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In Navier-Stokes turbulence, energy and helicity injected at large scales are subject to a joint direct
cascade, with both quantities exhibiting a spectral scaling ∝ k−5=3. We demonstrate via direct numerical
simulations that the two cascades are compatible due to the existence of a strong scale-dependent phase
alignment between velocity and vorticity fluctuations, with the phase alignment angle scaling as
cos αk ∝ k−1.
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Introduction.—The incompressible Navier-Stokes equa-
tions (NSEs) govern the dynamics of a broad variety of
physical systems [1]. Many of these systems are in a
turbulent state: they exhibit chaotic dynamics which cannot
be readily described from first principles, but is instead
partially captured by phenomenological and statistical
models [2]. The prominent Kolmogorov cascade model
[3] captures key aspects of fluid turbulent dynamics based
on the assumption that, in three-dimensional systems, the
kinetic energy of the turbulent fluctuations is transferred
from larger to smaller-scale structures via nonlinear inter-
actions that are local in wave number k.
Kolmogorov’s theory of turbulence was developed con-

sidering energy as the only nonlinear invariant of the
system. It was subsequently discovered [4,5], however,
that a second inviscid invariant of the incompressible NSEs
exists, namely, the helicity, defined as H ¼ R

v · ωdV;
with v the velocity of the fluid and ω ¼ ∇ × v its vorticity.
A flow with net helicity is necessarily more complex than
otherwise, as its mirror symmetry is broken [6].

The existence of a second nonlinear invariant further
complicates the analysis of the turbulent dynamics. In
principle, it is possible for both invariants to cascade
forward, i.e., from large to small scales, or for them to
cascade in different directions [7,8]. When both quantities
cascade forward, it is in principle possible for either
invariant to set the (scale-dependent) amplitude of velocity
fluctuations, thus affecting the nonlinear eddy turnover
time and leading to different predictions [7,9]. Indeed, the
helicity density at scale λ can be dimensionally evaluated as
Hλ ∼ vλωλ ∼ v2λ=λ, and the nonlinear interaction time (eddy
turnover time) as τλ ∼ λ=vλ, where vλ and ωλ denote the
typical amplitudes of velocity and vorticity fluctuations at
scale λ. Assuming the existence of a constant helicity flux,
i.e., εH ∼Hλ=τλ ∼ const, one would derive vλ ∝ λ2=3, and

the resulting energy and helicity spectra would be, respec-
tively, EðkÞ ∝ k−7=3 and HðkÞ ∝ k−4=3 [9]. This scenario
leads to a scaling of the energy spectrum different from
Kolmogorov’s EðkÞ ∝ k−5=3, which is instead defined by a
constant energy flux, ε ∼ v2λ=τλ, and the corresponding
velocity scaling vλ ∝ λ1=3. In this case, dimensional argu-
ments would predict the spectral scaling of helicity to be
HðkÞ ∝ k−2=3. However, this “naïve” estimate of the
helicity spectrum is, as we discuss below, inconsistent
with a constant helicity flux in the inertial range.
In many instances, the simultaneous presence of two

invariants in a turbulent system requires that one conserved
quantity cascades to small scales, while the other one
cascades to large scales. Such a phenomenonwas discovered
by Kraichnan in pioneering work on two-dimensional
turbulence [10], and later studied more broadly in various
models ofweak and strong turbulence [11–13]. In the case of
Navier-Stokes turbulence, the naïve dimensional arguments
suggest that it is the helicity invariant that should exhibit the
direct cascade, while the energy should inverse cascade.
Indeed, a cascade of energy to small scales, ε ¼ const,
would seem to imply the divergence of the helicity flux,
εH ∼ ε=λ at small scales, contradicting helicity conservation.
Similarly, if helicity cascaded to large scales, εH ¼ const,
then the energy flux ε ∼ λεH would diverge at large scales,
contradicting energy conservation. The only possibility of
maintaining a steady state would be, therefore, to assume a
direct cascade for helicity and inverse for energy.
This is not, however, what occurs in three-dimensional

Navier-Stokes turbulence, where instead both energy and
helicity are observed to cascade forward. Theoretical
arguments in favor of the existence of a joint direct cascade
of the two invariants in the presence of net helicity were
first put forward in Ref. [9], based on conservation of
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energy and helicity in the inertial range, and in Ref. [14],
based on the analysis of inviscid statistical equilibria. There
exists today significant experimental and numerical evi-
dence that energy and helicity in Navier-Stokes turbulence
are indeed both subject to a direct cascade [6–8,15–18], and
share a spectral scaling of ∝ k−5=3. While the double direct
cascade of energy and helicity has been the subject of
robust investigation and seems beyond reasonable doubt
[6,18–38], the turbulent mechanism that enables it has
remained unclear.
The goal of this Letter is to uncover such a mechanism.

We argue that this joint cascade is possible because the
velocity and vorticity fluctuations develop a progressively
stronger phase correlation at smaller scales. More pre-
cisely, we propose that while the energy flux is dimen-
sionally evaluated as ε ∼ v2λ=τλ, the helicity flux should be
evaluated as

εH ∼ rλvλωλ=τλ ∼ rλv2λ=ðλτλÞ; ð1Þ

where rλ is a scale-dependent cancellation factor. Assuming
that the (scale-dependent) nonlinear time τλ is determined
purely by the energy cascade, and requiring that both the
energy and helicity fluxes be constant in the inertial range,
allows one to predict the scaling of the cancellation factor:

rλ ∼ λ=L; ð2Þ

where L is the outer scale of the turbulence.
When the cancellation factor is present, the simultaneous

direct cascade of both energy and helicity becomes pos-
sible, and one predicts the scaling HðkÞ ∝ k−5=3 for the
helicity spectrum. In this Letter we argue that the cancel-
lation factor underpinning the spectral scaling of helicity is
a manifestation of dynamic phase alignment, i.e., a scale-
dependent correlation between the fluctuations of velocity
and vorticity, and demonstrate this result by means of direct
numerical simulations of driven, incompressible Navier-
Stokes turbulence.
Numerical setup.—We integrate the NSEs numerically

with the pseudospectral code Tarang [39,40] on a cubic,
triply periodic domain using a grid of N3 collocation
points. The “2=3’s rule” is used for dealiasing [39]. The
model equations read

∂v
∂t þ v · ∇v ¼ −∇Pþ ν∇2v þ F; ð3Þ

coupled to the incompressibility condition, ∇ · v ¼ 0. P is
the pressure, ν is the kinematic viscosity and F represents
external forcing. Both P and F are normalized to the fluid
density, set as ρ≡ 1. The pressure is computed by solving a
Poisson equation obtained by taking the divergence of
Eq. (3) and using the incompressibility condition. In all
simulations, energy and helicity are injected at wave
numbers 2 ≤ jkfj ≤ 6. Wave numbers are normalized to

the size of the simulation domain, so that the smallest wave
number, which represents box-scale fluctuations, has value
unity. We define the energy and helicity injection rates,
respectively, as

ϵE ¼
X
kf

RfFðkÞ · v�ðkÞg; ð4Þ

ϵH ¼ 1

2

X
kf

RfFðkÞ · ω�ðkÞ − vðkÞ · ½ik × FðkÞ�g; ð5Þ

where FðkÞ represents the delta-correlated in time forcing
term, and R denotes the real part. The forcing algorithm is
described in detail in Ref. [36]. We further define the
ratio of helicity to energy injection asRH ¼ ϵH=k̄ϵE, where
k̄ ¼ P

kf
jkjFðkÞ=Pkf

FðkÞ is the weight-averaged wave
number of the forcing.
Table I summarizes key parameters of the simulations

performed. We define the Reynolds number as
Re ¼ vrmsL=ν, where L ¼ R∞

0 k−1EðkÞdk= R∞
0 EðkÞdk is

the integral length scale of the turbulence and vrms ¼ffiffiffiffiffiffiffiffiffiffi
2E=3

p
is the root mean square of the velocity fluctuations.

The inverse of the Kolmogorov scale is represented
by kd ¼ ðν3=ϵEÞ−1=4.
Dynamic phase alignment.—The net helicity density at

each wave number is a function of the absolute value of the
Fourier coefficients jvkj and jωkj, and of the phase angle
between them, αk. At a given wave number k, the average
value of αk is given by

cos αk ¼
1

2

X
i

hvikω�
ik
þ c:c:i

hjvik jjωik ji
; ð6Þ

where h…i represents averaging over the wave number
shell and we are summing over the index i ∈ fx; y; zg
representing the three spatial directions. We can write the
spectral scaling of helicity as HðkÞ ∼ k−1vλωλ cos αk∼
k−2=3 cos αk, where the last step is obtained under the
assumptions vλ ∼ k−1=3 and ωλ ∼ k2=3. Conservation of
helicity in the direct cascade requires a scaling
HðkÞ ∼ k−5=3. We thus predict a scaling cosαk ∼ k−1.
In Figs. 1(a)–1(c), we show the energy and helicity

spectra (from time-averaged data in steady state) for
simulations A1–A3. Good agreement with the scaling
∝ k−5=3 is recovered for both invariants. The product of

TABLE I. Summary of key simulation parameters.

ID N Re RH kd

A1 1024 1350 0.1 150
A2 1024 1350 0.3 150
A3 1536 2000 0.5 205
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the absolute value of velocity and vorticity [the denominator
of the right-hand side in Eq. (6)] exhibits good agreement
with the spectral scaling ∝ k−2=3, predicted via dimensional
arguments. Figures 1(d)–1(f) show compensated spectra of
the phase alignment angle between fluctuations of velocity
and vorticity as function of scale, demonstrating that it
follows a scaling cos αk ∝ k−1 in the inertial range. The
plots in Fig. 1 demonstrate that the scaling cos αk ∝ k−1

occurs for a broad range of ratios of helicity to energy
injection in the system. An investigation of the Reynolds
number dependence of these results is reported in the
Supplemental Material [41].
When cosαk ¼ 0, helicity is zero and the system is

mirror symmetric. The scaling cos αk ∝ k−1 therefore
implies that dynamic phase alignment underpins the
restoration of mirror symmetry at small scales, in agree-
ment with simulations of Navier-Stokes turbulence where
net helicity is injected at large scales [6–8].
Absence of geometric angle alignment.—We argued

above that the reduction of helicity was associated with
phase alignment, that is, scale-dependent cancellation of
positive and negative values of the product v · ω. However,
a scale-dependent angular alignment between the direc-
tions of the fields may also, in principle, constitute the
primary mechanism of helicity reduction. In order to
investigate the possible existence of such an angular
alignment, we consider the band-pass filtered velocity
and vorticity fields. The band-pass filtered velocity is
defined as vl ¼ F−1ðv̂Þ, where F−1 denotes the inverse
Fourier transform, while v̂ denotes the field after under-
going Gaussian filtering of the form expf−ðk − kcÞ2=2σ2g,
with k−1c ≡ l and σ ¼ 3. The band-pass filtered vorticity
field is defined as ωl ¼ ∇ × vl [42]. We will demonstrate
numerically that their phase and angular correlations
disentangle statistically, and that, in contrast with phase

alignment, geometric angular alignment does not exhibit
scale dependence. Consider first two scalar fields, X and Y,
that may stand for, e.g., the x components of the velocity
and vorticity vectors. Assume that we may represent them
as X ¼ X0 cosϕ and Y ¼ Y0 cosðϕþ ϕ0Þ, where X0 and
Y0 are positive amplitudes, ϕ is a random phase, and ϕ0 is
the phase shift. The correlation between these fields is
given by hXYi ¼ ð1=2ÞX0Y0 cosϕ0. Similarly, one can
calculate the correlation between the normalized fields,
X=jXj and Y=jYj. The product of these fields can only take
two values, þ1 or −1, with the corresponding probabilities
depending on the phase shift, Pþ ¼ 1 − ðϕ0=πÞ and
P− ¼ ϕ0=π. It is convenient to denote the deviation of
the phase shift from π=2 as ϕ̃0 ¼ π=2 − ϕ0, so that the
probabilities take the form Pþ ¼ 1=2þ ϕ̃0=π and
P− ¼ 1=2 − ϕ̃0=π. Then, the correlation function of the
normalized fields is

�
X
jXj

Y
jYj

�
¼ Pþ − P− ¼ 2ϕ̃0

π
: ð7Þ

We now turn to the vector fields vl and ωl. In order to
study their phase and geometric correlations, consider the
product Z ¼ vl · ωl=jvljjωlj. Clearly, we can represent it
as Z ¼ ξj cos θj, where the “phase” variable ξ takes the
values �1, while θ is the geometric angle between the
directions of the fields. The statistics of Z are given by
the joint probability density function pðξ; j cos θjÞ:

Pðξ; j cos θjÞ ¼ P
�
ξ
���j cos θj�Pðj cos θjÞ. ð8Þ

The probability density of the variable Z is then

(a) (b) (c)

(d) (e) (f)

FIG. 1. Subplots (a),(b),(c) show spectra of energy, helicity, and the product of the absolute value of velocity and vorticity for
simulations A1–A3, respectively. Subplots (d),(e),(f) present compensated spectra of the average value of the cosine of the phase angle
[Eq. (6)] between velocity and vorticity fluctuations. The inertial range covers wave numbers up to k ≈ 35 (for simulations A1 and A2)
and up to k ≈ 50 (for A3), after which dissipation becomes non-negligible and the predicted scalings do not apply.
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pðZÞ ¼

8><
>:

p
�
þ1

���j cos θj�pðj cos θjÞ; Z > 0;

p
�
−1

���j cos θj�pðj cos θjÞ; Z < 0;
ð9Þ

where, in the right-hand side, one needs to substitute
cos θ ¼ Z. By analogy with the scalar case, we may
identify the difference of the conditional probabilities with
the phase shift between the fluctuating vector fields
evaluated at a given geometric angle:

p
�
þ1

���j cos θj� − p
�
−1

���j cos θj� ¼ 2ϕ̃0

π

����
j cos θj

: ð10Þ

The remaining probability density, pðj cos θjÞ, describes
their geometric correlation.
Using the probability density function in Eq. (9), we may

now average the Z field:

hZi ¼
Z

1

0

�
2ϕ̃0

π

����
j cos θj

	
pðj cos θjÞ cos θdðcos θÞ: ð11Þ

The first term in the integrand describes the contribution from
the phase alignment between the velocity and vorticity fields,
while the second term, pðj cos θjÞ, describes the contribution
from their geometric alignment. In principle, both terms may
depend on the filtering scale l. Our numerical simulations,
however, demonstrate that, quite crucially, the scale depend-
ence factors out in the first term; that is,

2ϕ̃0

π

����
j cos θj

≈ algðj cos θjÞ ≈ alj cos θj; ð12Þ

while the probability density of the geometric angle,
pðj cosðθÞjÞ, turns out to be virtually independent of the
scale. Figures 2 and3, obtained from time-averaged data from
simulationA3, show that indeed the functionspðj cos θjÞ and
gðj cos θjÞ do not vary with scale, while the phase-alignment
function scales as al ∼ l ∼ k−1, in agreement with the

Fourier-space analysis of the previous section. These con-
clusions hold for other values ofRH. As shown in Fig. 3(a),
gðj cos θjÞ is well approximated by a linear function, i.e.,
gðj cos θjÞ ≈ j cos θj, for all wave number ranges, with al
representing the slope of the linear fit at each scale [Fig. 3(b)].
Our analysis demonstrates that it is phase alignment, not
geometric alignment, that determines the scale-dependent
reduction of helicity, so that

hZi ≈ Cal ∼ Ca0l=l0; ð13Þ

where we used al ∼ a0ðl=l0Þ, with l0 the outer scale of
turbulence, a0 a constant dependent on net helicity in the
system, and C a scale-independent constant,

C ¼
Z

1

0

gðj cos θjÞpðj cos θjÞ cos θdðcos θÞ ≈ 1=3; ð14Þ

where the last approximate equality can be obtained for
gðj cos θjÞ ≈ j cos θj and pðj cos θjÞ ≈ 1.
Discussion and conclusions.—In this Letter, we dem-

onstrate that the direct cascades of energy and helicity in
Navier-Stokes turbulence can coexist because of a scale

FIG. 2. Probability density function of the absolute value of the
geometric angle between band-pass-filtered fluctuations of veloc-
ity and vorticity. No significant dependence on scale is observed.
Data obtained from simulation A3.

(a)

(b)

FIG. 3. (a) Difference between conditional probability of
positive and negative alignment for a given j cos θj (solid lines)
and linear fit of the data for each wave number range (dashed
lines). The figure illustrates that, at each scale, the function
gðj cos θjÞ is well approximated by a linear expression, i.e.,
gðj cos θjÞ ≈ j cos θj. (b) Slope coefficients of the linear fits al
for the different wave number ranges. The color coding highlights
the correspondence between data presented in subplots (a) and
(b). Data obtained from simulation A3.
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dependence of the average Fourier phase angle between the
fluctuations of velocity and vorticity. This behavior,
termed dynamic phase alignment, constitutes an essential
mechanism for such joint direct cascade because the scalings
vλ ∼ k−1=3 and ωλ ∼ kvλ are preserved in the presence of
net helicity. We can write the helicity spectral scaling
as HðkÞ ∼ k−1vλωλ cos αk ∼ k−2=3 cos αk. Deviations from
HðkÞ ∼ k−2=3 are underpinned by a dependence on scale of
cos αk, allowing energy and helicity to cascade forward
while preserving conservation of both invariants. We show
that the observed spectrum HðkÞ ∼ k−5=3 results from the
scaling cos αk ∝ k−1, which underlies the progressive bal-
ancing of turbulence (restoration of mirror symmetry) in the
inertial range. We also demonstrate that there exists no
significant scale-dependent geometric alignment between
velocity and vorticity, supporting our conclusion that phase
alignment is the primary mechanism contributing to the
scale-dependent reduction of helicity. In Ref. [45], it was
found that dynamic phase alignment between the fluctua-
tions of electric and magnetic potentials underpins the joint
forward cascade of energy and generalized kinetic helicity
in a range of anisotropic turbulent plasma systems. This
remarkable similarity between systems governed by differ-
ent sets of equations is suggestive of a powerful unifying
paradigm, whereby the conservation of energy and a second
invariant in a joint cascade determines the scale-dependent
phase alignment between the two fields in the integrand
of the second invariant. Dynamic phase alignment thus
acquires importance as a mechanism regulating the dynam-
ics in the presence of two invariants, arising from their
conservation in the joint direct cascade, regardless of the
details of the physical interactions.
While we provided significant evidence for the existence

and importance of dynamic phase alignment, we stopped
short of characterizing how it emerges from the nonlinear
interactions. Dynamic phase alignment need not be
regarded as necessarily alternative to other proposed
paradigms for characterizing imbalanced turbulence
[6,7,19,38,46–51]. As an example, Ref. [19] explains the
spectral scaling of helicity as arising from an imbalanced
transfer between modes of positive and negative chirality
within the helical decomposition framework [52]. It is
possible that dynamic phase alignment results from such
transfer.
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