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Abstract 27 

 28 

Sepsis is characterized by an overactive, dysregulated inflammatory response that drives organ 29 

dysfunction and often results in death. Mathematical modeling has emerged as an essential tool for 30 

understanding these complex biological processes.  A system of four ordinary differential equations 31 

(ODEs) was developed to simulate the dynamics of bacteria, the pro- and anti-inflammatory 32 

responses, and tissue damage (whose molecular correlate is damage-associated molecular pattern 33 

[DAMP] molecules and which integrates inputs from the other variables, feeds back to drive further 34 

inflammation, and serves as a proxy for whole-organism health status). The ODE model was 35 

calibrated to experimental data from E. coli infection in genetically identical rats and was validated 36 

with mortality data for these animals.  The model demonstrated recovery, aseptic death, or septic 37 

death outcomes for a simulated infection while varying the initial inoculum, pathogen growth rate, 38 

strength of the local immune response, and activation of the pro-inflammatory response in the 39 

system.  In general, more septic outcomes were encountered when the initial inoculum of bacteria 40 

was increased, the pathogen growth rate was increased, or the host immune response was decreased.  41 

The model demonstrated that small changes in parameter values, such as those governing the 42 

pathogen or the immune response, could explain the experimentally observed variability in mortality 43 

rates among septic rats.  A local sensitivity analysis was conducted to understand the magnitude of 44 

such parameter effects on system dynamics.  Despite successful predictions of mortality, simulated 45 

trajectories of bacteria, inflammatory responses, and damage were closely clustered during the initial 46 

stages of infection, suggesting that uncertainty in initial conditions could lead to difficulty in 47 

predicting outcomes of sepsis by using inflammation biomarker levels.  48 

 49 

 50 
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1 Introduction 51 

 52 

Sepsis is defined as life-threatening organ dysfunction caused by an overwhelming immune response 53 

to an infection (1).  Sepsis and septic shock often lead to organ failure and are leading causes of 54 

morbidity and mortality (1, 2).  In the course of a typical infection, pathogens (e.g., Gram-negative 55 

bacteria) infect the host, triggering a pro-inflammatory innate immune response targeted at 56 

eliminating the pathogen from the system.  The body also mounts an anti-inflammatory response that 57 

works to maintain homeostasis and prevent overwhelming inflammation to the system.  The acute 58 

inflammatory response in sepsis becomes detrimental when it can no longer be contained at the locus 59 

of infection (where innate immune mechanisms can help eliminate bacteria) and becomes systemic, 60 

leading to collateral damage/dysfunction in the surrounding healthy tissue.  Thus, a major goal in 61 

sepsis research is to determine why the host mounts an overwhelming inflammatory response to 62 

infections which leads to sepsis in some cases but not in others (3, 4). 63 

 64 

Acute inflammatory responses to infection are further complicated by additional variations among 65 

sepsis patients (5), the complex interplay between pro- and anti-inflammatory mediators and the 66 

innate and adaptive immune responses (6), and a triphasic distribution of patient deaths that occur 67 

days, weeks, and years after initial infection (6).  These variations have highlighted the need for 68 

patient-specific treatments and novel approaches to sepsis drug design and clinical trials (7-9). 69 

 70 

Recent decades have brought about improved sepsis treatment practices, including the rapid 71 

administration of antibiotics, infection source control, appropriate choice of fluid (crystalloids) for 72 

fluid resuscitation, and administration of vasopressors (norepinephrine) (10).  These evolutionary 73 
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improvements in patient care have reduced in-hospital mortality but have shifted the mortality 74 

distribution so that most sepsis-related deaths occur months after treatment (6).  While improved care 75 

often allows patients to overcome initial septic episodes, it has been speculated that underlying 76 

physiologic/biochemical aberrations combined with sepsis-initiated immune dysfunction place 77 

patients at long-term risk for sepsis mortality (11).  Secondary infections occurring during late stages 78 

(> 15 days) were shown to correlate with higher levels of opportunistic fungi and bacteria compared 79 

to earlier secondary infections (< 6 days) (12), and impairments in immune function and cytokine 80 

secretion were observed in individuals that survived a septic episode (13).  Despite evidence of late-81 

stage complications or mortality from sepsis (14), mortality is still common within a week of sepsis 82 

onset; interventions in those cases rely on early identification of septic trajectories, which is often 83 

difficult. 84 

 85 

Given the complexities of infection and inflammation in vivo and in vitro, mathematical modeling 86 

has been used in an attempt to unravel the complexities of inflammation and the immune response (8, 87 

9, 15-17).  Multiple mechanistic computational models have described the dynamics of the 88 

inflammatory response in the context of a variety of bacterial infections (18-20).  These include 89 

equation-based (ordinary (16, 17, 21-35) and partial differential equations (36, 37)), agent-based (38-90 

40), and hybrid models (41).  Although some models are purely theoretical (16, 17, 21, 37, 40), many 91 

were calibrated to experimental data in animals (23-25, 28-30) or attempted to replicate clinical 92 

outcomes (26, 38, 39, 42).      93 

 94 
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The current study implemented a mechanistic model of the immune response to an Escherichia coli 95 

(E. coli) infection and aimed to determine whether early data on both the pathogen and the host 96 

response are sufficient to predict a health or disease outcome.  A parsimonious system of four 97 

ordinary differential equations (ODEs) was used to track changes in bacteria, tissue damage, a pro-98 

inflammatory response, and an anti-inflammatory response following the administration of escalating 99 

inoculums of E. coli encapsulated in a fibrin clot (an experimental model of Gram-negative 100 

peritonitis (43)) in rats.  Ultimately, the mathematical model defined in this study was used to 101 

evaluate and predict the time dynamics of the bacterial infection, which were observed to vary 102 

depending on the initial bacterial dose.  The model demonstrated that small changes in the pathogen 103 

growth rate or characteristics of the immune response could lead to significantly different mortality 104 

times despite identical initial bacterial loads.   105 

 106 

2 Materials and Methods 107 

 108 

2.1 Experimental Method 109 

 110 

2.1.1 Preparation and Dose Estimation of E. Coli-Impregnated Fibrin Clot   111 

All animal studies were carried out following approval by the University of Pittsburgh Institutional 112 

Animal Use and Care Committee (IACUC approval #0807947) and complied with the NIH Guide for 113 

the Care and Use of Laboratory Animals.  In this study, experimental data were obtained from rats 114 

with peritonitis induced by an E. Coli-impregnated fibrin clot, similar to the methods established by 115 

Ahrenholz et al. (43) and modified by Namas et al. (44).  In brief, the animals were subjected to a 116 

varying dose of E. Coli (strain ATCC 25922; American Type Culture Collection, Manassas, VA, 117 
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USA) inoculum in a fibrin clot introduced into the peritoneum via laparotomy. The E. Coli colonies 118 

were grown to a specified optical density using a spectrophotometer (DU 530 UV/VIS; Beckman 119 

Coulter, Brea, CA, USA) equivalent to a concentration ranging between 1 × 108 to 5 × 108 colony-120 

forming units [CFUs]/clot on the day of bacterial fibrin clot implantation. After the addition of 121 

fibrinogen (1%) and Thrombin (15u), the clot was placed in the peritoneum via laparotomy, as 122 

described previously (44). Since quantification of bacteria at the time of implantation of the fibrin 123 

clot via optical density is highly imprecise, bacteria were quantified after each implantation by 124 

limiting dilution plating to obtain a count of implanted E. coli in a given rat (44). 125 

 126 

We determined that rats that received a fibrin clot inoculum of 1 × 108 to 2.0 × 108 CFUs/clot had a 127 

mortality rate of ~40–45% after 48 h of clot implantation while rats that received inocula higher than 128 

2.0 × 108 CFUs/clot had a mortality rate of 80% during the first 24 h of implantation (data not 129 

shown). All rats in these experiments exhibited signs of septicemia in the form of lethargy, 130 

hypothermia, reluctance to feed, tachycardia, and tachypnea after 24 h of E. Coli fibrin clot 131 

impregnation into the peritoneum.  After closing the abdomen, a topical anesthetic was applied over 132 

the surgical wound, and the rats were returned to their cages and allowed food and water ad libitum.   133 

 134 

2.1.2   Model Calibration and Validation 135 

 136 

The experimental studies detailed above generated one experimental data set that was used to 137 

calibrate the model and consisted of measurements of bacterial levels at different timepoints in 31 138 

rats injected with increasing doses of bacteria (1.28, 2.48 and 5.05 × 108 bacteria with standard error 139 
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of the mean of 1.5 × 107, 2.8 × 107, and 1.2 × 108, respectively).  A second (separate) experimental 140 

data set was used to validate the model and consisted of time to death (mortality; 24, 48, 72, or 96 h) 141 

for 27 rats injected with varying doses of bacteria (1-5 × 108 bacteria).  We detail the process of 142 

model calibration and validation below. 143 

 144 

Bacterial levels in the peritoneal cavity measured in individual septic rats, each euthanized at a 145 

distinct time point from 24-96 h after being impregnated with ≈ 1 × 108 to 5 × 108 colony-forming 146 

units of E. coli, were used to calibrate the model (“calibration data set”, see Fig 1A and Table S1).  147 

Observed times to mortality for rats injected with ≈ 1.4 × 108 to 4.8 × 108 colony-forming units of E. 148 

coli were used to evaluate the predictive capabilities of the ODE model (“validation data set,” see Fig 149 

1B and Table S2).  These two data sets were derived from two different rat populations. 150 

 151 

The calibration data set (Fig 1A and Table S1) was produced using several experiments involving 152 

multiple rats in each experiment and three different bacterial levels with mean values of 1.28 × 108, 153 

2.48 × 108, and 5.05 × 108 bacteria.  A peritoneal lavage was used to assess the number of bacteria in 154 

the peritoneal cavity in each individual animal euthanized at one of the time points indicated in Table 155 

S1, as detailed in (44).  This produced an estimate for the expected bacterial levels over time in a rat 156 

subject to one of the targeted loads, as seen in Fig 1A.  The time points were chosen to be closer 157 

together for rats injected with higher bacterial loads, since these animals were more likely to die 158 

earlier than animals receiving a lower bacterial inoculum. 159 

 160 



Mathematical model of acute inflammation  

 

 
8 

This is a provisional file, not the final typeset article 

In the validation data set (Fig 1B and Table S2), the rats were monitored continuously until 96 h, at 161 

which time surviving rats were euthanized.  If a rat was observed to be dead at a 24-h checkpoint (24, 162 

48, 72, or 96 h), that time point was noted as the “observed mortality time” (OMT) for that rat and 163 

the rat was removed from the study.  Rats labeled with an OMT = 24, 48, or 72 h either died within 164 

the 24 h before their OMT or were euthanized at their OMT (in accordance with IACUC and NIH 165 

guidelines) due to being severely unhealthy.  Rats labeled with a 96 OMT either died between 72 and 166 

96 h, were severely unhealthy at 96 h, or were relatively healthy at 96 h.  Given these distinctions, it 167 

is possible that some of the 96 h OMT rats would have survived longer.   168 

 169 

Fig 1B depicts the mortality data set (closed circles, ●) collected for 27 rats with the observed 170 

mortality time on the x-axis and the initial bacterial load on the y-axis.  A Bartlett test revealed that 171 

the variances of the four groups (OMT = 24, 48, 72, 96 h) were not significantly different (p-value = 172 

0.689) while ten out of ten normality tests (45) on the deviations in the data from their respective 173 

group norms were passed, suggesting that the data in each group are approximately normally 174 

distributed.  Analysis of variance (ANOVA), which assumes normally distributed data with equal 175 

variances across groups, was then performed to show that the initial bacteria levels for the three OMT 176 

= 48-, 72-, and 96-h groups with OMT > 24 h were not significantly different from each other (p-177 

value = 0.251).  More specific delineation of the health and disease status of the rats in the 96-h 178 

group may have led to more variance between the OMT = 48-, 72-, and 96-h groups, but those data 179 

were not available at the time of this study.  ANOVA on all four groups and use of Tukey’s 180 

procedure with 95% confidence intervals suggested that the OMT = 24-h group had significantly 181 

different levels of initial bacterial load compared to the OMT = 48-, 72-, and 96-h groups (p-value < 182 

0.0051).  The analysis was performed with Matlab (normalitytest (45) and Matlab’s vartestn, anova1, 183 
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and multcompare; Matlab code available via Github, see Supplementary Information), and the 184 

resulting conclusions regarding the differences between the groups were consistent with the 185 

relationships suggested by the box and whiskers plot shown in Fig 1B.  The analysis suggested that 186 

there were effectively only two different experimental groups:  rats with OMT = 24 h and rats with 187 

OMT > 24 h.  These two categories were therefore used when assessing the predictive capabilities of 188 

the model. 189 

 190 

2.2 Model and simulations 191 

2.2.1  Model variables and interactions 192 

The mathematical model developed in this sepsis study was based on previous models of the immune 193 

response (16, 21, 36, 46, 47).  It was used to predict the dependence of health or disease outcomes on 194 

pathogen properties and the immune response.  Following the administration of E. coli inoculum into 195 

the peritoneum, the model was used to predict changes in the number of bacteria in the peritoneal 196 

cavity of the animal (B), the level of tissue damage (ε), a pro-inflammatory response (M), and an 197 

anti-inflammatory response (A).  Tissue damage serves as a proxy for whole-organism health status. 198 

In vivo, the molecular correlates to tissue damage are damage-associated molecular pattern [DAMP] 199 

molecules such as high-mobility group box 1 (HMGB1) (48, 49).  Due to limited calibrating data and 200 

a desire for model simplicity, the numerous cells and cytokines that generate the pro- and anti-201 

inflammatory responses were grouped into two general populations, as in previous models (16, 46, 202 

50).  Specifically, tissue-specific effects of bacterial infection were assumed to be driven by both 203 

resident tissue macrophages and inflammatory cells such as neutrophils and macrophages that 204 

infiltrate the tissue from the blood (51-54).  Nominally pro-inflammatory cytokines (e.g., TNF, IL-205 

1b, IFN-, IL-17A) and anti-inflammatory cytokines (e.g., TGF-β1, IL-10, IL-4, IL-13) were not 206 
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measured in these experiments, and therefore these cytokines (along with a multitude of chemokines 207 

and DAMPs) were grouped into general populations whose effects were assumed independent of 208 

inflammatory mediator type. 209 

 210 

Fig 2 provides a schematic of the assumed interactions (54) among model populations (schematic 211 

adapted from (16)).  A time-dependent dosing function, D(t), defines the release of bacteria from the 212 

clot into the surrounding tissue.  In response, pro-inflammatory cells activate and begin to destroy the 213 

bacteria while also causing collateral tissue damage and promoting self-recruitment.  Both pro-214 

inflammatory cells and tissue damage trigger an anti-inflammatory response, which in turn inhibits 215 

the growth of the pro-inflammatory response and damage levels.  These interactions are labeled in 216 

Fig 2 with arrow heads indicating upregulation and blunted ends indicating downregulation.   217 

 218 

Although it is nearly impossible to state that no other model could account for the variables and 219 

interactions depicted in Fig 2 (55), the approach utilized in this study adapted previous models (16, 220 

46) of bacterial infection that were successful at reproducing multiple physiological behaviors.  The 221 

current model was based on clear assumptions, including ones that stemmed from the experimental 222 

technique for bacterial administration into the rats.  More specifically, Ahrenholz and Simmons (43) 223 

originally used the experimental method implemented in this study to consider the theory that 224 

increased fibrin levels decrease the severity of infections during E. coli peritonitis.  Namas et al. (44) 225 

used the same procedure to explore the effectiveness of hemadsorption techniques on treating septic 226 

peritonitis.  They performed several initial experiments in which they injected rats with fibrin clots 227 

containing varying levels of bacteria.  The rats usually died or resolved in a relatively short amount 228 
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of time, so only the acute immune response was assumed to play a significant role in infection 229 

dynamics.  Additionally, the experimental technique for bacterial administration introduced bacteria 230 

more gradually into the system than instantaneous bacterial injection into the blood.  Both 231 

observations played a significant role in the modeling choices employed here.   232 

 233 

2.2.2  Model equations 234 

The rate of change of the number of bacteria in an animal is governed by Equation 1: 235 

 236 

𝑑𝐵

𝑑𝑡
= 𝐷(𝑡) + 𝑘1𝐵 (1 −

𝐵

𝐵∞/𝐵𝑠
) −

𝑘2𝑠𝑙𝐵

𝜇𝑙 + 𝑘3𝐵𝑠𝐵
−

𝑘5𝐵𝑀

1 + 𝑘𝐴𝐴
(1) 237 

 238 

The first term, D(t), defines the release of bacteria from the fibrin clot as an exponentially decaying 239 

dosing function given by D(t) = D1exp(-kDt).   The second term corresponds to logistic growth of 240 

bacteria with growth rate k1.  The third term corresponds to a non-specific, local, innate immune 241 

response that is assumed to eliminate a small amount of pathogen without activating a full systemic 242 

inflammatory response (16).  The details of the parameter value derivation for this term are given in 243 

(16).  The final term defines the elimination of bacteria by the systemic pro-inflammatory response, 244 

which is inhibited by systemic anti-inflammation.   245 

 246 

As a first-order approximation, all bacteria initially in the clot were assumed to empty into the 247 

surrounding tissue without reproducing or dying, which is equivalent to ∫ 𝐷(𝑡)
∞

0
𝑑𝑡 248 

=∫ 𝐷1exp⁡(−𝑘𝐷𝑡)
∞

0
𝑑𝑡 = Bsource, where Bsource is the initial amount of bacteria in the fibrin clot (Bsource 249 
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= 128 × 106,  248 × 106,  or 505 × 106 bacteria in the calibration data set).  To satisfy this condition 250 

for the conservation of clot bacteria, D1 must equal kDBsource.   B was also scaled by a factor Bs (see 251 

Section 2.3) to account for the difference in bacterial levels between the rat experiments described in 252 

this study and the bacteria levels considered in the previous (human) models (16).  This factor also 253 

converts number of bacteria to concentration of bacteria (bacteria/cm3) and allows previous 254 

parameter values (16, 46) to be used here.   255 

 256 

We note that multiple dosing functions were considered before choosing the exponential decay 257 

model.  For example, an additional variable tracking the bacterial levels inside the clot was 258 

introduced and allowed to experience growth and/or transfer between the clot and surrounding tissue.  259 

Despite providing three additional degrees of freedom, this alternate approach did not yield model 260 

fits that were significantly better than using a simple exponential function to define the rate at which 261 

bacteria emptied into the surrounding tissue.  We also explored making parameter kd a saturating 262 

sigmoidal function of Bsource, since experimental observations suggested that a clot with a small 263 

number of bacteria had a slower release rate than a clot containing a large inoculum of bacteria.  This 264 

assumption, however, also did not lead to improved model fits.  Thus, an exponential function with 265 

constant rate of decay, kd, was implemented in the model and yielded reasonable fits to the data. 266 

 267 

Equation 2 defines the rate of change of the systemic pro-inflammatory response (M): 268 

𝑑𝑀

𝑑𝑡
=

𝜈1𝑓(𝑀, 𝐵, 𝜖)

(⁡𝜈2 + 𝑓(𝑀,𝐵, 𝜖))(1 + 𝑘𝐴𝐴)
− 𝜇𝑀𝑀. (2) 269 
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where 𝑓(𝑀, 𝐵, 𝜖) = 𝑘𝑀𝑀 + 𝑘𝐵𝐵𝑠𝐵 + 𝑘𝜖𝜖.  The pro-inflammatory response is increased by pro-270 

inflammatory cells, bacteria, and damage and is inhibited by the systemic anti-inflammatory 271 

response. Natural decay of the response occurs at rate µM.  Recruitment of inactive pro-inflammatory 272 

cells occurs at a rate proportional to ν1, as given in (16, 21).  The possible effect of LPS inflicting 273 

toxicity (without any bacteria present) has been subsumed into the parameter values for the onset and 274 

persistence of inflammation as a consequence of bacterial infection.  T helper 1 cells (Th1) and T 275 

helper 17 cells (Th17) are also assumed to be included in model population M.     276 

 277 

The rate of change of the anti-inflammatory response (A) is defined in Equation 3: 278 

𝑑𝐴

𝑑𝑡
= 𝑠𝐴 +

𝜈3(𝑀 + 𝑘4𝜖)

(𝜈4 +𝑀 + 𝑘4𝜖)(1 + 𝑘𝐴𝐴)
− 𝜇𝐴𝐴. (3) 279 

The first term accounts for the nonzero background level (sA) of anti-inflammatory mediators that 280 

resides in the body.  In the second term, the pro-inflammatory response and damage activate the anti-281 

inflammatory response.  The anti-inflammatory response also self-regulates, which is modeled using 282 

the (1+kAA) term in the denominator.  Natural decay of the response occurs at rate µA.   283 

 284 

The final model equation (Eq. 4) gives the rate of change of tissue damage levels (ε):   285 

𝑑𝜀

𝑑𝑡
= −

𝜀

𝜏
+
[𝑓𝑀 − 𝑇]+
1 + 𝑘𝐴𝐴

. (4) 286 

 287 

In the first term, damage is repaired at rate 1/.  In the second term, similar to (46), it was assumed 288 

that the system can tolerate a certain level of inflammation before pro-inflammatory cells begin 289 

causing damage.  This assumption is represented using a threshold function: 290 
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 291 

[𝑓𝑀 − 𝑇]+ = {
𝑓𝑀 − 𝑇 (𝑓𝑀 − 𝑇) > 0

0 otherwise
.  (5) 292 

T gives the threshold above which immune cells begin to cause damage in the nearby tissue, and f 293 

gives the rate at which the cells cause damage. 294 

 295 

2.2.3  Initial conditions 296 

 297 

At the onset of each simulation, the rats were assumed to be healthy, corresponding to initial 298 

conditions of B(0) = 0, M(0) = 0, A(0) = sA/µA, and ε(0) = 0.  Since animals exhibit background levels 299 

of anti-inflammatory mediators (e.g., transforming growth factor-β1 (56)), nonzero initial 300 

background levels of anti-inflammatory response mediators were assumed.  Parameter Bsource 301 

corresponds to the number of bacteria inserted into the clot for each experiment and controls the 302 

magnitude of the dosing function, D(t).  Thus, Bsource was changed in each simulation (i.e., for each 303 

rat) to correspond to the experiment being modeled.   304 

 305 

For high enough Bsource, it was observed that the clots were highly saturated to the point that bacteria 306 

left the clot nearly instantaneously.  To model this, B(0) was set to Bsource – Bc, where Bc is a fitted 307 

parameter thought of as the “clot capacity.”  This assumes the number of bacteria that exceed Bc 308 

instantaneously enter the surrounding tissue.  With only Bc bacteria assumed to remain in the clot 309 

after the initial injection, the dosing function is adjusted to depend only on those bacteria (𝐵c) 310 

remaining in the clot:  D(t) = kDBcexp(-kDt). 311 

 312 
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2.3 Parameter values 313 

Table 1 provides the values, units, and sources for all twenty-six model parameters.  Because of the 314 

lumped nature of variables M, A, and ε, general units (“M-units”, “A-units”, and “ε-units”) were used 315 

to describe these populations, as treated previously (16, 36, 46).   To be consistent with experimental 316 

measures, the units for bacteria were given as 106 bacteria.  Several parameter estimation techniques 317 

were utilized to yield maximum parameter estimation efficiency and physiologically realistic results.   318 

 319 

The unknown parameter space dimension was decreased by estimating several parameter values 320 

using previous studies.  Following Reynolds et al. (16), kA was chosen so that anti-inflammatory 321 

inhibition is at most 75% (57), and μA was chosen to be significantly smaller than typical cytokine 322 

decay rates (58-61) because these cytokines have longer lasting downstream effects in the anti-323 

inflammatory cascade.  The quality of the parameter fit varied relatively little (<0.1%) when 324 

parameter T was allowed to vary.  Choosing T too large made [fM ‒ T]+ = 0 for all simulations while 325 

choosing T too small made [fM ‒ T]+ ≈ fM, which violates the assumption that the system can tolerate 326 

a certain significant level of inflammation (46).  Setting T to 1 avoided both extremes without 327 

affecting fit quality.   328 

 329 

Seven parameters remained that still had relatively high levels of uncertainty regarding their values.  330 

Those parameters (B∞, f, kD, Bs, ν4, Bc, and k1) were estimated using a constrained least squares 331 

optimization on log-transformed data.  The fit was constrained based on qualitative observations 332 

regarding the general inflammation paradigm where typically one of three qualitative outcomes occur 333 

(54).  In the first type of outcome, termed “healthy recovery,” individuals are affected by an 334 

infection, but their inflammatory response is quick and successfully eliminates the infection.  In the 335 
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second type of outcome, termed “aseptic death,” the inflammatory response eliminates many of the 336 

bacteria but overwhelms surrounding healthy tissue until death occurs.  In the third type, termed 337 

“septic death,” large numbers of bacteria survive alongside a mounting inflammatory response and 338 

death results.  Typical dynamics in other studies (16-18, 21) suggest that lower initial pathogen levels 339 

often produce healthy recovery outcomes, mid-level initial pathogen levels often produce aseptic 340 

outcomes, and high levels produce septic outcomes.  To produce a model capable of similar behavior, 341 

the optimization process was constrained so that simulated rats injected with 128 × 106 bacteria 342 

experienced healthy recovery outcomes, simulated rats injected with 248 × 106 bacteria experienced 343 

aseptic outcomes, and simulated rats injected with 505 × 106 bacteria experienced septic outcomes.  344 

Such an approach is supported by the following assumptions:  (i) the relatively good fit to the data 345 

(R2 = 0.70); (ii) relatively low levels of bacteria (O(106)) in the 248 × 106 initial bacterial load 346 

calibration experiments after 72 h (i.e., probably not septic);  (iii)  persisting high levels of bacteria 347 

(O(107)) in the 505 × 106 initial bacterial load calibration experiments after 48 h (i.e., probably 348 

septic); and (iv) high mortality rates for loads above 200 × 106 bacteria (44).  The large range of 349 

measured bacterial levels suggested that log-transforming the data was also reasonable.  Importantly, 350 

the standardized residuals associated with the log-transformed measurements and simulated data (Fig 351 

3B) passed ten out of ten normality tests (45).  Similar outcomes were not possible for data that were 352 

not log-transformed. 353 

 354 

In the optimization procedure, the following squared residuals of the log-transformed data were 355 

minimized: 356 

∑ (log(𝑦𝑖) − log(𝑦̂𝑖))
2𝑁𝑚

𝑖=1  (6) 357 

 358 
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where yi corresponds to all experimentally measured bacterial levels at the time points and initial 359 

bacterial loads listed in Table S1, ŷi corresponds to the model-predicted bacterial levels at the same 360 

time points and initial bacterial loads, and Nm = 31 is the total number of measurements.  Although a 361 

range of values for k2 and ν1 are later used to assess their effects on system dynamics (see Fig 8), 362 

during the optimization, and by default unless otherwise stated, k2 and ν1 were set to 0.6 1/M-units/h 363 

and 0.08 M-units/h, respectively, to be consistent with the values used in Reynolds et al (16).  364 

Parameter k1 was fit during the optimization procedure to yield its default value of  k1 = 1.27/h; this 365 

value was used throughout the study except when assessing the impact of varying this parameter (Fig 366 

8).  Multiple standard optimization techniques were used during the process to ensure the finding of a 367 

reasonable optimum, including the Nelder-Mead simplex method, the steepest descent algorithm, and 368 

random restarts (Matlab code available via Github, see Supplementary Information).  The resulting 369 

parameter estimates are given in Table 1.   370 

 371 

2.4 Sensitivity calculation 372 

 373 

Due to the high dimension of parameter space (26 parameters) and the relatively small amount of 374 

data (18 independent time points), only a small subset of the parameters should be optimized at any 375 

given time to avoid excessive computations and identifiability issues.  Identifiability is discussed 376 

later in this section but briefly, the larger the number of fitted parameters, the more likely we will 377 

encounter an unidentifiable parameter set where multiple sets of parameter values can be used to 378 

produce the exact same optimal fit quality.  Having no unique optimal parameter set can cause 379 

traditional optimization techniques to fail.  Here, seven parameters were chosen to be fit based on 380 

their associated levels of uncertainty.  It is possible that improved fits could be obtained by choosing 381 

a different parameter set (e.g., by fixing some of the fit parameters to other estimates found in the 382 
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literature (16)).  In addition, while calibrating the model to a given data set will limit the general 383 

dynamics that a model may exhibit, it is possible that multiple optimal parameter sets exist whose 384 

dynamics significantly differ. 385 

 386 

To explore (i) the suitability of the current model, (ii) the set of fit parameters, and (iii) the possible 387 

effects of varying other parameters, a local sensitivity analysis around the current best fit was 388 

performed.  The relative sensitivities, sij, of the ith simulated measurement (ŷi) with respect to the jth 389 

parameter (pj ) were estimated using the relative change in ŷi divided by the relative change in the 390 

parameter value: 391 

𝑠𝑖𝑗 =
(
𝑦̂𝑖(𝑝𝑗+𝑝𝑗𝛿𝑗)−𝑦̂𝑖(𝑝𝑗)

𝑦̂𝑖(𝑝𝑗)
)

(
(𝑝𝑗+𝑝𝑗𝛿𝑗)−𝑝𝑗

𝑝𝑗
)

= (
𝑦̂𝑖(𝑝𝑗+𝑝𝑗𝛿𝑗)−𝑦̂𝑖(𝑝𝑗)

𝛿𝑗𝑦̂𝑖(𝑝𝑗)
) (7) 392 

 393 

In Eq. 7, the magnitude of δj is chosen to be the square root of machine epsilon.  For some 394 

parameters, differently signed δj’s would alter the original simulation outcomes (healthy recovery, 395 

aseptic, septic).  While such changes can happen in reality, this results in significant jumps in 396 

simulated measurement values and complicates the analysis.  A complete analysis should consider 397 

behavior both when such jumps occur and when they do not and average the results.  To include all 398 

parameters in the jump data analysis, δj would need to be altered so that all parameters experience 399 

such jumps.  Since the jumps are typically of approximately the same size, an alternate strategy 400 

would need to be developed to compare these similarly sized jumps.  Because of such complications, 401 

only sensitivities with no outcome behavior changes were considered here.  At the same time, we 402 
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note that larger calculated values of |sij| (calculated in the absence of outcome changes) correlate well 403 

with increased likelihood of these more significant outcome changes.  To gauge the general 404 

sensitivity of all measurements to particular parameters and to understand how much a given 405 

parameter may affect outcomes, the root mean squared sensitivity (RMSS, Si) was calculated: 406 

                                                          𝑆𝑖 = √
1

𝑁𝑚
∑ 𝑠𝑖𝑗

2𝑁𝑚
𝑖=1                                                               (8) 407 

where Nm = 31 gives the number of measurements made in the calibrating data set.  This sensitivity 408 

value (Si) is provided in Table S3 and provides an estimate for the relative importance of each 409 

parameter in the model fitting process with higher sensitivities corresponding to parameters that 410 

affect the fit and corresponding dynamics more.  Better and quicker fits tend to result when 411 

parameters are more sensitive.  For any given set of parameters, a sum of their RMSSs can give an 412 

estimate to how sensitive the measurements are to that specific parameter set. 413 

 414 

Identifiability is another important consideration when assessing how parameter values affect system 415 

dynamics.  As an example, model parameters k2 and sl are not identifiable from the data because 416 

increasing k2 by 1% will produce the exact same change in the variable outputs as increasing sl by 417 

1%.  This is because they only appear in the model as (k2⋅sl), never separately elsewhere.  In such 418 

scenarios, it is impossible to identify the values of such parameters without additional outside 419 

information, as was the case in (16).  Studying the identifiability of a large set of parameters with an 420 

associated nonlinear system can be difficult.  While standard linear algebra methods can be used for 421 

linear systems (62, 63), nonlinear systems require more specialized and often more computationally 422 

and theoretically intensive approaches such as methods utilizing rational functions (64), methods 423 

focusing on local expansions or transformations (63), and methods centering on observability (65).  424 
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Here we employed a local analysis, including linearization about the current model’s parameter 425 

values, to consider the issue of identifiability.  In the local analysis, identifiability is investigated by 426 

considering the collinearity of the parameters, where the effects of changing one parameter can be 427 

reproduced by a linear combination of changes in the other parameters.  In such cases, parameters 428 

can be redundant, with their variations capable of being reproduced by changing the other 429 

parameters.  The idea of collinearity can be written in terms of the previously mentioned sensitivities:  430 

sik = ∑j≠k αjsij ∀i.  A corresponding collinearity index can be defined as:  CIk = 1/σmin where σmin is the 431 

smallest singular value of the associated sensitivity matrix defined by components sij (66).  Lower 432 

collinearity indices indicate more weakly correlated parameters that better describe the local 433 

parameter space and typically produce better overall fits and corresponding calibrated models.  Such 434 

analysis identifies parameters sets that should not be used for fitting (high CIk values) because of the 435 

possible presence of redundant parameters.  The index can also be used to identify sets of parameters 436 

that may produce better fits. 437 

 438 

3 Results 439 

 440 

3.1  Bacterial infection model dynamics reproduce key sepsis outcomes 441 

 442 

The bacterial infections simulated in this study led to three possible outcomes:  healthy recovery, 443 

aseptic death, or septic death (16).  In this model, a healthy recovery outcome corresponds to a return 444 

to a steady state where pathogenic bacteria are fully eliminated (B = 0) and tissue damage levels 445 

return to baseline pre-infection levels (ε = 0).  Aseptic death occurs when the bacteria are cleared (B 446 

= 0) but damage levels remain elevated (ε > 0).  Septic death results when bacteria levels (B > 0) and 447 

damage (ε > 0) remain elevated at steady state. 448 
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 449 

In Fig 4, all three outcomes were predicted to occur given the same level of initial bacterial dose 450 

(Bsource = 128 × 106 bacteria) but for three different levels of pathogen growth rate, k1.  For a low 451 

pathogen growth rate (k1 = 1.2/h), the pro-inflammatory response eliminated the bacteria, and healthy 452 

recovery (B/Bmax, M/Mmax, (A-Ahealthy)/Amax, and ε/εmax all less than 1%) was predicted to be restored 453 

by 37 h (cyan curve).  For a slightly higher pathogen growth rate (k1 = 1.3/h), the pro-inflammatory 454 

response also eliminated the bacteria, but caused an elevated and sustained inflammatory response 455 

corresponding to aseptic death (blue curve) due to a forward-feedback loop of inflammation → 456 

damage → inflammation (44).  For a high pathogen growth rate (k1 = 1.4/h), the pro-inflammatory 457 

response was incapable of eliminating the bacteria, so bacterial levels, damage, and the anti-458 

inflammatory response all remained elevated at the steady state (corresponding to septic death, red 459 

curve). 460 

 461 

3.2 Sensitivity analysis supports choice of initial model parameters 462 

 463 

Calculating local collinearities and sensitivities allowed for the identification of other parameter sets 464 

that are better (from a sensitivity and collinearity point of view) than the best fit identified in this 465 

paper.  As an example, kD, Bs, Bc, k1, k2, μl, and sA have a sum of RMSSs of 137 and a collinearity 466 

index of 17 while the fit used in this paper has a sum of RMSSs of 62 and a collinearity of 55 (less 467 

sensitive and more collinear).  Despite worse metrics, optimization of this alternative parameter set 468 

(originally suggested by our local sensitivity and collinearity analyses) did not significantly improve 469 

the overall parameter fit (R2 still approximately 0.70).  This suggests that the parameters currently 470 
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chosen for the model fitting are reasonable despite lower sensitivities and higher collinearities 471 

compared to other parameter sets. 472 

 473 

The values of RMSS (Table S3) showed that the model results are most sensitive to local immune 474 

response parameters (i.e., sl, k2, μl and k3) and second-most sensitive to pathogen and dosing related 475 

parameters (i.e., k1, kD, Bs, Binf).  The other parameters affecting the inflammatory response and 476 

damage displayed lower sensitivities. 477 

 478 

3.3 Comparison of model simulations and experimental data suggest a high mortality 479 

prediction capacity 480 

 481 

Prior studies utilizing reduced models of sepsis-induced inflammation were not docked to data, 482 

especially with regard to the level or trajectory of the damage variable that equated with death (16, 483 

17, 21). To address this shortcoming, we compared the behavior of the damage variable in our model 484 

to mortality observations in an experimental model of Gram-negative bacterial sepsis.   485 

 486 

In Fig 5A, the ability of the model to use damage levels to predict deaths occurring within 24 h 487 

(OMT = 24 h) and deaths occurring after 24 h (OMT > 24 h) was quantified by comparing damage-488 

based predictions of the mathematical model with the experimental observations in the validation 489 

data set. Using the mathematical model, the time of death (i.e., mortality time), tc, for a simulated rat 490 

was assumed to be the model-predicted time at which the value of the damage variable, ε, reached a 491 

critical damage level (εcrit).  If  tc ≤ 24 h, the rat was predicted to die within 24 h and to belong to the 492 
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OMT = 24-h group.  Similarly, if 24 < tc ≤ 48, the model-predicted value for the OMT was 48 h and 493 

the rat was predicted to belong to the OMT > 24-h group.  The initial levels of bacteria given to each 494 

rat from the validation data set (27 total) were used as inputs to the calibrated model to yield model 495 

predictions for survival time (OMT = 24 h or OMT > 24 h) for each rat in the study.  Model accuracy 496 

was defined as the ratio of correct predictions to total number of predictions.  Both the predictions 497 

and model accuracy are functions of εcrit, as shown in Fig 5A.  A relatively high level of accuracy (> 498 

80%) was found for a wide range of critical damage levels (49.2 ≤ εcrit ≤ 123.4 ε-units).  A maximum 499 

accuracy of 96% was attained for εcrit values between 49.8 and 55 ε-units.   500 

 501 

As an additional assessment tool of the predictive capability of the model, an area under the curve-502 

receiver operating characteristics (AUC-ROC) curve was constructed (Fig 5B).  In this figure, a 503 

positive outcome or identification corresponds to death occurring within 24 h.  As such, ‘true 504 

positive’ corresponds to a model prediction agreeing with an experimental observation of a rat that 505 

dies within 24 h, while ‘false positive’ corresponds to a model prediction of a rat dying within 24 h 506 

when the experiment indicated that the rat did not die within 24 h.  The recall/sensitivity/true positive 507 

rate = (number of true positives)/(number of correct predictions) and the false positive rate = (number 508 

of false positives)/(number of correct predictions).  These rates are calculated for 0 ≤ εcrit ≤ 200 ε-509 

units to produce the AUC-ROC curve in Fig 5B.  An area under this curve that is close to 1 indicates 510 

a model that can classify outcomes correctly.  Here, the area under the curve was 0.98.   511 

 512 

Since the experimental data in this study suggest significant differences between the OMT = 24-h and 513 

the OMT > 24-h groups, simulations were conducted to determine whether the model could reveal 514 

additional differences that may exist between these two groups.  In Fig 6, a simulation was run for each 515 
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of the 27 different bacterial loads (Bsource) administered to the rats in the validation data set (Fig 1B) 516 

assuming that εcrit = 53 ε-units (corresponding to the maximum accuracy determined in Fig 5A).  517 

Simulations that correspond to a predicted OMT = 24 h are shown in blue and those corresponding to 518 

an OMT > 24 h are shown in red.  As observed in Fig 6, the OMT 24-h group was predicted to have 519 

significantly higher bacteria, inflammatory, and damage levels.  While there was a notable divide 520 

between model-predicted septic and aseptic cases in terms of bacterial levels (high vs. near zero levels) 521 

after approximately 36 h, there was no particularly notable divide between the predicted OMT = 24-h 522 

(blue) and the septic members of the OMT > 24-h (red) groups. 523 

  524 

The model was also used to give possible explanations for the lack of statistical difference among the 525 

three OMT > 24-h groups.  As shown in Fig 1B and Table S2, some rats with similar levels of initial 526 

bacterial loads exhibited significantly different outcomes.  For instance, Rats 11 and 20 received similar 527 

initial bacterial loads, but Rat 11 died within 48 h while Rat 20 lived until 96 h.  The model was used 528 

to investigate these large discrepancies by varying model parameters and evaluating their impact on 529 

system outcomes.  For instance, these investigations showed that small changes in pathogen growth 530 

rate (k1) had a substantial effect on the predicted outcomes of the system.  Fig 7 shows the model-531 

predicted impact of decreasing this parameter slightly, given similar initial bacterial loads of 163 × 106 532 

bacteria in Rat 11 (red) and 172 × 106 bacteria in Rat 20 (cyan).  Specifically, k1 = 1.27/h for Rat 11, 533 

and k1 = 1.2/h for Rat 20.  With these parameter values, the model predicted that Rat 11 died (i.e., its 534 

damage levels crossed the critical damage threshold of εcrit = 53 ε-units) at approximately 34 h 535 

(corresponding to OMT = 48 h).  Rat 20, however, was predicted to be healthy at 96 h (OMT = 96 h) 536 

with a low steady state value of bacteria and zero steady state value of damage (since pro-inflammatory 537 

levels never rise high enough to cause damage to the surrounding tissue).  Similar changes in model 538 
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predicted outcomes were observed when other parameters, such as those governing the immune 539 

response, were varied (see Section 3.4 and Fig 8). 540 

 541 

3.4  Outcome dependence on parameter values 542 

Fig 8 summarizes the dependence of stable outcomes (health is cyan, asepsis is blue, and sepsis is 543 

red) on the number of bacteria in the fibrin clot (Bsource), pathogen growth rate (k1), strength of the 544 

local immune response (k2), and pro-inflammatory activation rate (ν1).  As k1 was increased or as k2 545 

was decreased, the number of bacteria that the system could handle and still recover decreased (Fig 546 

8A and 8B).  The dashed lines in the figures indicate the three levels of Bsource that were administered 547 

to the rats in the calibration data set.  These multiple parameter bifurcation plots suggest that a 548 

healthy recovery outcome was not possible for many (high) levels of Bsource.  For lower levels of 549 

Bsource, the model predicted that regions of healthy recovery become aseptic and then septic as the 550 

pathogen growth rate was increased (Fig 8A) or the strength of the local immune response was 551 

decreased (Fig 8B).  As Bsource was decreased, the width of the aseptic region decreased and 552 

completely disappeared when Bsource = 6 × 106 bacteria. This suggests that, regardless of the value of 553 

k1 or k2, an aseptic outcome is not possible for a small enough initial bacterial load. 554 

 555 

Parameter ν1 is the maximum activation rate of the pro-inflammatory response.  As shown in Fig 8C, 556 

there was a very narrow region (199 × 106 bacteria < Bsource < 201 × 106 bacteria) in which the model 557 

predicted that increasing ν1 causes a change in stable outcome from septic death to healthy recovery 558 

and then to aseptic death.  This suggests that increasing the recruitment of pro-inflammatory cells and 559 

mediators first helps then overwhelms the system.  For higher levels of Bsource (Bsource > 258 × 106 560 

bacteria), a moderate activation rate (ν1 = 0.08 M-units/h) divides the septic region (ν1 < 0.08 M-561 
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units/h) from the aseptic region (ν1 > 0.08 M-units/h), suggesting that a highly responsive pro-562 

inflammatory activation rate leads to aseptic outcomes.  563 

 564 

The nearly equal split between septic and aseptic cases shown in Fig 8C for Bsource > 258 × 106 can be 565 

explained by the interactions between the bacteria and inflammatory response.  The interaction term 566 

involving BM in the bacteria equation (Eq. 1) was initially very small since not enough M had been 567 

recruited.  Thus, early dynamics for the bacteria equation were governed primarily by the remaining 568 

non-interaction terms (which are almost entirely unrelated to ν1).  If B values increased above a 569 

(relatively low) threshold, the non-interaction terms became large (and positive) enough to outweigh 570 

any of the mounting contributions from the interaction term.  This means that resulting high values of 571 

B depended on initial dynamics when M values were low and ν1 had only a minor impact.  In 572 

addition, if Bsource > 258 × 106 bacteria, bacterial levels approached a high steady state level, 573 

regardless of the size of the interaction term.  So, if ν1 < 0.08 M-units/h (right boundary of septic 574 

region in Fig 8C), the pro-inflammatory levels never grew large enough to outweigh the non-575 

interaction terms in Equation 1.  If ν1 > 0.08 M-units/h, however, then the pro-inflammatory levels 576 

caused the interaction term in Equation 1 eventually to outweigh the non-interaction terms, and the 577 

bacteria were eliminated.  This elimination took place after the system attained high bacterial levels 578 

and was independent of Bsource so long as Bsource > 258 × 106 bacteria. 579 

 580 

4 Discussion 581 

In this study, a mathematical model of the immune response to a bacterial infection was developed 582 

from previous inflammation models (16, 36, 46) and applied to an experimental study in which 583 

variable doses of E. Coli were administered to rats.   The model was calibrated to bacterial levels in 584 
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the rats at multiple time points following implantation of the E. coli fibrin clot.  The model 585 

successfully predicted outcomes of observed mortality times in 27 rats given several different initial 586 

bacterial loads.   The differences in model-predicted levels of bacteria, pro-inflammatory response, 587 

anti-inflammatory response, and damage for rats with OMT = 24 h and rats with OMT > 24 h, 588 

however, were not as large as expected.  Thus, the model accurately predicts observed outcomes 589 

when initial conditions are well-known, but predicting final outcomes based on data at early time 590 

points is challenging when large uncertainty surrounds the appropriate initial conditions to use for 591 

model or statistics-based predictions.  The model also showed that variability in experimental 592 

outcomes can result from variability in the pathogen growth rate, strength of the local immune 593 

response, or maximum activation rate of the pro-inflammatory response, since small changes in these 594 

parameter values generated large changes in system outcomes.   595 

 596 

An important goal for mathematical models of disease is to yield accurate patient-specific outcomes.  597 

Ideally, given early time course data on bacterial levels and cytokine levels in a patient, a model 598 

could be used to predict whether that patient will follow a healthy recovery (resolving), septic, or 599 

aseptic outcome.  Then, depending on the forecasted outcome, appropriate countermeasures could be 600 

prescribed, allowing for an efficient and accurate use of resources.  In many studies, pure statistics 601 

are used to predict the likely status or outcome of a given patient.  Applying pure statistics to the 602 

validation data set in this study (e.g., using a predictor that predicts death within 24 h if the initial 603 

bacterial load exceeds a certain amount) would produce similar successful predictions but would not 604 

be able to predict septic vs. aseptic outcomes, explain failed predictions, or reveal the underlying 605 

system dynamics.  While more complex statistics using more data per patient can help to improve the 606 

accuracy of statistical methods, ultimately such methods still do not identify the mechanisms leading 607 

to observed outcomes as mechanistic mathematical models do.  An optimal theoretical approach for 608 
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understanding disease should include a combination of mathematical modeling and statistical 609 

methods (67, 68).  The study presented here provides an example of such a combined mathematical 610 

and statistical approach. 611 

 612 

4.1 Mathematical and statistical predictions 613 

 614 

Statistical analyses applied to the validation data set suggested no significant difference between the 615 

bacterial levels in rats with observed mortality times of 48, 72, and 96 h.  Therefore, this study 616 

considered only two groups from the data set:  rats that died before 24 h (OMT = 24 h) and rats that 617 

died after 24 h (OMT > 24 h).   618 

 619 

No clear separation among bacteria, inflammatory, or damage levels was predicted by the model for 620 

the OMT = 24-h and OMT > 24-h groups.  Interestingly, the model predicted very similar trajectories 621 

for the pro- and anti-inflammatory response.  For example, there was a tight grouping of the pro- and 622 

anti-inflammatory response in the OMT = 24-h group.  As a result, statistical models for this system 623 

would have difficulty predicting whether a septic or aseptic outcome should be expected especially 624 

due to the uncertainty associated with detecting when the infection begins to take hold.  These model 625 

predictions imply that that pro-inflammatory, anti-inflammatory, or bacterial levels at early time 626 

points (e.g., 8 h) cannot be used to predict outcomes from a statistical perspective, thereby motivating 627 

the need for a combined statistical and mechanistic modeling approach. 628 

 629 



Mathematical model of acute inflammation  

 
29 

Modeling helps to determine the relative importance (and validity) of proposed mechanisms and 630 

potential targets for successful interventions.  For instance, the sensitivity analysis in this study 631 

showed that the local immune response is important.  Obtaining patient specific parameters for the 632 

local immune response using well-designed measurements could improve parameter estimation, 633 

mitigate uncertainty in initial conditions, and enable more accurate patient-specific model-generated 634 

predictions regarding potential septic outcomes, corresponding dynamics, and proposed 635 

treatments.  Such measurement planning and usage rely on well-chosen statistical techniques and 636 

could include both patient-specific measurements and/or general population measurements.  In the 637 

case of the latter, maps of parameter spaces for general populations could be generated and then a 638 

few well-chosen measurements could be used to estimate the location of a specific patient in that 639 

space and their patient-specific corresponding parameter values.  In addition, future models could 640 

make similar improvements in predictions by including mechanisms that involve specific (rather than 641 

general) cytokines (25) or those involving spatial organization of the system (36). 642 

 643 

The validation data set showed that similar bacterial loads led (in some cases) to significantly 644 

different mortality times in rats.  Just as previous models have demonstrated the impact of 645 

stochasticity on model outcomes (34, 40), the current model demonstrated that experimental or 646 

clinical variability in sepsis outcomes can be explained by very small differences in parameters 647 

governing bacteria or the host response.   Additionally, the different outcomes in two rats with nearly 648 

identical bacterial loads could result from small differences in initial conditions due to underlying 649 

stressors at the beginning of the experiment.  As a result, in order to enable patient-specific care, 650 

different parameter sets and/or initial conditions must be used for different individuals to capture 651 

variability among patients.   652 
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 653 

4.2  Comparison to prior mathematical modeling studies of sepsis 654 

Several sepsis modeling studies have been described previously.  Kumar et al. (17) used a model 655 

similar to the model developed in the current study to predict that sepsis may have multiple negative 656 

outcomes (e.g., septic and aseptic death) that may require different treatment approaches.  However, 657 

their study did not explicitly incorporate any experimental data.  Yamanaka et al. (69) created a 658 

model founded on clinical data focused solely on septic shock, an important subset of sepsis. 659 

McDaniel et al. (42) introduced a “whole-body” sepsis model (via the BioGears Physiology Engine) 660 

to be used as an in silico septic simulator.  While these and several other sepsis models (21, 23-25, 661 

31, 33, 38-40, 70) have offered many useful insights, the present study emphasized the acute 662 

inflammatory dynamics that take place during early sepsis development using a relatively simple and 663 

novel modeling framework that can be used to identify the mechanisms that underly vastly different 664 

outcomes despite nearly identical initial conditions.  Notably, our results using experimental sepsis 665 

induced in genetically identical rats support those of Cockrell et al. (40), who used an agent-based 666 

model of human sepsis to suggest that mortality could occur under diverse conditions and influences 667 

which in turn would defy stratification based on inflammation biomarkers. 668 

 669 

4.3  Limitations 670 

As is necessary in theoretical modeling, the model presented in this study applies simplifying 671 

assumptions to make predictions about the average health status in a system.  For example, several 672 

immune system mediators are grouped together into two general populations for the pro- and anti-673 

inflammatory responses.  Also, the model considered only virulent bacteria; non-virulent (e.g., 674 
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probiotic) bacteria (46) were not included.  Although additional model components could improve 675 

predictions, the simplicity of this model allows for very useful analysis of the impact of parameters 676 

and interactions on the health of a rat.  The simplicity of the model, however, does limit the ability to 677 

capture more complicated underlying dynamics.  For instance, a single variable, ϵcrit, is used to 678 

predict outcomes based on system damage when outcomes likely depend on additional factors.  679 

Similarly, differences between species are subsumed into a single parameter (Bs) when converting 680 

bacteria-associated quantities from the human system developed by Reynolds et al. (16) to the rat 681 

system considered in this study. 682 

 683 

The model was calibrated using both quantitative data (bacterial levels at multiple time points) and 684 

qualitative observations (coexistence of healthy recovery/septic/aseptic steady states for some 685 

parameter values).  The data used in this study did not include measurements of cytokine levels, and 686 

thus using data sets with both bacterial and cytokine levels could help to improve model calibration 687 

and design.  In addition, the validation data only included time points of 24, 48, 72, and 96 h.  There 688 

is probably a more continuous change in mortality outcomes, and thus a more accurate threshold for 689 

death could be obtained given additional time point data.  Finally, the model has been calibrated to 690 

peritoneal injections that cause sepsis in rats.  More experimental data would allow for more general 691 

insights. 692 

 693 

4.4 Concluding remarks 694 

 695 
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With complicated processes such as inflammation where hundreds of molecules, cells, and other 696 

factors play roles, mathematical models are essential for providing a mechanistic understanding of 697 

the system, as in the current sepsis study.  This is especially true when very small differences in 698 

initial conditions or parameter values in complex systems can have a major impact on outcome, as 699 

illustrated in this study.  Thus, model reduction is needed to facilitate analysis and interpretation. The 700 

parsimonious model of sepsis presented here, after calibration, reproduced experimental results, 701 

identified an inherent level of uncertainty associated with experimental data and associated 702 

predictions, predicted trends as bacterial load, pathogen growth rate, strength of the local immune 703 

response, and activation rate of the pro-inflammatory response were varied, and provided a 704 

simplifying paradigm that can be used to understand the life vs. death outcomes for septic 705 

individuals.  As recent studies in blunt trauma (71), traumatic brain injury (72), and pediatric acute 706 

liver failure (73, 74) have shown, a dichotomy in patient outcomes was observed as soon as 707 

measurements were taken, suggesting that inflammation, regardless if it results from trauma, disease, 708 

or sepsis, exhibits the same features illustrated in this work.  Using mathematical modeling provides 709 

an understanding of possible mechanisms that could explain such dichotomies in outcomes, in 710 

contrast to methods solely based on statistical assessments of clusters or outcomes.   711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 
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Figure Captions 720 

 721 

Fig 1.  Experimental data sets used for model calibration and validation.  (A) The calibration 722 

data set is depicted using closed circles (●) for each measured bacterial level.  Bacterial 723 

measurements were obtained for the following three initial bacterial loads:  1.28 × 108 bacteria 724 

(cyan), 2.48 × 108 bacteria (blue), and 5.05 × 108 bacteria (red).  Minimum and maximum bars and 725 

lines connect the geometric means of the measurements at each time point.  (B)  The validation data 726 

set includes the observed mortality time for twenty-seven rats injected with varying levels of bacteria 727 

via an E. coli-impregnated fibrin clot (each measurement is represented with a ●).  The bottom and 728 

top of the box-and-whiskers plot indicate the edges of the first and third quartiles, respectively, and 729 

the whiskers extend to the smallest and largest values in each group that are less than 2.7 within-730 

group standard deviations from the mean.  The data points for Rat 11 and Rat 20 (Section 3.3) are 731 

denoted by a red and cyan ●, respectively. 732 

 733 

Fig 2.  Schematic illustrating bacteria-immune interactions among the four model populations.  734 

The model schematic shows the interactions between bacteria (B), pro-inflammatory response (M), 735 

anti-inflammatory response (A), and damage levels (ε).  The external infection is denoted by D(t).  736 

The arrow heads correspond to upregulation, and blunted (flat) arrow heads indicate downregulation.  737 

This figure was adapted from (16). 738 

 739 

Fig 3.  Validity of fitting the mathematical model to log-transformed data.  (A)  Calibrating data set 740 

(●) plotted with model-predicted bacterial dynamics over the experimental times considered (solid 741 

curves).  The following three initial bacterial loads were provided in the data set:  128 × 106 bacteria 742 

(cyan), 248 × 106 bacteria (blue), and 505 × 106 bacteria (red).  (B)  Plot of the standardized residuals 743 
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for the given fit to log-transformed data.  These plots demonstrate the validity of using log-744 

transformation and fitting via least squares. 745 

 746 

Fig 4.  Predicted dynamics for healthy recovery, septic, and aseptic outcomes as pathogen growth rate 747 

is varied.  Model predictions of bacteria (A), pro-inflammatory (B), anti-inflammatory (C), and damage 748 

(D) levels as pathogen growth rate (k1) was varied.  Three different outcomes were predicted for an 749 

initial bacterial infection of Bsource = 128 × 106 bacteria:  healthy recovery (k1 = 1.2/h, cyan), asepsis 750 

(k1 = 1.3/h, blue), and sepsis (k1 =1.4/h, red).  751 

 752 

Fig 5.  Demonstrated accuracy of model predictions of health or disease outcomes.  (A) Model 753 

prediction accuracy.  The number of correct model predictions divided by the total number of 754 

predictions (i.e., model prediction accuracy) is shown as a function of the critical damage level (εcrit).  755 

Relatively high levels of accuracy are attained for a large range of critical damage levels.  (B)  Area 756 

under the curve-receiver operator characteristics curve.  An area under this curve close to 1 indicates 757 

the model is capable of classifying outcomes correctly.  The area under the curve is 0.98. 758 

 759 

Fig 6.  Similarities in time dynamics predicted despite varying bacterial loads and mortality data for 760 

27 rats.  The model-predicted dynamics of the bacteria (A), pro-inflammatory (B), anti-inflammatory 761 

(C), and damage (D) levels are shown for each of the rats from the validation data set.  Blue curves 762 

correspond to rats that had a predicted observed mortality time of 24 h, and red curves correspond to 763 

rats that were predicted to survive for more than 24 h.  The clustering of many of the trajectories 764 
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suggests that small uncertainties in the initial state of the system could lead to significantly different 765 

systemic predictions. 766 

 767 

Fig 7.  Small variations in system parameters produce significantly different outcomes 768 

consistent with experimental measurements.  Comparison of the predicted dynamics for the 769 

bacteria (A), pro-inflammatory (B), anti-inflammatory (C), and damage (D) dynamics for Rat 11 770 

(red) and Rat 20 (cyan) using different parameter values.  Parameters for Rat 11: Bsource = 163 × 106 771 

bacteria, k1 = 1.27/h.  Parameters for Rat 20:  Bsource = 172 × 106 bacteria, k1 = 1.2/h.  Despite similar 772 

parameter values, the model predicts significantly different OMTs for Rat 11 (OMT = 48 h) and Rat 773 

20 (OMT = 96 h). These OMTs are the same as those observed in the validation data set (Fig 1B).  A 774 

horizontal dashed line is included in panel D and corresponds to the critical damage level, εcrit = 53 ε-775 

units. 776 

 777 

Fig 8.  Varying bacterial and immune response parameters significantly impacts model predicted 778 

outcomes.  (A) Increasing the pathogen growth rate (k1) turns healthy (cyan) outcomes into aseptic 779 

(blue) and then septic (red) outcomes.  (B)  Increasing the strength of the local immune response (k2) 780 

turns septic outcomes into aseptic then healthy outcomes.  (C) Increasing the pro-inflammatory 781 

activation rate contributes to more aseptic outcomes and lowers the probability of a healthy outcome.  782 

Dashed lines correspond to initial bacterial levels that were used in the experiments.  The three 783 

yellow ◊’s in panel A indicate the three values of k1 (1.2, 1.3, 1.4/h) that were simulated in Fig 4.  784 

The two yellow ○’s in panel A indicate the two values of k1 (1.27 and 1.2/h) that were simulated in 785 

Fig 7 for Rats 11 and 20. 786 

 787 

 788 
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Table 1: Model parameter values, units, definitions, and sources. 789 

Parameter  Value Unit  Description  Source 

k1 1 – 1.5 1/h pathogen growth rate, 1.27 fitted/default estimated 

B∞ 0.737 106 cells/cm3 pathogen carrying capacity  estimated 

Bs 0.00083 1/cm3 rescaling factor for bacterial levels estimated 

k2 0.4 - 0.7 
1/M-units/h rate at which non-specific local response 

eliminates pathogen, 0.6 default 
(16) 

sl 0.005 M-units/h source of non-specific local response  (16) 

μl 0.002 1/h decay of non-specific local response  (16) 

k3 0.01 
1/(106 

cells/cm3)/h 

rate at which the non-specific local 

response is exhausted by pathogen  
(16) 

k5 1.8 
1/M-units/h rate at which pro-inflammatory response 

consumes pathogen  
(16) 

kA 7.08 
1/A-units inhibition rate of the anti-inflammatory 

response  

Adapted from 

(16, 21) 

ν1 0 - 0.16 
M-units/h maximum activation rate of pro-

inflammatory response , 0.08 default 
(16, 21) 

ν2 0.12 
1/h half-saturation of pro-inflammatory 

response  
(16, 21) 

kM 0.01 
1/M-units/h self-activation of pro-inflammatory 

response  
(16, 21) 

kB 0.1 
1/(106 

cells/cm3)/h 

activation of pro-inflammatory response 

by pathogen  

Adapted from 

(16, 21) 

kε 0.02 
1/ε-units/h activation of pro-inflammatory response 

by damage  
(16, 21) 
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μM 0.05 1/h decay of pro-inflammatory response  (16, 21) 

sA 0.0125 A-units/h source of anti-inflammatory response  (16, 21) 

ν3 0.04 
A-units/h maximum production rate of anti-

inflammatory response  
(16, 21) 

ν4 3640 
M-units Half-saturation of anti-inflammatory 

response 
estimated 

k4 48 

M-units/ε-

units 

relative effectiveness of pro-

inflammatory response and damage 

inducing the anti-inflammatory response  

(16, 21) 

μA 0.05 
1/h 

decay of the anti-inflammatory response  
Comment in 

(16, 21) 

τ 24 h rate of recovery from damage  (46) 

f 213 
ε-units/M-

units/h 

maximum rate of damage produced by 

the pro-inflammatory response  
estimated 

T 1 
ε-units/h 

threshold for damage  
Comment in 

(46) 

kD 0.0344 
1/h decay of bacterial population in the clot 

(released into body) 
estimated 

BC 407 106 cells Number of bacteria a clot can hold estimated 

εcrit 53 ε-units critical damage level  estimated 

 790 
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