, 
λ2 = p0 + p1 − 2p2, and λ3 = p0 − p1. Let λ be the second largest eigenvalue by absolute value. Kesten and Stigum [16]
showed that any model is reconstructible when dλ2 > 1, so we only investigate dλ2 � 1 in the following context. Since λ1
and λ3 play symmetric roles in this symmetric model (1), without loss of generality, we presume |λ1| > |λ3| in the sequel.

In Section 2, we give detailed definitions and interpretations, conduct preliminary analyses, and then provide an equiva-
lent condition for non-reconstruction:

lim
n→∞ xn = lim

n→∞ xn = 0.

Here, xn and xn represent the probabilities of giving a correct guess of the root given the spins σ(n) at distance n from the 
root minus the probability of guessing the root randomly which is 1/4 in this case, for the root being in block 1 and block 
2 respectively. Nonreconstruction means that the mutual information between the root and the spins at distance n goes to 
0 as n tends to infinity, therefore one standard to classify reconstruction and nonreconstruction is to analyze the quantity 
xn while in this paper we also need to consider the limiting behavior of xn .

In Section 3, after in-depth investigation of the recursive relationship, we develop a two dimensional dynamical system 
of the linear diagonal canonical form regarding quantities xn+1 and zn+1 through two new variables Xn = xn + zn and 
Zn = −zn:⎧⎨

⎩
Xn+1 = dλ2

1Xn + d(d−1)
2

(−4λ4
1X 2

n + 8λ2
1λ

2
2XnZn

)+ Rx + Rz + Vx

Zn+1 = dλ2
2Zn + d(d−1)

2

[
λ4
1X 2

n − 8λ4
2Z2

n + 1
4λ4

3(xn − yn)
2
]− Rz + Vz.

Here, zn represents the opposite case of xn as giving a wrong guess in another block. By symmetry, we can also obtain the 
dynamical system involving xn simply through replacing λ1 by λ3. Our main result is the following theorem, whose rigorous 
proof is given in Section 5.

Main Theorem. If |λ1| �= |λ3| and 0 < |λ2| < max {|λ1|, |λ3|}, the model is reconstructible even if dλ2 < 1 with λ being the second 
largest eigenvalue of the model.

In Section 4, we show that Rx , Rz , Vx , and Vz are just small perturbations in the above dynamical system in order to 
study its stability, ensure that the decrease from xn to xn+1 is never too large to lose construction, and establish crucial 
concentration results, by fully taking advantage of the Markov random field property and the symmetries in the probability 
transition matrix and the network structure.

In Section 5, by means of the method of reductio ad absurdum, we show that xn and xn can not simultaneously converge 
to zero as n goes to ∞, and then establish the nontightness of Kesten-Stigum bound in the Main Theorem of this paper.

2. Preliminary analysis

Let u1, . . . , ud be the children of the root ρ and Tv be the subtree of descendants of v ∈ V . Denote the nth level of 
the tree by Ln = {v ∈ V : d(ρ, v) = n} with d(·, ·) being the graph distance on T . Denote σ(n) as the spins on Ln . Denote 
3
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σ j(n) as the spins on Ln ∩Tu j where u j is one of the children of the root ρ . For the notations involving σ(n) in the sequel, 
we consistently use superscript to denote the conditional on a specific configuration of the root, and use the subscript to 
denote the conditional on a specific offspring of the root.

For a configuration A on the spins of Ln , define the posterior function by

fn(i, A) = P(σρ = i | σ(n) = A) = P(σu j = i | σ j(n + 1) = A),

for i = 1, 2, 3, 4 and j = 1, · · · , d, where the second equality holds by the recursive nature of the tree. Recalling that σ i(n)

being σ(n) conditioned on σρ = i, by the definition of fn(i, A) given above, we have

fn(i,σ
i(n)) = P(σρ = i | σ(n) = σ i(n)).

Define Xi(n) as the posterior probability that the root ρ is taking the configuration i given the random configuration σ(n)

on the spins in Ln , i.e.,

Xi(n) = fn(i,σ (n)), i = 1,2,3,4.

Apparently one has

X1(n) + X2(n) + X3(n) + X4(n) = 1.

By the block characteristic of the model, we know that regarding the first (resp. second) block, X1(n) and X2(n) (resp. X3(n)

and X4(n)) have the same distribution. Considering that the stationary distribution π = (π1, π2, π3, π4) of P is given by

π1 = π2 = π3 = π4 = 1

4
,

we further have

E(X1(n)) = E(X2(n)) = E(X3(n)) = E(X4(n)) = 1

4
.

From the symmetry and the block characteristic of the model, we know that

fn(i,σ
j(n)) = fn( j,σ

i(n)), for i �= j, i, j ∈ {1,2} or {3,4},
and

fn(1,σ
3(n)) = fn(1,σ

4(n)).

Define Yij(n) as the posterior probability that σu j = i given the random configuration σ 1
j (n + 1) on spins in L(n + 1) ∩Tu j , 

i.e.,

Yij(n) = fn(i,σ
1
j (n + 1)), for i = 1,2,3,4, j = 1, · · · ,d,

where the random variables {Yij(n)} are independent and identically distributed and satisfy

Y1 j(n) + Y2 j(n) + Y3 j(n) + Y4 j(n) = 1.

We define the following moment variables to analyze the differences between different inferences of σρ given the spins 
σ(n) at distance n from the root ρ and the probability of guessing the root randomly:

xn = E
(
fn(1,σ

1(n)) − 1

4

)
, yn = E

(
fn(2,σ

1(n)) − 1

4

)
,

zn = E
(
fn(1,σ

3(n)) − 1

4

)
, un = E

(
fn(1,σ

1(n)) − 1

4

)2

,

vn = E
(
fn(2,σ

1(n)) − 1

4

)2

, wn = E
(
fn(1,σ

3(n)) − 1

4

)2

,

xn = E
(
fn(3,σ

3(n)) − 1

4

)
, yn = E

(
fn(4,σ

3(n)) − 1

4

)
,

zn = E
(
fn(3,σ

1(n)) − 1

4

)
, un = E

(
fn(3,σ

3(n)) − 1

4

)2

,

vn = E
(
fn(4,σ

3(n)) − 1

4

)2

, wn = E
(
fn(3,σ

1(n)) − 1

4

)2

.

We firstly establish some important lemmas which will be used frequently in the sequel.
4



N. Ning and W. Liu Discrete Mathematics 345 (2022) 112836
Lemma 2.1. For any n ∈N ∪ {0}, we have

(a) xn = 4E 
(
X1(n) − 1

4

)2

= un + vn + 2wn � 0.

(b) − xn + yn
2

= zn = zn = − xn + yn
2

� 0.

(c) xn + zn � 0, xn + zn � 0.

Proof. (a) By the law of total probability and Bayes’ theorem, we have

E fn(1,σ
1(n)) =

∑
A

fn(1, A)P(σ (n) = A | σρ = 1)

= 4
∑
A

fn(1, A)P(σρ = 1 | σ(n) = A)P(σ (n) = A)

= 4
∑
A

f 2n (1, A)P(σ (n) = A) = 4E(X1(n))2.

Recall that xn is defined as xn = E 
(
fn(1, σ 1(n)) − 1

4

)
, and then by the fact that E(X1(n)) = 1

4 we have

xn = 4

(
E(X1(n))2 −

(
1

4

)2
)

= 4E
(
X1(n) − 1

4

)2

.

Furthermore, by the law of total expectation, we have

xn =4E
(
X1(n) − 1

4

)2

=4
4∑

i=1

E

((
X1(n) − 1

4

)2 ∣∣∣∣σρ = i

)
P(σρ = i)

=4

[
P(σρ = 1)E

(
fn(1,σ

1(n)) − 1

4

)2

+ P(σρ = 2)E
(
fn(1,σ

2(n)) − 1

4

)2

+ P(σρ = 3)E
(
fn(1,σ

3(n)) − 1

4

)2

+ P(σρ = 4)E
(
fn(1,σ

4(n)) − 1

4

)2
]

=un + vn + 2wn.

(b) Similarly, we have

zn = 4E (X1(n)X3(n)) − 1

4
= E

(
fn(1,σ

3(n)) − 1

4

)
= zn, (2)

yn + 1

4
=
∑
A

fn(2, A)P(σ (n) = A | σρ = 1) = 4E (X1(n)X2(n)) ,

and then

yn = 4E
(
X1(n) − 1

4

)(
X2(n) − 1

4

)
. (3)

It follows from the Cauchy-Schwarz inequality that[
E
(
X1(n) − 1

4

)(
X2(n) − 1

4

)]2
� E

(
X1(n) − 1

4

)2

E
(
X2(n) − 1

4

)2

,

which implies(
1

4
yn

)2

�
(
1

4
xn

)2

, i.e. − xn � yn � xn. (4)

By the definitions of xn , yn and zn , we know that zn = − xn+yn , and thus equation (4) implies zn � 0.
2

5
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(c) An analogous proof of

xn + zn = xn − xn + yn
2

= xn − yn
2

� 0 and xn + zn � 0

can be easily carried out.

Lemma 2.2. For any n ∈N ∪ {0}, we have

(a) E 
(
fn(1, σ

1(n)) − 1

4

)(
fn(2, σ

1(n)) − 1

4

)
= 1

4
yn +

(
vn − 1

4
xn

)
.

(b) E
(
fn(1, σ

1(n)) − 1

4

)(
fn(3, σ

1(n)) − 1

4

)

=1

4
zn − 1

2

(
un − 1

4
xn

)
− 1

2

(
vn − 1

4
xn

)
.

(c) E 
(
fn(2, σ

1(n)) − 1

4

)(
fn(3, σ

1(n)) − 1

4

)
= 1

4
zn −

(
vn − 1

4
xn

)
.

(d) E
(
fn(3, σ

1(n)) − 1

4

)(
fn(4, σ

1(n)) − 1

4

)

=1

4
yn + 1

2

(
un − 1

4
xn

)
+ 3

2

(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)
.

(e) E 
(
fn(1, σ

3(n)) − 1

4

)(
fn(2, σ

3(n)) − 1

4

)
= 1

4
yn −

(
vn − 1

4
xn

)
.

Proof. We only prove (a) and (b) and the others can be shown analogously.

(a) By the law of total probability, one has

E
(
fn(1,σ

1(n)) fn(2,σ
1(n))

)

=
∑
A

P(σρ = 1 | σ(n) = A)P(σρ = 2 | σ(n) = A)P(σ (n) = A | σρ = 1)

=
∑
A

[
P(σρ = 2 | σ(n) = A)

]2 P(σ (n) = A | σρ = 1)

=E
(
fn(2,σ

1(n))
)2

,

therefore

E
(
fn(1,σ

1(n)) − 1

4

)(
fn(2,σ

1(n)) − 1

4

)

=vn + 1

4
(yn − xn) = 1

4
yn +

(
vn − 1

4
xn

)
.

(b) By the fact that fn(3, σ 1(n)) and fn(4, σ 1(n)) have the same distribution, and the equation that

fn(1,σ
1(n)) + fn(2,σ

1(n)) + fn(3,σ
1(n)) + fn(4,σ

1(n)) = 1,

plugging in the result of (a), we can obtain that

E
(
fn(1,σ

1(n)) − 1

4

)(
fn(3,σ

1(n)) − 1

4

)

=1

4
zn − 1

2

(
un − 1

4
xn

)
− 1

2

(
vn − 1

4
xn

)
,

as desired.

Recall that Yij(n) is defined as the posterior probability that σu j = i given the random configuration σ 1
j (n + 1) on spins 

in L(n + 1) ∩ Tu j , i.e., Yij(n) = fn(i, σ 1
j (n + 1)), for i ∈ {1, 2, 3, 4} and j ∈ {1, · · · , d}. The random vectors (Yij(n))4i=1 are 

independent by the symmetry of the model, and its central moments are investigated in the following lemma.
6
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Lemma 2.3. For each 1 � j � d, we have

(a) E
(
Y1 j(n) − 1

4

)
= λ1xn + (λ1 − λ2)zn.

(b) E
(
Y2 j(n) − 1

4

)
= −λ1xn − (λ1 + λ2)zn.

(c) E
(
Yij(n) − 1

4

)
= λ2zn, i = 3,4.

(d) E
(
Y1 j(n) − 1

4

)2

= 1

4
xn + λ1

(
un − 1

4
xn

)
+ (λ1 − λ2)

(
wn − 1

4
xn

)
.

(e) E
(
Y2 j(n) − 1

4

)2

= 1

4
xn − λ1

(
un − 1

4
xn

)
− (λ1 + λ2)

(
wn − 1

4
xn

)
.

(f) E
(
Yij(n) − 1

4

)2

= 1

4
xn + λ2

(
wn − 1

4
xn

)
, i = 3,4.

(g) E
(
Y1 j(n) − 1

4

)(
Y2 j(n) − 1

4

)
= 1

4
yn + λ2

(
vn − 1

4
xn

)
.

(h) E
(
Y1 j(n) − 1

4

)(
Yij(n) − 1

4

)

= zn
4

+ λ1 − λ2

2

(
vn − 1

4
xn

)
+ λ1 + λ2

2

(
wn − 1

4
xn

)
, i = 3,4.

(i) E
(
Y2 j(n) − 1

4

)(
Yij(n) − 1

4

)

= zn
4

− λ1 + λ2

2

(
vn − 1

4
xn

)
− λ1 − λ2

2

(
wn − 1

4
xn

)
, i = 3,4.

(j) E
(
Y3 j(n) − 1

4

)(
Y4 j(n) − 1

4

)
=1

4
yn − λ2

(
vn − 1

4
xn

)
.

Proof. We only prove (a), (b), and (c) and the others can be shown analogously.

(a) Conditioning on σu j = i for i ∈ {1, 2, 3, 4}, we have

E
(
Y1 j(n) − 1

4

)
=p11E

(
fn(1,σ

1(n)) − 1

4

)
+ p12E

(
fn(1,σ

2(n)) − 1

4

)

+ p13E
(
fn(1,σ

3(n)) − 1

4

)
+ p14E

(
fn(1,σ

4(n)) − 1

4

)
= (p0 − p1) xn + 2(p2 − p1)zn

=λ1xn + (λ1 − λ2)zn.

(b) Similar, we can obtain

E
(
Y2 j(n) − 1

4

)
= (p1 − p0) xn + 2(p2 − p0)zn

= − λ1xn − (λ1 + λ2)zn.

(c) It follows immediately from the identity 
∑4

i=1 Yij(n) = 1 that, for i = 3, 4,

E
(
Yij(n) − 1

4

)
= −1

2

2∑
i=1

E
(
Yij(n) − 1

4

)
= λ2zn.

If the model is reconstructible, σ(n) contains significant information of the root variable. This can be expressed in several 
equivalent ways (see Mossel [24,26]). According to Definition 1.1, we have the following lemma (Proposition 2.1 on page 3
of Mossel [26]).

Lemma 2.4. The model being non-reconstructible is equivalent to

lim xn = lim xn = 0.

n→∞ n→∞

7
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3. Recursive formulas

3.1. Distributional recursion

Consider A as a configuration on L(n + 1), and let A j( j = 1, · · · , d) be its restriction to Tu j ∩ L(n + 1) where u j is the 
jth child of the root ρ . The following lemma provides a fundamental recursion formula in this section.

Lemma 3.1. We have

fn+1(1, A) = N1(n)

N1(n) + N2(n) + N3(n) + N4(n)
, (5)

where

Nk(n) =
d∏

j=1

[
4∑

i=1

pkiP(σ j(n + 1) = A j | σu j = i)

]
, k ∈ {1,2,3,4}.

Proof. By the definition of fn+1(i, A) given in Section 2, we have

fn+1(1, A) = P(σρ = 1 | σ(n + 1) = A).

By Bayes’ theorem we have

fn+1(1, A) =P(σ (n + 1) = A,σρ = 1)

P(σ (n + 1) = A)

=
∏d

j=1
∑4

i=1 P(σ j(n + 1) = A j,σu j = i,σρ = 1)∏d
j=1

∑4
i,k=1 P(σ j(n + 1) = A j,σu j = i,σρ = k)

=
∏d

j=1
∑4

i=1

[
P(σ j(n + 1) = A j | σu j = i,σρ = 1)P(σu j = i | σρ = 1)P(σρ = 1)

]
∏d

j=1
∑4

i,k=1

[
P(σ j(n + 1) = A j | σu j = i,σρ = k)P(σu j = i | σρ = k)P(σρ = k)

] .

By the Markov property, we further have

fn+1(1, A) =
∏d

j=1
∑4

i=1

[
P(σ j(n + 1) = A j | σu j = i)P(σu j = i | σρ = 1)P(σρ = 1)

]
∏d

j=1
∑4

i,k=1

[
P(σ j(n + 1) = A j | σu j = i)P(σu j = i | σρ = k)P(σρ = k)

] .

Given that the configuration of root have equal chance to be 1, 2, 3, 4, we have P(σρ = k) = 1/4, and then

fn+1(1, A) =
∏d

j=1
∑4

i=1

[
P(σ j(n + 1) = A j | σu j = i)P(σu j = i | σρ = 1)

]
∏d

j=1
∑4

i,k=1

[
P(σ j(n + 1) = A j | σu j = i)P(σu j = i | σρ = k)

]

=
∏d

j=1
∑4

i=1

[
p1iP(σ j(n + 1) = A j | σu j = i)

]
∏d

j=1
∑4

i,k=1

[
pkiP(σ j(n + 1) = A j | σu j = i)

] ,

which completes the proof.

The following lemma elaborate the result of Lemma 3.1.

Lemma 3.2. For any realization of σ 1(n + 1), denoted as A = (A1, . . . , Ad), where A j denoting the spins on Ln+1 ∩Tu j , we have

fn+1(1, A) = Z1(n)∑4 Z (n)
k=1 k

8
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where, for k = 1, 2, 3, 4,

Zk(n) =
d∏

j=1

[
1+

4∑
i=1

4pki

(
fn(i, A j) − 1

4

)]

=4
P(σ (n + 1) = A)∏d

j=1 P(σ j(n + 1) = A j)
P(σρ = k | σ(n + 1) = A).

Proof. By Lemma 3.1, the definition of fn+1(i, A) given in Section 2, and Bayes’ theorem, we have

fn+1(1, A) =
∏d

j=1

[∑4
i=1 p1iP(σ j(n + 1) = A j | σu j = i)

]
∑4

k=1
∏d

j=1

[∑4
i=1 pkiP(σ j(n + 1) = A j | σu j = i)

]

=
∏d

j=1
∑4

i=1 p1i fn(i, A j)
P(σ j(n+1)=A j)

P(σu j =i)∑4
k=1

∏d
j=1

∑4
i=1 pki fn(i, A j)

P(σ j(n+1)=A j)

P(σu j=i)

=
∏d

j=1
∑4

i=1 p1i fn(i, A j)P(σ j(n + 1) = A j)∑4
k=1

∏d
j=1

∑4
i=1 pki fn(i, A j)P(σ j(n + 1) = A j)

,

where the last equality holds for the reason that the process started from uniform distribution and then P(σu j = i) = 1
4 for 

i = 1, 2, 3, 4. Furthermore

fn+1(1, A) =

[∏d
j=1

∑4
i=1 p1i fn(i, A j)

]
×
[∏d

j=1 P(σ j(n + 1) = A j)

]
[∑4

k=1
∏d

j=1
∑4

i=1 pki fn(i, A j)

]
×
[∏d

j=1 P(σ j(n + 1) = A j)

]

=
∏d

j=1
∑4

i=1 p1i fn(i, A j)∑4
k=1

∏d
j=1

∑4
i=1 pki fn(i, A j)

= Z1(n)∑4
k=1 Zk(n)

,

where, since 
∑4

i=1 pki = 1 for any k = 1, 2, 3, 4,

Zk(n) =
d∏

j=1

[
1+

4∑
i=1

4pki

(
fn(i, A j) − 1

4

)]
.

That is,

Zk(n)

4d
=

d∏
j=1

4∑
i=1

pki fn(i, A j).

Hence,

Zk(n)

4d
·

d∏
j=1

P(σ j(n + 1) = A j)

=
d∏

j=1

4∑
i=1

pki fn(i, A j)P(σ j(n + 1) = A j)

=
d∏

j=1

4∑
i=1

pkiP(σu j = i,σ j(n + 1) = A j)

=
d∏ 4∑

pkiP(σ j(n + 1) = A j | σu j = i)P(σu j = i)

j=1 i=1

9
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= 1

4d

d∏
j=1

4∑
i=1

pkiP(σ j(n + 1) = A j | σu j = i)

= 1

4d

d∏
j=1

4∑
i=1

pkiP(σ j(n + 1) = A j | σu j = i,σρ = k)

= 1

4d

d∏
j=1

4∑
i=1

P(σu j = i,σρ = k)

P(σρ = k)

P(σ j(n + 1) = A j,σu j = i,σρ = k)

P(σu j = i,σρ = k)

=4d

4d

d∏
j=1

4∑
i=1

P(σ j(n + 1) = A j,σu j = i,σρ = k)

=
d∏

j=1

P(σ j(n + 1) = A j,σρ = k)

=
d∏

j=1

P(σ j(n + 1) = A j | σρ = k)P(σρ = k)

= 1

4d

d∏
j=1

P(σ j(n + 1) = A j | σρ = k)

= 1

4d
P(σ (n + 1) = A | σρ = k)

= 4

4d
P(σ (n + 1) = A)P(σρ = k | σ(n + 1) = A).

Then we have

Zk(n) = 4
P(σ (n + 1) = A)∏d

j=1 P(σ j(n + 1) = A j)
P(σρ = k | σ(n + 1) = A),

which completes the proof.

Given that Lemma 3.2 holds for any realization A of σ 1(n + 1), we are ready to extend the result of fn+1(1, A) to that 
of fn+1(1, σ 1(n + 1)) given in the following lemma.

Lemma 3.3. We have

fn+1(1,σ
1(n + 1)) = Z1(n)

Z1(n) + Z2(n) + Z3(n) + Z4(n)
, (6)

where

Zi(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏d
j=1

[
1+ 2(λ1 + λ2)

(
Y1 j(n) − 1

4

)− 2(λ1 − λ2)
(
Y2 j(n) − 1

4

)]
, i = 1,∏d

j=1

[
1− 2(λ1 − λ2)

(
Y1 j(n) − 1

4

)+ 2(λ1 + λ2)
(
Y2 j(n) − 1

4

)]
, i = 2,∏d

j=1

[
1+ 2(λ2 + λ3)

(
Y3 j(n) − 1

4

)+ 2(λ2 − λ3)
(
Y4 j(n) − 1

4

)]
, i = 3,∏d

j=1

[
1+ 2(λ2 − λ3)

(
Y3 j(n) − 1

4

)+ 2(λ2 + λ3)
(
Y4 j(n) − 1

4

)]
, i = 4.

Proof. Given that

fn(1, A j) + fn(2, A j) + fn(3, A j) + fn(4, A j) = 1,

plugging in the values of {pki} from the probability transition matrix (1), by Lemma 3.2, we obtain

Z1(n) =
d∏

j=1

[
1+ 4p0

(
fn(1, A j) − 1

4

)
+ 4p1

(
fn(2, A j) − 1

4

)

+4p2

(
fn(3, A j) − 1

)
+ 4p2

(
fn(4, A j) − 1

)]

4 4

10
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=
d∏

j=1

[
1+ 4p0

(
fn(1, A j) − 1

4

)
+ 4p1

(
fn(2, A j) − 1

4

)

−4p2

[(
fn(1, A j) − 1

4

)
+
(
fn(2, A j) − 1

4

)]]

=
d∏

j=1

[
1+ 4(p0 − p2)

(
fn(1, A j) − 1

4

)
+ 4(p1 − p2)

(
fn(2, A j) − 1

4

)]

=
d∏

j=1

[
1+ 2(λ1 + λ2)

(
fn(1, A j) − 1

4

)
− 2(λ1 − λ2)

(
fn(2, A j) − 1

4

)]
,

where the last equality holds since λ1 = p0 − p1 and λ2 = p0 + p1 − 2p2. Similarly, we have

Z2(n) =
d∏

j=1

[
1+ 4p1

(
fn(1, A j) − 1

4

)
+ 4p0

(
fn(2, A j) − 1

4

)

+4p2

(
fn(3, A j) − 1

4

)
+ 4p2

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1+ 4p1

(
fn(1, A j) − 1

4

)
+ 4p0

(
fn(2, A j) − 1

4

)

−4p2

[(
fn(1, A j) − 1

4

)
+
(
fn(2, A j) − 1

4

)]]

=
d∏

j=1

[
1+ 4(p1 − p2)

(
fn(1, A j) − 1

4

)
+ 4(p0 − p2)

(
fn(2, A j) − 1

4

)]

=
d∏

j=1

[
1− 2(λ1 − λ2)

(
fn(1, A j) − 1

4

)
+ 2(λ1 + λ2)

(
fn(2, A j) − 1

4

)]
,

Z3(n) =
d∏

j=1

[
1+ 4p2

(
fn(1, A j) − 1

4

)
+ 4p2

(
fn(2, A j) − 1

4

)

+4p̄0

(
fn(3, A j) − 1

4

)
+ 4p̄1

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1− 4p2

[(
fn(3, A j) − 1

4

)
+
(
fn(4, A j) − 1

4

)]

+4p̄0

(
fn(3, A j) − 1

4

)
+ 4p̄1

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1+ 4(p̄0 − p2)

(
fn(3, A j) − 1

4

)
+ 4(p̄1 − p2)

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1+ 2(λ2 + λ3)

(
fn(3, A j) − 1

4

)
+ 2(λ2 − λ3)

(
fn(4, A j) − 1

4

)]
,

and

Z4(n) =
d∏

j=1

[
1+ 4p2

(
fn(1, A j) − 1

4

)
+ 4p2

(
fn(2, A j) − 1

4

)

+4p̄1

(
fn(3, A j) − 1

)
+ 4p̄0

(
fn(4, A j) − 1

)]

4 4

11
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=
d∏

j=1

[
1− 4p2

[(
fn(3, A j) − 1

4

)
+
(
fn(4, A j) − 1

4

)]

+4p̄1

(
fn(3, A j) − 1

4

)
+ 4p̄0

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1+ 4(p̄1 − p2)

(
fn(3, A j) − 1

4

)
+ 4(p̄0 − p2)

(
fn(4, A j) − 1

4

)]

=
d∏

j=1

[
1+ 2(λ2 − λ3)

(
fn(3, A j) − 1

4

)
+ 2(λ2 + λ3)

(
fn(4, A j) − 1

4

)]
.

Since the above results hold for any A as realization of σ 1(n + 1), recalling that Yij(n) = fn(i, σ 1
j (n + 1)), we complete the 

proof.

Lemma 3.4. For any nonnegative n ∈Z+ , we have

E (Z1(n)Z2(n)) = EZ2
2(n).

Proof. For any configuration A = (A1, . . . , Ad) with A j denoting the spins on Ln+1 ∩Tu j , by Lemma 3.2, we have

Zi(n) = 4
P(σ (n + 1) = A)∏d

j=1 P(σ j(n + 1) = A j)
P(σρ = i | σ(n + 1) = A), for i = 1,2.

By the symmetry of the tree, we have

E (Z1(n)Z2(n)) =16
∑
A

(
P(σ (n + 1) = A)∏d

j=1 P(σ j(n + 1) = A j)

)2

P(σρ = 1 | σ(n + 1) = A)

× P(σρ = 2 | σ(n + 1) = A)P(σ (n + 1) = A | σρ = 1)

=16
∑
A

(
P(σ (n + 1) = A)∏d

j=1 P(σ j(n + 1) = A j)

)2

P2(σρ = 2 | σ(n + 1) = A)

× P(σ (n + 1) = A | σρ = 1)

=EZ2
2(n),

as desired.

By Lemma 2.3, the means and variances of monomials of Zi(n) can be approximated as follows:

Lemma 3.5. One has

(i) EZ1(n) =1+ dλ2
14(xn + zn) − dλ2

24zn

+ d(d − 1)

2

[
4λ2

1(xn + zn) − 4λ2
2zn

]2 + O (x3n).

(ii) EZ2(n) =1− dλ2
14(xn + zn) − dλ2

24zn

+ d(d − 1)

2

[
4λ2

1(xn + zn) + 4λ2
2zn

]2 + O (x3n).

(iii) EZi(n) = 1+ dλ2
24zn + d(d − 1)

2

(
4λ2

2zn
)2 + O (x3n), i = 3,4.

(iv) EZ2
1(n) = 1+ d�1 + d(d − 1)

2
�2

1 + O (x3n), where

�1 =E
[
1+ 2(λ1 + λ2)

(
Y1 j(n) − 1

4

)
− 2(λ1 − λ2)

(
Y2 j(n) − 1

4

)]2
− 1

=12λ2
1(xn + zn) − 12λ2

2zn + 16λ2
1λ2

(
un − 1

4
xn

)

− 8(λ2
1 − λ2

2)λ2

(
vn − 1

xn

)
+ 8(λ2

1 − λ2
2)λ2

(
wn − 1

xn

)
.

4 4

12
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(v) EZ2
2(n) = EZ1(n)Z2(n) = 1+ d�2 + d(d − 1)

2
�2

2 + O (x3n), where

�2 =E
[
1− 2(λ1 − λ2)

(
Y1 j(n) − 1

4

)
+ 2(λ1 + λ2)

(
Y2 j(n) − 1

4

)]2
− 1

= − 4λ2
1(xn + zn) − 12λ2

2zn − 16λ2
1λ2

(
un − 1

4
xn

)

− 8(λ2
1 − λ2

2)λ2

(
vn − 1

4
xn

)
− 8(3λ2

1 + λ2
2)λ2

(
wn − 1

4
xn

)
.

(vi) EZ2
i (n) = 1+ d�3 + d(d − 1)

2
�2

3 + O (x3n), for i = 3, 4, where

�3 =E
[
1+ 2(λ2 + λ3)

(
Y3 j(n) − 1

4

)
+ 2(λ2 − λ3)

(
Y4 j(n) − 1

4

)]2
− 1

=4λ2
2zn + 2λ2

3(xn − yn) − 8(λ2
2 − λ2

3)λ2

(
vn − 1

4
xn

)

+ 8(λ2
2 + λ2

3)λ2

(
wn − 1

4
xn

)
.

(vii) EZ1(n)Zi(n) = 1+ d�4 + d(d − 1)

2
�2

4 + O (x3n), for i = 3, 4, where

�4 =E
[
1+ 2(λ1 + λ2)

(
Y1 j(n) − 1

4

)
− 2(λ1 − λ2)

(
Y2 j(n) − 1

4

)]

×
[
1+ 2(λ2 + λ3)

(
Y3 j(n) − 1

4

)
+ 2(λ2 − λ3)

(
Y4 j(n) − 1

4

)]
− 1

=4λ2
1(xn + zn) + 4λ2

2zn + 8(λ2
1 − λ2

2)λ2

(
vn − 1

4
xn

)

+ 8(λ2
1 + λ2

2)λ2

(
wn − 1

4
xn

)
.

(viii) EZ2(n)Zi(n) = 1+ d�5 + d(d − 1)

2
�2

5 + O (x3n), for i = 3, 4, where

�5 =E
[
1− 2(λ1 − λ2)

(
Y1 j(n) − 1

4

)
+ 2(λ1 + λ2)

(
Y2 j(n) − 1

4

)]

×
[
1+ 2(λ2 + λ3)

(
Y3 j(n) − 1

4

)
+ 2(λ2 − λ3)

(
Y4 j(n) − 1

4

)]
− 1

= − 4λ2
1(xn + zn) + 4λ2

2zn − 8(λ2
1 + λ2

2)λ2

(
vn − 1

4
xn

)

− 8(λ2
1 − λ2

2)λ2

(
wn − 1

4
xn

)
.

(ix) EZ3(n)Z4(n) = 1+ d�6 + d(d − 1)

2
�2

6 + O (x3n), where

�6 =E
[
1+ 2(λ2 + λ3)

(
Y3 j(n) − 1

4

)
+ 2(λ2 − λ3)

(
Y4 j(n) − 1

4

)]

×
[
1+ 2(λ2 − λ3)

(
Y3 j(n) − 1

4

)
+ 2(λ2 + λ3)

(
Y4 j(n) − 1

4

)]
− 1

= − 4λ2
3(xn + zn) + 4λ2

2zn − 8(λ2
2 + λ2

3)λ2

(
vn − 1

4
xn

)

+ 8(λ2
2 − λ2

3)λ2

(
wn − 1

xn

)
.

4

13
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3.2. Main expansions of xn+1 and zn+1

In this section, we investigate the second order recursive relations associated with xn+1 and zn+1, with the assistance of 
the following identity

a

s + r
= a

s
− ar

s2
+ r2

s2
a

s + r
. (7)

Plugging a = Z1(n), r = Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1, and s = 1 into equation (7), by the definition of xn and equation 
(6), we have

xn+1 + 1

4

=E
Z1(n)

Z1(n) + Z2(n) + Z3(n) + Z4(n)

=EZ1(n) − EZ1(n) (Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1)

+ E (Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1)2
Z1(n)

Z1(n) + Z2(n) + Z3(n) + Z4(n)
.

(8)

Next, plugging a = Z3(n), r = Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1, and s = 1 in equation (7), by the definition of zn and an 
analogous derivation as equation (6), we can obtain

zn+1 + 1

4
=EZ3(n) − EZ3(n) (Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1)

+ E (Z1(n) + Z2(n) + Z3(n) + Z4(n) − 1)2
Z3(n)

Z1(n) + Z2(n) + Z3(n) + Z4(n)
.

(9)

Finally, plugging the results of Section 3.1 into equation (8) and equation (9), and then taking substitutions of

Xn = xn + zn and Zn = −zn,

we obtain a two-dimensional recursive formula of the linear diagonal canonical form:⎧⎨
⎩

Xn+1 = dλ2
1Xn + d(d−1)

2

(−4λ4
1X 2

n + 8λ2
1λ

2
2XnZn

)+ Rx + Rz + Vx

Zn+1 = dλ2
2Zn + d(d−1)

2

[
λ4
1X 2

n − 8λ4
2Z2

n + 1
4λ4

3(xn − yn)
2
]− Rz + Vz

(10)

where

Rx = E

(
Z1(n)∑4
i=1 Zi(n)

− 1

4

) (∑4
i=1 Zi(n) − 4

)2
16

,

Rz = E

(
Z3∑4

i=1 Zi(n)
− 1

4

) (∑4
i=1 Zi(n) − 4

)2
16

,

|Vx|, |Vz| � CV x
2
n

(∣∣∣∣un

xn
− 1

4

∣∣∣∣+
∣∣∣∣wn

xn
− 1

4

∣∣∣∣+ xn

)
+ CV x

2
n

(∣∣∣∣wn

xn
− 1

4

∣∣∣∣+ xn

)

where CV is an absolute constant.

4. Concentration analysis

In order to study the stability of the dynamical system (10), we show that Rx , Rz , Vx , and Vz are just small perturbations, 
in the following two lemmas. The proof of Lemma 4.1 resembles that of Lemma 9 in Liu and Ning [18] and is skipped for 
conciseness.

Lemma 4.1. Assume |λ2| � 	 > 0 and |λ1|/|λ2| � κ for some κ > 1. For any ε > 0, there exist N = N(κ, ε) and δ = δ(κ, 	, ε) > 0, 
such that if n � N and xn � xn � δ, then

|Rx|, |Rz| � εx2n.
14
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The following lemma improves the result of Lemma 2.1 (c) by establishing the strict positivity of the sum of xn and zn .

Lemma 4.2. Assume λ1 �= 0. For any nonnegative n ∈Z, we always have

xn + zn > 0.

Proof. In Lemma 2.1 we proved that xn + zn � 0, so it suffices to exclude the equality. Now let us apply reductio ad 
absurdum and assume xn + zn = 0 for some n ∈ N . Similar to the derivation in Lemma 2.1 (a) and (b), one can obtain that

E(X1(n) − X2(n))2 = 2E(X1(n))2 − 2EX1(n)X2(n) = xn + zn = 0.

For any configuration set A on the nth level, we always have

P(σρ = 1 | σ(n) = A) = P(σρ = 2 | σ(n) = A).

Denote the leftmost vertex on the nth level by vn(1), and it follows that

P(σρ = 1 | σvn(1) = 1) = P(σρ = 2 | σvn(1) = 1).

Define the transition matrices at distance s by Us = Ms
1,1, Vs = Ms

1,2, and Ws = Ms
1,3. Then we have the following recursive 

system{
Us = p0Us−1 + p1Vs−1 + 2p2Ws−1
Vs = p1Us−1 + p0Vs−1 + 2p2Ws−1.

The difference of the above two equations evolves as

Us − Vs = λ1(Us−1 − Vs−1),

and then considering that U0 = 1 and V0 = W0 = 0, we have

Us − Vs = λs
1. (11)

Finally, from the reversible property of the channel, we can conclude that

λn
1 = Un − Vn = P(σρ = 1 | σvn(1) = 1) − P(σρ = 2 | σvn(1) = 1) = 0,

i.e., λ1 = 0, a contradiction to the assumption that λ1 �= 0.

The following lemma ensures that xn does not drop too fast.

Lemma 4.3. Suppose that there exists an integer N > 0, such that xn � xn when n � N. For any 	 > 0, if min{|λ1|, |λ2|} � 	, then 
there exists a constant γ = γ (	, N) > 0 such that

xn+1 � γ xn.

Proof. Different to the definition of Yij(n) = fn(i, σ 1
j (n + 1)) which is the posterior probability that σu j takes value i given 

the random configuration σ 1
j (n + 1) on spins in Tu j ∩ L(n + 1), we consider a configuration set A on Tu1 ∩ L(n + 1) and 

define the posterior function gn+1(1, A) as

gn+1(1, A) =P(σρ = 1 | σ1(n + 1) = A)

=1

4
+ p0

(
fn(1, A) − 1

4

)
+ p1

(
fn(2, A) − 1

4

)
+ p2

∑
i=3,4

(
fn(i, A) − 1

4

)

=1

4
+ λ2 + λ1

2

(
fn(1, A) − 1

4

)
+ λ2 − λ1

2

(
fn(2, A) − 1

4

)
.

Setting A = σ 1
1 (n + 1), by Lemma 2.3, we have

Egn+1(1,σ
1
1 (n + 1)) =1

4
+ λ2 + λ1

2
E
(
Y11(n) − 1

4

)
+ λ2 − λ1

2
E
(
Y21(n) − 1

4

)

=1

4
+ λ2

1xn + (λ2
1 − λ2

2)zn.
15
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Apparently, we have the following inequalities (see Mézard and Montanari [23]), regarding the estimator gn+1(1, σ 1
1 (n +

1)) and the maximum-likelihood estimator:

EP(σρ = 1 | σ 1
1 (n + 1)) �E max

1�i�4
P(σρ = i | σ(n + 1)) = E max

1�i�4
Xi(n + 1)

�1

4
+
(
Emax

i

(
Xi(n + 1) − 1

4

)2
)1/2

�1

4
+
(
E

4∑
i=1

(
Xi(n + 1) − 1

4

)2
)1/2

�1

4
+ x1/2n+1,

where the last inequality follows from the condition that xn+1 � xn+1. Therefore,

1

4
+ λ2

1xn + (λ2
1 − λ2

2)zn �
1

4
+ x1/2n+1.

If λ2
1 � λ2

2, then it is concluded from xn � −zn � 0 in Lemma 2.1 that

λ2
2xn � λ2

2xn + (λ2
1 − λ2

2)(xn + zn) = λ2
1xn + (λ2

1 − λ2
2)zn � x1/2n+1.

If λ2
1 � λ2

2, then λ2
1xn � x1/2n+1, since zn � 0. To sum up, we always have

min{λ2
1, λ

2
2}xn � x1/2n+1. (12)

Under the condition that xn+1 � xn+1, it can be concluded from the dynamical system (10), Lemma 4.1, and the following 
inequalities achieved in Lemma 2.1∣∣∣∣un

xn
− 1

4

∣∣∣∣� 1 and

∣∣∣∣wn

xn
− 1

4

∣∣∣∣� 1, (13)

that there exists a δ = δ(ε) > 0 such that when xn < δ one has

Xn+1 +Zn+1 = xn+1 � (dmin{λ2
1, λ

2
2} − ε)xn.

Under the condition that min{|λ1|, |λ2|} � 	 for any 	 > 0, set ε = 	2 and then we further obtain

(dmin{λ2
1, λ

2
2} − ε)xn � (d − 1)	2xn � 	2xn.

On the other hand, if xn � δ, by equation (12), one has

xn+1 � (min{λ2
1, λ

2
2}xn)2 � 	4δxn.

Finally, by Lemma 4.2, it follows that xn � xn + zn > 0, and thus xn+1
xn

> 0 for all n. Therefore, taking

γ = γ (	,N) = min
n=0,1,2,...,N

{
	2,	4δ,

xn+1

xn

}
> 0

completes the proof.

The following lemma provides the crucial concentration estimates of un − xn
4 and wn − xn

4 , when xn is small.

Lemma 4.4. Assume |λ2| � 	 > 0 and |λ1|/|λ2| � κ for some κ > 1. For any ε > 0, there exist N = N(κ, ε) and δ = δ(κ, 	, ε) > 0, 
such that if n � N and xn � xn � δ, one has∣∣∣∣un

xn
− 1

4

∣∣∣∣< ε,

∣∣∣∣wn

xn
− 1

4

∣∣∣∣< ε and

∣∣∣∣wn

xn
− 1

4

∣∣∣∣< ε.

As a result, we have the estimates

|Vx|, |Vz| � εx2n.
16
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Proof. It follows from Lemma 2.2 (d) and (e) that

E
(
fn(3,σ

1(n)) − 1

4

)(
fn(4,σ

1(n)) − 1

4

)

=1

4
yn + 1

2

(
un − 1

4
xn

)
+ 3

2

(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)

and

E
(
fn(3,σ

1(n)) − 1

4

)(
fn(4,σ

1(n)) − 1

4

)
=1

4
yn −

(
vn − 1

4
xn

)
.

Then by Lemma 2.1 (a) we have(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)
+
(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)
= 0. (14)

By the definitions of vn , wn , vn , and wn , and by symmetry, it follows that(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)
= 0 and

(
vn − 1

4
xn

)
−
(
wn − 1

4
xn

)
= 0. (15)

Plugging a =
(
Z1(n) − 1

4

∑4
i=1 Zi(n)

)2
, r =

((∑4
i=1 Zi(n)

)2 − 16

)
, and s = 1

16 into equation (7), we have

un+1 =E

(
Z1(n) − 1

4

∑4
i=1 Zi(n)

)2
(∑4

i=1 Zi(n)
)2

= 1

16
E

(
Z1(n) − 1

4

4∑
i=1

Zi(n)

)2

− 1

256
E

(
Z1(n) − 1

4

4∑
i=1

Zi(n)

)2⎛⎝( 4∑
i=1

Zi(n)

)2

− 16

⎞
⎠

+ 1

256
E

(
Z1(n) − 1

4

∑4
i=1 Zi(n)

)2
(∑4

i=1 Zi(n)
)2

⎛
⎝( 4∑

i=1

Zi(n)

)2

− 16

⎞
⎠

2

.

(16)

The first expectation of equation (16) will contribute to the major terms of the expansion:

E

(
Z1(n) − 1

4

4∑
i=1

Zi(n)

)2

=E(Z1(n) − 1)2 − 1

2
E(Z1(n) − 1)

(
4∑

i=1

Zi(n) − 4

)
+ 1

16
E

(
4∑

i=1

Zi(n) − 4

)2

=4dλ2
1xn + 4d(λ2

1 − λ2
2)zn + 16dλ2

1λ2

(
un − xn

4

)
+ O (x2n),

where Lemma 3.5 is used in the last equity and the following derivations. Similarly, we can bound both the second and 
third terms of equation (16) by O (x2n):

E

(
Z1(n) − 1

4

4∑
i=1

Zi(n)

)2⎛⎝( 4∑
i=1

Zi(n)

)2

− 16

⎞
⎠= O (x2n),

and

E

⎛
⎝( 4∑

i=1

Zi(n)

)2

− 16

⎞
⎠

2

= O (x2n).
17
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Considering that Xn = xn + zn and Zn = −zn , the dynamical system (10) yields that

xn+1 = dλ2
1xn + d(λ2

1 − λ2
2)zn + O (x2n).

Equation (16) gives

un+1 = xn+1

4
+ dλ2

1λ2

(
un − xn

4

)
+ O (x2n), (17)

and then

un+1

xn+1
− 1

4
= dλ2

1λ2
xn

xn+1

(
un

xn
− 1

4

)
+ O

(
x2n

xn+1

)
. (18)

Next display the discussion in the X OZ plane. First consider the case that |λ1|/|λ2| � κ for κ > 1. In a small neigh-
borhood of (0, 0), since dλ2

2 < κ2d|λ2
2| � dλ2

1 < 1 and Xn > 0, the discrete trajectory approaches the origin point in a way 
that is “tangential” to the X -axis, when xn is small enough (see Bernussou and Abatut [3]). Furthermore, the conclusion of 
Lemma 4.2 excludes the possibility that the trajectory moves along the Z-axis. Then for some M > 1, there exist constants 
N1 = N1(κ, M) and δ1 = δ1(κ, M), such that if n � N1 and xn � δ1, we have

Xn � MZn and
1

M(M + 1)
dλ2

1xn + O (x2n) > 0,

where the remainder term O (x2n) comes from the expansion of xn+1. Consequently, it follows

xn + zn = Xn �
M

M + 1
(Xn +Zn) = M

M + 1
xn,

and by the fact that zn � 0 then

xn
xn+1

= xn
dλ2

1xn + d(λ2
1 − λ2

2)zn + O (x2n)
� xn

M
M+1dλ

2
1xn + O (x2n)

� xn(
1− 1

M

)
dλ2

1xn
= M

M − 1

1

dλ2
1

.

(19)

For fixed k, by the fact that 14λ4
3(xn − yn)

2 can be bounded by O (x2n) for the reason that |xn| > |yn| implied in Lemma 2.1
(b) and (c), it is known from the dynamical system (10) that

|xn+1 − (dλ2
1Xn + dλ2

2Zn)| � Cx2n.

Furthermore, one has

xn+1 � (dλ2
1Xn + dλ2

2Zn) + Cx2n � (dλ2
1 + Cxn)xn,

and then there exists δ2 = δ2(κ, M, k) < δ1, such that if xn < δ2 then for any 1 � � � k one has xn+� < 2δ2. Therefore, for any 
positive integer k, equation (18) yields

un+k

xn+k
− 1

4
= dλ2

1λ2
xn+k−1

xn+k

(
un+k−1

xn+k−1
− 1

4

)
+ O

(
xn+k−1

xn+k−1

xn+k

)

= (dλ2
1λ2)

k

(
k∏

�=1

xn+�−1

xn+�

)(
un

xn
− 1

4

)
+ R,

where, by equation (18) and with C denoting the O constant therein,

|R| � 2Cδ2

⎛
⎝ k∑

i=1

(
M

M − 1

1

dλ2
1

)i

(dλ2
1|λ2|)i−1

⎞
⎠� δ2

1−
(

M
M−1 |λ2|

)k
1−

(
M

M−1 |λ2|
) M

M − 1

1

dλ2
1

,

and by equation (19)

(dλ2
1λ2)

k

(
k∏ xn+�−1

xn+�

)
� (dλ2

1|λ2|)k
(

M

M − 1

1

dλ2

)k

=
(

M

M − 1
|λ2|

)k

.

�=1 1

18
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Firstly, from Lemma 2.1 (a) one has 0 � un
xn

� 1, which implies that 
∣∣∣ unxn − 1

4

∣∣∣< 1. Secondly, by the fact that |λ2| � |λ1| �
d−1/2 � 1/

√
2, it is possible to achieve M

M−1 |λ2| < 1 by choosing M = 4. Therefore, we can conclude that it is feasible to 
take k = k(ε) sufficiently large and δ3 = δ3(κ, k, ε) = δ3(κ, ε) < δ2 sufficiently small to guarantee that∣∣∣∣un+k

xn+k
− 1

4

∣∣∣∣< ε.

Finally, under the condition that |λ2| � 	 > 0, by Lemma 4.3, we know that there exists γ = γ (	) such that xn−k � γ −kxn . 
Thus, we can choose N = N(κ, ε, k) = N(κ, ε) > N1 + k and δ = γ kδ3, such that if xn � δ and n � N then∣∣∣∣un

xn
− 1

4

∣∣∣∣< ε. (20)

The second part of the lemma can be shown similarly as above.

5. Proof of main theorem

First, consider 	 � |λ2| � |λ1| for any fixed 	 > 0. To investigate the non-tightness, it would be convenient to assume 
that 1 > dλ2

1 � dλ2
2 � 1

2 , say, |λ1| � 1√
2d

. We take 	 = 1√
2d

in the following context. Consider |λ2| > 	 fixed and just λ1

varying, and without loss of generality, assume dλ2
1 >

1+dλ2
2

2 . Consequently choose κ = κ(d, λ2) =
(

1+dλ2
2

2dλ2
2

)1/2

> 1 and thus 

|λ1|/|λ2| � κ .
By the definition of non-reconstruction in equation (2.4), it suffices to show that when dλ2

1 is close enough to 1, Xn does 
not converge to 0 for the reason that it implies that xn does not converge to 0 considering 0 �Xn = xn + zn � xn . We apply 
reductio ad absurdum, by assuming that

lim
n→∞ xn = lim

n→∞ xn = 0. (21)

Therefore, there exists N1 = N1(d), such that whenever n > N1, we have xn � δ. Next, recalling that Xn = xn + zn , we 
further define X n = xn + zn . Then by the symmetry of the model, we can obtain the dynamical form for X n analogously as 
the dynamical form for Xn in equation (10):

X n+1 = dλ2
3X n + d(d − 1)

2

(
−4λ4

3X
2
n + 8λ2

3λ
2
2X nZn

)
+ Rx + Rz + Vx

where Rx and Vx are counterparts of Rx and Vx simply by replacing x by x.
Then we display the discussion in the X OX plane. Since |λ1| > |λ3| and Xn, X n → 0 as n → ∞ from equation (21), in a 

small neighborhood of (0, 0), the discrete trajectory approaches the origin point in a way that is “tangential” to the X -axis. 
Furthermore, the conclusion of Lemma 4.2 excludes the possibility that the trajectory moves along the X -axis. Therefore, it 
implies that there exists N =N (d) > N1, such that whenever n >N ,

X n �Xn, that is, xn � xn. (22)

From the proof of Lemma 4.4, we know that in the X OZ plane there exist N = N(κ, 	) > N and δ = δ(d, κ, 	) > 0, 
such that if n � N and xn � δ, then in the small neighborhood of (0, 0), we have

Xn � 4Zn that is, Xn �
4

5
xn (23)

By equation (22), applying Lemma 4.1, and taking ε = 4
25

d(d−1)
4 λ4

1, one can obtain

|Rz|� 4

25

d(d − 1)

4
λ4
1x

2
n �

1

4

d(d − 1)

4
λ4
1X 2

n .

Next by the result of Lemma 4.4 that 
∣∣∣ unxn − 1

4

∣∣∣ < ε′ and 
∣∣∣ wn
xn

− 1
4

∣∣∣ < ε′ for any ε′ > 0, now we take ε′ = 1
12CV

d(d−1)
4 λ4

1. 
Therefore, by equation (10) and the condition that λ1 � λ2, we have

Zn+1 = dλ2
2Zn + d(d − 1)

2

[
λ4
1X 2

n − 8λ4
2Z

2
n + 1

4
λ4
3(xn − yn)

2
]

− Rz + Vz

� dλ2
2Zn + d(d − 1)

2

[
λ4
1X 2

n − 8λ4
2Z2

n

]
− Rz + Vz

� dλ2
2Zn + d(d − 1)

[
1
λ4
1X 2

n + 1
λ4
116Z2

n − 8λ4
2Z2

n

]
− Rz + Vz (24)
2 2 2
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� dλ2
2Zn + d(d − 1)

4
λ4
1X 2

n − |Rz| − CV x
2
n

(∣∣∣∣un

xn
− 1

4

∣∣∣∣+
∣∣∣∣wn

xn
− 1

4

∣∣∣∣+ xn

)
,

� dλ2
2Zn + 1

2

d(d − 1)

4
λ4
1X 2

n ,

�Zn

[
dλ2

2 + d(d − 1)

2
λ4
1Xn

]
.

Note that the initial point x0 = 1 − 1
4 = 3

4 > 0 and Lemma 4.3 implies that there exists γ = γ (	, N ) = γ (d) such that 

xn � x0γ n . Define ε = ε(d) =
(

x0γ N

10

)2
> 0. Because ε is independent of λ1, considering that dλ2

2 sufficiently close to 1, we 

can choose |λ1| < d−1/2 such that

dλ2
2 + d(d − 1)

2
λ4
1ε > 1. (25)

Noting that d(d−1)
2 λ4

1 �
(

dλ2
1

2

)2

� 1
16 , equation (24) implies that

ZN+1 �
1

2

d(d − 1)

4
λ4
1X 2

N � 1

4

1

16

16

25
x2n �

(
x0γ N

10

)2

= ε.

Suppose Zn � ε for some n > N , and it follows from equations (24) and (25) that

xn+1 �Zn+1 �Zn

[
dλ2

2 + d(d − 1)

2
λ4
1ε

]
> Zn � ε.

Therefore, by induction we have xn �Zn � ε for all n > N , which contradicts to the assumption imposed in equation (21). 
Thus, the proof is completed.
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