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Abstract

Sepsis is characterized by an overactive, dysregulated inflammatory response that drives organ
dysfunction and often results in death. Mathematical modeling has emerged as an essential tool for
understanding these complex biological processes. A system of four ordinary differential equations
(ODEs) was developed to simulate the dynamics of bacteria, the pro- and anti-inflammatory
responses, and tissue damage (whose molecular correlate is damage-associated molecular pattern
[DAMP] molecules and which integrates inputs from the other variables, feeds back to drive further
inflammation, and serves as a proxy for whole-organism health status). The ODE model was
calibrated to experimental data from E. coli infection in genetically identical rats and was validated
with mortality data for these animals. The model demonstrated recovery, aseptic death, or septic
death outcomes for a simulated infection while varying the initial inoculum, pathogen growth rate,
strength of the local immune response, and activation of the pro-inflammatory response in the
system. In general, more septic outcomes were encountered when the initial inoculum of bacteria
was increased, the pathogen growth rate was increased, or the host immune response was decreased.
The model demonstrated that small changes in parameter values, such as those governing the
pathogen or the immune response, could explain the experimentally observed variability in mortality
rates among septic rats. A local sensitivity analysis was conducted to understand the magnitude of
such parameter effects on system dynamics. Despite successful predictions of mortality, simulated
trajectories of bacteria, inflammatory responses, and damage were closely clustered during the initial
stages of infection, suggesting that uncertainty in initial conditions could lead to difficulty in

predicting outcomes of sepsis by using inflammation biomarker levels.
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1 Introduction

Sepsis is defined as life-threatening organ dysfunction caused by an overwhelming immune response
to an infection (1). Sepsis and septic shock often lead to organ failure and are leading causes of
morbidity and mortality (1, 2). In the course of a typical infection, pathogens (e.g., Gram-negative
bacteria) infect the host, triggering a pro-inflammatory innate immune response targeted at
eliminating the pathogen from the system. The body also mounts an anti-inflammatory response that
works to maintain homeostasis and prevent overwhelming inflammation to the system. The acute
inflammatory response in sepsis becomes detrimental when it can no longer be contained at the locus
of infection (where innate immune mechanisms can help eliminate bacteria) and becomes systemic,
leading to collateral damage/dysfunction in the surrounding healthy tissue. Thus, a major goal in
sepsis research is to determine why the host mounts an overwhelming inflammatory response to

infections which leads to sepsis in some cases but not in others (3, 4).

Acute inflammatory responses to infection are further complicated by additional variations among
sepsis patients (5), the complex interplay between pro- and anti-inflammatory mediators and the
innate and adaptive immune responses (6), and a triphasic distribution of patient deaths that occur
days, weeks, and years after initial infection (6). These variations have highlighted the need for

patient-specific treatments and novel approaches to sepsis drug design and clinical trials (7-9).

Recent decades have brought about improved sepsis treatment practices, including the rapid
administration of antibiotics, infection source control, appropriate choice of fluid (crystalloids) for

fluid resuscitation, and administration of vasopressors (norepinephrine) (10). These evolutionary
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improvements in patient care have reduced in-hospital mortality but have shifted the mortality
distribution so that most sepsis-related deaths occur months after treatment (6). While improved care
often allows patients to overcome initial septic episodes, it has been speculated that underlying
physiologic/biochemical aberrations combined with sepsis-initiated immune dysfunction place
patients at long-term risk for sepsis mortality (11). Secondary infections occurring during late stages
(> 15 days) were shown to correlate with higher levels of opportunistic fungi and bacteria compared
to earlier secondary infections (< 6 days) (12), and impairments in immune function and cytokine
secretion were observed in individuals that survived a septic episode (13). Despite evidence of late-
stage complications or mortality from sepsis (14), mortality is still common within a week of sepsis
onset; interventions in those cases rely on early identification of septic trajectories, which is often

difficult.

Given the complexities of infection and inflammation in vivo and in vitro, mathematical modeling
has been used in an attempt to unravel the complexities of inflammation and the immune response (8,
9, 15-17). Multiple mechanistic computational models have described the dynamics of the
inflammatory response in the context of a variety of bacterial infections (18-20). These include
equation-based (ordinary (16, 17, 21-35) and partial differential equations (36, 37)), agent-based (38-
40), and hybrid models (41). Although some models are purely theoretical (16, 17, 21, 37, 40), many
were calibrated to experimental data in animals (23-25, 28-30) or attempted to replicate clinical

outcomes (26, 38, 39, 42).

This is a provisional file, not the final typeset article
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The current study implemented a mechanistic model of the immune response to an Escherichia coli
(E. coli) infection and aimed to determine whether early data on both the pathogen and the host
response are sufficient to predict a health or disease outcome. A parsimonious system of four
ordinary differential equations (ODEs) was used to track changes in bacteria, tissue damage, a pro-
inflammatory response, and an anti-inflammatory response following the administration of escalating
inoculums of E. coli encapsulated in a fibrin clot (an experimental model of Gram-negative
peritonitis (43)) in rats. Ultimately, the mathematical model defined in this study was used to
evaluate and predict the time dynamics of the bacterial infection, which were observed to vary
depending on the initial bacterial dose. The model demonstrated that small changes in the pathogen
growth rate or characteristics of the immune response could lead to significantly different mortality

times despite identical initial bacterial loads.

2 Materials and Methods

2.1  Experimental Method

2.1.1 Preparation and Dose Estimation of E. Coli-Impregnated Fibrin Clot

All animal studies were carried out following approval by the University of Pittsburgh Institutional
Animal Use and Care Committee (IACUC approval #0807947) and complied with the NIH Guide for
the Care and Use of Laboratory Animals. In this study, experimental data were obtained from rats
with peritonitis induced by an E. Coli-impregnated fibrin clot, similar to the methods established by
Ahrenholz et al. (43) and modified by Namas et al. (44). In brief, the animals were subjected to a

varying dose of E. Coli (strain ATCC 25922; American Type Culture Collection, Manassas, VA,
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USA) inoculum in a fibrin clot introduced into the peritoneum via laparotomy. The E. Coli colonies
were grown to a specified optical density using a spectrophotometer (DU 530 UV/VIS; Beckman
Coulter, Brea, CA, USA) equivalent to a concentration ranging between 1 x 108 to 5 x 10® colony-
forming units [CFUs]/clot on the day of bacterial fibrin clot implantation. After the addition of
fibrinogen (1%) and Thrombin (15u), the clot was placed in the peritoneum via laparotomy, as
described previously (44). Since quantification of bacteria at the time of implantation of the fibrin
clot via optical density is highly imprecise, bacteria were quantified after each implantation by

limiting dilution plating to obtain a count of implanted E. coli in a given rat (44).

We determined that rats that received a fibrin clot inoculum of 1 x 108 to 2.0 x 10® CFUs/clot had a
mortality rate of ~40-45% after 48 h of clot implantation while rats that received inocula higher than
2.0 x 10® CFUs/clot had a mortality rate of 80% during the first 24 h of implantation (data not
shown). All rats in these experiments exhibited signs of septicemia in the form of lethargy,
hypothermia, reluctance to feed, tachycardia, and tachypnea after 24 h of E. Coli fibrin clot
impregnation into the peritoneum. After closing the abdomen, a topical anesthetic was applied over

the surgical wound, and the rats were returned to their cages and allowed food and water ad libitum.

2.1.2 Model Calibration and Validation

The experimental studies detailed above generated one experimental data set that was used to
calibrate the model and consisted of measurements of bacterial levels at different timepoints in 31

rats injected with increasing doses of bacteria (1.28, 2.48 and 5.05 x 10® bacteria with standard error

This is a provisional file, not the final typeset article
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of the mean of 1.5 x 107, 2.8 x 107, and 1.2 x 108, respectively). A second (separate) experimental
data set was used to validate the model and consisted of time to death (mortality; 24, 48, 72, or 96 h)
for 27 rats injected with varying doses of bacteria (1-5 x 10® bacteria). We detail the process of

model calibration and validation below.

Bacterial levels in the peritoneal cavity measured in individual septic rats, each euthanized at a
distinct time point from 24-96 h after being impregnated with = 1 x 10% to 5 x 10® colony-forming
units of E. coli, were used to calibrate the model (“calibration data set”, see Fig 1A and Table S1).
Observed times to mortality for rats injected with = 1.4 x 10® to 4.8 x 10® colony-forming units of E.
coli were used to evaluate the predictive capabilities of the ODE model (“validation data set,” see Fig

1B and Table S2). These two data sets were derived from two different rat populations.

The calibration data set (Fig 1A and Table S1) was produced using several experiments involving
multiple rats in each experiment and three different bacterial levels with mean values of 1.28 x 108,
2.48 x 10%, and 5.05 x 10® bacteria. A peritoneal lavage was used to assess the number of bacteria in
the peritoneal cavity in each individual animal euthanized at one of the time points indicated in Table
S1, as detailed in (44). This produced an estimate for the expected bacterial levels over time in a rat
subject to one of the targeted loads, as seen in Fig 1A. The time points were chosen to be closer
together for rats injected with higher bacterial loads, since these animals were more likely to die

earlier than animals receiving a lower bacterial inoculum.
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In the validation data set (Fig 1B and Table S2), the rats were monitored continuously until 96 h, at
which time surviving rats were euthanized. If a rat was observed to be dead at a 24-h checkpoint (24,
48, 72, or 96 h), that time point was noted as the “observed mortality time” (OMT) for that rat and
the rat was removed from the study. Rats labeled with an OMT = 24, 48, or 72 h either died within
the 24 h before their OMT or were euthanized at their OMT (in accordance with IACUC and NIH
guidelines) due to being severely unhealthy. Rats labeled with a 96 OMT either died between 72 and
96 h, were severely unhealthy at 96 h, or were relatively healthy at 96 h. Given these distinctions, it

is possible that some of the 96 h OMT rats would have survived longer.

Fig 1B depicts the mortality data set (closed circles, ®) collected for 27 rats with the observed
mortality time on the x-axis and the initial bacterial load on the y-axis. A Bartlett test revealed that
the variances of the four groups (OMT = 24, 48, 72, 96 h) were not significantly different (p-value =
0.689) while ten out of ten normality tests (45) on the deviations in the data from their respective
group norms were passed, suggesting that the data in each group are approximately normally
distributed. Analysis of variance (ANOVA), which assumes normally distributed data with equal
variances across groups, was then performed to show that the initial bacteria levels for the three OMT
= 48-, 72-, and 96-h groups with OMT > 24 h were not significantly different from each other (p-
value = 0.251). More specific delineation of the health and disease status of the rats in the 96-h
group may have led to more variance between the OMT = 48-, 72-, and 96-h groups, but those data
were not available at the time of this study. ANOVA on all four groups and use of Tukey’s
procedure with 95% confidence intervals suggested that the OMT = 24-h group had significantly
different levels of initial bacterial load compared to the OMT = 48-, 72-, and 96-h groups (p-value <

0.0051). The analysis was performed with Matlab (normalitytest (45) and Matlab’s vartestn, anoval,

This is a provisional file, not the final typeset article
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and multcompare; Matlab code available via Github, see Supplementary Information), and the
resulting conclusions regarding the differences between the groups were consistent with the
relationships suggested by the box and whiskers plot shown in Fig 1B. The analysis suggested that
there were effectively only two different experimental groups: rats with OMT = 24 h and rats with
OMT > 24 h. These two categories were therefore used when assessing the predictive capabilities of

the model.

2.2 Model and simulations

2.2.1 Model variables and interactions

The mathematical model developed in this sepsis study was based on previous models of the immune
response (16, 21, 36, 46, 47). It was used to predict the dependence of health or disease outcomes on
pathogen properties and the immune response. Following the administration of E. coli inoculum into
the peritoneum, the model was used to predict changes in the number of bacteria in the peritoneal
cavity of the animal (B), the level of tissue damage (&), a pro-inflammatory response (M), and an
anti-inflammatory response (4). Tissue damage serves as a proxy for whole-organism health status.
In vivo, the molecular correlates to tissue damage are damage-associated molecular pattern [DAMP]
molecules such as high-mobility group box 1 (HMGB1) (48, 49). Due to limited calibrating data and
a desire for model simplicity, the numerous cells and cytokines that generate the pro- and anti-
inflammatory responses were grouped into two general populations, as in previous models (16, 46,
50). Specifically, tissue-specific effects of bacterial infection were assumed to be driven by both
resident tissue macrophages and inflammatory cells such as neutrophils and macrophages that
infiltrate the tissue from the blood (51-54). Nominally pro-inflammatory cytokines (e.g., TNF, IL-

1b, IFN-y, IL-17A) and anti-inflammatory cytokines (e.g., TGF-B1, IL-10, IL-4, IL-13) were not
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measured in these experiments, and therefore these cytokines (along with a multitude of chemokines
and DAMPs) were grouped into general populations whose effects were assumed independent of

inflammatory mediator type.

Fig 2 provides a schematic of the assumed interactions (54) among model populations (schematic
adapted from (16)). A time-dependent dosing function, D(z), defines the release of bacteria from the
clot into the surrounding tissue. In response, pro-inflammatory cells activate and begin to destroy the
bacteria while also causing collateral tissue damage and promoting self-recruitment. Both pro-
inflammatory cells and tissue damage trigger an anti-inflammatory response, which in turn inhibits
the growth of the pro-inflammatory response and damage levels. These interactions are labeled in

Fig 2 with arrow heads indicating upregulation and blunted ends indicating downregulation.

Although it is nearly impossible to state that no other model could account for the variables and
interactions depicted in Fig 2 (55), the approach utilized in this study adapted previous models (16,
46) of bacterial infection that were successful at reproducing multiple physiological behaviors. The
current model was based on clear assumptions, including ones that stemmed from the experimental
technique for bacterial administration into the rats. More specifically, Ahrenholz and Simmons (43)
originally used the experimental method implemented in this study to consider the theory that
increased fibrin levels decrease the severity of infections during E. coli peritonitis. Namas et al. (44)
used the same procedure to explore the effectiveness of hemadsorption techniques on treating septic
peritonitis. They performed several initial experiments in which they injected rats with fibrin clots

containing varying levels of bacteria. The rats usually died or resolved in a relatively short amount

. .. . 10
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of time, so only the acute immune response was assumed to play a significant role in infection
dynamics. Additionally, the experimental technique for bacterial administration introduced bacteria
more gradually into the system than instantaneous bacterial injection into the blood. Both

observations played a significant role in the modeling choices employed here.

2.2.2 Model equations

The rate of change of the number of bacteria in an animal is governed by Equation 1:

dB—D(t)+kB
dt 1

(1_ B ) k,s,B ksBM )

Bw/By) p +ksBB 1+ k,A

The first term, D(?), defines the release of bacteria from the fibrin clot as an exponentially decaying
dosing function given by D(¢) = Diexp(-kpt). The second term corresponds to logistic growth of
bacteria with growth rate k;. The third term corresponds to a non-specific, local, innate immune
response that is assumed to eliminate a small amount of pathogen without activating a full systemic
inflammatory response (16). The details of the parameter value derivation for this term are given in
(16). The final term defines the elimination of bacteria by the systemic pro-inflammatory response,

which is inhibited by systemic anti-inflammation.

As a first-order approximation, all bacteria initially in the clot were assumed to empty into the

surrounding tissue without reproducing or dying, which is equivalent to [ OOO D(t)dt

=/ 000 Diexp (—kpt) dt = Bsource, Where Bsource 1s the initial amount of bacteria in the fibrin clot (Bsource

11
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=128 x 10°%, 248 x 10°, or 505 x 10° bacteria in the calibration data set). To satisfy this condition
for the conservation of clot bacteria, D; must equal kpBsource. B Was also scaled by a factor B (see
Section 2.3) to account for the difference in bacterial levels between the rat experiments described in
this study and the bacteria levels considered in the previous (human) models (16). This factor also
converts number of bacteria to concentration of bacteria (bacteria/cm?) and allows previous

parameter values (16, 46) to be used here.

We note that multiple dosing functions were considered before choosing the exponential decay
model. For example, an additional variable tracking the bacterial levels inside the clot was
introduced and allowed to experience growth and/or transfer between the clot and surrounding tissue.
Despite providing three additional degrees of freedom, this alternate approach did not yield model
fits that were significantly better than using a simple exponential function to define the rate at which
bacteria emptied into the surrounding tissue. We also explored making parameter ks a saturating
sigmoidal function of Bsource, Since experimental observations suggested that a clot with a small
number of bacteria had a slower release rate than a clot containing a large inoculum of bacteria. This
assumption, however, also did not lead to improved model fits. Thus, an exponential function with

constant rate of decay, kq, was implemented in the model and yielded reasonable fits to the data.

Equation 2 defines the rate of change of the systemic pro-inflammatory response (M):

aM _ Vlf(M;B’E)
dt ~ (vy+ f(M,B,e))(1 + k,A)

— umM. (2)

. . . . 12
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where f(M, B, €) = kyyM + kgBsB + k.€. The pro-inflammatory response is increased by pro-
inflammatory cells, bacteria, and damage and is inhibited by the systemic anti-inflammatory
response. Natural decay of the response occurs at rate . Recruitment of inactive pro-inflammatory
cells occurs at a rate proportional to vi, as given in (16, 21). The possible effect of LPS inflicting
toxicity (without any bacteria present) has been subsumed into the parameter values for the onset and
persistence of inflammation as a consequence of bacterial infection. T helper 1 cells (Thl) and T

helper 17 cells (Th17) are also assumed to be included in model population M.

The rate of change of the anti-inflammatory response (4) is defined in Equation 3:

dA vs(M + k4€)

At L A M A ko0 T kA

— HaA. (3)
The first term accounts for the nonzero background level (s4) of anti-inflammatory mediators that
resides in the body. In the second term, the pro-inflammatory response and damage activate the anti-
inflammatory response. The anti-inflammatory response also self-regulates, which is modeled using

the (1+k44) term in the denominator. Natural decay of the response occurs at rate 4.

The final model equation (Eq. 4) gives the rate of change of tissue damage levels (¢):

dg_ € [fM—T],

E__T-i_ 14+ ksA - (4)

In the first term, damage is repaired at rate 1/z. In the second term, similar to (46), it was assumed
that the system can tolerate a certain level of inflammation before pro-inflammatory cells begin

causing damage. This assumption is represented using a threshold function:

13
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fM—T (fM—=T)>0
0 otherwise

(M -1, = { )

T gives the threshold above which immune cells begin to cause damage in the nearby tissue, and f

gives the rate at which the cells cause damage.

2.2.3 Initial conditions

At the onset of each simulation, the rats were assumed to be healthy, corresponding to initial
conditions of B(0) =0, M(0) =0, A(0) = s4/u4, and &(0) = 0. Since animals exhibit background levels
of anti-inflammatory mediators (e.g., transforming growth factor-f1 (56)), nonzero initial
background levels of anti-inflammatory response mediators were assumed. Parameter Byource
corresponds to the number of bacteria inserted into the clot for each experiment and controls the
magnitude of the dosing function, D(t). Thus, Bs.urce Was changed in each simulation (i.e., for each

rat) to correspond to the experiment being modeled.

For high enough Bjource, it was observed that the clots were highly saturated to the point that bacteria
left the clot nearly instantaneously. To model this, B(0) was set to Bsource — Be, Where B. is a fitted
parameter thought of as the “clot capacity.” This assumes the number of bacteria that exceed B.
instantaneously enter the surrounding tissue. With only B. bacteria assumed to remain in the clot
after the initial injection, the dosing function is adjusted to depend only on those bacteria (B.)

remaining in the clot: D(¢) = kpB.exp(-kpt).

. . . . 14
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2.3 Parameter values

Table 1 provides the values, units, and sources for all twenty-six model parameters. Because of the

lumped nature of variables M, A, and ¢, general units (“M-units”, “4-units”, and “e-units”) were used
to describe these populations, as treated previously (16, 36, 46). To be consistent with experimental
measures, the units for bacteria were given as 10° bacteria. Several parameter estimation techniques

were utilized to yield maximum parameter estimation efficiency and physiologically realistic results.

The unknown parameter space dimension was decreased by estimating several parameter values
using previous studies. Following Reynolds et al. (16), k4 was chosen so that anti-inflammatory
inhibition is at most 75% (57), and u4 was chosen to be significantly smaller than typical cytokine
decay rates (58-61) because these cytokines have longer lasting downstream effects in the anti-
inflammatory cascade. The quality of the parameter fit varied relatively little (<0.1%) when
parameter 7 was allowed to vary. Choosing 7 too large made [fM — T+ = 0 for all simulations while
choosing 7 too small made [fM — T+ = fM, which violates the assumption that the system can tolerate
a certain significant level of inflammation (46). Setting 7 to 1 avoided both extremes without

affecting fit quality.

Seven parameters remained that still had relatively high levels of uncertainty regarding their values.
Those parameters (B, f, kp, Bs, v4, B¢, and k1) were estimated using a constrained least squares
optimization on log-transformed data. The fit was constrained based on qualitative observations
regarding the general inflammation paradigm where typically one of three qualitative outcomes occur
(54). In the first type of outcome, termed “healthy recovery,” individuals are affected by an

infection, but their inflammatory response is quick and successfully eliminates the infection. In the

15
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second type of outcome, termed “aseptic death,” the inflammatory response eliminates many of the
bacteria but overwhelms surrounding healthy tissue until death occurs. In the third type, termed
“septic death,” large numbers of bacteria survive alongside a mounting inflammatory response and
death results. Typical dynamics in other studies (16-18, 21) suggest that lower initial pathogen levels
often produce healthy recovery outcomes, mid-level initial pathogen levels often produce aseptic
outcomes, and high levels produce septic outcomes. To produce a model capable of similar behavior,
the optimization process was constrained so that simulated rats injected with 128 x 10° bacteria
experienced healthy recovery outcomes, simulated rats injected with 248 x 10° bacteria experienced
aseptic outcomes, and simulated rats injected with 505 x 10° bacteria experienced septic outcomes.
Such an approach is supported by the following assumptions: (i) the relatively good fit to the data
(R? = 0.70); (ii) relatively low levels of bacteria (O(10%)) in the 248 x 109 initial bacterial load
calibration experiments after 72 h (i.e., probably not septic); (iii) persisting high levels of bacteria
(O(107)) in the 505 x 10° initial bacterial load calibration experiments after 48 h (i.e., probably
septic); and (iv) high mortality rates for loads above 200 x 10° bacteria (44). The large range of
measured bacterial levels suggested that log-transforming the data was also reasonable. Importantly,
the standardized residuals associated with the log-transformed measurements and simulated data (Fig
3B) passed ten out of ten normality tests (45). Similar outcomes were not possible for data that were

not log-transformed.

In the optimization procedure, the following squared residuals of the log-transformed data were

minimized:

% (log(y;) — log(3:))? (6)

. .. . 16
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where y; corresponds to all experimentally measured bacterial levels at the time points and initial
bacterial loads listed in Table S1, y; corresponds to the model-predicted bacterial levels at the same
time points and initial bacterial loads, and N, = 31 is the total number of measurements. Although a
range of values for k> and v are later used to assess their effects on system dynamics (see Fig 8),
during the optimization, and by default unless otherwise stated, k> and vi were set to 0.6 1/M-units/h
and 0.08 M-units/h, respectively, to be consistent with the values used in Reynolds et al (16).
Parameter k; was fit during the optimization procedure to yield its default value of k1 = 1.27/h; this
value was used throughout the study except when assessing the impact of varying this parameter (Fig
8). Multiple standard optimization techniques were used during the process to ensure the finding of a
reasonable optimum, including the Nelder-Mead simplex method, the steepest descent algorithm, and
random restarts (Matlab code available via Github, see Supplementary Information). The resulting

parameter estimates are given in Table 1.

2.4  Sensitivity calculation

Due to the high dimension of parameter space (26 parameters) and the relatively small amount of
data (18 independent time points), only a small subset of the parameters should be optimized at any
given time to avoid excessive computations and identifiability issues. Identifiability is discussed
later in this section but briefly, the larger the number of fitted parameters, the more likely we will
encounter an unidentifiable parameter set where multiple sets of parameter values can be used to
produce the exact same optimal fit quality. Having no unique optimal parameter set can cause
traditional optimization techniques to fail. Here, seven parameters were chosen to be fit based on
their associated levels of uncertainty. It is possible that improved fits could be obtained by choosing

a different parameter set (e.g., by fixing some of the fit parameters to other estimates found in the
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literature (16)). In addition, while calibrating the model to a given data set will limit the general
dynamics that a model may exhibit, it is possible that multiple optimal parameter sets exist whose

dynamics significantly differ.

To explore (i) the suitability of the current model, (i1) the set of fit parameters, and (iii) the possible
effects of varying other parameters, a local sensitivity analysis around the current best fit was
performed. The relative sensitivities, sy, of the i simulated measurement (¥;) with respect to the j
parameter (p; ) were estimated using the relative change in y; divided by the relative change in the

parameter value:

<9i(1’f+1’j5j)-?i(l’j))

o JA’i(T"j) _ (9i(pj+p;8;)-9i(p})
S = <(P1+Pj5j)—1’j> B ( 8;9i(pj) ) )
pj

In Eq. 7, the magnitude of 9, is chosen to be the square root of machine epsilon. For some
parameters, differently signed ;’s would alter the original simulation outcomes (healthy recovery,
aseptic, septic). While such changes can happen in reality, this results in significant jumps in
simulated measurement values and complicates the analysis. A complete analysis should consider
behavior both when such jumps occur and when they do not and average the results. To include all
parameters in the jump data analysis, J; would need to be altered so that all parameters experience
such jumps. Since the jumps are typically of approximately the same size, an alternate strategy
would need to be developed to compare these similarly sized jumps. Because of such complications,
only sensitivities with no outcome behavior changes were considered here. At the same time, we
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note that larger calculated values of |sij| (calculated in the absence of outcome changes) correlate well
with increased likelihood of these more significant outcome changes. To gauge the general
sensitivity of all measurements to particular parameters and to understand how much a given
parameter may affect outcomes, the root mean squared sensitivity (RMSS, S;) was calculated:

5= [ s ®)

i=1°ij

where N,, = 31 gives the number of measurements made in the calibrating data set. This sensitivity
value (S) is provided in Table S3 and provides an estimate for the relative importance of each
parameter in the model fitting process with higher sensitivities corresponding to parameters that
affect the fit and corresponding dynamics more. Better and quicker fits tend to result when
parameters are more sensitive. For any given set of parameters, a sum of their RMSSs can give an

estimate to how sensitive the measurements are to that specific parameter set.

Identifiability is another important consideration when assessing how parameter values affect system
dynamics. As an example, model parameters k2 and s; are not identifiable from the data because
increasing k> by 1% will produce the exact same change in the variable outputs as increasing s; by
1%. This is because they only appear in the model as (k».s:), never separately elsewhere. In such
scenarios, it is impossible to identify the values of such parameters without additional outside
information, as was the case in (16). Studying the identifiability of a large set of parameters with an
associated nonlinear system can be difficult. While standard linear algebra methods can be used for
linear systems (62, 63), nonlinear systems require more specialized and often more computationally
and theoretically intensive approaches such as methods utilizing rational functions (64), methods

focusing on local expansions or transformations (63), and methods centering on observability (65).
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Here we employed a local analysis, including linearization about the current model’s parameter
values, to consider the issue of identifiability. In the local analysis, identifiability is investigated by
considering the collinearity of the parameters, where the effects of changing one parameter can be
reproduced by a linear combination of changes in the other parameters. In such cases, parameters
can be redundant, with their variations capable of being reproduced by changing the other
parameters. The idea of collinearity can be written in terms of the previously mentioned sensitivities:
Sik = Y j# oysij Vi. A corresponding collinearity index can be defined as: Clk = 1/0min Where Gmin 1s the
smallest singular value of the associated sensitivity matrix defined by components s;; (66). Lower
collinearity indices indicate more weakly correlated parameters that better describe the local
parameter space and typically produce better overall fits and corresponding calibrated models. Such
analysis identifies parameters sets that should not be used for fitting (high Clk values) because of the
possible presence of redundant parameters. The index can also be used to identify sets of parameters

that may produce better fits.

3 Results

3.1  Bacterial infection model dynamics reproduce key sepsis outcomes

The bacterial infections simulated in this study led to three possible outcomes: healthy recovery,
aseptic death, or septic death (16). In this model, a healthy recovery outcome corresponds to a return
to a steady state where pathogenic bacteria are fully eliminated (B = 0) and tissue damage levels
return to baseline pre-infection levels (¢ = 0). Aseptic death occurs when the bacteria are cleared (B
= 0) but damage levels remain elevated (¢ > 0). Septic death results when bacteria levels (B > 0) and

damage (¢ > 0) remain elevated at steady state.

. .. . 20
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In Fig 4, all three outcomes were predicted to occur given the same level of initial bacterial dose
(Bsource= 128 x 10% bacteria) but for three different levels of pathogen growth rate, k1. For a low
pathogen growth rate (k1 = 1.2/h), the pro-inflammatory response eliminated the bacteria, and healthy
recovery (B/Bmax, M/ Mnax, (A-Aneattny)/ Amax, and €/emax all less than 1%) was predicted to be restored
by 37 h (cyan curve). For a slightly higher pathogen growth rate (k1 = 1.3/h), the pro-inflammatory
response also eliminated the bacteria, but caused an elevated and sustained inflammatory response
corresponding to aseptic death (blue curve) due to a forward-feedback loop of inflammation =
damage = inflammation (44). For a high pathogen growth rate (k1 = 1.4/h), the pro-inflammatory
response was incapable of eliminating the bacteria, so bacterial levels, damage, and the anti-
inflammatory response all remained elevated at the steady state (corresponding to septic death, red

curve).

3.2 Sensitivity analysis supports choice of initial model parameters

Calculating local collinearities and sensitivities allowed for the identification of other parameter sets
that are better (from a sensitivity and collinearity point of view) than the best fit identified in this
paper. As an example, kp, By, Be, ki, k2, tu, and s4 have a sum of RMSSs of 137 and a collinearity
index of 17 while the fit used in this paper has a sum of RMSSs of 62 and a collinearity of 55 (less
sensitive and more collinear). Despite worse metrics, optimization of this alternative parameter set
(originally suggested by our local sensitivity and collinearity analyses) did not significantly improve

the overall parameter fit (R? still approximately 0.70). This suggests that the parameters currently
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chosen for the model fitting are reasonable despite lower sensitivities and higher collinearities

compared to other parameter sets.

The values of RMSS (Table S3) showed that the model results are most sensitive to local immune
response parameters (i.e., s, k2, w1 and k3) and second-most sensitive to pathogen and dosing related
parameters (i.e., k1, kp, By, Binf). The other parameters affecting the inflammatory response and

damage displayed lower sensitivities.

3.3 Comparison of model simulations and experimental data suggest a high mortality

prediction capacity

Prior studies utilizing reduced models of sepsis-induced inflammation were not docked to data,
especially with regard to the level or trajectory of the damage variable that equated with death (16,
17, 21). To address this shortcoming, we compared the behavior of the damage variable in our model

to mortality observations in an experimental model of Gram-negative bacterial sepsis.

In Fig SA, the ability of the model to use damage levels to predict deaths occurring within 24 h
(OMT = 24 h) and deaths occurring after 24 h (OMT > 24 h) was quantified by comparing damage-
based predictions of the mathematical model with the experimental observations in the validation
data set. Using the mathematical model, the time of death (i.e., mortality time), #., for a simulated rat
was assumed to be the model-predicted time at which the value of the damage variable, ¢, reached a

critical damage level (). If 7 <24 h, the rat was predicted to die within 24 h and to belong to the
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OMT = 24-h group. Similarly, if 24 <. <48, the model-predicted value for the OMT was 48 h and
the rat was predicted to belong to the OMT > 24-h group. The initial levels of bacteria given to each
rat from the validation data set (27 total) were used as inputs to the calibrated model to yield model
predictions for survival time (OMT = 24 h or OMT > 24 h) for each rat in the study. Model accuracy
was defined as the ratio of correct predictions to total number of predictions. Both the predictions
and model accuracy are functions of &..i;, as shown in Fig SA. A relatively high level of accuracy (>
80%) was found for a wide range of critical damage levels (49.2 < &¢is < 123.4 g-units). A maximum

accuracy of 96% was attained for &..i: values between 49.8 and 55 e-units.

As an additional assessment tool of the predictive capability of the model, an area under the curve-
receiver operating characteristics (AUC-ROC) curve was constructed (Fig 5B). In this figure, a
positive outcome or identification corresponds to death occurring within 24 h. As such, ‘true
positive’ corresponds to a model prediction agreeing with an experimental observation of a rat that
dies within 24 h, while ‘false positive’ corresponds to a model prediction of a rat dying within 24 h
when the experiment indicated that the rat did not die within 24 h. The recall/sensitivity/true positive
rate = (number of true positives)/(number of correct predictions) and the false positive rate = (number
of false positives)/(number of correct predictions). These rates are calculated for 0 < g.is < 200 &-
units to produce the AUC-ROC curve in Fig 5B. An area under this curve that is close to 1 indicates

a model that can classify outcomes correctly. Here, the area under the curve was 0.98.

Since the experimental data in this study suggest significant differences between the OMT = 24-h and
the OMT > 24-h groups, simulations were conducted to determine whether the model could reveal

additional differences that may exist between these two groups. In Fig 6, a simulation was run for each
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of the 27 different bacterial loads (Bsource) administered to the rats in the validation data set (Fig 1B)
assuming that e, = 53 e-units (corresponding to the maximum accuracy determined in Fig 5A).
Simulations that correspond to a predicted OMT = 24 h are shown in blue and those corresponding to
an OMT > 24 h are shown in red. As observed in Fig 6, the OMT 24-h group was predicted to have
significantly higher bacteria, inflammatory, and damage levels. While there was a notable divide
between model-predicted septic and aseptic cases in terms of bacterial levels (high vs. near zero levels)
after approximately 36 h, there was no particularly notable divide between the predicted OMT = 24-h

(blue) and the septic members of the OMT > 24-h (red) groups.

The model was also used to give possible explanations for the lack of statistical difference among the
three OMT > 24-h groups. As shown in Fig 1B and Table S2, some rats with similar levels of initial
bacterial loads exhibited significantly different outcomes. For instance, Rats 11 and 20 received similar
initial bacterial loads, but Rat 11 died within 48 h while Rat 20 lived until 96 h. The model was used
to investigate these large discrepancies by varying model parameters and evaluating their impact on
system outcomes. For instance, these investigations showed that small changes in pathogen growth
rate (k1) had a substantial effect on the predicted outcomes of the system. Fig 7 shows the model-
predicted impact of decreasing this parameter slightly, given similar initial bacterial loads of 163 x 10°
bacteria in Rat 11 (red) and 172 x 10° bacteria in Rat 20 (cyan). Specifically, k&1 = 1.27/h for Rat 11,
and k1 = 1.2/h for Rat 20. With these parameter values, the model predicted that Rat 11 died (i.e., its
damage levels crossed the critical damage threshold of &.i = 53 &-units) at approximately 34 h
(corresponding to OMT =48 h). Rat 20, however, was predicted to be healthy at 96 h (OMT = 96 h)
with a low steady state value of bacteria and zero steady state value of damage (since pro-inflammatory

levels never rise high enough to cause damage to the surrounding tissue). Similar changes in model
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predicted outcomes were observed when other parameters, such as those governing the immune

response, were varied (see Section 3.4 and Fig 8).

3.4 Outcome dependence on parameter values

Fig 8 summarizes the dependence of stable outcomes (health is cyan, asepsis is blue, and sepsis is
red) on the number of bacteria in the fibrin clot (Bsource), pathogen growth rate (k;), strength of the
local immune response (k2), and pro-inflammatory activation rate (vi). As k1 was increased or as k>
was decreased, the number of bacteria that the system could handle and still recover decreased (Fig
8A and 8B). The dashed lines in the figures indicate the three levels of Byource that were administered
to the rats in the calibration data set. These multiple parameter bifurcation plots suggest that a
healthy recovery outcome was not possible for many (high) levels of Bsource. For lower levels of
Bsource, the model predicted that regions of healthy recovery become aseptic and then septic as the
pathogen growth rate was increased (Fig 8A) or the strength of the local immune response was
decreased (Fig 8B). As Bsource Was decreased, the width of the aseptic region decreased and
completely disappeared when Bsource = 6 % 10° bacteria. This suggests that, regardless of the value of

ki1 or k2, an aseptic outcome is not possible for a small enough initial bacterial load.

Parameter v; is the maximum activation rate of the pro-inflammatory response. As shown in Fig 8C,
there was a very narrow region (199 x 10° bacteria < Byource < 201 x 10° bacteria) in which the model
predicted that increasing vi causes a change in stable outcome from septic death to healthy recovery
and then to aseptic death. This suggests that increasing the recruitment of pro-inflammatory cells and
mediators first helps then overwhelms the system. For higher levels of Biource (Bsource > 258 * 10°

bacteria), a moderate activation rate (vi = 0.08 M-units/h) divides the septic region (vi < 0.08 M-
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units/h) from the aseptic region (vi > 0.08 M-units/h), suggesting that a highly responsive pro-

inflammatory activation rate leads to aseptic outcomes.

The nearly equal split between septic and aseptic cases shown in Fig 8C for Bsource > 258 % 10° can be
explained by the interactions between the bacteria and inflammatory response. The interaction term
involving BM in the bacteria equation (Eq. 1) was initially very small since not enough M had been
recruited. Thus, early dynamics for the bacteria equation were governed primarily by the remaining
non-interaction terms (which are almost entirely unrelated to vi). If B values increased above a
(relatively low) threshold, the non-interaction terms became large (and positive) enough to outweigh
any of the mounting contributions from the interaction term. This means that resulting high values of
B depended on initial dynamics when M values were low and vi had only a minor impact. In
addition, if Bsource > 258 % 10° bacteria, bacterial levels approached a high steady state level,
regardless of the size of the interaction term. So, if vi < 0.08 M-units/h (right boundary of septic
region in Fig 8C), the pro-inflammatory levels never grew large enough to outweigh the non-
interaction terms in Equation 1. If vi > 0.08 M-units/h, however, then the pro-inflammatory levels
caused the interaction term in Equation 1 eventually to outweigh the non-interaction terms, and the
bacteria were eliminated. This elimination took place after the system attained high bacterial levels

and was independent of Bsource 50 long as Bsource > 258 x 10° bacteria.

4 Discussion

In this study, a mathematical model of the immune response to a bacterial infection was developed
from previous inflammation models (16, 36, 46) and applied to an experimental study in which

variable doses of E. Coli were administered to rats. The model was calibrated to bacterial levels in
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the rats at multiple time points following implantation of the E. coli fibrin clot. The model
successfully predicted outcomes of observed mortality times in 27 rats given several different initial
bacterial loads. The differences in model-predicted levels of bacteria, pro-inflammatory response,
anti-inflammatory response, and damage for rats with OMT = 24 h and rats with OMT > 24 h,
however, were not as large as expected. Thus, the model accurately predicts observed outcomes
when initial conditions are well-known, but predicting final outcomes based on data at early time
points is challenging when large uncertainty surrounds the appropriate initial conditions to use for
model or statistics-based predictions. The model also showed that variability in experimental
outcomes can result from variability in the pathogen growth rate, strength of the local immune
response, or maximum activation rate of the pro-inflammatory response, since small changes in these

parameter values generated large changes in system outcomes.

An important goal for mathematical models of disease is to yield accurate patient-specific outcomes.
Ideally, given early time course data on bacterial levels and cytokine levels in a patient, a model
could be used to predict whether that patient will follow a healthy recovery (resolving), septic, or
aseptic outcome. Then, depending on the forecasted outcome, appropriate countermeasures could be
prescribed, allowing for an efficient and accurate use of resources. In many studies, pure statistics
are used to predict the likely status or outcome of a given patient. Applying pure statistics to the
validation data set in this study (e.g., using a predictor that predicts death within 24 h if the initial
bacterial load exceeds a certain amount) would produce similar successful predictions but would not
be able to predict septic vs. aseptic outcomes, explain failed predictions, or reveal the underlying
system dynamics. While more complex statistics using more data per patient can help to improve the
accuracy of statistical methods, ultimately such methods still do not identify the mechanisms leading

to observed outcomes as mechanistic mathematical models do. An optimal theoretical approach for
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understanding disease should include a combination of mathematical modeling and statistical
methods (67, 68). The study presented here provides an example of such a combined mathematical

and statistical approach.

4.1 Mathematical and statistical predictions

Statistical analyses applied to the validation data set suggested no significant difference between the
bacterial levels in rats with observed mortality times of 48, 72, and 96 h. Therefore, this study
considered only two groups from the data set: rats that died before 24 h (OMT = 24 h) and rats that

died after 24 h (OMT > 24 h).

No clear separation among bacteria, inflammatory, or damage levels was predicted by the model for
the OMT = 24-h and OMT > 24-h groups. Interestingly, the model predicted very similar trajectories
for the pro- and anti-inflammatory response. For example, there was a tight grouping of the pro- and
anti-inflammatory response in the OMT = 24-h group. As a result, statistical models for this system
would have difficulty predicting whether a septic or aseptic outcome should be expected especially
due to the uncertainty associated with detecting when the infection begins to take hold. These model
predictions imply that that pro-inflammatory, anti-inflammatory, or bacterial levels at early time
points (e.g., 8 h) cannot be used to predict outcomes from a statistical perspective, thereby motivating

the need for a combined statistical and mechanistic modeling approach.
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Modeling helps to determine the relative importance (and validity) of proposed mechanisms and
potential targets for successful interventions. For instance, the sensitivity analysis in this study
showed that the local immune response is important. Obtaining patient specific parameters for the
local immune response using well-designed measurements could improve parameter estimation,
mitigate uncertainty in initial conditions, and enable more accurate patient-specific model-generated
predictions regarding potential septic outcomes, corresponding dynamics, and proposed

treatments. Such measurement planning and usage rely on well-chosen statistical techniques and
could include both patient-specific measurements and/or general population measurements. In the
case of the latter, maps of parameter spaces for general populations could be generated and then a
few well-chosen measurements could be used to estimate the location of a specific patient in that
space and their patient-specific corresponding parameter values. In addition, future models could
make similar improvements in predictions by including mechanisms that involve specific (rather than

general) cytokines (25) or those involving spatial organization of the system (36).

The validation data set showed that similar bacterial loads led (in some cases) to significantly
different mortality times in rats. Just as previous models have demonstrated the impact of
stochasticity on model outcomes (34, 40), the current model demonstrated that experimental or
clinical variability in sepsis outcomes can be explained by very small differences in parameters
governing bacteria or the host response. Additionally, the different outcomes in two rats with nearly
identical bacterial loads could result from small differences in initial conditions due to underlying
stressors at the beginning of the experiment. As a result, in order to enable patient-specific care,
different parameter sets and/or initial conditions must be used for different individuals to capture

variability among patients.
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4.2 Comparison to prior mathematical modeling studies of sepsis

Several sepsis modeling studies have been described previously. Kumar et al. (17) used a model
similar to the model developed in the current study to predict that sepsis may have multiple negative
outcomes (e.g., septic and aseptic death) that may require different treatment approaches. However,
their study did not explicitly incorporate any experimental data. Yamanaka et al. (69) created a
model founded on clinical data focused solely on septic shock, an important subset of sepsis.
McDaniel et al. (42) introduced a “whole-body” sepsis model (via the BioGears Physiology Engine)
to be used as an in silico septic simulator. While these and several other sepsis models (21, 23-25,
31, 33, 38-40, 70) have offered many useful insights, the present study emphasized the acute
inflammatory dynamics that take place during early sepsis development using a relatively simple and
novel modeling framework that can be used to identify the mechanisms that underly vastly different
outcomes despite nearly identical initial conditions. Notably, our results using experimental sepsis
induced in genetically identical rats support those of Cockrell et al. (40), who used an agent-based
model of human sepsis to suggest that mortality could occur under diverse conditions and influences

which in turn would defy stratification based on inflammation biomarkers.

4.3 Limitations

As is necessary in theoretical modeling, the model presented in this study applies simplifying
assumptions to make predictions about the average health status in a system. For example, several
immune system mediators are grouped together into two general populations for the pro- and anti-

inflammatory responses. Also, the model considered only virulent bacteria; non-virulent (e.g.,
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probiotic) bacteria (46) were not included. Although additional model components could improve
predictions, the simplicity of this model allows for very useful analysis of the impact of parameters
and interactions on the health of a rat. The simplicity of the model, however, does limit the ability to
capture more complicated underlying dynamics. For instance, a single variable, €, is used to
predict outcomes based on system damage when outcomes likely depend on additional factors.
Similarly, differences between species are subsumed into a single parameter (B5) when converting
bacteria-associated quantities from the human system developed by Reynolds et al. (16) to the rat

system considered in this study.

The model was calibrated using both quantitative data (bacterial levels at multiple time points) and
qualitative observations (coexistence of healthy recovery/septic/aseptic steady states for some
parameter values). The data used in this study did not include measurements of cytokine levels, and
thus using data sets with both bacterial and cytokine levels could help to improve model calibration
and design. In addition, the validation data only included time points of 24, 48, 72, and 96 h. There
is probably a more continuous change in mortality outcomes, and thus a more accurate threshold for
death could be obtained given additional time point data. Finally, the model has been calibrated to
peritoneal injections that cause sepsis in rats. More experimental data would allow for more general

insights.

4.4 Concluding remarks
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With complicated processes such as inflammation where hundreds of molecules, cells, and other
factors play roles, mathematical models are essential for providing a mechanistic understanding of
the system, as in the current sepsis study. This is especially true when very small differences in
initial conditions or parameter values in complex systems can have a major impact on outcome, as
illustrated in this study. Thus, model reduction is needed to facilitate analysis and interpretation. The
parsimonious model of sepsis presented here, after calibration, reproduced experimental results,
identified an inherent level of uncertainty associated with experimental data and associated
predictions, predicted trends as bacterial load, pathogen growth rate, strength of the local immune
response, and activation rate of the pro-inflammatory response were varied, and provided a
simplifying paradigm that can be used to understand the life vs. death outcomes for septic
individuals. As recent studies in blunt trauma (71), traumatic brain injury (72), and pediatric acute
liver failure (73, 74) have shown, a dichotomy in patient outcomes was observed as soon as
measurements were taken, suggesting that inflammation, regardless if it results from trauma, disease,
or sepsis, exhibits the same features illustrated in this work. Using mathematical modeling provides
an understanding of possible mechanisms that could explain such dichotomies in outcomes, in

contrast to methods solely based on statistical assessments of clusters or outcomes.
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Figure Captions

Fig 1. Experimental data sets used for model calibration and validation. (A) The calibration
data set is depicted using closed circles (@) for each measured bacterial level. Bacterial
measurements were obtained for the following three initial bacterial loads: 1.28 x 10® bacteria
(cyan), 2.48 x 10% bacteria (blue), and 5.05 x 10% bacteria (red). Minimum and maximum bars and
lines connect the geometric means of the measurements at each time point. (B) The validation data
set includes the observed mortality time for twenty-seven rats injected with varying levels of bacteria
via an E. coli-impregnated fibrin clot (each measurement is represented with a ®). The bottom and
top of the box-and-whiskers plot indicate the edges of the first and third quartiles, respectively, and
the whiskers extend to the smallest and largest values in each group that are less than 2.7 within-
group standard deviations from the mean. The data points for Rat 11 and Rat 20 (Section 3.3) are

denoted by a red and cyan e, respectively.

Fig 2. Schematic illustrating bacteria-immune interactions among the four model populations.
The model schematic shows the interactions between bacteria (B), pro-inflammatory response (M),
anti-inflammatory response (4), and damage levels (¢). The external infection is denoted by D(¥).
The arrow heads correspond to upregulation, and blunted (flat) arrow heads indicate downregulation.

This figure was adapted from (16).

Fig 3. Validity of fitting the mathematical model to log-transformed data. (A) Calibrating data set
(®) plotted with model-predicted bacterial dynamics over the experimental times considered (solid
curves). The following three initial bacterial loads were provided in the data set: 128 x 10° bacteria
(cyan), 248 x 10° bacteria (blue), and 505 x 10° bacteria (red). (B) Plot of the standardized residuals
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for the given fit to log-transformed data. These plots demonstrate the validity of using log-

transformation and fitting via least squares.

Fig 4. Predicted dynamics for healthy recovery, septic, and aseptic outcomes as pathogen growth rate
is varied. Model predictions of bacteria (A), pro-inflammatory (B), anti-inflammatory (C), and damage
(D) levels as pathogen growth rate (k1) was varied. Three different outcomes were predicted for an
initial bacterial infection of Bsource = 128 x 10° bacteria: healthy recovery (ki = 1.2/h, cyan), asepsis

(k1 = 1.3/h, blue), and sepsis (k1 =1.4/h, red).

Fig 5. Demonstrated accuracy of model predictions of health or disease outcomes. (A) Model
prediction accuracy. The number of correct model predictions divided by the total number of
predictions (i.e., model prediction accuracy) is shown as a function of the critical damage level (&crir).
Relatively high levels of accuracy are attained for a large range of critical damage levels. (B) Area
under the curve-receiver operator characteristics curve. An area under this curve close to 1 indicates

the model is capable of classifying outcomes correctly. The area under the curve is 0.98.

Fig 6. Similarities in time dynamics predicted despite varying bacterial loads and mortality data for
27 rats. The model-predicted dynamics of the bacteria (A), pro-inflammatory (B), anti-inflammatory
(C), and damage (D) levels are shown for each of the rats from the validation data set. Blue curves
correspond to rats that had a predicted observed mortality time of 24 h, and red curves correspond to

rats that were predicted to survive for more than 24 h. The clustering of many of the trajectories
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suggests that small uncertainties in the initial state of the system could lead to significantly different

systemic predictions.

Fig 7. Small variations in system parameters produce significantly different outcomes
consistent with experimental measurements. Comparison of the predicted dynamics for the
bacteria (A), pro-inflammatory (B), anti-inflammatory (C), and damage (D) dynamics for Rat 11
(red) and Rat 20 (cyan) using different parameter values. Parameters for Rat 11: Byource = 163 x 10°
bacteria, k1 = 1.27/h. Parameters for Rat 20: Bsouce = 172 x 10° bacteria, k1 = 1.2/h. Despite similar
parameter values, the model predicts significantly different OMTs for Rat 11 (OMT = 48 h) and Rat
20 (OMT =96 h). These OMTs are the same as those observed in the validation data set (Fig 1B). A
horizontal dashed line is included in panel D and corresponds to the critical damage level, ec.ir = 53 -

units.

Fig 8. Varying bacterial and immune response parameters significantly impacts model predicted
outcomes. (A) Increasing the pathogen growth rate (k;) turns healthy (cyan) outcomes into aseptic
(blue) and then septic (red) outcomes. (B) Increasing the strength of the local immune response (k2)
turns septic outcomes into aseptic then healthy outcomes. (C) Increasing the pro-inflammatory
activation rate contributes to more aseptic outcomes and lowers the probability of a healthy outcome.
Dashed lines correspond to initial bacterial levels that were used in the experiments. The three
yellow ¢’s in panel A indicate the three values of k1 (1.2, 1.3, 1.4/h) that were simulated in Fig 4.
The two yellow ©’s in panel A indicate the two values of k1 (1.27 and 1.2/h) that were simulated in

Fig 7 for Rats 11 and 20.
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Table 1: Model parameter values, units, definitions, and sources.

Parameter | Value Unit Description Source
ki 1-1.5 1/h pathogen growth rate, 1.27 fitted/default | estimated
B 0.737 10° cells/cm® | pathogen carrying capacity estimated
By 0.00083 | 1/cm? rescaling factor for bacterial levels estimated

1/M-units/h | rate at which non-specific local response
k2 0.4-0.7 eliminates pathogen, 0.6 default (16)
Si 0.005 M-units/h source of non-specific local response (16)
i 0.002 1/h decay of non-specific local response (16)
1/(10° rate at which the non-specific local
k3 0.01 3 . (16)
cells/em”)/h | response is exhausted by pathogen
1/M-units/h | rate at which pro-inflammatory response
ks 1.8 (16)
consumes pathogen
1/4-units inhibition rate of the anti-inflammatory Adapted from
ka4 7.08
response (16, 21)
M-units/h maximum activation rate of pro-
Vi 0-0.16 inflammatory response , 0.08 default (16, 21)
" 012 1/h half-saturation of pro-inflammatory (16, 21)
response
s 0.01 1/M-units/h | self-activation of pro-inflammatory (16, 21)
response
& 01 1/(10° activation of pro-inflammatory response | Adapted from
5 ' cells/em®)/h | by pathogen (16, 21)
k 0.02 1/e-units/h activation of pro-inflammatory response (16, 21)
by damage
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Um 0.05 1/h decay of pro-inflammatory response (16, 21)
S4 0.0125 | A-units/h source of anti-inflammatory response (16, 21)
" 0.04 A-units/h maximum production rate of anti- (16, 21)
inflammatory response
va 3640 M-units Half-saturation of anti-inflammatory estimated
response
M-units/e- relative effectiveness of pro-
ka 48 units inflammatory response and damage (16, 21)
inducing the anti-inflammatory response
A 0.05 I/ decay of the anti-inflammatory response (Cl%m;lie):nt n
T 24 h rate of recovery from damage (46)
7 713 e-qnlts/M- maximum rate of damage produced by estimated
units/h the pro-inflammatory response
T 1 é-units/h threshold for damage Comment in
(46)
. 0.0344 1/h decay of l?acterlal population in the clot estimated
(released into body)
Bc 407 10° cells Number of bacteria a clot can hold estimated
Ecrit 53 £-units critical damage level estimated
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