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The physical picture of interacting magnetic islands provides a useful paradigm for certain
plasma dynamics in a variety of physical environments, such as the solar corona, the
heliosheath and the Earth’s magnetosphere. In this work, we derive an island kinetic
equation to describe the evolution of the island distribution function (in area and in flux
of islands) subject to a collisional integral designed to account for the role of magnetic
reconnection during island mergers. This equation is used to study the inverse transfer of
magnetic energy through the coalescence of magnetic islands in two dimensions. We solve
our island kinetic equation numerically for three different types of initial distribution:
Dirac delta, Gaussian and power-law distributions. The time evolution of several key
quantities is found to agree well with our analytlcal predictions: magnetic energy decays
as 7!, the number of islands decreases as 7! and the averaged area of islands grows as 7,
where 1 is the time normalised to the characteristic reconnection time scale of islands.
General properties of the distribution function and the magnetic energy spectrum are also
studied. Finally, we discuss the underlying connection of our island-merger models to the
(self-similar) decay of magnetohydrodynamic turbulence.
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1. Introduction

Magnetic flux tubes are often observed in the heliosphere and inferred to exist in some
space and astrophysical systems. These structures have been observed in, for example, the
solar wind (Moldwin er al. 1995, 2000; Cartwright & Moldwin 2010; Hu et al. 2018),
Earth’s magnetosphere (Borg, Taylor & Eastwood 2012; @ieroset et al. 2016) and the solar
corona (Wang & Sheeley 2006; Zhang et al. 2012), and are likely to be present in the
heliosheath (Stone ez al. 2005, 2008; Opher et al. 2011). The dynamics of magnetic flux
tubes are thought to be important for many physical phenomena such as plasma heating
in the solar corona (Parker 1972, 1983b, 1988; Galsgaard & Nordlund 1996; Dmitruk &
Gomez 1999; Einaudi & Velli 1999; Holman et al. 2003; Klimchuk 2006; Klimchuk,
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Patsourakos & Cargill 2008) and the acceleration of anomalous cosmic rays (ACRs)
(Lazarian & Opher 2009; Drake et al. 2010).

In the heliosphere, various observations show evidence of merging of magnetic flux
tubes. In situ measurements by spacecraft such as Wind, ACE and Ulysses find small-scale
flux tubes to be ubiquitous in the solar wind (Moldwin ef al. 1995, 2000; Cartwright &
Moldwin 2010; Hu et al. 2018). As the flux tubes are convected radially outward by the
solar wind, quantities such as their number, magnetic field strength and inverse scale length
decrease beyond what is naturally expected from simple expansion owing to diverging
outflows. It is possible that flux tube merging plays a role in explaining these observations,
as shown by the correlation of flux tube structures as they travel past spacecraft in different
locations (Hu, Chen & le Roux 2019).

In the heliosheath (the interface between the heliosphere and the interstellar medium),
recent observations from the two Voyager spacecraft (Stone et al. 2005, 2008) strongly
suggest that this region is composed of a turbulent sea of magnetic flux tubes (Opher et al.
2011; Schoeffler, Drake & Swisdak 2011). Understanding the dynamics of these flux tubes
is thus critical to developing a model of the heliosheath, as well as inferring its efficiency at
accelerating particles. Indeed, magnetic reconnection in this ‘sea’ of flux tubes has been
proposed as an important mechanism for the acceleration of ACRs (Lazarian & Opher
2009; Drake et al. 2010), which provides motivation to understand the merging of flux
tubes using a statistical approach.

The solar corona is populated by magnetic flux tubes of widely different sizes whose
ends (footpoints on the solar surface) are constantly being shuffled by the turbulent
motion of the photosphere. While a detailed understanding of solar coronal dynamics still
eludes us, flux tube dynamics (including processes like Taylor relaxation, reconnection
and wave-driven activity) is believed to be a key element in determining the nature of its
turbulent state (Parker 1983a); in particular, in addressing longstanding problems such as
the origin of significant populations of supra-thermal electrons (Galsgaard & Nordlund
1996; Holman et al. 2003) and the anomalously high temperatures in the corona (Parker
1972, 1983b, 1988; Dmitruk & Gomez 1999; Einaudi & Velli 1999; Klimchuk 2006;
Klimchuk et al. 2008). Similar problems exist in accreting systems, where the hot and
tenuous corona above an accretion disk can be heated through the interaction of a large
number of magnetic flux loops tied to the disk (Galeev, Rosner & Vaiana 1979; Uzdensky
& Goodman 2008).

In situ evidence of magnetic reconnection at the bow shock and in the turbulent
magnetosheath of the Earth has been provided (Retino ez al. 2007; Phan et al. 2018; Gingell
et al. 2019). Large-scale reconnection between the interplanetary magnetic field and that
of the Earth generates magnetic flux tubes, which are often discussed in the form of their
two-dimensional (2-D) counterpart: magnetic islands (plasmoids). How these magnetic
islands evolve after reconnection ceases, and how they change the structure of the magnetic
field in the magnetosphere, is still not clear.

The configuration of interacting flux tubes is also relevant to the magnetic fields
generated by the Weibel instability, which typically possess a filamentary structure (Fried
1959; Weibel 1959). Such Weibel fields can be produced in, for example, a collisionless
shock (Medvedev & Loeb 1999; Kato & Takabe 2008; Spitkovsky 2008), which is relevant
to a wide range of systems such as gamma-ray burst (GRB) jets and supernova explosions.
A recent study has found that the Weibel instability can also be triggered by generic plasma
motions as simple as a shear flow to produce ‘seed’ magnetic fields (Zhou et al. 2021),
which supports the conjecture that the Weibel instability is a plausible key ingredient
of magnetogenesis (Schlickeiser & Shukla 2003; Lazar et al. 2009). However, it is not
a priori clear whether such kinetic-scale magnetic fields can grow to larger scales via
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flux-tube coalescence and survive on long time scales before they are dissipated. Similar
questions exist in the context of GRB prompt emission and afterglow, such as whether the
Weibel fields generated in a relativistic shock can last long enough to explain the observed
powerful synchrotron emission (Medvedev & Loeb 1999; Silva et al. 2003; Medvedev
et al. 2004; Ruyer & Fiuza 2018).

Because of the importance of flux tubes in these physical environments, their dynamics
has been intensively studied theoretically (Gruzinov 2001; Linton, Dahlburg & Antiochos
2001; Medvedev et al. 2004; Kato 2005; Linton 2006; Lyutikov et al. 2017a,b; Zrake &
Arons 2017; Zhou et al. 2019; Zhou, Loureiro & Uzdensky 2020) and experimentally
(Yamada et al. 1997; Furno et al. 2005; Intrator et al. 2013; Gekelman et al. 2016;
Jara-Almonte et al. 2016). Recently, the role of magnetic flux tubes in plasmoid-mediated
turbulence has also been investigated both theoretically and numerically (Boldyrev &
Loureiro 2017; Loureiro & Boldyrev 2017a,b; Mallet, Schekochihin & Chandran 2017;
Comisso et al. 2018; Dong et al. 2018). Despite being widely explored, there remain
important questions regarding the dynamics of a system composed of a large number
of flux tubes. These include the identification of the main underlying physical processes
governing their interaction, the statistics of interacting flux tubes in different astrophysical
contexts and the time evolution of macroscopic quantities (such as the strength and length
scale of magnetic fields) as a result of flux tube interaction.

Many of the theoretical and numerical studies addressing the aforementioned questions
involving large numbers of flux tubes (or magnetic islands in two dimensions) have
focused on their generation in reconnection by the plasmoid instability (Loureiro,
Schekochihin & Cowley 2007). The plasmoid instability in elongated current sheets
with Lundquist number S 2> 10* has been shown to be crucial for understanding
the fast reconnection rate in resistive magnetohydrodynamics (MHD) (Lapenta 2008;
Bhattacharjee et al. 2009; Samtaney et al. 2009; Huang & Bhattacharjee 2010; Uzdensky,
Loureiro & Schekochihin 2010; Loureiro et al. 2012). In the kinetic regime, plasmoid
generation is also observed in simulations (e.g. Drake et al. 2006; Daughton et al. 2011)
and is thought to play an essential role in particle energisation (e.g. Drake, Swisdak &
Fermo 2012; Cerutti et al. 2013; Dahlin, Drake & Swisdak 2014; Sironi & Spitkovsky 2014;
Guo et al. 2015; Petropoulou, Giannios & Sironi 2016; Sironi, Giannios & Petropoulou
2016; Werner et al. 2016; Guo et al. 2019; Li et al. 2019; Hakobyan et al. 2021; Uzdensky
2020).

While direct numerical simulations are an important tool for understanding the
dynamics of plasmoids, studies at realistic scales are infeasible owing to limited
computational resources. For example, the length of the current sheet in solar corona
is approximately 10°d; (where d; is the ion skin depth), while particle-in-cell (PIC)
simulations of sub-relativistic reconnection with realistic mass ratios only have lengths
of tens of d; (e.g. Le et al. 2013; Liu et al. 2014; Cazzola et al. 2016) in two dimensions,
while reduced mass ratios are required to perform simulations with similar length scales in
three dimensions (Daughton et al. 2011; Liu et al. 2013; Dahlin, Drake & Swisdak 2017; Li
et al. 2019). As for the relativistic regime, simulations reach lengths of hundreds of d; with
electron—proton plasmas (Ball, Sironi & Ozel 2018; Werner et al. 2018) and thousands of d,
with electron—positron plasmas (e.g. Sironi & Spitkovsky 2014; Sironi et al. 2016; Werner
et al. 2016; Guo et al. 2019, 2021). This motivates the development of statistical models
to study the phase-space distributions of large numbers of plasmoids. A heuristic model
based on the one-dimensional (1-D) multilevel plasmoid hierarchy induced by plasmoid
instability in a reconnection layer was proposed by Uzdensky et al. (2010) and numerically
tested by Loureiro et al. (2012). Boltzmann-type equations to describe the evolution of
plasmoid distributions in reconnection have been developed by Fermo, Drake & Swisdak
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(2010), Huang & Bhattacharjee (2012), and a conceptually similar approach has also been
used to study the distribution of magnetic loops in an accretion disk corona (Uzdensky
& Goodman 2008). Other statistical approaches have been used in more recent work (e.g.
Lingam & Comisso 2018).

In this work, we adopt a similar statistical approach and derive a Boltzmann-type island
kinetic equation (IKE). Our IKE is extended from previous statistical models (Fermo
et al. 2010; Huang & Bhattacharjee 2012) to a more general case involving a large
number of randomly distributed and freely-moving islands, rather than islands constrained
to 1-D motions within a reconnecting current sheet. One major difference in our IKE
concerns the dynamics of merging magnetic islands. While previous models assume
island merging to be instantaneous, we, instead, calculate the time taken for islands to
merge based on reconnection models and evaluate its effects on the distribution function.
Additionally, whereas previous models focus on the steady state, we are more interested in
the time evolution of the system; for example, how macroscopic quantities such as island
number, energy density and magnetic field length scale change with time. In particular, we
investigate two fundamental questions regarding the self-dynamics of magnetic islands:
(1) how do magnetic islands born at small spatial scales evolve to macro-scale objects?
and (2) how efficient is the associated inverse transfer of magnetic energy in this process?

In Zhou et al. (2019, 2020), we derived a solvable analytical model for 2-D and
three-dimensional (3-D) systems (named the ‘hierarchical model’ in what follows)
to describe the evolution of initially small-scale magnetic fields via their successive
hierarchical coalescence enabled by magnetic reconnection. Our hierarchical model is
based on the conservation of mass and of magnetic flux during the merging process
and, therefore, can be applied to MHD-scale fields, regardless of plasma collisionality
(it can also be generalised to kinetic-scale fields with an adequate replacement of the
ideal invariants of the system). Our theory identifies magnetic reconnection as the
key mechanism enabling the field evolution and determining the properties of such
evolution: magnetic energy is found to decay as 7~!, where 7 is the time normalised to the
(appropriately defined) reconnection time scale; the correlation length of the field grows
as 7'/? and the number density of magnetic islands evolves as 7.

The hierarchical model was directly verified by 2-D and 3-D reduced-MHD (RMHD)
simulations that we carried out (Zhou et al. 2019, 2020) and its applicability to the inverse
transfer phenomenon in isotropic turbulent MHD systems was suggested by Bhat, Zhou
& Loureiro (2021). This reconnection-controlled evolution of MHD turbulence is also
observed and more systematically studied by Hosking & Schekochihin (2021), with a focus
on the role of invariants. Despite the good agreement between our hierarchical model and
RMHD simulations, some questions remain which can be addressed by the IKE studied
in this paper. The hierarchical model has a strict assumption that only mergers between
similar islands (or flux tubes in three dimensions) are taken into consideration and our
RMHD simulations start with identical islands. It is not clear whether the scaling laws
of energy decay and growth of length scale will change significantly with a non-trivial
distribution of islands that can freely interact. A study of the interaction of an ensemble
of non-identical islands with fewer constraints is thus still needed. This can be modelled
by the IKE. Also, in our 3-D RMHD simulations, although the dynamics of the system
are shown to be dominated by the merging of magnetic islands, other nonlinear processes,
such as the direct cascade through self-developed turbulence, also play a role. Therefore,
it is challenging to identify the nature and underlying mechanisms of the inverse energy
transfer observed in such complex systems. Using the IKE, which only contains the
dynamics of merger and the convective motion of magnetic islands, enables us to isolate
the contribution of the island dynamics in the overall evolution of the system.
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FIGURE 1. Evolution of current density (colours) and magnetic flux (contours) from a 2-D
(reduced) MHD simulation. As time evolves, islands merge and form progressively larger
structures. This figure is reproduced from Zhou et al. (2019) for illustration purposes.

In this paper, we apply our IKE to study the evolution of a distribution of magnetic
islands whose dynamics is dominated by their merger enabled by magnetic reconnection.
In § 2, we describe the statistical approach and the inclusion of a finite merging time; this
is followed by a discussion of the numerical implementation of the IKE in § 3. We then
study the evolution of several different initial island distributions and analyse the results in
§ 4. An interpretation of these numerical results using a scaling theory based on invariants
and a discussion on the relevance of our IKE to the decaying turbulence problem are
presented in § 5. Finally, we provide our conclusions in § 6. A comparison of our IKE with
previous models is described in Appendix A, a numerical convergence study is described
in Appendix B and a derivation of multi-scale rules of successive merger is included in
Appendix C.

2. Merger-dominant island kinetic equation

In this section, we first introduce our Boltzmann-type IKE, focusing on how the
coalescence of islands is included in this model. While earlier studies of island
distributions (e.g. Fermo et al. 2010; Huang & Bhattacharjee 2012) focus on islands in
1-D current sheets, we study a sea of interacting islands in two spatial dimensions. This
leads to differences between our model and those studies (discussed in Appendix A).

In this work, we are primarily interested in a 2-D system with volume-filling interacting
magnetic islands. To provide an intuitive physical picture of the kinds of systems that
our work aims to address, we show in figure 1 a visualisation of current and magnetic
flux from one of the 2-D RMHD simulations reported by Zhou et al. (2019). The
system is tightly packed with islands growing in size through successive mergers and
exhibits chaotic dynamics owing to the random motion of a large number of islands.
Such (idealised) system provides a useful paradigm to investigate magnetically dominated
decaying turbulence, relevant to a wide range of astrophysical systems, as discussed in
§ 1. In this work, we develop an IKE to describe the dynamics of interacting magnetic
islands, thereby illuminating the underlying physical mechanisms governing the dynamics
of decaying turbulence. We note that although the system of volume-filling islands is
the main focus of our study, our IKE can also describe systems only partially filled with
islands, as we will discuss in §§ 2.5 and 4.1.

Consider, therefore, a 2-D system in which each island can be characterised by its
area A and the magnetic flux ¥ it encloses. A time-dependent distribution function of
islands f(A, v, 1) is introduced to describe an ensemble of magnetic islands in the (A, ¥)
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phase space. The distribution function is normalised as f fA, ¥, t)dAdy = N(t), where
N(?) is the total number of islands at any given time ¢. No spatial location information
of the islands is contained in this distribution function. We assume the islands to be
randomly and isotropically distributed in space, which leads to a uniform number density
of islands in real space n(f) = N(t)/L*, where L is the length scale of the system. The
distribution function is considered as the most fundamental quantity of the system, from
which macroscopic quantities (total magnetic energy, number of islands, etc.), as well as
the magnetic energy spectrum, can be derived. The evolution of f(A, v, f) is governed by
the IKE:

of  a(df) | 9(4r)
% oy T oa

This equation was originally postulated for islands in a 1-D reconnecting current sheet
(Fermo et al. 2010), in which the ongoing reconnection causes the flux and area of the
islands to grow. The second and third terms on the left-hand side describe this effect. In
this work, we study an ensemble of merging islands in free space instead of those within a
large-scale reconnecting current sheet. For each isolated island, flux ¥ and area A are both
conserved quantities, i.e. ¥ and A are zero. We therefore neglect the two convective terms
on the left-hand side in the remainder of the paper.

On the right-hand side, three operators are introduced to take into account different
processes. The operator C,., represents the generation of new islands in the system,
Cioss Tepresents the loss of islands either by advection out of the system or by resistive
dissipation and Cperee represents the change of the distribution function resulting from the
coalescence of islands.

In this work, we study an effectively infinite (or periodic) system with small enough
resistivity that the resistive decay of islands can be ignored; thus, we assume Ciosq = 0. As
for Cpew, We investigate reconnection both in the MHD regime and in the collisionless
regime, and, in both regimes, we for simplicity assume constraints that prevent the
formation of secondary plasmoids during island-merger events, thus ensuring that Cy.ey, =
0. In the MHD reconnection regime, this means that the Lundquist number associated
with each island is relatively low, S < 10*! (we note that it is nonetheless possible for the
global Lundquist number, defined with the system size L, to be large). In the collisionless
reconnection regime, the radius of the islands is required to be R < 40d; (Ji & Daughton
2011).2 Our restriction to non-plasmoid-generating reconnection regimes stems from the
fact that possible plasmoid generation and early-time dynamics are effectively constrained
to a 1-D current sheet between merging islands, while the IKE that we study evolves f in
two dimensions (as described in § 2.1). Therefore, the dynamics of the merging islands
and the generated secondary plasmoids cannot be considered self-consistently using this
IKE. Nevertheless, we do not think this is a major limitation, for two reasons. First,
regarding the reconnection rate, in MHD, the average dimensionless reconnection rate
in the plasmoid-mediated regime is ~0.01 (Huang & Bhattacharjee 2010; Uzdensky et al.
2010; Loureiro e al. 2012), similar to the Sweet—Parker reconnection rate at S = 10%;
while in collisionless reconnection, the presence of plasmoids does not appear to affect
the average value of the reconnection rate (Daughton & Karimabadi 2007; Daughton

= Cnew + Closs + Cmerge- 2.1

IThe Lundquist number of islands, S, is preserved in mergers of identical islands and therefore, if islands start with
s < 10*, the system will remain in the single-X-point regime even as islands grow (Zhou ez al. 2019, 2020). In the case of
mergers between non-identical islands, according to the merger rules that we will explain later in the paper, the Lundquist
number of the resulting island will be the same as that of the previous island with larger magnetic flux. Therefore, we
expect reconnection to stay in the same regime even if we relax the constraint of identical-islands merger.

2Qur model in its current form does not apply to the plasmoid regime of reconnection in which the reconnecting
current sheets are unstable to the formation of plasmoids.
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et al. 2011), which is ~0.1. Second, the new plasmoids would be trapped between the
merging islands and would eventually be absorbed by the resulting islands
(see, e.g. Lyutikov et al. 2017b), so their effect on the system would be small, only
affecting the small-A and small-y parts of the distribution function. The lifetime of these
new plasmoids would also be at most the same as the lifetime of their parent islands,
so they would not cause large changes in f, the evolution of macroscopic quantities or
the energy spectrum. In the rest of the paper, we will thus focus on the merger in the
Sweet—Parker regime or the single X-line collisionless regime, but we do not expect
significant differences even if reconnection between islands is in the plasmoid regime.
We will make it more explicit in § 2.3 what we mean by the collisionless regime and the
reason this regime is of interest for this IKE model.

In summary, we assume the change of the distribution function f(¥, A) is only caused
by the coalescence of islands, represented by the collision operator Cpere. Indeed, the
coalescence of islands effectively acts like a collision in phase space. Owing to the change
of areas and fluxes, the islands vanish at their original positions in the phase space defined
by i and A before the coalescence, and emerge at new positions. Therefore, the collision
operator can be divided into a sink term Cs, (¥, A, f) and a source term Cs.. (¥, A, 1), and
the simplified IKE can be written as

f (. A1)
ot

The sink term Cs (¥, A, 1) represents the disappearance of islands with area A and flux
Y at time f owing to their coalescence with other islands with arbitrary area A" and flux v'.
The source term Cs. (1, A, 1) represents the emergence of islands with area A and flux i,
arising from coalescence between islands with area A’ (A’ < A), flux ¢ and islands with
area A — A', flux ¥’ (" < ). These selection rules are implemented through the limits
of the collision integrals, as we will explain in the following subsections. An important
feature of our collision operator Cpere is that it is non-instantaneous, as explained in § 2.2.

= Csk(V, A, 1) + Csre (W, A, 1). (2.2)

2.1. Expression for Cs (¥, A, 1)

We assume that any single coalescence event takes place between two islands only, i.e. we
effectively treat island—island interaction as binary. This assumption imposes an exclusion
principle on islands undergoing merging. Once an island starts to merge with another
island, it is unavailable for other merging events until the current coalescence process
finishes.> When one island with area A and flux ¥ merges with another island with area
A" and flux /', the resulting island will possess an area A + A" and a flux with the larger
value between v and " (Fermo et al. 2010).

The rate of change of f can be calculated using the 2-D hard-sphere scattering model.
According to our normalisation, the number density of islands (in A — i space) with flux
Y and area A is (i, A, t). The number of islands with arbitrary A" and v’ is given by
fooo dA’ fooo dy'f(y’, A, t). The probability rate for two islands to meet and merge in real
2-D space is given by o 8v/L?, where the cross-section for an island with area A interacting
with an island with area A" is o'(A,A") = +/A + +/A’, multiplied by a geometric factor
of order unity, which we take to be one for simplicity.* The relative velocity between

3The assumption of binary mergers excludes the possibility of multi-island clustering in our IKE. This could possibly
lead to a slower evolution in our model than in the realistic case. However, the reasonably good agreement between the
numerical results obtained by solving our IKE (§4.1) and those from direct numerical simulations (Zhou et al. 2019)
suggests that the effects from the simultaneous coalescence of multiple islands are not significant.

“Islands may, of course, have different polarities (i.e. the currents generating the magnetic field in the islands are
in opposite directions), in which case they repel instead of merging. So, in fact, the probability of two random islands
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two islands, Sv, is approximated with the larger Alfvén velocity of each of them, v =
max{y/~/A, ¥'/~/A’}.> With such an approximation, the maximum possible error in the
relative velocity is dv.

Using the model described above, the sink term Csu (¥, A, ), which equals the
decreasing rate of f (i, A), can be expressed as

1 o0 oo
Cok (¥, A, 1) = —/ WA t)/ dA’/ dy' f(y', A, Do (A, A)év. (2.3)
0 0

We perform a simple dimensional analysis to show that our IKE (dimensionally o,f ~
Cqnk) has the standard form o,/ ~ vf, where v is a characteristic changing rate of f. The
mean-free path of the system is Ayg, ~ 1/(no), where n = N/L* = ([ fdAdy)/L? is
the island density in configuration space. Plugging the scaling [ fdAdy ~ L*/(Apgy0)
into (2.3), we obtain Cyw(A, ¥, 1) ~ (8v/Awg)f (¥, A, 1) and hence the characteristic
decreasing rate of f is as expected: v ~ 8v/Ang. The mean-free path is determined
both by the density and typical cross-section of islands. In the case of volume-filling
islands, the density of islands is n = N/L> ~ 1/ (A), where (A) is the typical area of
the islands. The typical cross-section of the islands is thus +/(A), which gives rise to
Aty ~ 1/(no) ~ /(A). This is consistent with the intuition that when the system is
packed with islands, each island will interact with an adjacent one, and Ay should be
comparable to the size of islands. In this case, the convection time of islands (~ A, /va)
is the same as their local Alfvén time (~ +/(A)), where vy is the local Alfvén velocity
determined by the magnetic field of islands. In our IKE, Ay, can be adjusted by tuning
the size and density of islands, i.e. changing the ‘volume-filling fraction’ of islands in the
system. We will define this quantity in § 2.5.

2.2. Time delay between Cg, (Y, A, t) and Cs,. (Y, A, 1)

The source term Cs.. (1, A, ) can be obtained in a similar way, except that there is
an additional feature that we now explain. Any given merging event is described by
both a sink term and a source term in the collision operator. In traditional collision
theory, collisions (between particles) are regarded as instantaneous, because the particle
interaction time is short compared with the particle flight time between collisions. In our
island coalescence problem, in contrast, the coalescing process is slow, taking a long time
compared with the advection of islands. The coalescence time of islands thus becomes
an important dynamical time scale in our system. Therefore, it is necessary to consider
the time difference between the sink term and source term for any given merger, where
the former corresponds to the start of a merger and the latter corresponds to the end. The

merging is 1/2, rather than 1. This factor of 1/2 is neglected in the IKE, as are other factors expected to be of order unity,
such as may arise from the fact that islands are not necessarily circular.

SA scale-by-scale equipartition between magnetic energy and kinetic energy is assumed, and the random motion
velocities of islands are thus related to their magnetic fields, i.e. taken to be Alfvénic. The reasoning underlying this
assumption is as follows. In Zhou et al. (2019), we found that the ratio of the (box-averaged) magnetic-to-kinetic energy
approximately remains a constant of order unity throughout the evolution. Because that system is well described by our
hierarchical coalescence model, in which energy is mostly concentrated at a single (time-evolving) scale, the constancy
of the box-averaged magnetic-to-kinetic energy ratio implies the same for the energy-containing scale. It is true that
different magnetic and kinetic power-law spectra are found in that work, seemingly indicating that the energy-density
ratio is scale-dependent. However, as argued there, the k~2 magnetic energy spectrum is a feature of magnetic reversals at
current sheets (i.e. a Burgers’ spectrum) and the shallower kinetic spectrum reflects the outflow of reconnection sites. In
other words, in the 2-D case, the spectra do not meaningfully represent the energy distribution over length scales. In three
dimensions (with a strong guide field), where the contribution of current sheets to the energy spectra is less dominant,
we do find the same power-law slope for both magnetic and kinetic spectra despite the system still being magnetically
dominated (Zhou et al. 2020). These considerations lead us to approximate the island advection velocity with the Alfvén
velocity as there is only a scale-independent constant factor of order unity between the two velocities.
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time delay for a given merging event is denoted by 7., which depends on the areas and
fluxes of both islands. The expression for 7. will be given in § 2.3 and the way we treat
the islands during the merger will be described in § 2.4.

We assume that the decrease in the number of islands happens as soon as the two
islands meet in real space. However, the increase in the number of islands happens
when the ‘parent’ islands finish the merging process. That is, for a merging event
between two islands characterised by (¢, A) and (y', A") (with ¢ < ), starting at
time ¢, the sink term acts to decrease f(¥,A,t) and f(y', A, t) immediately, while
the source term acts to increase f(i, A+ A’, t 4+ T.) When islands finish merging at
t 4 T (¥, A, ', A'). Equivalently, for a source term increasing f(y, A, f) at time #, the
corresponding sink term resulting from the same merging event decreases f (¥, A', f — Tec)
and f(Y', A — A', t — t.) when the islands with (¢, A") and (', A — A’) start to merge at
r— Trec(w’A/9 W/,A _A/)

The way we implement this time delay 7. in the source term Cs,. (¥, A, ) is as follows.
At any given time ¢ and given point (i, A) in the phase space, we trace back the history of
island distributions at all previous times ¢ — t (t € [0, ¢]) and consider all possible pairs of
islands (1, A") and (', A — A’) from which the new islands can be formed. The merging
times T (¥, A, ', A — A’) of these islands are calculated. Those islands whose merging
time 7. matches t contribute to the source term.

Following the above description, the source term can thus be formally expressed as

' A v
Cotpetny = [ar [ awswaii-o [ oy
L 0 0 0
JW,A-At—1)o(A—A,A)Sv8[T — Tee (W, A", ', A — A)]. 2.4)

We note that introducing the delay of islands’ merger time is important to obtain
the correct dynamical time scale of the evolution of the system. With an instantaneous
collision operator, the system would evolve on the Alfvénic time scale, whereas with the
consideration of merger time delay, the system evolves on the reconnection time scale
(which has indeed been shown to be the correct evolution time via direct numerical
simulations of this problem Zhou et al. 2019, 2020; Bhat er al. 2021; Hosking &
Schekochihin 2021).

2.3. Reconnection time Ty,

The time for two islands to merge, T.., is determined by the physics of the reconnection
process. In this subsection, we first consider the collisional, low Lundquist number
regime S < 10* and calculate the reconnection time T, based on the Sweet—Parker
(SP) reconnection model (Parker 1957; Sweet 1958). We note that different reconnection
models can be adopted to calculate 7. and our IKE model can be modified to study
systems in different reconnection regimes.

In the SP regime, the merging of two islands with different sizes (A, A,) and fluxes
(Y1, ¥p) 1s a process of asymmetric reconnection (the symmetric case is a particular
scenario in this description), where the outflow Alfvénic velocity v, and the pertinent
Lundquist number S are calculated using geometric averages (Cassak & Shay 2007), as

follows:
_ p_ (W )”2 W'
vy = (B1By) " = (mm = AAE (2.5)
§— \/1//1%' 2.6)

n
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The merging time between an island with (Y, A;) and island with (v, A,) is calculated

min (vAj, V/A;)

v[‘ ec

Trec(wl’Al’ w25A2) g (27)
where v s the merging velocity of the two islands. The v, and outflow Alfvénic velocity
vy are related by the dimensionless reconnection rate B = Vec/Va. In the SP model,
Brec is related to the local Lundquist number of the merging islands S by B = S~/
Therefore,

_ I\ @) Yy
_ _ 172 ~ | NIV Z AR e, V)
Uree = ,Brech — S Uy = ( n > (A1A2)1/4 - (A1A2> ) (28)

and the reconnection time 7, can be calculated.

We emphasise that the elements of the reconnection process that affect the IKE are
the conservation of magnetic flux and area (both of which are quite generally valid), and
the reconnection rate. Beyond this, the actual detailed reconnection physics — such as, for
example, the specific mechanisms that set the reconnection rate — do not enter our model.
Therefore, our IKE can be straightforwardly extended to other reconnection regimes where
the reconnection rate is a constant. This includes collisionless plasmas or, indeed, any
regime where Hall physics is important; in either case, the reconnection rate is B =~
0.1 (see, e.g. Biskamp, Schwarz & Drake 1995; Birn et al. 2001; Shay et al. 2001; Cassak,
Liu & Shay 2017). For convenience, in the rest of the paper, we refer to this regime with
Bree = 0.1 as the collisionless regime but, we stress, it is in fact more general than that.

2.4. Accounting for islands undergoing merging processes

Owing to the time delay between the sink term and the source term of the collision
operator, the contributions of currently merging islands to the distribution function
f(, A, 1) have already been subtracted by the sink term, while the components for the
resulting new islands have not yet been added by the source term. This would lead to the
problem that, when calculating global physical quantities using weighted averages with the
distribution function, the islands in the merging process would not be taken into account.

To fix this problem, we add the components of the distribution function that have
been sunk but not yet re-added by the delayed source term. We denote by f(yr, A, 1)
the distribution function of the islands that are undergoing the merging process; as
stated above, under the assumption of binary merging, these islands do not participate
in the interaction with additional islands. The total distribution function is then given by
foa(W, A D) =f(Y, AL L) +f(¢» A, t); all the physical quantities should be calculated using
this total distribution function. ~

A kinetic equation for the time evolution of f (i, A, f) may also be calculated from the
merging of islands and can be decomposed into the source term éSrc(wa A, 1) and the sink
term Csn (¥, A, 1), as follows:

(W, A, 1) = Csre(r, A, 1) + Conc (¥, A, 1. (2.9)

We note that the advective terms 0, (&f) and 8A(Af) are neglected in (2.9). That is,
we do not consider the continuous evolution of the merging island parameters during
the reconnection process. Instead, we assume that when islands start to merge, their
parameters remain the same until the moment when islands finish merging. At the end
of mergers, the islands’ parameters jump from values of previous islands to values of
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the new islands (in particular, one of the islands disappears). This is implemented by the
collisional integrals (fSrC and éSnk. On a time scale much longer than the life time of one
island generation, the replacement of the continuous change of islands parameters during
mergers with a discontinuous change at the end of mergers will not significantly change
the system evolution.

The merging islands distribution f(1, A, ) increases when islands start to merge;
therefore, the source term Csrc(lﬂ A, t) should act immediately on f (¥, A, 1). Obviously
Csrc(l//, A, 1) = —Csn (¥, A, 1), because the components of islands starting to merge should
be subtracted from f(, A, ) and added to f (¥, A, 1) instantaneously.

The sink term is more complex. We want to subtract from f (Y, A, 1) once the islands
finish merging. That is, at any given time ¢ when islands finish merging, we want to
subtract the components that we added at r — 7. when they started to merge. This can

be implemented by introducing the time delay to the source term Csie(Y, A, 1):

@MWAJ%=—/ch@AWAJ—GSH—nMwACWAﬂ
0

12
X O[T — Tee (W, A, Y/, A)]. (2.10)

= L def (Y, At — 1) foo dA’/Oo dy'f(y' A t—1)0o (A, A))Sv
0 0 0

One of our merging rules says that the area of the resulting islands should be the sum
of the areas of the two merging islands. Therefore, in this model, the total area of all the
islands should be conserved. The total area can be calculated by

Aot =/ dAdY fio (¥, A, DA. (2.11)

In the numerical implementation of our IKE that we discuss in §§ 3 and 4, the conservation
of Ay has been tested and confirmed numerically as a benchmark of the equation solver.

2.5. Macroscopic quantities and magnetic spectrum

We first introduce the parameter Vi = A, /L* € [0, 1] to represent the volume-filling
fraction of islands in the system. This quantity is determined by both the density and sizes
of islands. As we discussed at the end of §2.1, larger V), implies a smaller mean-free
path Ay for the islands. When the islands are volume filling, i.e. Vg, ~ 1, the mean-free
path is close to the typical length scale of islands Ay, & /Aio/N. This is the case that we
focus on in this paper, but we also show in § 4.1 a scan in Vyy, which indicates that this
parameter does not control the evolution of the main quantities of interest in our study.
The other main macroscopic quantities of interest are the total number of islands N, the
average area of islands (A) and the total magnetic energy £. Their expressions are

N®=/MWMWAW 2.12)
Auc(0)

=2l = N@fdwwmwAﬂA (2.13)
€®=fdMWMWAﬁW- (2.14)
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The scalings for the time evolution of these three quantities are the most important
predictions from our hierarchical model (Zhou et al. 2019), which we repeat here:

N@ ~t'y (A@)~t E@ ~t. (2.15a—c)

One of the main goals of this study is to test if the above scaling laws remain valid for a
system consisting of a non-trivial distribution of islands, which we describe in detail in
§4.

Apart from the evolution of macroscopic quantities, we are also interested in the
magnetic energy distribution over different length scales. This can be first represented
by the magnetic energy density associated with different areas A of islands, denoted as
U(A, t), which can be calculated from the distribution function f (i, A, t) as

UA, 1) =/ Ay fa (¥, A, Y2, (2.16)

and is related to the magnetic energy as £(t) = [ U(A, 1) dA. The conventional definition
of magnetic energy spectrum in the wavenumber (k) space, denoted as U(k, ), is related
to U(A, ). The wavenumber k, corresponding to a length scale, is related to the area of
islands A as

2
k="~ A2 (2.17)

T 4JA/m
The k space can therefore be constructed from the A space. The magnetic energy
associated with each wavenumber and that associated with each value of area are related

as U(k) dk = U(A) dA, where A ~ k=2. Therefore, the magnetic energy spectrum U (k, )
can be calculated from

Uk, t) = U(A, I)% ~kUA, ). (2.18)

Given an A-spectrum U(A) ~ A™*, we can obtain the corresponding k-spectrum U (k) ~
k™7, where y = 3 — 2«a, according to (2.18). We note that in some circumstances, the
magnetic energy spectrum calculated using the definition (2.18) can provide more accurate
and meaningful information on the energy distribution over scales than the standard one
based on Fourier transform of real-space configurations of magnetic fields. For example,
in Zhou et al. (2019), a k= magnetic energy spectrum was observed in 2-D RMHD
simulations of island mergers, but the origin of this spectrum was, in fact, traced simply
to the sharp magnetic field reversals at the thin current sheets between merging islands
(Burgers 1948).

Finally, to visualise the island distribution function more easily, we calculate the
1-D distribution functions F(A, t) (the distribution function over A) and F(, t) (the
distribution function over ¥):

Fa(A, 1) = / dfon (1, A, 1),
(2.19)

FI/I(‘(//v t) = / dAﬁOt(w9Av t)
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3. Numerical implementation

We conduct a numerical study of this island-merging problem by numerically solving
(2.2) and (2.9). We use the following normalisations. We assume the islands are in a
periodic square box with side L = 2m, and define a reference magnetic field By = 1 and
Alfvén velocity vyy = 1. The reference magnetic flux is ¥, = ByL. The global Alfvén time
is then defined as L/vao. This global Alfvén time is mainly for normalisation purposes
and is different from the local Alfvén time defined with the size (+/A) and magnetic
field (y/+/A) of islands. For resistive-MHD cases, the resistivity is specified by setting
the global Lundquist number S; = v4oL/n defined with the system scale L and reference
magnetic field By. With this fixed resistivity, the local Lundquist number of merging
islands and the corresponding reconnection rate S, in the SP reconnection regime can be
determined via (2.6). For collisionless (or simply Hall-dominated) cases, the reconnection
rate is not determined by the Lundquist number but is instead set as f.. = 0.1.

The distribution f(v, A, 1) is discretised with Ny, Ny, points in the A and ¥ domains,
respectively. The grid spacing for each quantity is uniform. In all simulations, A ranges
from L?/N, to L?, while v ranges from v//2 to 3v,/2. The collision integrals in (2.3),
(2.4) and (2.10) are calculated using a trapezoidal rule, while time evolution is carried out
using a standard second-order predictor—corrector method. The time step is constant and
chosen to ensure numerical stability for the initial distribution, which imposes the strictest
conditions because of the largest Alfvén speeds corresponding to the smallest islands. The
merging island distribution (1, A, 7) is evolved in a similar manner.

Solving the IKE is numerically challenging because the collision operator is non-local in
both time and phase space. As such, it requires storing the history of the evolution of f/ and
£, and performing calculations using quantities from up to the largest value of 7, earlier.
This increases both the memory requirements and the computational cost. Additionally,
the non-locality makes the parallelisation of the computations inefficient.

4. Numerical results

We consider three different types of initial conditions (delta, Gaussian and power-law
distributions), and study the following aspects of the system: (1) time evolution of
macroscopic quantities, in comparison with the prediction of the hierarchical model
E~r',N~r1' (A) ~ t; (2) evolution of 1-D distribution functions F4(A, 1), Fy (¥, 1);
and (3) evolution of magnetic energy spectrum U(A, #) [which, as explained above, is
directly related to U(k, t)]. The delta-distribution case is mainly used to benchmark the
IKE model against the hierarchical model and (reduced-)MHD simulations that we have
reported in Zhou et al. (2019), while the Gaussian and power-law cases are more relevant
to various astrophysical systems.

According to our assumption, the flux of the new islands will be the larger flux of the two
merging islands. Therefore, the values of fluxes at any given time will be a subset of those
at the beginning. However, new values of areas of islands will be continuously generated.
Considering the high computational cost to solve the IKE, we employ this argument to
justify the use of low resolution in the flux coordinate v (small Ny ) and relatively high
resolution in the area coordinate A (large N4), which focuses on studying the evolution of
Fi(A ).

We introduce the parameter R to quantify the maximum difference of areas and fluxes
between islands that are allowed to interact:

(AA) oy = RL?, (AY)max = RBoL. (4.1a,b)
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Weset) < R < 1, where R = 0 gives only local interactions in phase space, as assumed by
the hierarchical model (Zhou et al. 2019), and R = 1 allows interactions between islands in
all of phase space. We note that, in our model, increasing R (i.e. allowing a wider range of
interaction) does not necessarily lead to more merging events per unit time. As mentioned,
our assumption of binary merging imposes an exclusion principle on merging events.
Therefore, allowing the merger of islands within a wide range of distribution effectively
reduces those between similar islands. The motivations to introduce R as a constraint on
the interaction range are as follows. First, it allows us to study whether it is the interactions
between similar-sized islands or those between large and small islands that dominate
the evolution of the system. This will be important in the discussion of §5, when we
draw connections between the present study and decaying 2-D MHD turbulence (whose
dynamics is controlled by island mergers) (e.g. Matthaeus & Lamkin 1986; Zhou et al.
2019). In particular, the parameter R maps to the question of whether the energy decay and
associated inverse transfer are mostly caused by the local interaction (in Fourier space) of
modes with similar wavenumbers, or if, instead, non-local effects play a significant role.
Therefore, the investigation of the effect of this parameter can help to justify, or refute, the
use of single-scale models or scaling theories (that require assuming a characteristic scale
and magnetic field) to study this problem. Second, it creates a case that can be more closely
compared to the hierarchical model, namely, allowing only local interactions, R = 0, and
starting with identical islands, i.e. delta-function initial distributions (see § 4.1). Third, it
reduces the computational cost of the calculations, making them more feasible to perform.
The effect of varying R on the results will be discussed below.

There are several factors that can cause discrepancies between the results of the IKE
and the hierarchical model. For example, the hierarchical model restricts mergers to
those between identical islands, whereas the IKE model relaxes this constraint and allows
mergers between any pair of islands. Also, the hierarchical model assumes mergers happen
at discrete stages, while the IKE is a continuous model. Therefore, in the IKE, even if the
system starts with identical islands (and only with local interaction), islands with different
areas (but same flux) will be generated. Yet another difference between the two approaches
that is worth mentioning is that the hierarchical model assumes mergers to be successive
immediately, while the IKE includes islands freely moving at the Alfvén speed between
merging events. The inclusion of this effect thus causes the system to evolve slower in the
IKE than in the hierarchical model. With high enough S (or in the collisionless regime),
Trec > Ty, the scaling with time in the IKE is expected to approach that of the hierarchical
model.

4.1. Delta-distribution initial condition

We first study the system with a delta-distribution initial condition, expressed as

JW, A 1=0) =f (Y — Vi) 6(A — Aini). (4.2)

That is, the system starts with an ensemble of identical magnetic islands with flux v,
and area Ay, (the same initial condition as used in Zhou et al. 2019). In the following
calculations, we set Vi, = 5BoL/6 and area Aj; = L?/N, (the smallest area we can
resolve). We use Ny = 256 and Ny, = 4 to resolve the system. In this and subsequent
studies, we vary the Lundquist number S; between 10° and 10* and study the effect of
non-local interactions by varying R from 0 to 1. For this initial condition, we also vary the
value of f; to set the island volume-filling fraction Vg, € {0.125, 0.25, 0.5, 1}. We focus
mostly on the case Vg = 1 and study the effects of S; and R with fixed Vg = 1.

This is the ideal set-up to test the scalings from the hierarchical model: total
magnetic energy £ ~ ¢~!, number of islands N ~ ¢~! and average area of islands (A) ~ ¢
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(Zhou et al. 2019). The evolution of these quantities is shown in figure 2. Figure 2(a,c,e)
show the R = 0 case (i.e. only identical islands interact) for S; = 10°, 10*. In this and
subsequent figures, the unit of time is the global Alfvén time L/v4o. Both £ and N show a
t~! scaling to a good approximation, while (A) scales as 7. This shows agreement with the
hierarchical model described by Zhou et al. (2019). There are discrete ‘steps’ that can be
seen in the time evolution. The horizontal segments arise from the finite reconnection time,
as the macroscopic quantities only change after merging is complete, while the steepness
of the mostly vertical segments is controlled by the collision integral.

The effect of allowing non-identical islands to interact is shown in figure 2(b,d, f) that
compare runs with R € {0,0.1, 1} and fixed S; = 10*. There is little effect, as can be
seen by the overlapping traces as R is varied. This is because merging in this system is
dominated by identical islands. This result shows that the assumption of only considering
merging between identical islands used in Zhou et al. (2019) is valid for the system it
analyses.

The effect of the volume-filling fraction of islands is shown in figure 2(g,%,i), where Vg
is varied from 0.125 to 1. We see that the overall evolution does not strongly depend on
how compactly the islands are distributed in the system: all curves exhibit approximately
the same slope. This is consistent with the fact that reconnection is the dominant
dynamical process governing the evolution of the system. The islands’ mean-free path
and volume-filling fraction only affect the convection time (i.e. the efficiency with which
they pair up), while the merging process remains unchanged. Therefore, Vi should not
be a critical parameter for system evolution within the regime where the convection
time, Awgp/va, is much shorter than the merger time, Trec ~ Bt v/(A)/v4, Which sets the
condition Byec (Amsp/ J/(A)) <« 1. Nevertheless, some small differences still occur between
cases with different V. With decreasing Vg, the evolution of macroscopic quantities is
slightly slower, which can be justified by the larger convection time (i.e. smaller pairing-up
rate) of islands. The curve also becomes smoother with smaller Vj;, because islands
have to travel to pair with one another, as opposed to just merging with immediately
adjacent ones in the volume-filling case. This leads to different merger starting times
for different pairs of islands, thus smoothing out the ‘step’ feature in the evolution
curves.

The evolution of the distribution functions F and F, for S, = 10* and R = 1 is shown
in figure 3. As the merging progresses, the peak of the area distribution moves from small
to large scale (figure 3a). The peak value of F,, which is approximately the number
of islands N, is proportional to (A)~! as the total area is conserved. Because merging
of different-sized islands is allowed, the distribution becomes wider with time, though
the value at the peak remains 1-2 orders of magnitude larger than in the rest of the
distribution, which confirms that the overall merging process is dominated by interactions
between identical islands. Figure 3(b) shows the evolution of Fy. As there are only
islands with one value of 1 initially, the only change during evolution is the magnitude
of the peak, which reflects the reduction in the number of islands. The spectra (not
shown) are qualitatively similar to the distribution functions, which have one dominant
peak.

The results with the delta-distribution initial conditions provide a benchmark of
the IKE model. We show that when the initial conditions and assumptions about
merging are restricted to those of the model in Zhou et al. (2019), the evolution
of macroscopic quantities such as £, N and (A) agrees with the analytic predictions
and with the direct numerical solution of the RMHD equations reported in that
reference.
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FIGURE 2. Delta-distribution initial conditions. (a,c,e) The evolution of macroscopic quantities
(€, N and (A)) allowing only local interactions (R = 0) between volume-filling islands (Vg = 1)
with varying Sz. The corresponding scaling laws from the hierarchical model are shown for
reference (dashed lines). (b,d, f) The evolution of macroscopic quantities with §; = 104, Van = 1
and varying R. Allowing interactions between non-identical islands does not significantly change
the evolution of macroscopic quantities (all the curves overlap each other such that the black
dots are not visible, with only the R = 1 case showing minor deviations for ¢ 2 10). (g,h,i) The
evolution of macroscopic quantities with fixed S; = 104, R = 1 and varying the volume-filling
fraction of islands, V5. The evolution of the system does not depend strongly on V.
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FIGURE 3. The evolution of the 1-D distribution function in area, F (a), and in flux, Fy (b),

for the run with §-function initial distribution, with S; = 10* and unconstrained interactions
(R=1).

4.2. Gaussian-distribution initial condition

In a realistic system, magnetic islands will not be identical. For example, the population of
large flux ropes (magnetic clouds) in the solar wind has a Gaussian distribution (Janvier,
Démoulin & Dasso 2014). We thus study an initial Gaussian distribution with a spread
around its mean area and flux, expressed as

fW, A 1= 0) = fyexp(—(A — A)*/20)) exp(—( — ¥)*/(20,)). (4.3)

Our fiducial run has A = L?/40 ~ 0.99 and ¢ = B,L/2 = m, and we use N, = 256 and
Ny = 4 to resolve the system (a numerical convergence study is included in Appendix B).

The standard deviations are set as 04 = 3L?/N, ~ 0.3A ~ 0.47 and 0, = 3ByL/N, ~
3/2¢ A 4.71. Other runs (not shown in this paper) with different values of o4 and o, show
qualitatively similar results; in particular, when the values of o4 and o, are small enough,
the evolution of the system is similar to that with the delta-distribution initial condition
reported in § 4.1. To study the difference between collisional reconnection, where S, =~
§~1/2 and the collisionless case, where B > 0.1, we perform an additional calculation in
the collisionless regime with this same initial condition.

Figure 4 shows the time evolution of the macroscopic quantities £, N and (A) for
different values of S; (panels a,c,e; the collisionless case is also included for comparison)
and of R (panels b.d,f). The time evolution of these quantities retains a power-law
behaviour where the scaling of £ and N is ¢t with 0.7 < a < 0.8 and (A) scales as ¢*. That
is, an initial Gaussian distribution of islands leads to a somewhat slower evolution than
the delta-distribution case. The ‘steps’ are still present during the time evolution in this
case, as the distribution is narrow enough that the difference in merging time between the
smallest and largest islands is not too large, and a large fraction of the islands complete the
same number of mergers. The effect of changing S; or using the collisionless reconnection
rate is shown in figure 4(a,c,e) (at fixed R = 1). The reconnection rate, and hence the
merging rate, increases going from S; = 10* to 10° to the collisionless regime. Merging
starts earlier when the reconnection rate is higher. However, the slope of the power-law
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FIGURE 4. Gaussian-distribution initial condition: (a,c,e) time evolution of macroscopic
quantities (£, N and (A)) with R =1 and S, = 103 (black curve), S;, = 104 (orange curve) and
the collisionless case (green curve); (b,d, f) time evolution of macroscopic quantities at Sy, = 104
and varying R.

evolution is not strongly affected as the reconnection time scale is much longer than the
Alfvénic time scale both in the SP and in the collisionless regimes.

Figure 4(b,d,f) show the effect of allowing for interactions between non-identical
islands (i.e. changing R for fixed S = 10%).

The evolution of macroscopic quantities is found to be (marginally) faster for systems
with finite R than for that with R = 0, i.e. allowing for only identical-island interactions.
The merging time of islands is proportional to /A,(A,A)"/* = (A2A))"/* ((2.7) and (2.8)),
where s and [ refer to the smaller and larger islands in an interaction. Therefore, the
merging time depends more strongly on the smaller island (with A;). In the case of the
Gaussian distribution, islands with sizes close to the mean area have the largest population
and thus have a large effect on the overall dynamics. Compared with the merging time
between two mean-sized islands, the merging time between a mean-sized island and a
smaller island is shorter and dominated by the smaller island, while the merging time
between a mean-sized island and a larger island is longer but only has a weak dependence
on the area of the larger island. Therefore, allowing the interaction between non-identical
islands essentially reduces the merging time. Additionally, more islands are allowed to
merge at any given time. The combination of these effects makes the overall dynamics
faster when R is finite.

We also note that for the evolution of N and (A), the curves for R = 0.01, 0.03, 0.1, 1 are
essentially identical and are different from the R = O curve. This suggests that the value
of R does not have a significant effect on the overall dynamics, as long as it is not zero.
We conclude that highly non-local interactions (corresponding to mergers between islands
differing a lot in size) are not dynamically important. This observation has implications
for the discussion of decaying turbulence found in § 5.
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FIGURE 5. Gaussian initial distribution for R = 1 and S; = 10*: (a) time evolution of F4; (b,c)
time evolution of the energy distribution U(A, t) and U(k, 1), respectively. Vertical lines indicate
mean values of A and k at the corresponding moments of time. The solid (dotted) black curves
in each panel indicate fittings of Gaussian distribution using o4 = 0.47 (o4 = 0.6) for t =0
(t =10).

The evolution of the distribution function F4, and magnetic energy spectra are shown in
figure 5 for the case S; = 10%, R = 1 (given the very limited resolution in the ¥ coordinate,
as mentioned earlier, there is not much value in studying F', and therefore it is not shown).
At ¢t = 10, the initial distribution has decayed and a new peak grows at A %_2;\ (panel
a), as a result of the merging of islands with areas close to the first peak at A merging.
The second peak of the distribution remains Gaussian, and has a somewhat larger width
(comparing to the initial one), which we fit with o4 = 0.6. After the merging of the initial
islands, the peak of distribution continues to shift to larger area with a greater width.
Owing to the longer merging time, the old peaks have not always decayed when the new
peaks form (e.g. at t = 30, t = 60). We note that, at late times (40 < t < 60), the tail of F4
at small A remains (almost) unchanged and the mergers happen mainly between islands at
the peak of F,. This is because (i) the relatively fast mergers between (identical or similar)
small islands are less frequent with larger values of R; and (ii) the probability for mergers
between islands at the peak of F4 is much higher than for mergers involving small islands
because of their larger number density and cross sections.
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FIGURE 6. Gaussian initial distribution with R = 1 and the collisionless reconnection model:
(a) time evolution of Fy4; (b,c) time evolution of the energy distribution U(A, f) and U(k, 1),
respectively. Vertical lines indicate mean values of A and k at the corresponding moments of
time.

The spectra evolution (panels b and ¢) show similar behaviour as the distributions.®
We remark again that our definition of magnetic energy spectrum ((2.16) and (2.18)) is
different from the conventional definition based on the Fourier transform of the magnetic
field as a function of position in configuration space; the former straightforwardly presents
magnetic energy distribution over islands with different scales, while the latter can be
dominated by local features such as magnetic reversals at current sheets. The difference
between the multi-peak spectra presented here and the ~ k=2 spectrum in Zhou et al.
(2019) is caused by the different definitions of spectrum, without incompatibility. The
collisionless case is shown in figure 6. The multiple peaks are still visible in the system
both for F, and the spectra, but there is no clear transition from one Gaussian to another.
Instead, multiple peaks are present because of the smaller merging time. This means that
the first islands in a given generation to complete merging can start their second merger

The energy spectrum is defined as U(A) = [ fior (i, A)y? dir. Because the variation of fio with ¥ is very limited
in this calculation owing to the low ¥ resolution, the evolution of the spectra is very similar to the evolution of the area
distribution Fs = [ fia (¥, A) dyp.
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FIGURE 7. Power-law initial distribution: (a,c,e) the evolution of macroscopic quantities (€,
N and (A)) for unconstrained interaction (R = 1) with @« = 1 and S; = 103, 10* and the
collisionless case; (b,d, f) the evolution of macroscopic quantities for Sy, = 10% and o = 1, with
varying R.

while other islands of that original generation are still merging, which gives rise to the
multiple peaks.

4.3. Power-law initial condition

Another situation of interest is that of an initial power-law distribution of islands, which
may be relevant to various astrophysical systems such as small-scale (< 0.1 AU) flux ropes
in the solar wind (Janvier et al. 2014) and magnetic structures in the downstream of a
collisionless shock as a result of the Weibel instability (Katz, Keshet & Waxman 2007). To
reduce computational expense, we set up the initial islands with a power-law distribution
over the size, but identical magnetic flux:

JW, A 1 =0) =foA™8( — ini). (4.4)

The power-law exponent, —«, is the same as that of its corresponding A-spectrum: U(A) =
[ Ay foA™ 8 (Y — Y)Y = foih, A In our calculation, the power-law distribution is
set up in the range A, < A < Apa, Where A, = L?/N, and Ay = 5L*/N,. Initial
conditions with « € {0.5, 1, 2, 4} are studied. We set v, = (5/6)LBy and resolve the
system with Ny, = 256.

The evolution of various macroscopic quantities with ¢ = 1 in the initial condition is
shown in figure 7. Panels (a,c,e) show cases with S; = 10°, 10* and the collisionless case,
for R = 1. The decay of £ and N shows a ¢ “ power-law scaling, and (A) increases as
t“, where a =~ 0.9 and does not strongly depend on the reconnection rate. This is only
slightly different from our results for the delta and Gaussian initial distributions (reported
in §§4.1 and 4.2). We note that in this case, the curves of evolution of macroscopic
quantities are smooth: the discrete ‘steps’ that occur for the delta (figure 2) and Gaussian
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(figure 4) distributions are absent. This is because no dominant island size or merging
time scale exists in the system owing to the wide spread of island sizes pertaining to a
power-law distribution. Islands then merge over a wide range of time scales, which causes
the evolution to appear smoother. The effect of changing R is shown in panels (b,d,f)
for S, = 10*. As R increases, the decay of £ and N becomes slightly steeper, as does
the corresponding increase of (A), which indicates a faster overall merging process. The
explanation is the same as for the Gaussian case: allowing non-local interactions in the
collision integral increases the number of islands that can merge and increases the average
merging rate.

The effect of varying the index of the initial power law from o = 0.5 to 4 on the
evolution of the macroscopic quantities is shown in figure 8. The difference between the
o = 0.5 and @ = 1.0 runs is minor, which indicates that for shallow initial power-law
distributions, the evolution of macroscopic quantities depends only weakly on the initial
power-law slopes. As « increases, merging becomes faster, shown by somewhat steeper
traces of N, £ and (A). This can be understood by noting that the distribution function
becomes progressively more similar to a delta-function distribution with an increasing o,
and so this steepening is consistent with the results of § 4.1 and should tend to ~¢~!.

The evolution of the energy spectra and area distribution function is shown in figure 9,
for « = 1 (corresponding to an initial k=7 spectrum where y =3 — 20 = 1), R=1 and
S; = 10*. The distribution function F. , 18 not shown because it starts as a delta distribution
and remains so, according to our merging rules. Interestingly, the area distribution Fj
(panel a) spontaneously forms a range of A where a power-law distribution is maintained
with F, ~ A2, though the —2 index differs from the initial index. The formation of this
A~? distribution is still present when the initial distribution has o = 0.5 and o = 2,7
which implies that this A=2 distribution is an ‘attractor’ that the system tends to evolve
to, independent of the initial conditions. Moreover, there is an extended envelope which
covers the power-law regions of the curves at different times, showing the self-similar
features of the system evolution. Consistent with F, the energy spectra also transition to a
U(A) ~ A2 (and correspondingly U(k) ~ k) power law as the system evolves (panels
b and c). Similarly, this behaviour is independent of the initial slope and the spectra
tend to evolve to the ~ A=2 (~ k) fixed point. For the collisionless case (not shown),
the evolution of F,4 and spectra show similar behaviours and evolve to power laws with
the same exponents as their resistive-MHD counterparts. This self-similar evolution of F4
and spectra can be demonstrated analytically by applying the hierarchical model of Zhou
et al. (2019) to a power-law distribution of islands under the assumption that coalescence
events most often occur between similar size islands — see Appendix C. A derivation of the
observed k' (A=2) spectrum can be obtained based on the self-similar properties. However,
we are not yet able to prove analytically that the k! (A~?) scaling is an ‘attractor’ of the
spectra and F, that the system is expected to evolve to. One final observation worth making
is that, at later times, there is a peak at the centre of the distributions and spectra, which is
likely a result of an incomplete merging of islands within that range of A, while the rest of
the distribution in regions of smaller and larger A still shows a —2 power law.

5. Connection to magnetically dominated decaying turbulence and scaling theories

The system of a large number of coalescing islands is closely related to the problem
of decaying turbulence in the magnetically dominated regime. On the one hand, the
astrophysical systems of which magnetic fields can be conceptualised as interacting

7In the case of a = 4, the distribution is so steep that it is closer to the delta-function case than the power-law case
owing to the limited dynamic range.
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FIGURE 8. Power-law initial distribution. Time evolution of macroscopic quantities (£, N and
(A)) for unconstrained interaction (R = 1) and S; = 10*, with varying «o.

magnetic structures or those where magnetic-island structures are produced, are usually
in a turbulent state. On the other hand, turbulence is unavoidable as the random motion
of a large ensemble of islands easily turns chaotic. Without external energy sources, the
turbulence will decay and its energy dissipation as well as the associated inverse cascade
can be realised through island mergers.

The decay of MHD turbulence is believed to be of a self-similar nature. By definition,
a quantity z is self-similar if it satisfies the relation z(£x) = £"z(x). The magnetic and
velocity fields in MHD have such self-similarity, B(¢x, 27" = 0"B(x, 1), originated
from the rescaling symmetry of the MHD equations (Olesen 1997). We note that our
hierarchical model (Zhou et al. 2019, 2020), or the R = 0 limit of the IKE, can reproduce
such self-similarity. Considering the evolution of a 2-D single-scale (identical islands)
system, the change of quantities after mergers can be represented by simultaneously
rescaling the following quantities: B’ = ¢"B; A’ = ¢?A; and ¢ = £'~"t, where £ = (¢ /1)'/?
is the scaling factor that maps between two arbitrarily chosen moments of time ¢ and
and 7 = —1 is chosen based on the conservation of magnetic flux, B'A/A’ ~ BJ/A. The
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FIGURE 9. Power-law initial distribution for R =1, = 1 and S; = 10*: (a) time evolution
of the area distribution function F(A); (b,c) time evolution of spectra U(A, t) and U(k, 1),
respectively. The dashed lines show reference A~2, k' power-laws in the respective plots.

decay of a 2-D turbulent system can be considered as a consecutive sequence of the above
rescaling operations (Olesen 1997); in the magnetically dominated regime, this sequence
is materialised through successive island mergers.

It is reassuring that our heuristic island-based model follows the fundamental rescaling
symmetry of MHD equations in the limit of R = 0, i.e. local (in Fourier space) interactions
only. It is not clear, however, if the self-similar properties remain valid when non-local
interactions (mergers between non-identical islands) are allowed. This can be partially
answered by the scan in the parameter R (allowed interaction range) in our IKE model.
It is shown in figures 2, 4 and 7 that, for different island distributions, the evolution
of the system does not change significantly with values of R ranging from the local
(R = 0) to the unconstrained (R = 1) interaction case. For the case of a Gaussian initial
distribution (figure 4), the effect of R is more noticeable than that with the other two initial
distributions. However, even in this case, the evolution of the system with unconstrained
interactions (R = 1) is almost identical to when only interactions between nearly similar
islands are allowed (R = 0.01, 0.03 and 0.1), with a non-significant but noticeable
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deviation from the strict local-interaction case (R = 0). This implies that highly non-local
interactions (big—small island mergers) do not strongly affect the evolution of the system.®

The absence of dynamically important highly non-local interactions allows us to adopt
scaling arguments for this problem and to assume a statistical self-similarity, because
scaling arguments mainly consider the local (in Fourier space) dynamics around the
assumed characteristic quantities. For a system with a characteristic length scale / and
a characteristic magnetic field B at this scale, islands can be distributed and interact in a
non-trivial way around this / and B. The characteristic time scale for these mergers will
be Twee ~ Broel/B ((2.7) and (2.8)), and the decay of magnetic energy can be expressed
as dB?/dt ~ —B*/Twc ~ BrecB’/l. During the reconnection process, the magnetic flux
Y ~ Bl is approximately conserved. This causes the dimensionless reconnection rate of
the merging islands in the SP regime to remain the same during the evolution S, =
S=1/2 ~ (Bl/n)~"/? ~ const. (Note, B is also a constant in other reconnection regimes as
we discussed in § 2.3.) Combined with the constancy of both the flux Bl and B,.., we obtain
the scaling laws of energy decay and growth of the characteristic length scale B> ~ Brect ™!
and [ ~ B1/21'% (Zhou et al. 2019, 2020; see also Schekochihin 2020). In the case of
volume-filling islands, the number of islands scales as N ~ B..t~' following NI> ~ const.
These scaling laws are identical to those predicted by our hierarchical model. Both the
scaling arguments and the hierarchical model adopt the concept of reconnection-controlled
‘structure merger’, but the former does not rely on the restrictive assumptions of pairwise
and identical-island mergers, which are assumed in the latter.

We note that the scaling laws B> ~ t~! and [ ~ t'/? in 2-D decaying turbulence have been
established for decades without invoking the idea of reconnection (Hatori 1984; Biskamp
& Welter 1989). In those studies, the decay time scale of magnetic fields is assumed to
be the eddy-turn-over time [//B if equipartition between kinetic and magnetic energies
holds. In reconnection-based models discussed above, the conservation of magnetic flux
is invoked to relate the evolution of B and /. In a 2-D MHD system, an equivalent role is
played by the conservation of anastrophy [ derf, where A, is the component of the vector
potential perpendicular to the 2-D plane and therefore, A, ~ Bl ~ const. It is remarkable
that the same scaling laws hold for both a decay controlled by reconnection and one on the
ideal Afvénic time scale. This ‘coincidence’ occurs because the reconnection time scale
tracks the Afvénic time scale when B, is a constant. (This does not hold for systems
with hyper-resistivity where different scaling laws are found (Hosking & Schekochihin
2021).) Physically, reconnection is the main mechanism responsible for magnetic energy
dissipation and that should be what sets the time scale, as confirmed by direct numerical
simulations in Zhou et al. (2019), where energy decay curves from systems with different
values of resistivity overlap once their time axes are normalised to their characteristic
reconnection time scale.

The above scaling theory based on the conservation of magnetic flux can be
straightforwardly applied to a 3-D system with a strong guide field by invoking an
additional element of critical balance (Zhou et al. 2020). However, the 2-D magnetic
flux, or the anastrophy, is not an invariant in a generic 3-D system. It is well known that
the conservation of magnetic helicity (in replacement of anastrophy) is responsible for
the decay and inverse transfer of helical MHD turbulence (Taylor 1974; Pouquet 1978;

80ne caveat of this conclusion is that for most of our simulations, owing to the limited dynamical range, islands
with significant energy are separated from the peak of the distribution function only by a factor of order unity. Therefore,
it is possible that the island distributions are still, to some extent, represented by a characteristic scale and the non-local
interaction is weak because of the lack of scale separation for islands containing significant energy. Simulations with a
larger dynamical range and wider island distribution are required to test whether non-local interactions are dynamically
important to a system of coalescing islands.
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Christensson, Hindmarsh & Brandenburg 2001). Recently, the puzzling inverse-transfer
phenomenon that occurs in magnetically dominated turbulence with zero net magnetic
helicity (e.g. Zrake 2014; Brandenburg, Kahniashvili & Tevzadze 2015; Brandenburg &
Kahniashvili 2017; Bhat et al. 2021) has also been solved with a powerful tool of the
Saffman helicity invariant (Hosking & Schekochihin 2021). In Hosking & Schekochihin
(2021), the physical picture of merging magnetic structures is shown to be compatible with
their formal theory based on the self-similar argument and the Saffman helicity invariant.
In Bhat et al. (2021), the energy decay of 3-D non-helical turbulence is shown to occur
on the reconnection time scale. The above evidence indicates the wide applicability of the
structure-merger type of dynamics to magnetically dominated turbulent systems.

6. Conclusion

This paper investigates the evolution of a 2-D system of merging magnetic islands
using a statistical description. The islands are characterised by their areas and magnetic
fluxes, and their evolution is governed by a Boltzmann-type kinetic equation which we
derive (dubbed the island kinetic equation, IKE). In this equation, island mergers are
accounted for via a collision integral whose key feature is to allow for finite-time (rather
than instantaneous) mergers; thereby informing the system about the reconnection time
scale, which governs the mergers, and which is large compared with the Alfvénic time
scale.

We use this IKE to study the inverse transfer process enabled by island merging,
focusing on the scaling with time of the growth of the magnetic field length scale and
the associated decay of the magnetic energy, as well as the evolution of the distribution of
islands and magnetic spectra. By solving the IKE numerically for different initial island
distributions, we find that the time evolution of global quantities is insensitive to the initial
distribution, and is close to the predictions of Zhou et al. (2019, 2020): magnetic energy
& ~ 1! the number of islands N ~ 7~!; and the averaged area of islands (A) ~ 7, where
7 is the time normalised to the reconnection time scale. This weak dependence of the
evolution of global quantities on initial island distribution is consistent with our conclusion
in Appendix C, where we generalise the analytical model for identical islands in Zhou et al.
(2019) to describe islands with distributions of sizes and fluxes. Although the predictions
from our hierarchical model are only confirmed numerically using a relatively limited
range of Lundquist number S; € {10%, 10*} (as well as the B... = 0.1 case), we believe that
they should also hold in the plasmoid-dominated regimes with higher Lundquist number,
as we discuss in footnote 2.

We study the system evolution in detail with three different types of initial island
distributions: identical islands, Gaussian distributions and power-law distributions. We
also introduce a dimensionless parameter, R, to quantify the maximum difference of
areas and fluxes between islands that are allowed to interact. In the limiting case of an
initial distribution with only one island size and merging between identical islands, which
corresponds to the hierarchical model and the set-up of the reduced-MHD simulations in
Zhou et al. (2019), the time evolution of the macroscopic quantities predicted by the model
is reproduced. In this case, increasing R does not change the evolution, which shows that
the assumption used in Zhou et al. (2019) that only identical islands merge is valid for
adequately describing the overall system dynamics. In more general cases with non-trivial
initial (Gaussian and power-law) distributions of islands, we find that the time evolution of
macroscopic quantities still remains in the form of a power law, and can be described by the
hierarchical model of Zhou et al. (2019) to a reasonably good approximation; the evolution
observed in those cases is only slightly slower (the power laws are slightly shallower) than
the results of the delta-distribution study and the predictions of the hierarchical model.
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This holds true for both the Gaussian and power-law initial conditions, and indicates
that a distribution of islands may merge somewhat more slowly than a population of
identical islands. Aside from the global quantities, with Gaussian initial conditions, the
distribution functions (spectra) are spread over a wider range of areas (wavenumbers) and
form multiple peaks at later times. With the power-law initial conditions, the distributions
(spectra) evolve to a fixed ~ A~2 (~ k) power law at late times, regardless of the initial
slope, as a result of self-similar evolution.

These results are directly relevant to space and astrophysical systems for which the
overall dynamics can be conceptualised as a turbulent sea of interacting magnetic islands
(or flux tubes in three dimensions). While direct numerical simulations of such systems
might be hard to interpret owing to complicated multi-scale interactions among various
physical processes, the present study isolates the self-dynamics of magnetic islands and its
contribution to the overall evolution of the system, thus providing useful insights into how
such systems might organise themselves. Furthermore, our IKE model can also be used as
a building block in the study of other problems such as particle acceleration and plasma
heating. The main physics process that we study here — magnetic island merging enabled
by magnetic reconnection — is essentially an energy transfer process. Understanding the
statistics of island mergers is key to deriving the statistics of dissipation processes and
particle energisation. Therefore, our IKE model can be combined with models of other
dissipative physical processes and sheds light on long-standing problems such as the
heating of the solar corona and accretion disk coronae, and the production of high-energy
particles in solar wind and heliosheath.

Finally, while the extrapolation of these results to 3-D geometries is not straightforward,
we think that, at least in situations where a strong guide field is present, the evolution
of the system will not be changed significantly by the dynamics in the third dimension
(parallel to the guide field). Indeed, in Zhou et al. (2020), we showed that the parallel (to
the guide field) dynamics are essentially passive, dictated by the perpendicular dynamics
through a critical-balance-like relation. In the weak guide-field limit, however, the system
dynamics can be qualitatively different. Kink-type modes may play a significant role and
disrupt the flux-rope structures. In addition, if the system has zero net magnetic helicity
(i.e. roughly equal number of structures with opposite polarities in helicity), roughly half
of the mergers would happen between structures with opposite helicities, which results in
non-helical structures that will relax to zero magnetic energy on the ideal time scale. This
feature has been discussed in detail by Hosking & Schekochihin (2021), based on which
they derive decay laws for non-helical (as well as helical) MHD turbulence.
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Appendix A. Comparison with previous studies

A statistical model describing the distribution of plasmoids in a large current sheet
with hierarchical structures has been developed by Fermo et al. (2010). In Fermo’s model,
the islands are described by a distribution function f(, A, ) with the same phase space
variables ¥ and A that we employ in this paper, and the evolution of the distribution
function is governed by a Boltzmann-type kinetic equation:

8f VA
—+—]/f(¢f)+—(Af) S(W,A)—Zf
1 ! ! ! ’ ! / / /
+sz dAf(w,A)fO ay'v (Y, Ay A= A) £ (0 A— A)
1 © / * / / / / /
—wa,A)fo dA/o dy'v (. Ay AV (0, A) (AD)

Fermo’s model is essentially 1-D in real space. The plasmoid distribution evolves in time
owing to the following effects. The growth of sizes and fluxes of plasmoids is caused by
the reconnection in secondary current sheets, represented by the two terms with A and
¥ in the left-hand side of the equation. These two terms increase the size of islands but
do not change their numbers. On the right-hand side, the generation of new plasmoids is
represented by the source term S(yr, A) and the ejection of plasmoids out of the system
is represented by the sink term v,f/L. The coalescence of plasmoids is represented by
the two integral terms and implicitly assumed to be instantaneous. Certain selection rules
for plasmoid coalescence are implemented in the integrals. The detailed description of
the model can be found in Fermo et al. (2010), where the steady-state solution has been
studied. A similar kinetic model for plasmoids in current sheets is discussed by Huang &
Bhattacharjee (2012) in which the growth, merging and ejection of plasmoids are modelled
in the phase space of magnetic flux. While these models are designed to capture different
physical effects, they share a common assumption that the coalescence of plasmoids is an
instantaneous process.

The main differences between those previous models and ours stem from the fact that
we are interested in astrophysical systems that can be conceptualised as a sea of interacting
islands in two dimensions, while those models consider the dynamics of plasmoids in a
1-D reconnecting current sheet. This leads to the following key differences. (1) The time
scale for island coalescence is long compared to the Alfvén time in our system, and we
account for this by using a non-instantaneous collision operator to represent coalescence.’
(2) We only consider the change of the distribution function f (¥, A) caused by coalescence
of islands. That is, we keep only the time derivative of the distribution function and the

9 Accounting for the finite coalescence time could also improve the accuracy when studying the plasmoid dynamics
in a 1-D reconnecting current sheet, and should be further explored. In Uzdensky et al. (2010), an analytical model
predicting the distribution function of plasmoids is provided, where the coalescence of plasmoids is assumed to be
instantaneous. However, direct numerical simulations by Loureiro et al. (2012) show some discrepancies relative to what
is predicted by Uzdensky et al. (2010), which are identified as being precisely owing to the fact that coalescence is not
instantaneous.
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Parameters Power law Gaussian Gaussian
Ny 256,512 64,128, 256, 512, 1024 32
Ny 4 4 4,8, 16

TABLE 1. Summary of parameters of runs in figure 10 for the IKE convergence studies. All
runs are performed with fixed R = 1 and S; = 10*.
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FIGURE 10. Time evolution of £ (a—c), N (d—f) and (A) (g—i) from a numerical convergence
study. All simulations are initialised with unconstrained interaction (R = 1) and Sy = 10%.
Explicit numerical parameters are given in table 1. (a,d,g) Power law initial distribution (o« = 1)
varying Ny with fixed Ny = 4. (b,e,h) Gaussian initial distribution varying N4 with fixed
Ny = 4. (¢, f,)) Gaussian initial distribution varying Ny with fixed Ny = 32.

two collision integrals in the kinetic equation. The term for new island generation from
secondary tearing-unstable current sheets, the term for islands ejecting out of the system
and the two terms for the growth of sizes and fluxes of islands owing to large-scale
reconnection are neglected. The justification for neglecting those terms can be found in
§ 2. (3) The collision probability and cross-section for islands are calculated in two spatial
dimensions.

Appendix B. Convergence study

We report here a convergence study on the numerical solutions of the IKE. We employ
the power-law and Gaussian initial distributions to study the convergence of phase space
resolution, N4 and Ny, and focus on the evolution of macroscopic quantities £, N and (A).
The parameters used in our convergence studies are presented in table 1 and results are
shown in figure 10.

For the power-law distribution case, we initialised the distributions using (4.4) with
fixed o« = 1 and ¥y, = (5/6)ByL. We studied N, € {256, 512}, and the initial power-law
distribution is set up in the range L?/N, < A < 5L?/N,. From figure 10(a—c), we observe
that the islands in the higher-resolution runs for the power-law case start merging slightly
earlier, but the evolution of the macroscopic quantities with time converges to the same
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power law. The evolution of the quantities is also smoother because the improved area
resolution allows better resolution of merging times.

For the Gaussian case, we initialised the distributions with fixed A = L?/25 and
W = BoL/2. The standard deviations are set as o4 = 0.3A = 0.47 and oy =3 /2¢ =
4.71. Two groups of runs are performed: one with fixed Ny, =4 and varying N, €
{64, 128, 256, 512, 1024}, and one with fixed Ny = 32 and varying Ny € {4, 8, 16}. In
figure 10(g), we observe that the results converge well for macroscopic quantities of the
system for various N, values. The higher resolution introduces smoother evolution, as
already commented on for the power-law case. In figure 10(i), we see that the evolution
of £, N and (A) are almost identical for various values of N,. The convergence of results
with small values of N, is not surprising given our assumption of flux conservation during
mergers.

These results show the convergence of the numerical solution with increasing resolution
and that the resolutions used in §§ 4.1-4.3 are adequate to represent the evolution of the
macroscopic quantities of interest in this study.

Appendix C. Multi-scale rules of merger and spectrum evolution

In Zhou et al. (2019), we consider the situation where the system contains an ensemble
of identical islands and derive the following scaling laws for the evolution of the system:

k=ko V?, B=By"? (Cla,b)
E=&F', N=Ni', =, (C2a—c)

where k = 1 /2R, with R the island radius, and 7 is time normalised to the reconnection
time scale, 7 = t/7o. In the above expressions, the subscript 0 denotes quantities evaluated
at 7 = f;;, an ‘initial’ time that is chosen arbitrarily as long as the evolution of quantities
follows the power laws. Note that (Cla,b) and (C2a—c) are valid to describe the dynamics
of the system only when the time scale we study is much longer than one merger time of
islands, i.e. in the ‘continuous’ limit. Therefore, the early-time dynamics at 7 < 1 cannot
be described by a power-law evolution. The self-similar features we are about to derive
based on (Cla,b) and (C2a—c) only apply to the asymptotic long-time limit of the system
(T =t > 1).

The above time evolution of single-scale quantities ((Cla,b) and (C2a—c)) describes a
system with islands that are identical at any given time. However, it can be generalised to
describe a multi-scale system, i.e. a system consisting of islands with distributions of sizes
and fluxes, as we will explain in the following.

We first note that the value of the time normalisation 7y, which is the merger time of the
initial islands, depends on the size and magnetic field of the islands. In the resistive MHD
Sweet—Parker regime, it can be written as

R _gn o B ) Ro o k2B (C3)
rec Vao Vao 0 B, 0 0o -

Typ =

Therefore, for islands with different &y, though the form of the time evolution expression
with normalised time 7 appears identical, the values of their normalisation factor, 7,(k),
are different. At any given physical time ¢, islands with different ky, reach different
generations; and the &, dependence in 7, will change the scaling of the magnetic energy
spectrum U (k, f) over k and ¢.

Assume, therefore, that we have initial islands with different sizes, denoted as ky. By
adding the subscripts ko, we have the variables: y, (7), Ry, (1), By, (1), Ny, (), &, (1), Sk, and
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To.k,» Which correspond to the physical quantities associated with the islands with initial
wavenumber ky. Any global quantity, Q(#), can thus be written as Q(t) = f dko Oy, (1). The
above notation involves an implicit assumption that the initial wavenumber k; is the only
parameter needed to characterise an island. That is, for islands with the same k, their other
quantities, such as magnetic field and flux, are all identical. The multi-scale description
will be given in k space, where the general idea is to apply the single-scale description
separately to each initial scale k,, with an assumption that interactions are preferentially
local in k-space, i.e. that coalescence events occur mainly between identical-size islands.
This assumption is indeed corroborated by our numerical results reported in §§4.1-4.3,
which show that relaxing the constraint of identical-island merger only causes slight
differences in the evolution of global quantities.

We first present this forward in time: from ko to k at some later time ¢. It is similar to
a Lagrangian approach in this ky-space, where we view various quantities as functions
of ky and ¢. Subsequently, we invert these relationships and go to an Euler representation
where we describe quantities as functions of present wavenumber k and 7. We note that the
evolution of islands with different initial sizes k, proceeds at different rates, determined in
part by their different initial reconnection time scales 7y

R R

_1 I 172 1Y%, —3/2—1/)2

T0,kp = Prec — = Sk()/ - X kO / BO,k({ . (C4)
VA0, ky VA0, k

Thus, because Ty, depends on kj, by the time we observe these islands at some given
later time ¢, they have undergone different numbers of coalescence stages. That is, they
have reached different generation numbers, ny, (f), determined as ny, () = log,(¢/7o,)-
Combining (Cla,b) and (C4), the wavenumber that islands with an initial k, possess at
time ¢ can be written as

ki (1) = ko(t/To.0,) ™72 oc ko't~ 2By (C5)

We first look at the time evolution of global quantities in this multi-scale hierarchical
model. Here we use N as an example. The initial condition is N(#y;) = f dkoNy, (tini)-
We have assumed that the single-scale description can be applied separately to each
initial scale k. Therefore, each Ny, is expected to follow (C2a—c) independently, and the
evolution of N can thus be written as

-
N() = / dko Ny, (1) = / dko N, (tini) <TL)
0.k

:ﬂ/hmmﬁmﬁﬁyaft (C6)

Similarly, we obtain € o« t~!. That is, in a multi-scale system, the indices of the power-law
time dependence of global quantities are the same as in a single-scale system, while the
normalisation factors of the time traces of global quantities become non-trivial functions
of ky and are determined by the initial island distribution. This conclusion can be applied
to systems with an arbitrary initial island distribution function and it agrees with our
numerical results in § 4 with three different types of initial distribution.

We proceed to discuss the magnetic energy spectrum, U (k, ), in this multi-scale system.
We assume that the initial magnetic field of an island with initial wavenumber k satisfies
the scaling By, o kg. The magnetic flux thus satisfies the scaling v g, o B x,/ko o kg_l

el . . -3/2p—1/2 — 2 .
and the initial merger time is 7o 4, o< &, ¥ B, ké o< ky G+972 We also consider an ensemble
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of islands with a initial power-law distribution over size f(Y, A, t = tiy;) X A~ ~ k(z)“_3.
With our assumption that k, (and thus the initial area of islands A ~ k,?) is the only
parameter to characterise an island, the distribution over flux v is determined by that over
A. Therefore, the initial distribution can be written as

WA 1= ti) = A8 (Y — CATOT), (C7)

where C is a geometric constant. The corresponding initial A-spectrum is U(A, tiy) =
[ dyf (¥, A, ti) > ~ A7+ and the initial k-spectrum is U(k, i) ~ k**T* 7> (using
(2.18)). The initial number density spectrum N(A, t;,;) = f dyf(y, A, tii) ~ A~ has the
same exponent as the initial area distribution function.

The initial magnetic energy spectrum, by its definition, can be related to By, and Ny, as
follows:

1
U ) = - / ko [BE () /K] Niy (1) (K — ko). (C8)
Islands with different initial sizes k, evolve independently, following the single-scale

description ((Cla,b) and (C2a—c)). Hence the time evolution of the spectrum can be
expressed as

1
Utk = o / dko [ B2, (/K% (0] Nig (091K — kiy (0]

1 t \7! t t \7! t \ 72
2 )
= —/ dko Bko(fini) ( ) kg < )Nko(fini) ( ) S| k—ko < ) .
8m 70,k 70,k 70,k 0,k

(C9)

The initial magnetic spectrum has a power-law inertial range (consistent with the U (k, t;,;)
that we obtained earlier by integrating the distribution function (C7)):

[Bin (tini)/ké] Ny (i) o< kg?+273, (C10)

and 7o, < ko G972 The delta function 8[k — ko(t/Tox,)~"/*] is strictly valid as a function

of ko only when 6 # 1 [for @ = 1, 7o, o ky* and ko(t/Tox,)~"/> oc £~'/% no longer depends
on ko], and then the integral in (C9) can be evaluated at later times as
Uk, 1) = 1712 [BY (tii) kg | Ni (1) o £k, (C11)

where kg = k(t/704,)"/?, and the exponents « and y are functions of « and 6:

4 40 — 12 8 76 — 23
K = ‘H—’ - OH_—‘ (C12a,b)
0—1 0—1
These two exponents are related as
2k =y + 1. (C13)

The t=“k~7 expression explicitly shows that the evolution of magnetic energy spectrum
U(k,t) in a multi-scale system is also self-similar. The initial spectrum U (k, f;,;) o
k**26=5 is already undergoing a self-similar evolution and should also be described
by (C11). By equating its exponent and that of the self-similar spectrum U(k, 1), i.e.
20 +2a — 5 = —y, we obtain « = 3 — 6. Using this relation and (C12a,b), we find the
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solutiony = —(60 — 1)/(0 — 1) = —1. This corresponds to k = 0 (C13). However, it does
not mean the islands are not evolving. The spectrum as a whole is moving to smaller k;
but at every k within the self-similar range, the evolution is such that the value of U (k)
remains the same. This calculation suggests that the long-time behaviour of the spectrum
evolution is self-similar and the spectrum is expected to exhibit a k! (corresponding to
A~?) inertial range.

The above result is independent of the value of 6 and thus remains valid when 6
is arbitrarily close to 1. In the case of 6 approaching 1, oy, o Boy,/ko o ki/ko is
independent of ky, and so all the initial islands have identical flux, independent of their
sizes. This is indeed the case considered in our numerical study in § 4.3. In our numerical
results, the magnetic energy spectra starting with different initial indices eventually evolve
to power-law spectra with index y = —1 (shown in figure 9c¢). It is consistent with the idea
that, at later times, the evolution of the spectrum is self-similar and follows the y = —1
solution. We note, however, this calculation does not prove that this y = —1 solution is an
‘attractor’; that is, how systems with different initial spectra enter this self-similar phase
after a relatively short early stage is still unclear.

In the collisionless reconnection regime, the normalised reconnection rate S, >~ 0.1 is
a constant. Therefore, the dependence of 7, on the size and magnetic field of islands (C3)
becomes

R
Tosy = Brad — oc ky ' By k. oc kg TV (Cl4)

0.ko

Following the same procedure as laid out above for the resistive-MHD Sweet—Parker case,
we obtain the spectrum evolution U (k, t) o k™7, where in this case,

20 +20 — 6 4o + 360 — 11
i el N AL (Cl5a,b)
0—1 0—1
Similarly to the resistive MHD case, we obtain the solution y = —1 for this self-similar

evolution. Our numerical simulations of the collisionless case agree with this result (not
shown here).
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