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has been studied in numerous contexts, the existing literature with rigorous reconstruction
thresholds established are very limited, and it becomes extremely challenging when the
model under investigation has 4 states, one of whose interpretations is the four main
bases found in Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA): guanine [G],

Keywords:

Classification cytosine [C], adenine [A], and thymine [T]. In this paper, we study a general DNA evolution
Markov random fields model, which distinguishes between transitions and transversions, and allow transversions
Nonlinear dynamical system to occur at the same rate but that rate can be different from the rates for transitions. The

sufficient condition for reconstruction is rigorously established.
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1. Introduction
We firstly give the background and motivation in Section 1.1 and then state our contributions in Section 1.2.
1.1. Background and motivation

The tree reconstruction problem, as an interdisciplinary subject, has been studied in numerous contexts including
statistical physics, information theory, and computational biology. The reconstructability plays a crucial role in phyloge-
netic reconstruction in evolutionary biology (see Mossel [25], Daskalakis et al. [7]), communication theory in the study
of noisy computation (see Evans et al. [10]), analogous investigations in the realm of network tomography (see Bhamidi
et al. [4]), reconstructability and distinguishability in the clustering problem of the stochastic block model (see Mossel
et al. [28,29], Neeman and Netrapalli [30]), trace reconstruction problem (see Andoni et al. [1]), investigations of the ran-
dom field models on sparse random graphs with replica symmetry breaking (see Lupo et al. [21]), etc. The reconstruction
threshold, corresponds to the threshold for extremality of the infinite-volume Gibbs measure with free boundary conditions
(see Georgii [13]), and is known to have a crucial determination effect on the efficiency of the Glauber dynamics on trees
and random graphs (see Berger et al. [2], Martinelli et al. [22], Tetali et al. [34]).

The tree reconstruction model has two building blocks, with one being an irreducible aperiodic Markov chain on a finite
characters set C and the other one being a rooted d-ary tree (every vertex having exactly d offspring). The tree is denoted
as T =(V,E, p), where V stands for vertices, E stands for edges, and p € V stands for the root. Denote o, as the state
assigned to vertex v, and denote o, specially for the state of the root p that is chosen according to an initial distribution
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m on C. The root signal propagates in the tree according to a transition matrix P which is also called noisy channel, in
a way that for each vertex v having u as its parent, the spin/configuration at v is assigned according to the probability
Pij=P(oy, =j|oy=i) fori, jeC.

The reconstruction problem on an infinite tree is to analyze that given the configurations realized at the nth generation
of the tree which is denoted as o (n), whether there exists non-vanishing information on the letter transmitted by the
root, as n goes to infinity. Define o!(n) as o (n) conditioned on 0, =i. We are ready to give the mathematical definitions
regarding reconstruction.

Definition 1.1. We say that a model is reconstructible on an infinite tree T, if for some i, j € C

limsupdry (o' (n), o’/ (n)) > 0,
n—oo

where dry is the total variation distance, i.e.
drv(©' (.7 (m) =sup[P(o () = Ao, =i) ~ P = A0, = .
When the limsup is 0, we say that the model is non-reconstructible on T.

The binary model with 2 states corresponds to the Ising model in statistical physics (see Giuliani and Mastropietro [14],
Giuliani and Seiringer [15] and the references therein for more information), whose transition matrix is given by

1146 1-6), A(-1 1
= — <
P 2<1_9 1+9>+—2<_1 1>, 0]+ Al < 1,

where A is used to describe the deviation from the symmetric channel, i.e. when A # 0 the channel is asymmetric. Whether
the model is reconstructible is closely related to, the second largest eigenvalue by absolute value of the transition matrix
P, denoted as A. For the binary symmetric channel, Bleher et al. [5] showed that the model is reconstructible if and only
if dA% > 1 (see also Evans et al. [10]), which is known as the Kesten-Stigum bound. For the binary asymmetric channel
with sufficiently large asymmetry, Mossel [24,26] showed that the Kesten-Stigum bound is not the bound for reconstruc-
tion. When the asymmetry is sufficiently small, Borgs et al. [6] established the first tightness result of the Kesten-Stigum
reconstruction bound in roughly a decade, and later Liu and Ning [19] gave a complete answer to the question on how
small the asymmetry is necessary for the tightness of the reconstruction threshold.

For non-binary models, the simplest case is the g-state symmetric channel which corresponds to the Potts model in
statistical physics (see Derrida et al. [8], Dhar [9] and the references therein for more information), with the following
transition matrix

Po P1 -+ D1
Pt Po -+ P1
P= . .. .
pP1 pP1 -+ Po

axq

Sly [32] established the Kesten-Stigum bound for the 3-state Potts model on regular trees of large degree and showed that
the Kesten-Stigum bound is not tight when q > 5. Liu et al. [20] proposed the following model to distinguish between
transitions and transversions, whose transition matrix has two mutation classes with q states in each class

Po ifi= j,
Pij=1 p1 ifi # j and i, j are in the same category,
D2 ifi # jand i, j are in different categories.

When the number of states are more than or equal to 8, Liu et al. [20] showed that the Kesten-Stigum bound is not tight.

The 4-state cases give very important reconstruction on the tree models, especially for the applications in phylogenetic
reconstruction since they correspond to some of the most basic phylogenetic evolutionary models (see the discussions in
Section 2.5.1 of Mossel [27]). However, the 4-state case is much more challenging. The reason can be seen from equation
(1) on page 1371 of Sly [32] where a key role is played by the sign of ¢ — 4; when q > 5, it is positive and this allows us to
show that if dA? is sufficiently close to 1 then the model is reconstructible beyond the Kesten-Stigum bound. Visualization
of the challenge in handling 4-state cases can be seen from Figure 3 on page 042109 — 13 of Ricci-Tersenghi et al. [31]. Its
reconstruction problem was open until very few new results established recently. For the symmetric model with 4 states,
Ricci-Tersenghi et al. [31] showed that in the assortative (ferromagnetic) case the Kesten-Stigum bound is always tight,
while in the disassortative (antiferromagnetic) case the Kesten-Stigum bound is tight in a large degree regime and not
tight in a low degree regime. Later, Liu and Ning [18] investigated a 4-state asymmetric model based on the F81 model
(Felsenstein [11]) and gave specific conditions under which the Kesten-Stigum bound is not tight.
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DNA is a molecule composed of two chains coiling around each other to form a double helix, and these two DNA strands
are composed of simpler monomeric units called nucleotides, each of which is further composed of one of four nitrogen-
containing nucleobases (guanine [G], cytosine [C], adenine [A] or thymine [T]). Molecular phylogenetics is a branch of
phylogeny to specially analyze the genetic or hereditary molecular differences in order to gain information on an organism’s
evolutionary relationships. Markov models of DNA sequence evolution were proposed and widely used in phylogenetic
reconstruction. We refer interested readers to the classical book Felsenstein [12] for more information.

1.2. Our contributions

In this paper, we consider a general DNA evolution model, which follows the K80 model (Kimura [17]) and the TN93
model (Tamura and Nei [33]) in distinguishing between transitions (A<> G, i.e. from purine to purine, or C <> T, i.e. from
pyrimidine to pyrimidine) and transversions (from purine to pyrimidine or vice versa), and follows the TN93 model in
designing that transversions occur at the same rate but that rate is allowed to be different from both of the rates for transi-
tions. Specifically, in this paper, we focus on a 4-state model with the transition matrix of {A, G, T, C}, or the configuration
set {1, 2, 3, 4}, of the form

Besides different out-block transition probabilities p,, the model under investigation has different in-block transition
probabilities: po and p; in one block, py and p; in the other block. It is easy to see that P has 4 eigenvalues: 1, .1 = po—p1,
A2 = Ppo + p1 —2p2, and A3 = py — P;. Let A be the second largest eigenvalue by absolute value. Kesten and Stigum [16]
showed that any model is reconstructible when dA? > 1, so we only investigate dA? < 1 in the following context. Since A
and A3 play symmetric roles in this symmetric model (1), without loss of generality, we presume |A1| > |A3| in the sequel.

In Section 2, we give detailed definitions and interpretations, conduct preliminary analyses, and then provide an equiva-
lent condition for non-reconstruction:

lim x, = lim x, =0.

n—oo n—oo
Here, x, and X, represent the probabilities of giving a correct guess of the root given the spins o (n) at distance n from the
root minus the probability of guessing the root randomly which is 1/4 in this case, for the root being in block 1 and block
2 respectively. Nonreconstruction means that the mutual information between the root and the spins at distance n goes to
0 as n tends to infinity, therefore one standard to classify reconstruction and nonreconstruction is to analyze the quantity
Xp while in this paper we also need to consider the limiting behavior of x;,.

In Section 3, after in-depth investigation of the recursive relationship, we develop a two dimensional dynamical system
of the linear diagonal canonical form regarding quantities x,41 and z,;q through two new variables &; = x, + z; and
Zn = —Zn:

Knyr = dA3 X 4+ M0 (—apdx2 4 832024, Z,) + Ry + R, + Vy

Zp1 =22, + 4D A2 _ 83422 4 AR, — 5% - R, + V..

Here, z, represents the opposite case of x, as giving a wrong guess in another block. By symmetry, we can also obtain the
dynamical system involving X, simply through replacing A1 by A3. Our main result is the following theorem, whose rigorous
proof is given in Section 5.

Main Theorem. If |A1]  |A3] and 0 < |A3| < max {|A1], |A3]}, the model is reconstructible even if dx* < 1 with A being the second
largest eigenvalue of the model.

In Section 4, we show that Ry, R;, Vi, and V, are just small perturbations in the above dynamical system in order to
study its stability, ensure that the decrease from x, to x,y1 is never too large to lose construction, and establish crucial
concentration results, by fully taking advantage of the Markov random field property and the symmetries in the probability
transition matrix and the network structure.

In Section 5, by means of the method of reductio ad absurdum, we show that x,, and X, can not simultaneously converge
to zero as n goes to oo, and then establish the nontightness of Kesten-Stigum bound in the Main Theorem of this paper.

2. Preliminary analysis

Let uq,...,uq be the children of the root p and T, be the subtree of descendants of v € V. Denote the nth level of
the tree by L, ={v € V :d(p, v) =n} with d(-,-) being the graph distance on T. Denote o (n) as the spins on L,. Denote
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oj(n) as the spins on L, N Tuj where u; is one of the children of the root p. For the notations involving o (n) in the sequel,
we consistently use superscript to denote the conditional on a specific configuration of the root, and use the subscript to
denote the conditional on a specific offspring of the root.

For a configuration A on the spins of L, define the posterior function by

fai,A)=P(op =i|o () =A)=P(oy; =i|oj(n+1)=A),

fori=1,2,3,4and j=1,---,d, where the second equality holds by the recursive nature of the tree. Recalling that o (n)
being o (n) conditioned on o, =1, by the definition of f,(i, A) given above, we have

fali,0'() =P(0, =i |0 () =0'(n)).

Define X;(n) as the posterior probability that the root p is taking the configuration i given the random configuration o (n)
on the spins in Ly, i.e.,

Xi(n) = fa(i,om), i=1,23,4.
Apparently one has

X1(m) + Xo(n) + X3(n) + Xq4(n) =1.

By the block characteristic of the model, we know that regarding the first (resp. second) block, X1 (n) and X, (n) (resp. X3(n)
and X4(n)) have the same distribution. Considering that the stationary distribution & = (771, 72, 73, 4) of P is given by

1
T1 =7T) =73 =7T4=Z,

we further have

E(X1 (1) = E(Xa(m) = E(X3(n)) = E(Xa(n)) = %
From the symmetry and the block characteristic of the model, we know that
faliod ) = faGootm),  for i#j, ije(1,2)or(3,4),
and
fa(1,0% @) = fa(1, 0% ().

Define Yij(n) as the posterior probability that oy; =i given the random configuration ajl (n+1) onspinsin L(n+ 1) N Tuj,
ie.,

Yij() = fali,o] 4 1)),  for i=1,2,3,4, j=1,---.d,
where the random variables {Y;j(n)} are independent and identically distributed and satisfy

Y1j(n) +Yyi(n) 4+ Y3j(n) + Yqi(n) = 1.

We define the following moment variables to analyze the differences between different inferences of o, given the spins
o (n) at distance n from the root p and the probability of guessing the root randomly:

1 1
Xn=E(fn(1,0](n))—Z), yn=E<fn(2,01(n))—Z>,

3 1 1 1 2
zn=E( (1,0 (n))_é_l s up=E| fu(l,0 (n))_z1 s
1 2 1 2
vnzla(fn@,a](n))—z : wn=E<fn<1,o3(n>)—Z) :
1 1
X =E (fn@, o3(n)) — Z) ., Yn=E (fn(4,o3<n)) — Z) ,
_ 1 1 _ 3 1\?
zZn=E| fr(3,0 (n))—[—1 , up =E( fn3,0 (”))_21 ,
2

_ 1 _ 1\?
vn=E<fn<4,a3(n>)— Z) : wn=E<fn<3,ol<n>)— Z) :
We firstly establish some important lemmas which will be used frequently in the sequel.
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Lemma 2.1. For any n € N U {0}, we have

1\2
(a) xn=4E(X1(n)—Z> =uUy+Vvyp+2w, =0.

(b) St =zn=2n=—x”+Ty”<0.

(¢) X%n+2, 20, Xn+2z720.

Proof. (a) By the law of total probability and Bayes’ theorem, we have

Efe(1.0'm) =Y fal. AP(G() = A0, =1)
A
= 4an(1, APy, =1|0o () =A)Pcm) = A)
A
=4 f2(1, AP(o () = A) = 4E(X1(m))*.
A
Recall that x, is defined as x, = E (fn(l, oln)) — %) and then by the fact that E(X;(n)) = & we have

X, _—4 EX n 2— —1 ’ _—4]‘: X n ——l ’

Furthermore, by the law of total expectation, we have

1\2
Xn =4E <X1 n) — Z)

4 1 2
=4ZE<(X1(n) — Z)
i=1

2
=4 [p(op =1)E <fn(1,o1(n)) - %) +P(0, =2)E (fn(l,o*z(n)) - %)

0p= i) P(o, =1)

2

2 2
+ P(o, =3)E (fn<1,a3<n>> - %) +P(0p, =4)E (fna,a“(n)) - %) }
=Up + Vn + 2wWy,.

(b) Similarly, we have
1 1
zn =4E(X1(mX3(m) — 7 =E (fn(l,o3(n)) - Z) =7, )
1—Zf(z AP0 () = A| 0, = 1) =4E (X1 (M) X2(n)
yn+Z—A n(2, AP(a(n)=A|op=1)=4E(X1(n)X2(n)),

and then

1 1
yn =4E <X1 (n) — Z) (Xz(ﬂ) - Z) . (3)

It follows from the Cauchy-Schwarz inequality that

1 1\7? 1\? 1\?
[E<X1(n)—z> <X2(n)_2>] <E<X1(n)—z> E(XZ(")_Z> ,

which implies

1 \2 /1 \?
(Zyn> g(zxn) , lLe. —Xxp<yn<Xn. (4)

By the definitions of x,, y, and z,;, we know that z, = —’WT“, and thus equation (4) implies z, < 0.

5



N. Ning and W. Liu Discrete Mathematics 345 (2022) 112836

(c) An analogous proof of

X Xn — _
Xn 4 Zn = X — "—;y”: "zy”>0 and X, +2z,>0

can be easily carried out.

Lemma 2.2. For any n € N U {0}, we have

@ (.ot - ;) (ot o - ;)= (- gm)
(b) (fnu o <n)>—}1 (fn(z ol 5)

<

|
e )d )
(c) E(fn(Z o (ﬂ))—2>1( (EN (n))——
)
)
<

-bl'—*

-bl»—*\—/
/_\
-bl»—‘

x
=
N——

Ja
(d) (fn(3 o'm) - ( n (4,01 ) — )

oo de) 2o o)

427m
1 1 1
(e) E( n(1,0 (n))——> Q2,0 (n))_—>:Z}’n_(VH_ZXn>'

Proof. We only prove (a) and (b) and the others can be shown analogously.

(a) By the law of total probability, one has
E(fn(l, o' m) fa(2, ol(n»)

=Zp(ap =1lom)=AP,=2lcm)=APom)=Alo,=1)
A

:Z[P(ap =2|o®) :A)]ZP(o(n) =Alo,=1)
A

—E (fn(2,0'()))°,

therefore

E (fnu, ol(n)) — %) (fn(z, ol(n) — }1)
VLV VY (VR
=V 2 (Yn —xn) = 4.Vn (Vn 4Xn) .

(b) By the fact that f,(3,01(n)) and f;(4, o '(n)) have the same distribution, and the equation that

fa(,ot) + fr2, 0T M) + faB,0' (M) + fa4, 0 () =1,

plugging in the result of (a), we can obtain that

1 1 1 1
E (fn(l,ff (m) — Z) (fn(3,0 (m) — l_l)
1 1 ( 1 ) 1 < 1 )
=-Zn—s\Un—ZXn ) —5\Vn— ;% ),
4 2 4 2 4

Recall that Y;j(n) is defined as the posterior probability that oy ; =1 given the random configuration ol(n + 1) on spins
in Ln+1)N ']I‘uj, ie, Yij(n) = fn(i,crj1 (n+1)), for i €{1,2,3,4} and j € {1,---,d}. The random vectors (Yu(n)) , are
independent by the symmetry of the model, and its central moments are investlgated in the following lemma.

as desired.
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Lemma 2.3. For each 1 < j <d, we have

1
(a) E <Y1j(n) - —) = MXn + (A1 — A2)Zp.
(b) E{ Ya;(n) — Z) = —AXp — (A1 + A2)Zp.

1
(c) E Y,](n)—Z)—Azzn, i=3,4.

2
1 1
(d) E{ Yq;(n) — = 2% + XA (un —=Xp |+ (1 —22) (Wn - an> .

(rm=3) - )
(e) E <Y2](n) 1>2 1Xn —M (Un - 1Xn) — (M +A2) (Wn - an) .
4 4 4
(f) E(Y n) — 1)22—2 + A (W —1§ )
ij ! 2% n = gXn
< 1
E

@ E (Y10 - )
1
4
2

1
(h) (Yu(n) )(Yij(n)—z>
M= A 1 AM+A 1 .
:Zn+ 12 (vn—:lxn>+ 12 Z(WH—an>, i=3,4.

Zn A t+A 1 Al — A2 1 )
=— — Vp— —Xp | — 5 wn—an , 1=3,4.

. 1 1 1_ _ 1_
() E( Y3 = 5 ) (Yo = 5 ) =3V =22 (Va = g% ).
Proof. We only prove (a), (b), and (c) and the others can be shown analogously.

(a) Conditioning on oy; =i for i € {1,2, 3,4}, we have
1 1 1 2 1
E{Yq;(n)— 2 =pnuE| fnl,0 M) —— )+ prE( fu(l,0°() —

1
+ p13E (fn(l o) — 7> + p14E <fn(1 otn) — *)
=(po— P1)Xn + 2(p2 — P1)Zn
=MXn + (A1 — A2)zn.
(b) Similar, we can obtain
1

E <Y2j(n) — Z) =(p1 — Po) Xn + 2(P2 — Po)zn

=—AXp — (M +A2)Zy.

(c) It follows immediately from the identity Zle Yij(n) =1 that, for i =3, 4,
(Y,](n) ) —= ZE <Yu(n) - —) = Aoz,

If the model is reconstructible, o (n) contains significant information of the root variable. This can be expressed in several
equivalent ways (see Mossel [24,26]). According to Definition 1.1, we have the following lemma (Proposition 2.1 on page 3
of Mossel [26]).

Lemma 2.4. The model being non-reconstructible is equivalent to

lim x, = lim x, =0.
n—o0o n—oo
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3. Recursive formulas
3.1. Distributional recursion

Consider A as a configuration on L(n 4+ 1), and let A;(j=1,.--,d) be its restriction to ’IFu]. N L(n+ 1) where u;j is the
jth child of the root p. The following lemma provides a fundamental recursion formula in this section.

Lemma 3.1. We have

Ni(n
fut (1, A) = L , (5)
Ny(n) 4+ Na(n) 4+ N3(1n) + N4(n)
where
d [ 4
Nem =] [mel’(aj(n +=Ajloy = i)} . ke{1,2,3.4).
j=1Li=1
Proof. By the definition of f;,1(i, A) given in Section 2, we have
for1(1,A)=P(op =10+ 1) =A).
By Bayes’ theorem we have
frat(1.A) _Plon+1)=A,0,=1)
LA Po(n+1)=A)
B [} i Poj(n+ 1) = Aj oy, =i.0,=1)
1) Y1 Plojn+1) = Aj, oy, =i, 0, = k)
i X, [P(aj(n + 1) =Ajloy;=i,0,=1Poy;=i|0,=1)P(0, = 1)}
o1 Xt [P(aj(n +1)=Ajl oy, =i,0, =k)P(oy, =i |0, =k)P(0, = k)]
By the Markov property, we further have
]_[‘Ji-:1 Z?:l [P(oj(n +1)=Ajloy =0)P(oy; =ilo,=1)P(o, = 1)]
fTH—l (15 A) = .
T e [P(aj(n +1)=Aj| oy, =i)P(oy, =i| 0, =k)P(0, = k)]
Given that the configuration of root have equal chance to be 1,2, 3, 4, we have P(o, =k) =1/4, and then
]_[7:] Z?:] |:P(crj(n +1)=Ajloy; =)P(oy; =ilop,= 1)}
fnr1(1,A) =
1o e [P(aj(n +1)=Aj| oy, =)P(oy; =i|0p = 1<)]
M X, [puP(aj(n +1) =Aj|oy; = i)]
l_[(]j':1 Zﬁk:] |:pl<iP(O'j n+1)=Aj| Oy; = l):|
which completes the proof.
The following lemma elaborate the result of Lemma 3.1.
Lemma 3.2. For any realization of 1 (n + 1), denoted as A = (A1, ..., Aq), where Aj denoting the spins on L1 N rJl‘uj, we have

Z1(n)

(1, A) = W
o S Zu)
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where, fork=1,2, 3,4,

d 4
1
zvm =] [1 + ) Api (fna', Aj) — Z)}

j=1 i=1
. Po@m+1)=A)
[T, Poj(n+1) = A))

P, =k|o@m+1)=A).

Proof. By Lemma 3.1, the definition of f;,1(i, A) given in Section 2, and Bayes’ theorem, we have
d 4 .
[Ti-: [ S P+ D = A 1oy, = )]

S I [ puPo;m+ 1) = 4 0y, = )]
P(oj(n+1)=A))

d 4 , =
[1j=1 2icq Pifa(i, Aj) P00y, =)
= d . P(oj(n+1)=A;
i [Tiz Yoty Pri S, Aj)%
_ T X piifaG AP0+ 1) = A))
ST Sy P ApPO(+ 1) = Ap)

where the last equality holds for the reason that the process started from uniform distribution and then P(oy; =1i) = }l for
i=1,2,3,4. Furthermore

[n‘}=1 Y piifatii A j)} x [ng P(oj(n+1)= AJ-)]

fa1(1,A) =

fa1 (1, A) =
[23:1 [T5=1 i prfui. A p] x [H;Ll P(oj(n+1)= An]
T X paifali, A

Y T S pui i A

_ Zhi(m)

YRR
where, since Z?:] pri=1forany k=1,2,3,4,

d 4
1
zm=]] [1 + ) 4p (fn(i, Aj) — 4>} :

j=1 i=1

That is,

d 4
ar =13 pusnt. .
j=1i=1

Hence,

Zk(n)

l_[P(a](n+1)_A )

d
=] Zpklfnu ApP(oj(n+1) =A))

j=1i=1

d 4
=[1D_ puiPow, =i.0jn+1)= Ay

j=1i=1

d 4
=[12_puP(ojtn+1) = Aj | 0w, = )P(0ou,; =)

j=1i=1
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I
=)=
—
-

~.
Il
_
Il
_

pkiP(ojin+1)=Aj|oy; =1)

pkiP(oj(n+1) = Aj|oy; =i,0p =k)

I
=)=

—
-

~.
Il
_
Il
_

P(oy; =i,0p =k)P(Oj(n+1) = Aj, 04, =1,0, =k)
P(o, =k) P(oy; = i,o,=k)

I
=)=

—
-

~.
Il
_
Il
_

P(ojn+1)=Aj,o4; =i,0p =k)

I
B
-

NE

Il
N
Il
_

J

]
d
]—[p(aj(n +1)=Aj,0p=k)
=1
d
j=1

d
1
= [[Pein+ 1) =4j10,=k
j=1

::—dP(O'(Tl—‘r‘l):A lop=k)
::_dp((’(” +1)=AP,=k|om+1)=A).
Then we have
Ploc(n+1)=A)
[15=1P(ojn+1) = A))

which completes the proof.

Zr(n)=4 Plop=klon+1)=A),

Given that Lemma 3.2 holds for any realization A of o' (n + 1), we are ready to extend the result of f;,1(1, A) to that
of fu11(1,01(n+ 1)) given in the following lemma.

Lemma 3.3. We have
Z1(n)

s 6
Z1(n) + Zo(n) + Z3(n) 4+ Z4(n) ®

far1(1,ol(n+1) =

where
1‘[‘}:1 [1+420q +22) (Y1) — §) =200 —22) (Yo5m) — )], i=1,
Zim) = 1921 [1 =200 = 22) (Y100 — §) + 200 +22) (Y20 — )], i=2,
U T [T+ 200+ 29) (Y3 — §) + 202 — A3) (Yagm) — )], i=3
j=1 J 4 J 1)1 ’
T2y [14202 = 23) (Y30 — §) + 202 +43) (Yaj(m) — §)] . i=4

Proof. Given that
fa(LA) + fa2,A) + B, Aj) + fn(4, Aj) =1,
plugging in the values of {py;} from the probability transition matrix (1), by Lemma 3.2, we obtain

d

1 1
zim =] [1 +4po (fna, Aj) — Z) +4py (fn(z,Aj> - Z)

j=1
1 1
+4p2 (fn(3, Aj) — Z) +4p2 (fn(4» Aj) — 4_1)]

10
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1 1
=[T|1+4po(fa1, ) = 3 ) +4p1 ( a2, A - 5

j=1
(12 (s 1))

1
= 1_[ |:] +4(po — p2) (fn(], Aj) — Z) +4(p1—p2) <fn(2 Aj) — _>]
d 1 1
=11 [1 +2(A + 12) (fn(l, Aj) — Z) =2 —22) (f”(z’ Ap = Z)} ’

where the last equality holds since A1 = po — p1 and Ay = po + p1 — 2p>. Similarly, we have
1 1
Zy(n) = 1+4p1 | fa(1,A) — 2 +4po | fn(2,Aj) — 2

1 1
+4p2 (fn(3, Aj) — Z) +4p> <fn(4» Aj) — Z)]

d
1 1
=11 [ +4p1 (fn(l, Aj) — Z) +4po <fn(2,Aj) - Z)

j=1
—4p2 |:(fn(1: Aj) — %) (fn(2 Aj) — —>H

1
[]|1+4(p1—p2) (fnm, Aj) - Z) +4(po — p2) (

fn(2,Aj) — —ﬂ
)

—_

j=1"

1
1-2( —22) (fn(l,Aj) - 71) +2(A +2A2)

Z3(n) =

d

ar 1 1

1_[ 1+4p; (fn(l, Aj) — Z) +4p> <fn(27Aj) - Z)
n(

_ 1 _ 1
+4po <f 3,Aj) — Z) +4p1 (fn(4» Aj) — 4_1)}

1 1
= 1'{ [1 —4p, [(fn(& Aj) — Z) + <fn<4, Aj) — Z)]

]:

_ 1 _ 1
+4po (fn(3’ Aj) — Z) +4p, (fn(4, Aj) — 4_1)]
_ 1 _ 1
= 1_[ [1 +4(po — p2) (fn(3, Aj) — Z) +4(p1 — p2) <fn(4, Aj) — Z)}

d 1 1
— 1_[ |:1 +2(h2 + A3) (fn(3, Aj) — Z) +2(A3 — A3) (fn(4, Aj) — Z)] ,

and

d

1 1
Z4(n) = 1_[ [1 +4p2 (fn(l, Aj) — Z) +4p> (fn(l Aj) — Z)

j=1
_ 1 _ 1
+4p1 (fn(3, Aj) — Z) +4po (fn(‘l'» Aj) — Zl)]

11
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d

1 1
=11 [1 —4p; [(fn@, Aj) - Z) + <fn(4,Aj> - Z)]

j=1

_ 1 _ 1
+4p1 (fn(3, Aj) — Z) +4po (fn(47 Aj) — 4_1)}

_ 1 _ 1
[ +4(p1—p2) (fn(3, Aj) — Z) +4(po — p2) (fn(4, Aj) — Z)}

1
1 1
[1 +20k2 — 43) (fn(l A~ ;1) +2(k2 +23) (fn<4’ A= Z)] |

d

j=1

d

j=1

Since the above results hold for any A as realization of o!(n + 1), recalling that Yij(n) = fu(, cr} (n+ 1)), we complete the

proof.

Lemma 3.4. For any nonnegative n € Z+, we have

E(Z1(n)Zy(n)) =EZ5(n).

Proof. For any configuration A = (A1, ..., Ag) with A; denoting the spins on Ly1 N ’IFuj, by Lemma 3.2, we have
Plo(n+1)=A)
[1j-1 P(oj(n+1)=A))

By the symmetry of the tree, we have

Plon+1)=A)
E(Z1(n)Z2(n)) =16
o ;<H‘}=1 P(ojn+1) =Aj)

xPo,=2]o+1)=APon+1)=Al0,=1)
( Plo(n+1)=A)
=16 -
+ \[T9_ Poj(n+ 1) = A))
xPlom+1)=Alo,=1)
=EZ3(n),

Zi(n) =4

Po,=i|om+1)=A), fori=1,2.

2
) P(o,=1]|0(n+1)=A)

2
) P’(0,=2|o(n+1)=A)

as desired.
By Lemma 2.3, the means and variances of monomials of Z;(n) can be approximated as follows:
Lemma 3.5. One has

(i) EZ1(n) =14 dA34(xn + zn) — dA34z,
dd-1
2

2 2 2 3
+ [4A1 (%n + 21) — 4,\2z,,] +003).
(ii) EZy(n) =1 — dA34(xy + zn) — dA34z,

dd—-1 2
MGl [4x%(x,, +zn)+4,\§zn] +03).
dd—1 2
(ii}) EZi(n) =1 + d224z, + 10D (932:) + 00, i=3.4
dd-1
(iv) EZ3(n) =1 +dI1; + %n? + 0(x2), where

1 1\ 12
IT; =E |:1 +2(A +A2) (Yl](n) - Z) —2(A —A2) (YZJ(H) — Z)] -1
2 2 2 1
:12)\.] (Xn + Zn) — 12)"2211 —+ 16)\‘1)\‘2 Up — an
=80 —Aha (Vi — 2 ) +8(0 — A)h2 | Wn — Zxn ).

12
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(v) EZ3(n) =EZ1(n)Zy(n) =1 +dT, + @ng + 0(x3), where

1 1\ 72
I, =E [1 =20 —A2) (Y1j(n) — Z) +2(M 1 +A2) (Yzj(n) - Z)] -1
2 2 2 1
= — 407 (Xn + zn) — 12052 — 16A7A2 (un - an>
2 2 1 2 2 1
_ 8()\«1 - )\2))&2 Vn — an — 8(3)»] —|—}\2))\2 Wy — an .

dd—1
(vi) EZ2(n) =1 +dIT5 + %ng 4 0(3), fori=3,4, where

1 YK
s =E [1 1200 +23) (Y3j(n) - Z) +2(A2 —23) <Y4j(n) - Z)] -1
- 1
=405z + 205 (Fn — V) — 8(A3 — 4512 ("" - ZX")
2,2 W _ 1o
+8(A5 +A3)A | Wy — an .

(vii) EZy () Zi(m) =1+ dr1 4+ 24D

Hi + O(xﬁ),forl’ =3, 4, where

My =E [1 +2(01 +22) (ylj(n) - %) —2(A —A2) (Yzj(n) - %)}
x [1 +2(02 4+ A3) <Y3j(n) — %) +2(A2 — A3) <Y4j(n) - }1)} -1
=422 (Xn + 2n) + 4332, + 8(A% — A2)Aa (vn - %Xn)
+8(A3 + A2 <wn - }lxn)-

dd—-1)
2

1 1
5 =E [1 —2(A1 —22) (Yu(ﬂ) - 71) +2(1 +A2) <Y2j(ﬂ) - Z)}

1 1
X |:1 +2(A3 + A3) <Y3j(n) — Z) +2(A3 — A3) <Y4j(n) — 4_1)] -1

(viii) EZa(n)Zi(n) = 1+ dI5 + M2 + 0(x2), fori = 3, 4, where

2 2 2 2 1
=— 407 (Xn +zn) +4A52, — 8(A] +A)A2 | v — an
2 2 1
=81 —APAy | wp — an .

dd—1)

(ix) EZ3(m)Za(n) =1+ dlg + —

Hé + O(xﬁ), where

Mg =E [1 +2(h2 +23) <y3j(n) - }1) +2(A2 — A3) <Y4j(n) - }1)}
x [1 +2(h2 —A3) (ng(n) - %) +2(h2 4 23) <Y4,-(n) — }1)} -1
= — 4A3(Xn + Zn) + 42320 — 8(A3 + A)A2 (V,, - %x,,)
+ 813 —AHnn <Wn - }lxn> .

13
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3.2. Main expansions of X;+1 and Zp41

In this section, we investigate the second order recursive relations associated with x,4; and z,41, with the assistance of
the following identity

a a a r* a

s+r s s2 S2s+r
Plugging a = Z1(n), r = Z1(n) + Zy(n) + Z3(n) + Z4(n) — 1, and s =1 into equation (7), by the definition of x, and equation
(6), we have

(7)

1
Xn+1 + 2
_E Z1(n)
Z1(n) + Zz(n) + Z3(n) + Z4(n) (8)

=EZ1(n) —EZ1(n) (Z1(n) + Z2(n) + Z3(n) + Z4(n) — 1)
Z1(n)
Z1(n) + Za(n) + Z3(n) + Z4(n)”
Next, plugging a = Z3(n), r = Z1(n) + Z2(n) + Z3(n) + Z4(n) — 1, and s =1 in equation (7), by the definition of z, and an
analogous derivation as equation (6), we can obtain

_ 1
Zn+1 + 2
=EZ3(n) —EZ3(n) (Z1(n) + Z2(n) + Z3(n) + Z4(n) — 1) (9)
Z3(n)
Zi(n) + Za(n) + Z3(n) + Z4(n)

Finally, plugging the results of Section 3.1 into equation (8) and equation (9), and then taking substitutions of

+E(Z1(0) + Zo(n) + Z3(n) + Z4(n) — 1)?

+E(Z1(n) + Zo(n) + Z3(n) + Za(n) — 1)>

Xp=xn+2zy, and Z,=-2z,,
we obtain a two-dimensional recursive formula of the linear diagonal canonical form:

K = 23X + YD (43842 4 8020240 Z,) + Ry + Rz + Vi

(10)
Zppr =dA2Z, + 9D 4x2 - 83422 AR — T2 - R+ V2
where
2
4
2 E( Zi(n) 1) (Zi:1 Zi(”)—4)
x = 2 - ,
Yz 4 16
2
z 1 (Z?:l Zi(”)—4)
Re=E( g :
YimZimy 4 16
u 1 w 1 w; 1
Vil IV SCux (|2 == |+ | == — = | +x ) +CvR [ | == — = | +%
|X||Z| Vn(xﬂ 4’+ Xn 4‘+ ﬂ)+ Vain Xn 4+n

where Cy is an absolute constant.
4. Concentration analysis
In order to study the stability of the dynamical system (10), we show that Ry, R;, Vy, and V; are just small perturbations,

in the following two lemmas. The proof of Lemma 4.1 resembles that of Lemma 9 in Liu and Ning [18] and is skipped for
conciseness.

Lemma 4.1. Assume [A2| > 0 > 0 and |11|/|A2| = k for some k > 1. For any € > 0, there exist N = N(x, &) and § =8(k, 0,¢) >0,
such thatifn > N and x, < x, < §, then

IRxl, IRz| < ex2.

14
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The following lemma improves the result of Lemma 2.1 (c) by establishing the strict positivity of the sum of x, and z,.

Lemma 4.2. Assume A1 # 0. For any nonnegative n € Z, we always have

Xn + 2y, > 0.

Proof. In Lemma 2.1 we proved that x, + z, > 0, so it suffices to exclude the equality. Now let us apply reductio ad
absurdum and assume x, + z, = 0 for some n € N. Similar to the derivation in Lemma 2.1 (a) and (b), one can obtain that

E(X1(n) — X2(m))* = 2E(X1 ())* — 2EX1 (m) X2(n) = Xq + 2n = 0.
For any configuration set A on the nth level, we always have
Plop,=1|0(n) =A)=P(o, =2|0n) = A).
Denote the leftmost vertex on the nth level by v, (1), and it follows that
P(O’p =1 | Ov,(1) = 1) = P(Up =2 | Ov,(1) = 1).

Define the transition matrices at distance s by Us = Mj ;, Vs = Mj ,, and W = Mj ;. Then we have the following recursive
system

Us=poUs—1 +p1Vs—1 +2p2W;5_1
Vs =p1Us—1 +poVs—1 +2p2Ws_1.

The difference of the above two equations evolves as
Us = Vs =21 (Us—1 — Vs-1),
and then considering that Up =1 and Vo = Wy =0, we have
Us — Vs =23. (11)
Finally, from the reversible property of the channel, we can conclude that
)\q = Un — Vn :P(O'p =1 |0vn(1) = 1) —P(O’p =2 | Ov,(1) = 1) :0,
i.e,, A1 =0, a contradiction to the assumption that A1 #0.

The following lemma ensures that x,; does not drop too fast.

Lemma 4.3. Suppose that there exists an integer N > 0, such that x, > X, when n > N. For any o > 0, if min{|A1[, |*2|} > o, then
there exists a constant y = y (0, N) > 0 such that

Xn+1 = Y Xn.

Proof. Different to the definition of Y;j(n) = fu(, o} (n+ 1)) which is the posterior probability that oy; takes value i given

the random configuration aj] (n+ 1) on spins in ']I‘u]. N L(n+ 1), we consider a configuration set A on Ty, NL(n+ 1) and
define the posterior function g,+1(1, A) as

gn+1(1,A) =P(op =1]01(n+1) =A)

1 1 1
=4 TPo (fn(l,A) - Z) + D1 (fn(Z, A) — Z) + D2

3 (fno’,A) - %)

i=3,4

Ltk <fn<1, A - %) L2l (fn(z,m - %) .

4 2 2
Setting A = 011 (n+ 1), by Lemma 2.3, we have

Egoi(lolm+1)y =t + 252y = D)y 222 (v oy - ]
Sn+1(1, 04 =2 ) 11 P ) 21 2

1
=2+ AMxn + (02 = 23)z,.

15
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Apparently, we have the following inequalities (see Mézard and Montanari [23]), regarding the estimator g,1(1, 011 n+
1)) and the maximum-likelihood estimator:

EP(0, =1|0{(n+1)) <E max P(o, =i|o(n+1))=E max X;(n+1)
1<i<4 1<i<4
1/2
<1+ Emax | Xi(n+1) 1y’ /
4 i ! 4
N 172
<1+ EY (Xin+1) !
4 — : 4
1 ap
<Z+Xn+‘la

where the last inequality follows from the condition that x,41 < Xp+1. Therefore,
L 2% 1 02 =32z, < L 1 x12
2 1Xn 1 24 s n+1-

If 22 > 23, then it is concluded from X, > —z, >0 in Lemma 2.1 that

1/2
A%xn < A%xn + (k% - A%)(xn +zn) = A%xn + (A% - A%)zn < xnil.

If 22 < 32, then A2x, < x1/, since z, < 0. To sum up, we always have

. 12
min{A3, A3}x, < xnfﬂ. (12)

Under the condition that x;41 > Xp41, it can be concluded from the dynamical system (10), Lemma 4.1, and the following
inequalities achieved in Lemma 2.1

w
Wn _ _‘ <1, (13)
that there exists a § =§(&) > 0 such that when x, < § one has
Xnp1 + Znp1 =Xog1 = (dminfaf, A3} — &)xy.
Under the condition that min{|A{|, |A2|} > ¢ for any @ > 0, set &€ = 0? and then we further obtain
d min{kz, A%} — &)Xy = (d— 1)sz,1 > szn.
On the other hand, if x, > §, by equation (12), one has
Xn41 > (Min{Ag, A3}1xn)% > 0%6xn.

Finally, by Lemma 4.2, it follows that x;, > x; + z; > 0, and thus X’;(—ﬁ‘ > 0 for all n. Therefore, taking

y=y(97N)=n=

. Xn+1
min 0%.0%, 11> 0
0.1,2,...N Xn

completes the proof.

The following lemma provides the crucial concentration estimates of u, — XT” and wy, — Xz", when x; is small.
Lemma 4.4. Assume |Ay| > 0 > 0 and |11|/|A2| = k for some k > 1. For any € > 0, there exist N = N(k, &) and § =8(k,0,€) >0,
such that ifn > N and x, < x, < 8, one has

Up 1
— ——|<e,
Xn 4

Wy 1' ‘Wn 1
— ——|<¢ and % "2

Xn _n

<é&.

As a result, we have the estimates

[Vl V2] < ex2.

16
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Proof. It follows from Lemma 2.2 (d) and (e) that
Ty — Ty — L
E(fn(3,0 (n) 4> (fn(470' (n)) 4>

1_ 1 1 3 1 —1_
:Zyn+§ un_ZXn "Fi Vn_‘—lxn - Wn_ZXn

; 1 ] N _1_ (1
E(fn(3,cr ("))_Z) (fn(4,cr ("))_Z) =2n (Vn 4xn>.

Then by Lemma 2.1 (a) we have

1 1 LN (o 1\, 4
<Vn_ZXn>_<Wn_ZXn)+<Vn_an>_<WH_ZXH>— . (14)

By the definitions of v,, wy, vy, and Wy, and by symmetry, it follows that

1 1 _ 1_ _ 1_
<vn - an> - (wn - an) =0 and (vn - an> - (wn - an> =0. (15)

2 2
Plugging a = <21 n) — }1 2?21 Zi(n)> , = ((Z?:] Z,~(n)> — 16). and s = 11—6 into equation (7), we have

and

(21 (m — %Z?:] Zi(”)>2
(TLizim)’

1 1<
=1E (21 m - Zzim))

i=1

Unt1=E

2

2 (16)

4 2
(Z Zi(n)> —16
i=1 i=1

14 2 2

1 (am-ixtam) (8 y

+ 50 - X >_Zim
(Zi:] Zi(”)) i=1

The first expectation of equation (16) will contribute to the major terms of the expansion:

1 4
E <z1 UES DS zi(n>)

i=1

1 1¢
~ 5o5E (21 m - Zzi(m)

2

2

2

1 4 1 (<
=E(Zi(m) = 1)’ = SEZi(m) = 1) (Z Zi(n) — 4) +16E (; Zi(n) — 4)

i=1
X
=4dA3x, +4d(A] — A3)zq + 16dA3 1, (un - Z”) +0(x2),

where Lemma 3.5 is used in the last equity and the following derivations. Similarly, we can bound both the second and
third terms of equation (16) by O(x,%):

4 4 2
E <21 (n) — }1 Zzi(n)) (Z Zi(")) —16 | = 0(xp),
i=1

i=1

2

and
2 2

4
E (Zzi(n)) -16| =0x).
i=1

17
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Considering that X, = x,; +z, and Z, = —Z,, the dynamical system (10) yields that

X1 = dA3xn +d(AF — A3)zn + O (x2).

Equation (16) gives

X X
Uptq = HT-H —i—d)\%)\z (un - Zn) + O(szz)’ (17)
and then
u 1 X u 1 x2
n+1——=d)»%)»2 n <_n__>+o< n>. (18)
Xnt1 Xng1 \Xn 4 Xn+1

Next display the discussion in the X' O Z plane. First consider the case that |A1]/|A2| > k for ¥ > 1. In a small neigh-
borhood of (0, 0), since dA3 < k2d|A3] <dA3 <1 and X, > 0, the discrete trajectory approaches the origin point in a way
that is “tangential” to the X’-axis, when x; is small enough (see Bernussou and Abatut [3]). Furthermore, the conclusion of
Lemma 4.2 excludes the possibility that the trajectory moves along the Z-axis. Then for some M > 1, there exist constants
N1 = Ni(k, M) and 8; = 81(k, M), such that if n > Ny and x, < 1, we have

X, >MZ, and — 2y +0x*) >0
nz e MM+1) 7" n ’

where the remainder term O(xﬁ) comes from the expansion of x;,1. Consequently, it follows

Xn+2Zn=Xn > Xh+2Zp) = Xn,
n n n M-‘r 1( n n) M+_l n
and by the fact that z; <0 then
Xn Xn < Xn
Xne1  didxg +d(A2 =22z + 0(x2) M dadxy + O (x3)

Xn M 1 (19)

< = ——-
(1—-&)da3x, M—1di2

For fixed k, by the fact that %A‘;(%n —7¥,)? can be bounded by O(x%) for the reason that |x;| > |y, | implied in Lemma 2.1
(b) and (c), it is known from the dynamical system (10) that

Xn1 — (A3 X + dD3 2p) < Cx3.
Furthermore, one has
X1 < (A3 X 4 dA%Zp) + Cx2 < (dA2 4 Cxn)xn,

and then there exists §; = §(k, M, k) < 81, such that if x; < §; then for any 1 < ¢ <k one has x,1¢ < 268;. Therefore, for any
positive integer k, equation (18) yields

u 1 Xnk—1  Untk— 1 Xntk—
nik 1 _ 42, n+k1<n+k1__)+o(xn+k_] r)z(+l<1>

Xnik 4 Xn-+k Xn+k—1 4 n+k
k
Xn+e—1 Up 1
=@ ([ =— (— - —) +R,
! Zl:! Xn+e¢ X, 4

where, by equation (18) and with C denoting the O constant therein,

k M 1 i ]
IRl <2C3, Z(——) @32 ] <82
—~\ M —1dx?

i=

k
M
1—(m|12|) M 1
1422’
1—<%|)\2|)M 1dag

and by equation (19)

k k k
Xn+4e—1 M 1 M
daZa)k ) < 2D —— — ) = ——— 2 )
(dA122) <| | et (drglr2]) M 1d:2 v —1 2!

=1

18
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Firstly, from Lemma 2.1 (a) one has 0 < ﬁ—;’ <

I _ }1‘ < 1. Secondly, by the fact that |A;| < |[A1] <

d=1/2 < 1/4/2, it is possible to achieve %Ikz\ < 1 by choosing M = 4. Therefore, we can conclude that it is feasible to

take k = k(e) sufficiently large and 83 = 83(k, k, &) = 83(k, €) < &, sufficiently small to guarantee that

u 1
nt+k _‘ <ég.

Xntk 4

Finally, under the condition that |A| > o > 0, by Lemma 4.3, we know that there exists ¥ = y (@) such that x,_, <y ¥xy.
Thus, we can choose N=N(x,¢e,k)=N(k,&) > N1 +k and § = yk83, such that if x, < é and n > N then

u, 1

" i <é. (20)
n

The second part of the lemma can be shown similarly as above.
5. Proof of main theorem

First, consider o < [A2] < |Aq] for any fixed o > 0. To mvestigate the non-tightness, it would be convenient to assume
=

that 1 > d)ﬁ > dk% %, say, [Aq] > f We take o = E in the following context. Consider |1,| > o fixed and just iq
o\ 172

varying, and without loss of generality, assume d)»% > +2 2. Consequently choose k =« (d, Ay) = <%) > 1 and thus
2

[A1l/122] = k.

By the definition of non-reconstruction in equation (2.4), it suffices to show that when dkf is close enough to 1, &, does
not converge to 0 for the reason that it implies that x, does not converge to 0 considering 0 < X}, = x, + 2z, < Xp. We apply
reductio ad absurdum, by assuming that

lim x, = 11m X, =0. (21)
n—oo n—

Therefore, there exists N7 = N7(d), such that whenever n > A7, we have x, < §. Next, recalling that X, = x;, + z,,, we
further define X', = X, + Z,. Then by the symmetry of the model, we can obtain the dynamical form for X', analogously as
the dynamical form for A}, in equation (10):

?mq=dﬁ§%+gg%—2<—4ﬁﬁﬁ+ﬂkﬁg?ﬁ%>+R;+RZ+V;
where Rz and Vy are counterparts of Ry and Vy simply by replacing x by x.

Then we display the discussion in the X O X plane. Since |A1| > |A3] and X}, X, — 0 as n — oo from equation (21), in a
small neighborhood of (0, 0), the discrete trajectory approaches the origin point in a way that is “tangential” to the X’-axis.
Furthermore, the conclusion of Lemma 4.2 excludes the possibility that the trajectory moves along the X'-axis. Therefore, it
implies that there exists A" = AN(d) > N7, such that whenever n > N,

Xn < X, thatis, X, <=xp. (22)
From the proof of Lemma 4.4, we know that in the X0 Z plane there exist N = N(k,0) > N and § =§(d, «,0) > 0,
such that if n > N and x, <, then in the small neighborhood of (0, 0), we have

4
>4z, thatis, X, > gxn (23)

4 d(d l))ﬁ‘

By equation (22), applying Lemma 4.1, and taking & = one can obtain

4 d@d—1 1dd-1
<2dd-Dya0 _¥A4Xn2.

R X S~ X
Rzl < 5575 4 4
Next by the result of Lemma 4.4 that 411‘ < ¢ for any &’ > 0, now we take & = 12]0/ d(d’l)k‘l‘.
Therefore, by equation (10) and the COl‘ldlthl‘l that A > )»2, we have
dd—-1) 1., _
Zu =32+ N0 [0 - 82 4 G -T2 - Rt Ve
d(d
>diz, + (2 )pﬁﬁ—sgzﬂ—R,+w
dd—-1
>Mﬁn—iflbﬁﬁ+ 2622 — m%ﬂ—&+w (24)
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dd-1) u, 1 |
>3z, + Ahﬁ—mﬂ—@ﬁ<;§—z‘ z?—ﬂ+%>,
1dd—1
>dA3Z, + 3 (4 )x‘]‘x,f,
did —
> Z, [dxﬁ ¢ > )A?Xn].

Note that the initial point xo =1 — }l = % > 0 and Lemma 4.3 implies that there exists y = y (0, N) = y(d) such that

N\ 2
> xpy". Define ¢ = &(d) = (%) > 0. Because ¢ is independent of Ay, considering that dk% sufficiently close to 1, we

can choose |11| <d~1/2 such that

did—1
a2 + %A?e o1 (25)

2
2
Noting that d(dz—_]))»‘]‘ > (%) is equation (24) implies that

2
1dd—1) 4., 1116 5 [(xyN
Nz M2 > o > —e.
N+ =574 N7 216257 \ 10

Suppose Z, > € for some n > N, and it follows from equations (24) and (25) that
dd-1
Xn+1 2 Zn+1 2 Zn [dk% + %A?S] >Zpz¢€

Therefore, by induction we have x, > 2, > ¢ for all n > N, which contradicts to the assumption imposed in equation (21).
Thus, the proof is completed.
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