
Received: 14 June 2021 - Revised: 17 January 2022 - Accepted: 17 February 2022 - IET Biometrics
DOI: 10.1049/bme2.12069

OR I G INAL RE SEARCH

Profile to frontal face recognition in the wild using coupled
conditional generative adversarial network

Fariborz Taherkhani | Veeru Talreja | Jeremy Dawson | Matthew C. Valenti |
Nasser M. Nasrabadi

Lane Department of Computer Science and
Electrical Engineering, West Virginia University,
Morgantown, West Virginia, USA

Correspondence

Fariborz Taherkhani, Lane Department of
Computer Science and Electrical Engineering, West
Virginia University, Morgantown, WV, USA.
Email: ft0009@mix.wvu.edu

Funding information

Center for Identification Technology Research,
Grant/Award Number: 1650474

Abstract
In recent years, with the advent of deep‐learning, face recognition (FR) has achieved
exceptional success. However, many of these deep FR models perform much better in
handling frontal faces compared to profile faces. The major reason for poor performance
in handling of profile faces is that it is inherently difficult to learn pose‐invariant deep
representations that are useful for profile FR. In this paper, the authors hypothesise that
the profile face domain possesses a latent connection with the frontal face domain in a
latent feature subspace. The authors look to exploit this latent connection by projecting
the profile faces and frontal faces into a common latent subspace and perform verifi-
cation or retrieval in the latent domain. A coupled conditional generative adversarial
network (cpGAN) structure is leveraged to find the hidden relationship between the
profile and frontal images in a latent common embedding subspace. Specifically, the
cpGAN framework consists of two conditional GAN‐based sub‐networks, one dedicated
to the frontal domain and the other dedicated to the profile domain. Each sub‐network
tends to find a projection that maximises the pair‐wise correlation between the two
feature domains in a common embedding feature subspace. The efficacy of the authors’
approach compared with the state of the art is demonstrated using the CFP, CMU Multi‐
PIE, IARPA Janus Benchmark A, and IARPA Janus Benchmark C datasets. Additionally,
the authors have also implemented a coupled convolutional neural network (cpCNN) and
an adversarial discriminative domain adaptation network (ADDA) for profile to frontal
FR. The authors have evaluated the performance of cpCNN and ADDA and compared it
with the proposed cpGAN. Finally, the authors have also evaluated the authors’ cpGAN
for reconstruction of frontal faces from input profile faces contained in the VGGFace2
dataset.
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1 | INTRODUCTION

Due to the emergence of deep‐learning, face recognition (FR)
has achieved exceptional success in recent years [1]. However,
many of these deep FR models perform relatively poorly in
handling profile faces compared to frontal faces [2]. When
faces are captured in an unconstrained environment, in the

wild, they are often in a profile orientation. Thus, there is an
equivalency between the challenging problems of uncon-
strained FR and profile FR. Pose, expression, and lighting
variations are considered to be major obstacles in attaining
high unconstrained FR performance. Some methods [1, 3]
attempt to address the pose‐variation issue by learning pose‐
invariant features, while some other methods [4–8] try to
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normalise images while preserving the identity to a single
frontal pose before recognition. However, there are three
major difficulties related to face frontalisation or normalisation
in unconstrained environments:

� Complicated face variations besides pose: In comparison to
a controlled environment, there are more complex face
variations, for example, lighting, head pose, expression, in
real‐world scenarios. It is a difficult task to directly warp the
input face to a normalised view [7].

� Unpaired data: Undoubtedly, obtaining a strictly normalised
face is expensive and time consuming, but getting an
effective pair of images consisting of a target normalised
face (i.e. frontal‐facing and neutral expression) and an input
face is difficult due to highly imbalanced datasets [7].

� Presence of artefacts: Synthesised ‘frontal’ faces contain
artefacts caused by occlusions and non‐rigid expressions.

In this paper, we hypothesise that the profile face domain
shares a latent connection with the frontal face domain in a
latent deep feature subspace. We aim to exploit this
connection by projecting the profile faces and frontal faces
into a common latent subspace and perform verification or
retrieval in this latent domain. We propose an embedding
model for profile to frontal face verification based on a deep
coupled learning framework, which uses a generative adver-
sarial network (GAN) to find the hidden relationship between
the profile face features and frontal face features in a latent
common embedding subspace. This is motivated by the fact
that given an input image of arbitrary pose, we can actually
map its feature to the frontal space through a mapping
function that adds residual. This observation is closely con-
nected to the notion of feature equivariance [9], which finds
the representation of many deep layers depends upon
transformations of the input image. Interestingly, such
transformations can be learnt by a mapping function from
data, and the function can be subsequently applied to
manipulate the representation of an input image to achieve
the desired transformation. Figure 1 shows the illustration of
embedding features of a subject in different poses.

Our work is conceptually related to the embedding cate-
gory of super‐resolution [10–13] in which our approach also
performs verification of profile and frontal faces in the latent
space but not in the original image space. From our experi-
ments, we observe that transforming profile and frontal face
features into a latent embedding subspace could yield higher
performance than image‐level face frontalisation, which is
susceptible to the negative influence of artefacts as a result of
image synthesis. To our best knowledge, this study is the first
attempt to perform profile‐to‐frontal face verification in a
latent embedding subspace using generative modelling. The
proposed framework can potentially be used to improve the
performance of traditional FR methods by integrating it as a
preprocessing procedure for a face‐frontalisation schema. This
work is an extension of our previous work [14]. This paper
makes the following contributions, where in contributions
three to six are the new contributions different from Ref. [14]:

1. The paper develops a profile to frontal FR model using a
coupled conditional generative adversarial network
(cpGAN) framework with multiple loss functions.

2. The paper includes comprehensive experiments using
different datasets and a comparison of the proposed
method with the state‐of‐the‐art methods, indicating the
efficacy of the proposed GAN framework.

3. The paper includes experiments to evaluate the frontalisa-
tion performance of the cpGAN by using a face matcher
(verifier) to compare off‐pose faces with a gallery of frontal
faces and also compare the frontalised images with the
gallery to see if frontalising the face would increase the face
matcher performance.

4. The paper implements a coupled CNN (cpCNN) and in-
cludes experiments to evaluate the benefits of using the
GAN by comparing the performance of a cpCNN with our
proposed approach (cpGAN).

5. The paper implements an adversarial discriminative domain
adaptation (ADDA) framework for profile to frontal FR
and includes experiments to compare the performance of
our proposed cpGAN with an ADDA network.

6. The paper includes generated qualitative results for the
VGGFace2 dataset to test the robustness and reconstruc-
tion ability of our proposed coupled GAN framework.

2 | RELATED WORK

2.1 | Face recognition using deep‐learning

Before the advent of deep‐learning, traditional methods for FR
used one or more layer representations, such as the histogram
of the feature codes, filtering responses, or distribution of the
dictionary atoms [15]. Face recognition research was

F I G U R E 1 Illustration of embedding feature of a subject in different
poses.
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concentrated more towards separately improving preprocess-
ing, local descriptors, and feature transformation; however, the
overall improvement in FR accuracy was very slow. This all
changed with the advent of deep‐learning, and now, deep‐
learning is the prominent technique used for FR.

Recently, various deep‐learning models such as the models
in Ref. [16, 17] have been used as baseline models for FR.
Simultaneously, various loss functions have been explored and
used in FR. These loss functions can be categorised as the
Euclidean‐distance‐based loss, angular/cosine‐margin‐based
loss, and softmax loss and its variations. The contrastive loss
and the triplet loss are the commonly used Euclidean‐distance‐
based loss functions [18–23]. For avoiding miss‐classification
of difficult samples [24, 25], the learnt face features need to
be well separated. Angular/cosine‐margin‐based loss [26–28] is
commonly used to make the learnt features more separable
with a larger angular/cosine distance. Finally, in the category of
softmax loss and its variants for FR [29–31], the softmax loss is
modified to improve the FR performance as in Ref. [31], where
the cosine distance among data features is optimised along
with normalisation of features and weights.

In the SphereFace method [26], angular discriminative
features are learnt using CNNs by using an angular softmax
(A‐Softmax) loss. The notion behind using A‐Softmax loss is
that, geometrically, it can be viewed as imposing discriminative
constraints on a hypersphere manifold. Recently, in order to
maximise face class separability, a prominent line of research is
to integrate margins in well‐established loss functions. For
example, in ArcFace approach [27], an Additive Angular
Margin Loss is proposed to obtain highly discriminative fea-
tures for FR. The ArcFace has a clear geometric interpretation
due to its exact correspondence to geodesic distance on a
hypersphere [27]. In the UniformFace method [32], a new
supervised objective function named Uniform loss has been
proposed to learn deep equidistributed representations for FR,
where the complete feature space on the hypersphere manifold
has been exploited by uniformly spreading the class centres on
the manifold. A survey of deep‐learning methods for FR can
be found in Ref. [33].

2.2 | Generative adversarial networks

Introduced by Goodfellow et al. [34], the GAN learns a
generator network, G, and a discriminator network, D, with a
minimax optimisation procedure. Using this minimax optimi-
sation over a generator and a discriminator provides a simple
yet powerful way to map from a source data distribution to a
target distribution. GANs have been used for a wide range of
applications such as image generation [35–37], 3D object
generation [38] etc. In addition to the original GAN, there have
been other flavours of GAN [39–41] that have been developed
to resolve some of the issues with the original GAN. The
Wasserstein GAN [39] proposed the use of Wassertein distance
in order to provide a more stable training of GANs. Deep
Convolutional GAN [40] was an extension of the original
GAN, where the multi‐layer perceptron structure is replaced

by convolutional structures. Another popular extension of
GAN is the Conditional GAN, which was introduced by Mirza
and Osindero in Ref. [41]. In Conditional GAN, both the
generator and discriminator are conditioned on an additional
variable, x. This additional variable could be any kind of
auxiliary information such as discrete labels [41] or text [42].
The most recent GAN models achieve better synthesis by
utilising these conditional settings and introducing latent fac-
tors to disentangle the objective space. For instance, Info‐
GAN [43] employs the latent code for information loss to
regularise the generative network. There have also been many
instance of GAN usage for face frontalisation or generating
pose‐invariant features. Yin et al. [44] integrated 3D Morph-
able Model (3DMM) into the GAN structure to propose
3DMM conditioned Face Frontalisation GAN, termed as FF‐
GAN. Tran et al. [8] combined face frontalisation and learning
a pose‐invariant representation from a non‐frontal face image
and integrated it with a GAN structure to propose a Disen-
tangled Representation Learning‐Generative Adversarial
Network (DR‐GAN).

2.3 | Profile‐frontal face recognition

Face recognition with pose variation in an unconstrained envi-
ronment is a very challenging problem. Existing methods focus
on the pose variation problem by training separate models for
learning pose‐invariant features [1, 3], elaborate dense 3D facial
landmark detection and warping [45], and synthesising a frontal,
neutral expression face from a single image [4–8].

2.3.1 | Pose‐invariant feature representation

Face frontalisation may be considered as an image‐level pose‐
invariant representation. However, feature‐level pose invariant
representations have also been a mainstay for FR. Canonical
Correlation Analysis was used in earlier studies to analyse the
commonality among pose‐variant samples. Recently, with the
advent of deep‐learning, deep‐learning‐based methods have
become popular for pose‐invariant feature representation. Cao
et al. [1] exploit the inherent mapping between profile and
frontal faces and transform a deep profile face representation to
a canonical pose by adaptively adding residuals. Additionally,
deep‐learning methods consider several aspects, such as multi‐
view perception layers [46], to learn a model separating iden-
tity from viewpoints. In Ref. [46], given a single 2D face image, a
deep neural net, named Multi‐View Perceptron (MVP) can
untangle the identity and view features, and infer a full spectrum
of multi‐view images. Multi‐View Perceptron can also predict
images under viewpoints that are unobserved in the training
data. To allow a single network structure for multiple pose in-
puts, feature pooling across different poses is proposed in Ref.
[47]. There have also been methods related to pose‐invariant
feature disentanglement [48] or identity preservation [49, 50]
that aim to factorise out the non‐identity part with a meticu-
lously designed network. In Ref. [50], a new learning‐based face
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representation, the Face Identity‐Preserving (FIP) features, has
been proposed. The FIP features are learnt by using a deep
neural network that combines the feature extraction layers and
the reconstruction layer. The former layer generates FIP fea-
tures from a face image, while the latter layer transforms the FIP
features into an image in the canonical view.

2.3.2 | Face frontalisation

Using a single image with large pose variation, it is very chal-
lenging to synthesise face with a frontal view with a neutral
expression face due to two major reasons: (a) recovering the
3D information from 2D projections is obscure and uncertain
and (b) presence of self‐occlusion. Seminal works date back to
the 3D Morphable Model (3DMM) [51], which models both
the shape and appearance as PCA spaces. Hassner et al. [52]
adopt a 3D shape model combined with input images to reg-
ister and produce the frontalised face. Based on 3DMM, Zhu
et al. [53] provide a high‐fidelity pose and expression nor-
malisation method. However, 3D‐based methods often do not
provide reasonable results and suffer from a significant per-
formance drop with large pose variations due to artefacts and
severe texture losses. Some deep‐learning‐based methods have
shown promising performance in terms of face frontalisation
[5–8, 54–56]. In Ref. [55], a recurrent transform unit is pro-
posed to incrementally rotate faces in fixed yaw angles and
synthesise discrete 3D views. FF‐GAN [5] solves the problem
of large‐pose face frontalisation in the wild by incorporating a
3D face model into a GAN. Considering photo realistic and
identity‐preserving frontal view synthesis, a domain adaptation
strategy for pose invariant FR is discussed in Ref. [56–60]. Tran
et al. [8] propose a GAN framework to rotate a face and
disentangle the identity representation by using a given pose
code. In Ref. [7 ], a face normalisation model (FAN) uses a
GAN network with three distinct losses for generating
canonical‐view and expression‐free frontal images.

3 | GENERATIVE ADVERSARIAL
NETWORK

Generative adversarial network was first introduced by
Goodfellow, et al. [34] and has drawn great attention from the
deep‐learning research community due to its remarkable per-
formance on generative tasks. The GAN framework is based
on two competing networks—a generator network, G, and a
discriminator network, D. The generator, G(z; θg), is a differ-
entiable function, which maps the noise variable, z, from a
training noise distribution, pz(z), to a data space with distri-
bution, pdata, using the network parameters, θg. On the other
hand, the discriminator, D(.; θd), is also a differentiable func-
tion, which discriminates between the real data, y, and the
generated fake data, G(z), using a binary classification model.
Specifically, the min‐max two‐player game between the
generator and the discriminator provides a simple and
powerful way to estimate target distribution and generate novel

image samples [7]. The loss function, L(D, G), for GAN is
given as

LðD; GÞ ¼ Ey∼PdataðyÞ½logDðyÞ�

þ Ez∼PzðzÞ½logð1 − DðGðzÞÞÞ�:
ð1Þ

The objective (two player minimax game) for GAN is as
follows:

min
G

max
D

LðD; GÞ ¼ min
G

max
D

Ey∼PdataðyÞ½logDðyÞ�
�

þ Ez∼PzðzÞ½logð1 − DðGðzÞÞÞ�
�
:

ð2Þ

In conditional GAN [41], both the generator and
discriminator are conditioned on an additional variable, x. The
loss function for the conditional GAN is given as follows:

LcðD; GÞ ¼ Ey∼PdataðyÞ½logDðyjxÞ�

þ Ez∼PzðzÞ½logð1 − DðGðzjxÞÞÞ�:
ð3Þ

Hereafter, we will denote the objective for the conditional
GAN as FcGAN (D, G, y, x), which is given by,

FcGAN ðD; G; y; xÞ ¼ min
G

max
D

Ey∼PdataðyÞ½logDðyjxÞ�
�

þ Ez∼PzðzÞ½logð1 − DðGðzjxÞÞÞ�
�
:

ð4Þ

4 | PROPOSED METHOD

Here, we describe our method for profile to frontal FR. In
contrast to the face normalisation methods, we do not perform
pose normalisation (i.e. frontalisation) on each profile image
before matching. Instead, we seek to project the profile and
frontal face images to a common latent low‐dimensional
embedding subspace using generative modelling. Inspired by
the success of GANs [34], we explore adversarial networks to
project profile and frontal images to a common subspace for
recognition.

The framework of proposed profile to frontal cpGAN
(PF‐cpGAN, shown in Figure 2) consists of two modules,
where each module contains a GAN architecture comprised of
a generator and a discriminator. The generators that we have
used in both modules are U‐net auto‐encoders that are coupled
together using a contrastive loss function. In addition to
adversarial and contrastive loss, we propose to guide the
generators using the perceptual loss [61] based on the VGG 16
architecture, as well as an L2 reconstruction error. The
perceptual loss helps to generate a sharp and realistic recon-
struction of the images.

4.1 | Profile to frontal coupled GAN

The main objective of PF‐cpGAN is the recognition of profile
face images with respect to a gallery of frontal face images,
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which have not been seen during the training. The matching of
the profile and the frontal face images is performed in a
common embedding subspace. PF‐cpGAN consists of two
modules: a profile GAN module and a frontal GAN module,
both consisting of a GAN (generator + discriminator) and a
perceptual network based on VGG‐16.

For the generators, we use a U‐Net [62] auto‐encoder ar-
chitecture (shown in Figure 3a). The primary reason for usingU‐
Net is that the encoder–decoder structure tends to extract global
features and generate images by leveraging this overall infor-
mation, which is very useful for global shape transformation
tasks such as profile to frontal image conversion. Moreover, for
many image translation problems, there is a significant amount
of low‐level information that needs to be shared between the
input and output, and it is desirable to pass this information
directly across all the layers including the bottleneck. Therefore,
the use of skip‐connections, as in U‐net, provides a means for
the encoder–decoder structure to circumvent the bottleneck
and pass the information over to other layers.

For discriminators, we have used patch‐based discrimina-
tors [63](shown in Figure 3b), which are trained iteratively
along with the respective generators. L1 loss performs very well
when trying to preserve the low‐frequency details but fails to
preserve the high‐frequency details. However, using a patch‐
based discriminator that penalises structure at the scale of
the patches ensures the preservation of high‐frequency details,
which are usually eliminated when only L1 loss is used.

The final objective of PF‐cpGAN is to find the hidden
relationship between the profile face features and frontal face
features in a latent common embedding subspace. To find this
common subspace between the two domains, we couple the
two generators via a contrastive loss function, Lcont.

This loss function (Lcont) is a distance‐based loss function,
which tries to ensure that semantically similar examples
(genuine pairs, i.e. a profile image of a subject with its corre-
sponding frontal image) are embedded closely in the common
embedding subspace, and simultaneously, semantic dissimilar

examples (impostor pairs, i.e. a profile image of a subject and a
frontal image of a different subject) are pushed away from each
other in the common embedding subspace. The contrastive
loss function is defined as:

Lcont z1ð xi
PR

 �
; z2 xj

FR

� �
; Y Þ

¼ð1 − Y Þ
1
2

Dzð Þ
2

þ ðY Þ
1
2
max 0; m − Dzð Þð Þ

2
;

ð5Þ

where xi
PR and xj

FR denote the i‐th profile and j‐th frontal face
image, respectively. The variable Y is a binary label, which is
equal to 0 if xi

PR and xj
FR belong to the same class (i.e. genuine

pair) and equal to 1 if xi
PR and xj

FR belong to a different class (i.e.
impostor pair). z1(.) and z2(.) denote only the encoding functions
of the U‐Net auto‐encoder to transform xi

PR and xj
FR, respec-

tively, into a common latent embedding subspace. The value m
is the contrastive margin and is used to ‘tighten’ the constraint.
Dz denotes the Euclidean distance between the outputs of the
functions z1 xi

PR

 �
and z2 xj

FR

� �
, which is given by,

Dz ¼ z1 xi
PR

 �
− z2 xj

FR

� ��
�
�

�
�
�
2
: ð6Þ

Therefore, if Y = 0 (i.e. genuine pair), then the contrastive
loss function (Lcont) is given as

Lcont z1 xi
PR

 �
; z2 xj

FR

� �
; Y

� �
¼

1
2

z1 xi
PR

 �
− z2 xj

FR

� ��
�
�

�
�
�
2

2
;

ð7Þ

and if Y = 1 (i.e. impostor pair), then contrastive loss function
(Lcont) is

Lcont z1 xi
PR

 � 
; z2 xj

FR

� �
; Y

�

¼
1
2
max 0; m − z1 xi

PR
 �

− z2 xj
FR

� ��
�
�

�
�
�
2

� �2
:

ð8Þ

F I G U R E 2 Block diagram of profile to frontal coupled conditional generative adversarial network (PF‐cpGAN).
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Thus, the total loss for coupling the profile generator and
the frontal generator is denoted by Lcpl and is given as

Lcpl ¼
1

N2

XN

i¼1

XN

j¼1

Lcont z1 xi
PR

 �
; z2 xj

FR

� �
; Y

� �
; ð9Þ

where N is the number of training samples. The contrastive
loss in the above equation can also be replaced by some other
distance‐based metric, such as the Euclidean distance. How-
ever, the main aim of using the contrastive loss is to be able to
use the class labels implicitly and find the discriminative
embedding subspace, which may not be the case with some
other metric such as the Euclidean distance. This discrimina-
tive embedding subspace would be useful for matching of a
profile image against a frontal image.

4.2 | Generative adversarial loss

Let the profile and frontal generators that reconstruct the
corresponding profile and frontal image from the input profile
and frontal image, be denoted as GPR and GFR, respectively.
The patch‐based discriminators used for the profile and frontal
GANs are denoted as DPR and DFR, respectively. For the
proposed method, we have used the conditional GAN, where
the generator networks GPR and GFR are conditioned on input
profile and frontal face images, respectively. We have used the
conditional GAN loss function [41] to train the generators and
the corresponding discriminators in order to ensure that the
discriminators cannot distinguish the images reconstructed by
the generators from the corresponding ground truth images.
Let LPR and LFR denote the conditional GAN loss functions
for the profile and the frontal GANs, respectively, where LPR
and LFR are given as

LPR ¼ FcGAN DPR; GPR; yi
PR; xi

PR
 �

; ð10Þ

LFR ¼ FcGAN DFR; GFR; yj
FR; xj

FR

� �
; ð11Þ

where function FcGAN is the conditional GAN objective
defined in (4). The term xi

PR denotes the profile image used as
a condition for the profile GAN, and yi

PR denotes the real
profile image. Note that the real profile image yi

PR and the
network condition given by xi

PR are the same. Similarly, xj
FR

denotes the frontal image used as a condition for the frontal
GAN and yj

FR denotes the real frontal image. Again, the real
frontal image yj

FR and the network condition given by xj
FR are

the same. The total loss for the coupled conditional GAN is
given by,

LGAN ¼ LPR þ LFR: ð12Þ

4.3 | L2 reconstruction loss

We also consider the L2 reconstruction loss for both the
profile GAN and frontal GAN. The L2 reconstruction loss
measures the reconstruction error in terms of the Euclidean
distance between the reconstructed image and the corre-
sponding real image. Let L2PR denote the reconstruction loss
for the profile GAN and be defined as

L2PR ¼ GPR zjxi
PR

 �
− yi

PR

�
�

�
�2
2; ð13Þ

where yi
PR is the ground truth profile image and GPR zjxi

PR

 �
is

the output of the profile generator.
Similarly, Let L2FR denote the reconstruction loss for the

frontal GAN:

L2FR ¼ GFR zjxj
FR

� �
− yj

FR

�
�
�

�
�
�
2

2
; ð14Þ

where yj
FR is the ground truth frontal image and GFR zjxj

FR

� �

is the output of the frontal generator.
The total L2 reconstruction loss function is given by,

L2 ¼
1

N2

XN

i¼1

XN

j¼1

L2PR þ L2FRð Þ: ð15Þ

(a) (b)

F I G U R E 3 Generative adversarial network (GAN) architectures
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4.4 | Perceptual loss

In addition to the GAN loss and the reconstruction loss that
are used to guide the generators, we have also used the
perceptual loss, which was introduced in Ref. [61] for style
transfer and super‐resolution. The perceptual loss function is
used to compare high‐level differences, such as content and
style discrepancies, between images. The perceptual loss
function involves comparing two images based on high‐level
representations from a pre‐trained CNN, such as VGG‐16
[64]. The perceptual loss function is a good alternative to
solely using L1 or L2 reconstruction error, as it gives better and
sharper high‐quality reconstruction images [61].

In our proposed approach, perceptual loss is added to both
the profile and the frontal module using a pre‐trained VGG‐16
network [64]. We extract the high‐level features (ReLU3‐3
layer) of the VGG‐16 for both the real input image and the
reconstructed output of the U‐Net generator. The L1 distance
between these features of real and reconstructed images is used
to guide the generators GPR and GFR. The perceptual loss for
the profile network is defined as

LPPR ¼
1

CpWpHp

XCp

c¼1

XWp

w¼1

XHp

h¼1

� V GPR zjxi
PR

 � �c;w;h − V yi
PR

 �c;w;h
�
�
�

�
�
�;

ð16Þ

where V(.) denotes a particular layer of the VGG‐16, and the
layer dimensions are given by Cp, Wp, and Hp.

Likewise, the perceptual loss for the frontal network is

LPFR ¼
1

CpWpHp

XCp

c¼1

XWp

w¼1

XHp

h¼1

� V GFR zjxj
FR

� �� �c;w;h
− V yj

FR

� �c;w;h
�
�
�
�

�
�
�
�:

ð17Þ

The total perceptual loss function is given by

LP ¼
1

N2

XN

i¼1

XN

j¼1

LPPR þ LPFRð Þ: ð18Þ

4.5 | Overall objective function

The overall objective function for learning the network pa-
rameters in the proposed method is given as the sum of all the
loss functions defined above:

Ltot ¼ Lcpl þ λ1LGAN þ λ2LP þ λ3L2; ð19Þ

where Lcpl is the coupling loss given by (9), LGAN is the total
generative adversarial loss given by (12), LP is the total
perceptual loss given by (18), and L2 is the total reconstruction

error given by (15). Variables λ1, λ2, and λ3 are the hyper‐
parameters to weigh the different loss terms.

5 | EXPERIMENTS

We initially describe our training setup and the datasets that we
have used in our experiments. We show the efficiency of our
method for the task of frontal to profile face verification by
comparing its performance with the state‐of‐the‐art face
verification methods across pose‐variation. We also explore the
effect of face yaw in our algorithm. Additionally, we have
implemented a cpCNN and an ADDA for profile to frontal
FR. We have evaluated the performance of cpCNN and
ADDA and compared it with that of the proposed PF‐
cpGAN. We have also evaluated our PF‐cpGAN for recon-
struction of frontal images from input profile images. Finally,
we conduct an ablation study to investigate the effect of each
term in our total training loss function in (20).

5.1 | Experimental details

The CMU Multi‐PIE database [65] contains 750,000 images of
337 subjects. Subjects were imaged from 15 viewing angles and
19 illumination conditions while exhibiting a range of facial
expressions. It is the largest database for graded evaluation
with respect to pose, illumination, and expression variations.
There are four sessions in this database. For fair comparison,
the database setting was made consistent with CAPG‐GAN
[66], where 250 subjects from Multi‐PIE have been used.
Consistent with CAPG‐GAN, face images with neutral
expression under 20 illuminations and 13 poses within �90°
are used. We follow the setting‐1 testing protocol provided in
CAPG‐GAN.

In setting‐1, only images from session 1, which contains
faces of 250 subjects, were used. First, 150 identities were used
in the training set and remaining 100 identities were used for
testing. The training set consists of all the images (13 poses and
20 illumination levels) of 150 identities, that is,
150 � 13 � 20 = 39,000 images in total. For testing, one
gallery image with frontal view and normal illumination is used
for each of the remaining 100 subjects. The numbers of the
probe and gallery sets are 24,000 and 100, respectively.

The IARPA Janus Benchmark A (IJB‐A) [67] is a chal-
lenging dataset collected under complete unconstrained con-
ditions covering full pose variation (yaw angles −90° to +90°).
IARPA Janus Benchmark A contains 500 subjects with 5712
images and 20,414 frames extracted from videos. Following the
standard protocol in Ref. [67], we evaluate our method on both
verification and identification. The IARPA Janus Benchmark C
(IJB‐C) dataset [68] builds on IJB‐A and IJB‐B [69] datasets
and has a total of 31,334 images for a total number of 3531
subjects. We have also evaluated our method on IJB‐A and
IJB‐C datasets.

VGGFace2 is a large‐scale FR dataset, where the images
are downloaded from Google Image Search and have large
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variations in pose, age, illumination, and ethnicity. The dataset
contains about 3.3 million images corresponding to more than
9000 identities with an average of 364 images per subject.

5.1.1 | Implementation details

We have implemented a U‐Net autoencoder with a ResNet‐18
[70] architecture pre‐trained on ImageNet. We have added an
additional fully connected layer after the average pooling layer
for the ResNet‐18 for our U‐Net encoder. The U‐Net decoder
has the same number of layers as the encoder. The entire
framework has been implemented in Pytorch. For conver-
gence, λ1 is set to 1, and λ2 and λ3 are both set to 0.25. We used
a batch size of 128 and an Adam optimiser [71] with first‐order
momentum of 0.5, and a learning rate of 0.0004. We have used
the ReLU activation function for the generator and Leaky
ReLU with a slope of 0.3 for the discriminator.

For training, genuine and impostor pairs were required.
The genuine/impostor pairs are created by frontal and profile
images of the same/different subject. During the experiments,
we ensure that the training set are balanced by using the same
number of genuine and impostor pairs.

5.2 | Evaluation on CFP with frontal‐profile
setting

Wefirst perform evaluation on the CFP dataset [2], a challenging
dataset created to examine the problem of frontal to profile face
verification in the wild. The same 10‐fold protocol is applied on
both the Frontal‐Profile and Frontal‐Frontal settings. For fair
comparison and as given in Ref. [2], we consider different types
of feature extraction techniques such asHoG [72], LBP [73], and
Fisher Vector [74] along with metric learning techniques such as
Sub‐SML [75], and the diagonal metric learning as reported in
Ref. [74]. We also compare against deep‐learning techniques,
including Deep Features [76], and PR‐REM [1]. The results are
summarised in Table 1.

We can observe from Table 1 that our proposed frame-
work, PF‐cpGAN, gives much better performance than the
methods that use standard hand‐crafted features of HoG, LBP,
or FV, providing minimum of 13% improvement in accuracy

with a 12% decrease in equal error rate (EER) for the profile‐
frontal setting. The PF‐cpGAN also improves on the perfor-
mance of the Deep Features by approximately 9% with a 7.5%
decrease in EER for the profile‐frontal setting. Finally, the PF‐
cpGAN performs on‐par with the best deep‐learning method
of PR‐REM, and in‐fact, does slightly better than PR‐REM by
≈0.5% improvement in accuracy with a 0.7% decrease in EER
for the profile‐frontal setting. This performance improvement
clearly shows that usage of a GAN framework for projecting
the profile and frontal images in the latent embedding sub-
space and maintaining the semantic similarity in the latent
space is better than some other deep‐learning techniques such
as Deep Features or PR‐REM.

5.3 | Evaluation on IJB‐A and IJB‐C

Here, we focus on unconstrained FR on the IJB‐A dataset to
quantify the superiority of our PF‐cpGAN for profile to
frontal FR. Some of the baselines for comparison on IJB‐A are
DR‐GAN [8], FNM [7], PR‐REM [1], and FF‐GAN [5]. We
have also compared them with other methods as listed in Ref.
[7] and shown in Table 2. As shown in Table 2, we perform
better than the state‐of‐the‐art methods for both verification
and identification. Specifically, for verification, we improve the
genuine accept rate (GAR) by at least 1.4% compared to that
of other methods. For instance, at the false accept rate (FAR)
of 0.01, the best previously used method is PR‐REM, with an
average GAR of 94.4%. The PF‐cpGAN improves upon PR‐
REM and gives an average GAR of 95.8% at the same FAR.
We also show improvement in identification. Specifically, the
rank‐1 recognition rate shows an improvement of around 1.6%
in comparison to the best state‐of‐the‐art method, FNM [7].

We have also plotted the receiver operating characteristic
(ROC) curve and compared with the baselines given above.
The ROC curves for the IJB‐A dataset are given in Figure 4a.
As we can clearly see from the curves, the proposed PF‐
cpGAN method improves upon other methods and gives
much better performance, even at a FAR of 0.001.

We have also performed the task of verification and
identification using the IJB‐C dataset according to the verifi-
cation and the identification protocol given in that dataset. The
results are provided in Table 3, showing that the proposed PF‐

T A B L E 1 Performance comparison on
the CFP dataset. Mean Accuracy and equal
error rate (EER) with standard deviation over
10 folds.

Algorithm

Frontal‐profile Frontal‐frontal

Accuracy EER Accuracy EER

HoG + Sub‐SML [2] 77.31 � 1.61 22.20 � 1.18 88.34 � 1.31 11.45 � 1.35

LBP + Sub‐SML [2] 70.02 � 2.14 29.60 � 2.11 83.54 � 2.40 16.00 � 1.74

FV + Sub‐SML [2] 80.63 � 2.12 19.28 � 1.60 91.30 � 0.85 8.85 � 0.74

FV + DML [2] 58.47 � 3.51 38.54 � 1.59 91.18 � 1.34 8.62 � 1.19

Deep features [76] 84.91 � 1.82 14.97 � 1.98 96.40 � 0.69 3.48 � 0.67

PR‐REM [1] 93.25 � 2.23 7.92 � 0.98 98.10 � 2.19 1.10 � 0.22

PF‐cpGAN 93.78 � 2.46 7.21 � 0.65 98.88 � 1.56 0.93 � 0.14
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cpGAN improves on the existing state‐of‐the‐art methods for
both verification and identification. For instance, at the FAR of
0.01, the best previously used method is PR‐REM, with an
average GAR of 92.1%. The PF‐cpGAN improves upon PR‐
REM and gives an average GAR of 93.8% at the same FAR.
We also observe that, for identification, specifically, rank‐1
recognition, the PF‐cpGAN shows an improvement over
the previous best state‐of‐the‐art method FNM [7] by about
1.1%.

5.4 | A further analysis on influences of face
yaw

In addition to complete profile to frontal FR, we also perform
a more in‐depth analysis on the influence of face yaw angle on
the performance of FR to better understand the effectiveness
of the PF‐cpGAN for profile to frontal FR. We perform this
experiment for the CMU Multi‐PIE dataset [65] under setting‐

1 for fair comparison with other state‐of‐the‐art methods. As
shown in Table 4, we achieve comparable performance with
other state‐of‐the‐art methods for different yaw angles. Under
extreme pose, the PF‐cpGAN achieves significant improve-
ments (i.e., approx. 77%–88% under �90°).

For further testing on theMulti‐PIE dataset under setting‐1,
we have also plottedROC curves and comparedwith other state‐
of‐the‐art methods. The ROC curves for Multi‐PIE dataset are
given in Figure 4b. The curves clearly indicate that the proposed
method of PF‐cpGAN improves upon other methods and gives
much better performance, even at FAR of 0.001.

5.5 | Reconstruction of frontal and profile
images

As noted in Section 1, the PF‐cpGAN framework can also be
used for reconstruction of frontal images by using profile
images as input and vice versa. The results of reconstructing

T A B L E 2 Performance comparison on
IARPA Janus Benchmark A (IJB‐A)
benchmarkMethod

Verification Identification

GAR@ FAR = 0.01 GAR@ FAR = 0.001 @ Rank‐1 @ Rank‐5

OPENBR [67] 23.6 � 0.9 10.4 � 1.4 24.6 � 1.1 37.5 � 0.8

GOTS [67] 40.6 � 1.4 19.8 � 0.8 43.3 � 2.1 59.5 � 2.0

PAM [3] 73.3 � 1.8 55.2 � 3.2 77.1 � 1.6 88.7 � 0.9

DCNN [76] 78.7 � 4.3 ‒ 85.2 � 1.8 93.7 � 1.0

DR‐GAN [77] 77.4 � 2.7 53.9 � 4.3 85.5 � 1.5 94.7 � 1.1

FF‐GAN [44] 85.2 � 1.0 66.3 � 3.3 90.2 � 0.6 95.4 � 0.5

FNM [7] 93.4 � 0.9 83.8 � 2.6 96.0 � 0.5 98.6 � 0.3

PR‐REM [1] 94.4 � 0.9 86.8 � 1.5 94.6 � 1.1 96.8 � 1.0

PF‐cpGAN 95.8 � 0.82 91.2 � 1.3 97.6 � 1.0 98.8 � 0.4

Note: Results reported are the ‘average � standard deviation’ over the 10 folds specified in the IJB‐A protocol. Symbol ‘‒’
indicates that the metric is not available for that protocol.

(a) (b)

F I G U R E 4 Receiver operating characteristic (ROC) curve comparison against the baselines for different datasets is shown in (a) and (b).
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frontal images using the profile images as input are given in
Figure 5, and the results of reconstructing profile images using
the frontal images as input is given in Figure 6. The recon-
struction procedure for frontal images is given as follows: The
profile image is given as input to the profile U‐Net generator
and the feature vector generated at the bottleneck of the profile
generator (i.e. at the output of the encoder of the profile U‐Net
generator) is passed through the decoder section of the frontal
U‐Net generator to reconstruct the frontal image. Similarly, the
reconstruction procedure for profile images is given as follows:
The frontal image is given as input to the frontal U‐Net
generator, and the feature vector generated at the bottleneck
of the frontal generator (i.e. at the output of the encoder of the
frontal U‐Net generator) is passed through the decoder section
of the profile U‐Net generator to reconstruct the profile image.
As we can see from Figures 5 and 6, the PF‐cpGAN can
preserve the identity and generate high‐fidelity faces from an
unconstrained dataset such as CMU‐MultiPIE. These results
show the robustness and effectiveness of PF‐cpGAN for
multiple use of profile to frontal matching in the latent com-
mon embedding subspace as well as in the reconstruction of
facial images.

5.6 | Evaluation of the frontalisation by
cpGAN as a preprocessing for face matching

As mentioned earlier, our coupled GAN framework can also
be used for frontalisation, which can be an important pre-
processing step for other face‐recognition tasks. Here, we
conducted experiments to indicate the effectiveness of the
frontalisation performed using our cpGAN for the face veri-
fication task. In this set of experiments, we have used an
Inception [82]‐based FaceNet [19] model for the face verifi-
cation task, which is specifically the NN2 model from Ref. [19].
We have performed this set of experiments on the VGGFace2
dataset [83].

The VGGFace2 dataset provides annotation to enable
evaluation of face matching across different poses [83]. In the
dataset, six pose templates corresponding to three poses (i.e.
two templates for a single pose) have been provided for about
300 identities. A template corresponds to five faces from the

same subject with a consistent pose. This pose can be frontal,
three‐quarter or profile view. Consequently, for the 300 iden-
tities, there are a total of 1.8K templates with 9K images in
total [83]. For this set of experiments, we have used only the
profile and the frontal templates, which correspond to about
6K images corresponding to 300 identities.

Here, we perform face verification using FaceNet in three
different settings. In the first setting, we choose about 2.5K
frontal images corresponding to 250 identities. Using these
images, we fine‐tune the Inception model NN2 from FaceNet
for frontal to frontal face verification. Next, using this FaceNet
model, we evaluate the frontal to frontal face verification on
the remaining 50 identities. This setting will be called Original
Frontal to Frontal. In the second setting, we choose about 5K
images corresponding to 250 identities, which have both
profile and frontal images. Using these images, we fine‐tune the
Inception model NN2 from FaceNet for profile to frontal face
verification. Next, using this FaceNet model, we evaluate the
profile to frontal face verification on the remaining 50 identi-
ties. This setting will be called Profile to Frontal. In the third
setting, we used our cpGAN to frontalise the profile images
from the datasets used in the second setting (300 subjects with
about 3K profile images) using the method outlined in Sec-
tion 5.5. We call this frontalised dataset synthesised frontal
dataset. Next, using the fine‐tuned FaceNet model from the
first setting, we evaluate the frontal to frontal face verification

T A B L E 3 Performance comparison on
IARPA Janus Benchmark C (IJB‐C)
benchmark Method

Verification Identification

GAR@ FAR = 0.01 GAR@ FAR = 0.001 @ Rank‐1 @ Rank‐5

GOTS [68] 62.1 � 1.1 36.3 � 1.2 38.5 � 1.6 53.8 � 1.8

FaceNet [19] 82.3 � 1.18 66.3 � 1.3 70.4 � 1.2 78.8 � 2.3

VGG‐CNN [78] 87.2 � 1.09 74.3 � 0.9 79.6 � 1.04 87.8 � 1.3

FNM [7] 91.2 � 0.8 80.4 � 1.8 84.6 � 0.6 93.7 � 0.9

PR‐REM [1] 92.1 � 0.8 83.4 � 1.5 83.1 � 0.4 92.6 � 1.1

PF‐cpGAN 93.8 � 0.67 86.1 � 0.7 88.3 � 1.2 94.8 � 0.6

Note: Results reported are the ‘average � standard deviation’ over the 10 folds specified in the IJB‐C protocol. Symbol ‘‒’
indicates that the metric is not available for that protocol.

T A B L E 4 Rank‐1 recognition rates (%) across poses and
illuminations under Multi‐PIE Setting‐1.

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

HPN [79] 29.82 47.57 61.24 72.77 78.26 84.23

c‐CNN [80] 47.26 60.7 74.4 89.0 94.1 97.0

TP‐GAN [81] 64.0 84.1 92.9 98.6 99.99 99.8

PIM [56] 75.0 91.2 97.7 98.3 99.4 99.8

CAPG‐GAN [66] 77.1 87.4 93.7 98.3 99.4 99.99

FNM + VGG‐Face [7] 41.1 67.3 83.6 93.6 97.2 99.0

FNM + Light CNN [7] 55.8 81.3 93.7 98.2 99.5 99.9

PF‐cpGAN 88.1 94.2 97.6 98.9 99.9 99.9
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on 50 identities from the synthesised frontal dataset. Specif-
ically, in the third setting, we are trying to check how well the
proposed cpGAN is able to frontalise the images by running
the frontal to frontal face verification model on the synthesised
frontal dataset. This setting will be called Synthesised Frontal
to Frontal. Note that we try to keep the 50 identities used for
evaluation consistent across all the three settings.

Using the ROC curve as our performance metric, we have
compared the performance of these three settings to evaluate
the effectiveness of frontalisation performed using our pro-
posed cpGAN. The performance curves are provided in
Figure 7a. As expected the first setting (Original Frontal to
Frontal) gives us the best performance, and it is the upper
bound as we are using the original frontal dataset for training
and evaluation in this setting. On comparing the curves for the

second (Profile to Frontal) and third settings (Synthesised
Frontal to Frontal), it can be observed that the Synthesised
Frontal to Frontal outperforms the Profile to Frontal FR
model. This shows that the preprocessing in the form of
frontalisation performed using the proposed cpGAN frame-
work improves the performance of a FaceNet model for
profile to frontal face verification.

5.7 | Implementation of couplesd CNN and
domain adaptation network for profile to
frontal face matching

Before the advent of GAN, many deep‐learning applications
used CNNs for classification, regression, or reconstruction. To

F I G U R E 5 Reconstruction of frontal images at the output of the frontal U‐Net generator with profile images as input to the profile U‐Net generator. Every
odd number column represent the input profile image and every even number column represents the output frontal image. The input images belong to the
CMU‐MultiPIE dataset.

F I G U R E 6 Reconstruction of profile images at the output of the profile U‐Net generator with frontal images as input to the frontal U‐Net generator. Every
odd number column represents the input frontal image, and every even number column represents the output profile image. The input images belong to the
CMU‐MultiPIE dataset.
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s h o w c as e t h e a d va nt a g e of usi n g a  G A N  m o d el i n o ur pr o-
p os e d a p pr o a c h f or pr o fil e t o fr o nt al F R,  w e h a v e als o
i m pl e m e nt e d t w o ot h er fr a m e w or ks t h at  will b e e x pl ai n e d i n

t his s e cti o n.  T h e p erf or m a n c e c o m p aris o n of t h e pr o p os e d
P F ‐c p G A N  wit h t h es e n e w fr a m e w or ks  will b e dis c uss e d i n
t h e f oll o wi n g s e cti o n.

5. 7. 1 | C o u pl e d  C N N

I n t h e lit er at ur e, it h as b e e n s h o w n t h at  G A N is b ett er t h a n
C N N f or s o m e d e e p ‐l e ar ni n g a p pli c ati o ns.  T o c o n fir m t his
h y p ot h esis f or o ur pr o p os e d a p pli c ati o n,  w e h a v e i m pl e m e nt e d
a c o u pl e d  C N N a n d c o m p ar e d its p erf or m a n c e  wit h o ur
pr o p os e d c o u pl e d  G A N ar c hit e ct ur e.  T h e c o u pl e d  C N N
( c p C N N) ar c hit e ct ur e is s h o w n i n Fi g ur e 8 . F or f air c o m p ar-
is o n,  w e h a v e us e d  R es N et 1 8 [7 0 ] pr e‐tr ai n e d o n I m a g e N et
n et w or k as o ur  C N N ar c hit e ct ur e f or b ot h Fr o nt al  C N N a n d
Pr o fil e  C N N.  A d diti o n all y,  w e h a v e a d d e d a n e xtr a f ull y c o n-
n e ct e d l a y er aft er t h e a v er a g e p o oli n g l a y er of  R es N et 1 8 f or
o ur c o u pl e d  C N Ns.

T h e fr o nt al a n d pr o fil e  C N Ns ar e c o u pl e d t o g et h er at t h eir
o ut p ut l a y er usi n g a c o ntr asti v e l oss f u n cti o n ( L c o nt).  T his l oss
f u n cti o n (L c o nt) is a dist a n c e‐b as e d l oss f u n cti o n,  w hi c h is
si mil ar t o t h e c o ntr asti v e l oss f u n cti o n ( 5 ) t h at  w e h a v e us e d
f or P F‐c p G A N. F or e as e of u n d erst a n di n g,  w e h a v e us e d t h e
s a m e n a mi n g c o n v e nti o n f or c p C N N as i n P F ‐c p G A N.

We h a v e us e d t h e  V G G Fa c e 2 d at as et f or tr ai ni n g a n d
t esti n g of t h e c p G A N.  As i n S e cti o n 5. 6 ,  w e c h o os e a b o ut 5 K
i m a g es c orr es p o n di n g t o 2 5 0 i d e ntiti es,  w hi c h h a v e b ot h
pr o fil e a n d fr o nt al i m a g es f or fi n e ‐t u ni n g t h e c p C N N f or
pr o fil e t o fr o nt al f a c e v eri fi c ati o n.  We h a v e t est e d t h e c p C N N
o n t h e 5 0 disj oi nt i d e ntiti es fr o m  V G G Fa c e 2.  T h e p erf or-
m a n c e c o m p aris o n is dis c uss e d i n t h e f oll o wi n g s e cti o n.

5. 7. 2 | D o m ai n a d a pt ati o n n et w or k

A pr o fil e t o fr o nt al r e c o g niti o n n et w or k c o ul d v er y  w ell b e
i m pl e m e nt e d usi n g d e e p‐l e ar ni n g‐b as e d d o m ai n a d a pt ati o n

( a) ( b)

F I G U R E  7 P erf or m a n c e c o m p aris o n f or ( a) fr o nt alis ati o n usi n g c o u pl e d g e n er ati v e a d v ers ari al n et w or k ( c p G A N) as a pr e pr o c essi n g a n d ( b) P F ‐c p G A N

( C o u pl e d‐G A N) v ers us c o u pl e d c o n v ol uti o n al n e ur al n et w or k ( C o u pl e d ‐C N N) v ers us pr o fil e t o fr o nt al a d v ers ari al d o m ai n a d a pt ati o n ( P F ‐A D D A).

C o nt r asti v e L oss

( Lc o nt )

x i
P R

Pr o fil e C N N  

Fr o nt al C N N

x j
F R

z 2 ( x jF R )

z 1 ( x iP R )

F I G U R E  8 Bl o c k di a gr a m of  C o u pl e d c o n v ol uti o n al n e ur al n et w or k

( C N N)
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techniques. These domain adaptation techniques attempt to
alleviate the negative effects of domain shift (frontal domain to
profile domain in our case) by learning deep neural trans-
formations that map both domains into a common feature
space. Recently, adversarial adaptation methods, which are
based on reconstructing the target domain from the source
representation have become increasingly popular. These
adversarial methods seek to reduce an approximate domain
discrepancy distance through an adversarial objective function
with respect to a domain discriminator [84].

Taking a cue from Ref. [84], we have implemented an
unsupervised discriminative domain adaption network for
profile to frontal FR. Hereafter, this network will be known as
profile to frontal adversarial domain adaptation (PF‐ADDA).
For this adversarial domain adaptation network, we consider
the source domain as the frontal images and the target domain
as the profile images. The architecture of PF‐ADDA is shown
in Figure 9. Profile to Frontal Adversarial Domain Adaptation
has been implemented and optimised in two steps:

� In the first step of pre‐training a frontal convolutional
neural network (CNN), a discriminative representation is
learnt using the labels in the frontal image domain (source
domain). This implies we first pre‐train a frontal image
encoder CNN using labelled frontal image examples. The
optimisation for this step is given as

min
z2;C

Lcls XFR; YFRð Þ ¼

− E xFR;yFRð Þ∼ XFR;YFRð Þ

XK

k¼1

1 k¼yFR½ �logC z2 xj
FR

� �� �
;

ð20Þ

where the classification loss Lcls is optimised over z2 and
frontal image classifier, C, by training using the labelled source
data, XFR, and YFR.
� In the second step of adversarial adaptation, a separate

encoding thatmaps the profile image data to the same space as
the frontal image domain using an asymmetric mapping is
learnt through a combination of domain‐adversarial loss and
the contrastive loss. In other words, this implies that we
perform adversarial adaptation by learning a profile image
encoder CNN such that a discriminator that sees encoded
frontal and profile images cannot accurately predict their
domain label. In addition to the discriminator loss, the frontal
and profile domain CNNs are also coupled through a
contrastive loss. The optimisations for this step are given as

min
D

Ladv D XFRð ; XPR; z2; z1Þ ¼ −ExFR∼XFR logD z2 xj
FR

� �� �h i

−ExPR∼XPR log 1 − D z1 xi
PR

 � � �� �
;

ð21Þ

min
z1

LadvG XFRð ; XPR; DÞ ¼ −ExPR∼XPR logD z1 xi
PR

 � �� �
; ð22Þ

and

Lcont z1ð xi
PR

 �
; z2 xj

FR

� �
; Y Þ ¼ ð1 − Y Þ

1
2

Dzð Þ
2

þðY Þ
1
2
max 0; m − Dzð Þð Þ

2
:

ð23Þ

As shown in Equations (21) and (22), the frontal image
encoder CNN (source CNN) is fixed during the second stage,
we just need to optimise the discriminator loss LadvD and
profile encoder loss LadvG over the profile encoder CNN to
generate z1 without revisiting the source domain encoder.
Finally, along with the adversarial losses, we also optimise the
contrastive loss, Lcont, between the output of the Frontal CNN
and Profile CNN as shown in (23). This contrastive loss is
similar to the loss used for cpCNN and PF‐cpGAN.

During testing, profile images (target domain) are mapped
with the profile image encoder to the shared feature space, and
frontal images (source images) are mapped with the frontal
image encoder to the shared feature space. Finally, the profile
to frontal matching is performed in the shared feature space.
Dashed lines in Figure 9 indicate fixed network parameters.

We have used the VGGFace2 dataset for training and
testing of the PF‐ADDA. For fair comparison, the train and
test split of the dataset for the PF‐ADDA is consistent with the
split for cpCNN.

5.8 | Performance comparison of
PF‐cpGAN versus cpCNN versus PF‐ADDA

We have performed several experiments to compare the per-
formance of our proposed PF‐cpGAN approach with cpCNN
and PF‐ADDA. These experiments are performed on the
VGGFace2 dataset [83]. As already mentioned in the previous
Section 5.7, for implementing cpCNN and PF‐ADDA, we
have used a common network architecture as PF‐cpGAN.

F I G U R E 9 Block diagram of profile to frontal adversarial domain adaptation (PF‐ADDA)
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Furthermore, we have been consistent in the training pro-
cedure (optimiser, batch‐size, learning rate decay schedule etc.).
The performance comparison is plotted in terms of ROC and
shown in Figure 7b. The ROC result curves show that the
proposed PF‐cpGAN method outperforms other methods
and gives much better performance for face verification under
different pose variations. This demonstrates the effectiveness
of coupled‐GAN compared to other implementations. The
improvement in performance using PF‐cpGAN could be
attributed to individual discriminators in the PF‐cpGAN,
which generate more domain specific features. The improve-
ment can also be attributed to the sharpening of the features
due to the perceptual loss terms.

5.9 | Coupled‐GAN qualitative results on
VGGFace2

In this section, we test the robustness of our proposed approach
Pf‐cpGAN on the VGGFace2 dataset by reconstructing frontal
images from input profile images. In VGGFace2 [83], two
networks are trained to estimate the pose of images in the
dataset. Specifically, a 5‐way classification ResNet‐50 is trained

on the large‐scale CASIA‐WebFace dataset [85] to estimate head
pose (roll, pitch, and yaw). This model is then leveraged to
predict pose of all the images in the dataset. As a result,
VGGFace2 published different pose templates for 368 identi-
ties. Specifically, there are six templates for each subject: two
templates each for frontal view, three‐quarter view and profile
view. There are five images per template. Here, we used about
250 identities to construct our pairs for training our coupled‐
GAN framework. Next, we test our network for frontalisation
of profile images. We follow the same procedure as discussed in
Section 5.5 to frontalise our images. The results for frontalised
images are shown in Figure 10. From these images, it can be
observed that the PF‐cpGAN can preserve the identity and
generate high‐fidelity faces from the VGGFace2 dataset. These
results demonstrate the robustness and effectiveness of our
coupled‐GAN framework for frontalising pose‐variant images
in the latent common embedding subspace.

5.10 | Ablation study

The objective function defined in (20) contains multiple loss
functions: coupling loss (Lcpl), perceptual loss (LP) and L2

F I G U R E 1 0 Reconstruction of frontal images at the output of the frontal U‐Net generator with profile images as input to the profile U‐Net generator.
Every odd number column represents the input profile image, and every even number column represents the output frontal image. The input images belong to
the VGGFace2 dataset.
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reconstruction loss (L2), and GAN loss (LGAN). It is important
to understand the relative importance of different loss func-
tions and the benefit of using them in our proposed method.
For this experiment, we use different variations of PF‐cpGAN
and perform the evaluation using the IJB‐A dataset. The var-
iations are as follows: (1) PF‐cpGAN with only coupling loss
and L2 reconstruction loss (Lcpl + L2); (2) PF‐cpGAN with
coupling loss, L2 reconstruction loss, and GAN loss
(Lcpl + L2 + LGAN); (3) PF‐cpGAN with all the loss functions
(Lcpl + L2 + LGAN + LP).

We use these three variations of our framework and plot
the ROC for profile to frontal face verification using the fea-
tures from the common embedding subspace. We can see from
Figure 11 that the generative adversarial loss helps to improve
the profile to frontal verification performance, and adding the
perceptual loss (blue curve) results in an additional perfor-
mance improvement. The reason for this improvement is that
using perceptual loss along with the contrastive loss leads to a
more discriminative embedding subspace resulting in better FR
performance.

6 | CONCLUSION

We proposed a new framework, which uses a coupled GAN
for profile to frontal FR. The coupled GAN contains two sub‐
networks, which project the profile and frontal images into a
common embedding subspace, where the goal of each sub‐
network is to maximise the pair‐wise correlation between
profile and frontal images during the process of projection. We
thoroughly evaluated our model on several standard datasets,
and the results demonstrate that our model notably

outperforms other state‐of‐the‐art algorithms for profile to
frontal face verification. For instance, under the extreme pose
of �90°, the PF‐cpGAN achieves improvements of approx.
11% (i.e. 77%–88%), when compared to the state‐of‐the‐art
methods for CMU‐MultiPIE dataset. We have also explored
two other similar implementations in the form of coupled
CNN (cpCNN) and domain adaptation network (ADDA) for
profile to frontal FR. We have compared the performance of
the proposed approach with cpCNN and ADDA and shown
that the proposed approach performs much better than these
two implementations. Moreover, we have also evaluated the
frontal image reconstruction performance of the proposed
approach. Finally, the improvement achieved by different los-
ses including perceptual and GAN losses in our proposed al-
gorithm has been investigated in an ablation study.
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