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ABSTRACT: The rapid development and application of machine learning (ML)
techniques in materials science have led to new tools for machine-enabled and
autonomous/high-throughput materials design and discovery. Alongside, efforts to
extract data from traditional experiments in the published literature with natural
language processing (NLP) algorithms provide opportunities to develop
tremendous data troves for these in silico design and discovery endeavors. While
NLP is used in all aspects of society, its application in materials science is still in the
very early stages. This perspective provides a case study on the application of NLP
to extract information related to the preparation of organic materials. We present the case study at a basic level with the aim to
discuss these technologies and processes with researchers from diverse scientific backgrounds. We also discuss the challenges faced in
the case study and provide an assessment to improve the accuracy of NLP techniques for materials science with the aid of
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B INTRODUCTION

Given ever-expanding computational power and data storage
resources, we are witnessing a paradigm shift in science due to
the abundance of data, the feasibility of data sharing, and the
proliferation of data-driven approaches dedicated to providing
new insights and even predictive capacities based on “big
data”."”” The growing trend of transitioning from case-based
studies to dataset-based research all but guarantees a
tremendous demand for accessible, high-quality scientific
data that are machine-digestible, which, at first glance, should
not be an issue considering that more than three million
scholarly articles are being published electronically every year.’
However, as the intended audience of research publications is
the human-centered scientific community, collecting machine-
digestible data from these publications can be rather nontrivial,
especially for a highly interdisciplinary field such as materials
science.

Big data efforts in materials science, being driven in part by
both government agencies and scientific communities, have
resulted in initiatives like the Materials Genome Initiative
(MGI)* in the United States, Materials Genome Engineering’
in China, Materials Data Platform® in Japan, Horizon 2020 in
Europe,” and NCCR MARVEL® in Switzerland, to name but a
few. A significant component of these projects is information-
mining data from the literature to extract materials properties
and synthesis routes with machine learning (ML). Some of the
text-mining applications that have resulted from such an
undertaking are a database of Curie and Néel temperatures,”’
synthesis protocols for inorganic materials,'”"" and processing
conditions for solid-state batteries,'” to name a few.
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While there is rapid progress in the development of state-of-
the-art text-mining algorithms for materials science, there
remain several challenges.13 For instance, the MGI advocates
for increased standardization of the reporting of data and
metadata—the lack of which currently inhibits many text-
mining activities.'* This perspective illustrates common
problems one may encounter in data collection from scientific
publications by focusing on a case study of extracting
crystallization solvents for organic materials. We aim to
present the technical aspects such that those without a
computer science background can learn terminologies
associated with machine-based data extraction. We demon-
strate how a simple rule-based method can extract data from
published articles and provide a baseline for more complex
methods. We also highlight the challenges associated with text-
mining using natural language processing (NLP) algorithms in
materials science, no matter how sophisticated the NLP
algorithm used. In addition, we also seek to raise awareness on
writing and publishing scientific articles in both a human and
machine-readable manner, as many of the difficulties in data
mining cannot be overcome without collective efforts from
research communities.
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Figure 1. Schema representing the pipeline used to extract data from materials science literature.
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Figure 2. Example of extracting crystallization solvent from text. During information parsing, named entities are classified as solvent or nonsolvent,
and then the rule-based method is applied to extract the recrystallization solvent.

B CASE STUDY: CRYSTALLIZATION SOLVENTS FOR
SMALL ORGANIC MOLECULES

Crystallization is an important step in making and, more
commonly, purifying materials, as impurities can significantly
affect materials application, such as device performance for
organic semiconducting materials.'> Crystallization is also
crucial to polymorphism studies, as variations in crystallization
conditions can result in different crystal structures from the
same molecule.'”'” While general rules exist regarding
molecular solubility in solvents, the conditions used in
recrystallization are not known a priori and are often
determined via time-consuming trial errors in practice. Thus,
converting molecules to materials can be significantly
expedited if the recrystallization conditions could be predicted.

While there are established databases for organic molecular
crystals,"®'? unfortunately, crystallization conditions are not
required in these databases. For instance, of the 274k single
component molecular crystals in the Cambridge Structural
Database (version 541), only around S9k structures have the
crystallization solvent labeled. Thus, for data-centered projects
that aim to derive structure—function relationships that span
the chemistries of the molecular building blocks to the
properties of crystals, such as those being developed for
organic semiconductors,”* % it is highly desirable to extract
crystallization solvent information from reported articles to

train predictive models.”® The pipeline used in this case study
to extract the data is depicted in Figure 1. We note that
crystallization can be replaced by other problems regarding
material synthesis/properties, and the following discussions
could be applied to other fields in materials science.

Content Retrieval. The first step in the data collection
process is developing the relevant corpus. At this point, one
must consider three main factors impacting corpus gathering:
(i) accessibility, (ii) parsability, and (iii) relevance. The data
source for this case study was the Supporting/Supplementary
Information (SI) in the published literature, as these files are
generally freely available, making them more accessible than
the main text. SI files are almost exclusively available in PDF, a
document format that is difficult for a machine to parse,
though this difficulty is made less so by the accessibility and
relevance factors. Lastly, in many scientific articles, specific
methodological details, such as materials recrystallization, are
largely found in the SIL

Once target data has been identified, one must devise a
generalized method for retrieving and processing it to a
functional form. To retrieve the SI from the article DOI
(digital object identifier), we focus primarily on web scraping.
This decision is necessary because there currently does not
exist a comprehensive application programming interface
(API) for retrieving SI. While APIs like CrossRef and Scopus
are accurate in retrieving main text, less than 10% of DOIs
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from our case study had accurate direct SI links when the
above-mentioned APIs were used. Hence, we focus on a
generalizable web scraper based on a probabilistic expert
system, which is largely accurate in retrieving SI.

Content Processing. Converting the data from the
publishers’ website to a text format can be achieved with
computer codes like watr-works,”® Beautiful soup,”” and
pdfminer,28 to name a few. In this case study, we used
pdfminer through chemdataextractor’” for PDF processing,
The process of converting PDF to text, however, is not perfect,
and there can be decoding errors. The majority of problems
encountered in this case study were chemical names being
inconsistently decoded with different numbers of spaces. For
instance, CH,Cl, would be decoded as “CH2CI2”, “C H 2 CI
27, “C H2Cl 27, or “CH2CI 2”. Another common error is the
introduction of unnecessary white spaces, such as double or
triple spaces, midsentence. Importantly, both types of errors
can interfere with NLP. For this reason, it is important to
examine the inputs and outputs of any preprocessing steps,
such as PDF decoding, for unexpected outputs. Note, however,
that some of the errors, such as extraneous white spaces, can be
fixed with further processing.

Natural Language Processing (NLP). NLP is a task by
which computers attempt a similar level of intrinsic under-
standing of language to that which humans possess.’>’' To
elaborate, computers have very little understanding of an
arbitrary string of characters. Computers can be just as easily
told that “The cat sat on the mat” is a threat rather than a
statement of fact. It does not know that “cat” is a noun or,
more specifically, a furry mammal. With a computer’s
unfamiliarity with even such a simple sentence, many more
complex tasks are presently intractable. Yet, these concepts
come almost subconsciously to a human. While computers
generally still struggle to grasp the meaning of a text fully, NLP
algorithms can endow them with knowledge about the
sentence’s grammar and sentiment. A more detailed
description of NLP for materials science can be found in
works by Olivetti and co-workers,'”**** Cole and co-
workers,** and Hong and co-workers."”> A core aspect of
NLP is tokenization, which consists of breaking a larger text
down into smaller subunits (Figure 2). In many cases, these
units are words, although they could be groups of words.
Furthermore, tokenization removes clutter such as extraneous
punctuation and whitespaces. This allows for insight based on
the token’s position relative to others and its relative
abundance.

Extracting the (Re)Crystallization Solvent. To extract
the solvent used in the crystallization process from the
materials synthesis text, we first need to identify the chemical
compound and the solvent from the tokens. This process of
identifying entities is called named entity recognition (NER).
The named entities can be identified with a simple chemical
dictionary like Jochem®® or more sophisticated ML models like
a neural network.*® In this case study, NER is performed with
chemdataextractor, which uses a combination of these
methods. After NER, the relationship between the entities
can be derived from various methods, e.g, rule-based”” and
supervised learning or semi-supervised learning.”® In the case
study, we use the rule-based method, which is particularly
useful to find a pattern in the given text. For instance, if the
materials synthesis contains the text “TIPS-pentacene (12) was
recrystallized from dichloromethane”, the pattern to look for is
“<COMPOUND> was recrystallized from <SOLVENT>".

Hence, the solvent used for recrystallization is the named
entity following the text “recrystallized from”. However, many
articles have differing forms that may contain a mixture of
solvent, the crystallization method, temperature, etc. Hence,
the rule-based method was modified to use a more diverse
sentence structure. The classification of a token as a chemical
compound or solvent is derived from the chemical dictionary
of chemdataextractor. The Fl-score is one of the metrics used
to evaluate the performance of NLP. Mathematically, the F1-
score is defined by the following equation:

2 X Precision X Recall

F1
Precision + Recall
where,
. Total true positive
Precision =
Total true positive + Total false positive
Total true positive
Recall =

Total true positive + Total false negative

Results. We evaluated the success of our rule-based model
by randomly selecting 100 SI PDFs that contained a report of
the crystallization solvent. The validation data used to compute
the Fl-score was extracted by a human expert. We observed
that our simple rule-based model yields an F1-score of 0.76 for
the crystallization solvent. The error in automated extraction is
due to the diverse styles that authors report the crystallization
solvent. For example, “sample of 10 was crystallized two times in
a round bottom flask (100 ml) by dissolving in a boiling 1-
propanol (20—40 ml) and cautiously diluting..” and “A sample of
the raw product was recrystallized by slow diffusion of anhydrous
ethyl ether into a methanol solution to produce crystals...”. Such
errors can be mitigated by using more complex rules or more
sophisticated deep learning algorithms like transformer and Bi-
LSTM. ™"

A major concern, however, is the limited ability to extract
the chemical compound and the crystallization solvent. The
F1-score for determining both the compound and the solvent
is 0.36. The low F1-score results from the complex structure of
text describing the process. As most of the text related to
crystallization is embedded in the synthesis paragraphs, the
chemical compound may be referred to as “product” or “solid”
etc. For instance, “17a-Ethynyl-17f-hydroxyestra-4,9-diene-3-one
(10): 2 (30.0 g 0.0882 mol) was dissolved in acetic acid (300
mL) at room temperature. Then perchloric acid (12 mL, 0.1323
mol) was added dropwise while keeping the reaction temperature
was under 30 °C. The reaction mixture was stirred for 1 h and
then poured into water (600 mL) slowly. The precipitated crystals
were filtered off, recrystallized by (petroleum ether/ethyl acetate
3:1) and dried at 50 °C.” For the above text, our model
captures the crystallization solvent as a mixture of petroleum
ether and ethyl acetate but fails to identify the chemical
compound 10 that is crystallized. This issue accounted for a
plurality of 46% of all errors in compound parsing. The second
major source of error, 19% of instances where the compound
was not retrieved correctly, was that the compound was only
represented in the SI as an image. This error cannot readily be
resolved as it would require implementing a system to identify
the presence of a chemical structure in an image and what
chemical that image represents. Though a more complex
system could resolve an image to its chemical name, it is
notable that this would dramatically increase computational
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cost. In order to determine if an image is of a structure all
images must be checked. This presents a difficulty in the case
of SI files that may have many images, particularly of spectral
data. In 15% of the failed outcomes, the cause was a
coreference resolution problem, which is an inability to relate
an abbreviation explicitly stated in the sentence to its
compound. Although in this case study we present an easy
to implement solution with an F1 score of 0.36, the
performance could be improved through the integration of a
more complex coreference resolution model such as
NeuralCoref.*” In cases where the solvent was not correctly
retrieved, 83% of errors were primarily due to mixtures
containing unexpected white space characters, which led to
parts of the mixture being left out. Though the text may be
easy to comprehend for a domain expert, extracting the
relevant information about the chemical compound involved in
crystallization with NLP is thus not trivial.

B PERSPECTIVE

The case study presented above is a simple illustration of the
application of NLP to extract materials science-related data
from literature text. There do exist more sophisticated NLP
algorithms, like Bi-LSTM™ and BERT,** that can have better
performance than the rule-based method used in this case
study. Even with these algorithms, however, several challenges
remain. On the publishers’ side, downloading the articles in
machine-friendly formats like XML and HTML is not always
allowed. In our case study, we found less than 10% of the
records from CrossRef or Elsevier API had a link to the SIL
While the publishers do convert the data in the main text into
machine-readable formats, the plots and tables in SI are largely
left in PDF format. There exist parsers to extract data from
tables and optical character recognition algorithms to retrieve
the information from figures in PDF,*>*° but they are still in
infancy for materials science. There is no format and checklist
enforced for reporting procedures or data and no consensus on
the definition of some terms used in an interdisciplinary field
like materials science. This, along with a diversity of writing
styles, lowers the performance of NLP algorithms to parse data
from reported texts."” The highly accurate NLP algorithms
used for the English language are trained or tested on large,
curated, open corpora like SNLI** and GLUE.” The lack of
such an open corpus has hindered the development of
materials science-specific NLP algorithms.

To overcome the shortcoming related to increasing the
findability of SI, publishers should make the links to SI
available through the APIs. For improving the parsability of SI,
the figures and tables contained in the SI could be made
available as separate files. For instance, high-resolution images
or plots may be better presented as a separate JPEG file or
even as the raw data used to generate a figure. Furthermore,
large tables, especially those spanning many pages, are likely
better represented as separate CSV files. These recommenda-
tions are consistent with the National Information Standards
Organization’s (NISO) recommendations for reforming S1.>°

In fields like biomedical research, there exist checklists like
TRIPOD®' and RECORD® to enforce a format for trans-
parently reporting the research. Furthermore, with several
prevalent ontologies,””* which are explicit specifications of
concepts,”” there is a rapid development of NLP models in
biomedical research.”® Recently, there are efforts in these
directions in materials science—a battery performance
checklist is proposed, and a materials ontology is being

developed.”™*” Requirements for reporting SMILES™® or
SELFIES™ for organic molecules would alleviate the problems
with identifying nontrivial chemical names. However, the
success of these efforts heavily relies on the materials science
community as a whole to accept and adapt these advance-
ments. NLP tools like RepCheck® and SynCheck®" could be
leveraged to enforce the reporting standards (Figure 3). While
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Figure 3. A schematic of leveraging NLP techniques for experiment
reproducibility and machine-digestibility before publication.

main text + Sl

large databases like Materials Project®” and AFLOW®® make
data available for training machine learning models to predict
property, materials science-specific large, curated, and open
corpus should be created to enable training and testing of NLP
algorithms. The performance of the NLP models could be
improved if they could be coupled with a rich materials
ontology.”*
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