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Abstract

In recent years, periocular recognition has been devel-
oped as a valuable biometric identification approach, espe-
cially in wild environments (for example, masked faces due
to COVID-19 pandemic) where facial recognition may not
be applicable. This paper presents a new deep periocular
recognition framework called attribute-based deep periocu-
lar recognition (ADPR), which predicts soft biometrics and
incorporates the prediction into a periocular recognition al-
gorithm to determine identity from periocular images with
high accuracy. We propose an end-to-end framework, which
uses several shared convolutional neural network (CNN)
layers (a common network) whose output feeds two sep-
arate dedicated branches (modality dedicated layers); the
first branch classifies periocular images while the second
branch predicts soft biometrics. Next, the features from
these two branches are fused together for a final periocular
recognition. The proposed method is different from exist-
ing methods as it not only uses a shared CNN feature space
to train these two tasks jointly, but it also fuses predicted
soft biometric features with the periocular features in the
training step to improve the overall periocular recognition
performance. Our proposed model is extensively evaluated
using four different publicly available datasets. Experimen-
tal results indicate that our soft biometric based periocu-
lar recognition approach outperforms other state-of-the-art
methods for periocular recognition in wild environments.

1. Introduction

Traditionally, facial recognition systems (in cooperative
settings) are presented with mostly non-occluded faces,
which include all primary facial regions such as the eyes,
nose, and mouth [33, 31, 32, 29, 27, 28, 30]. Inspired
by the COVID-19 pandemic response, the widespread re-
quirement that people should wear protective face masks
in public places has driven a need to understand how co-

operative facial recognition technology deals with occluded
faces, such as when only the periocular region is visible.
In this paper, we address this challenge by implementing
a periocular recognition algorithm for unconstrained wild
environments (i.e., masked faces).

In the recent past, periocular recognition in wild envi-
ronments has garnered significant interest and has become
a key area of research in biometric recognition [13, 2, 12,
20, 34, 10, 22, 24, 38, 17]. Despite the fact that there is no
strict definition or standard from professional bodies like
ISO/IEC or NIST, the periocular region usually refers to the
region around the eye [38] as shown in Fig. 1 [35]. The pe-
riocular region is considered to be a highly discriminative
biometric modality and a powerful alternative/compliment
to face and/or iris recognition when accurate face/iris recog-
nition cannot be guaranteed due to the unconstrained envi-
ronment [20] or when the whole face or iris image is not
clearly available [34, 36, 38], as illustrated in Fig. 2. More-
over, it has been shown in the literature that the periocular
region is more robust to expression variation [24] and aging
[6], when compared to other parts of the face. Nonetheless,
periocular recognition in wild environments remains a chal-
lenging task, largely because the periocular region includes
less information than the entire face and is highly suscepti-
ble to interference from occlusions (hair and glasses).

When a human recognizes a face, he or she not only an-
alyzes the overall visual pattern but also analyzes semantic
information, such as gender, ethnicity, age, etc., to judge
whether the face belongs to a certain known person. There-
fore, it is reasonable to hypothesize that semantic informa-
tion is helpful for the task of automated visual identification.
In this paper, we propose to use soft biometrics as seman-
tic information for periocular recognition. Soft biometric
information extracted from the periocular region of the face
(e.g., gender, ethnicity, skin color, and so on) is ancillary in-
formation, which to some extent is easily distinguished at a
distance but is not fully discriminative by itself during facial
or periocular recognition tasks. However, soft biometrics
can be explicitly incorporated into periocular recognition



Figure 2: Masked Faces.

algorithms to improve the overall recognition performance
when confronting highly variable conditions. We hypoth-
esize that soft biometrics can provide valuable information
for periocular recognition, where face images are usually
captured in poor quality conditions due to variability in dis-
tance, illumination, and pose. We propose to complement
‘hard’ periocular facial signatures with soft biometrics to
improve the overall periocular recognition performance.

We propose a new deep periocular recognition frame-
work called Attribute-based Deep Periocular Recognition
(ADPR), which simultaneously predicts soft biometrics and
incorporates this ancillary information with a periocular
recognition algorithm to determine identity from periocu-
lar images with higher accuracy. ADPR is an end-to-end
framework, which uses several shared convolutional neural
network (CNN) layers (a common network) whose output
feeds into two separate branches (modality dedicated lay-
ers); the first branch classifies periocular images while the
second branch predicts soft biometric attributes. Next, the
features from these two branches are fused together for a fi-
nal periocular recognition. Therefore, in contrast with other
existing methods, which only use a shared CNN feature
space to train these two tasks jointly, our proposed method
fuses the predicted soft biometric features with periocular
features in the training step to improve the overall periocular
recognition performance. Thus, our proposed deep model
predicts soft biometrics and simultaneously leverages the
predicted soft biometric features as an auxiliary modality to
improve periocular recognition performance. In summary,
our major contributions are:

1. We design and implement an attribute-based deep peri-
ocular recognition framework, which is an end-to-end
deep periocular recognition algorithm enhanced with
the predicted soft biometrics (gender, ethnicity, etc.).

2. We train the proposed model to effectively predict soft
biometrics while simultaneously being trained with the
loss from the periocular recognition task. The model
shares learned parameters to train both tasks and also
fuses soft biometric information with the periocular
features to improve the overall periocular recognition
performance.

3. We present an ADPR-based Siamese architecture us-
ing contrastive loss, which makes it possible for the
ADPR to be used for cross-dataset periocular recog-
nition, which implies that the ADPR does not require
training samples from target datasets.

2. Related Work

Periocular recognition in unconstrained conditions has
been the subject of ongoing research. Surveys of various
periocular recognition algorithms can be found in [1, 11,
18]. A seminal paper investigating the feasibility of using
the periocular region for human recognition under various
conditions is given by Park er al. [13]. Further research in
this area is found in [2], which illustrates the usefulness of
periocular recognition when iris recognition fails. There has
also been research on cross-spectrum periocular matching
[22], which are based on neural network techniques.

Further research into periocular recognition has focused
on using hand-crafted features [10, 24, 25]. For exam-
ple, [10] extracts periocular features using DSIFT and ex-
ploits K-means clustering for dictionary learning and rep-
resentation. However, DSIFT feature extraction and K-
mean clustering are computationally expensive and time-
consuming. In [24], a Periocular Probabilistic Deformation
Model (PPDM) was proposed, which utilizes a probabilistic
inference model to evaluate the matching scores from corre-
lation filters on periocular image pairs. The same research
group later improved PPDM by selecting discriminative
patch regions for more accountable matching [25]. How-
ever, both of the patch-based matching schemes [24, 25]
are less resistant to scale variance among samples that often
exists in challenging forensic and security scenarios [38].

Recent developments in periocular recognition tech-
niques are more focused on deep learning-based methods
[38, 17]. Proenca and Neves [17] proposed Deep-PRWIS,
where a deep CNN model is trained in such a way that the
recognition is exclusively based on information surround-
ing the eye, and the iris and sclera regions features are de-
graded during learning. Zhao and Kumar [38] proposed a
deep-learning based model called Semantics-Assisted CNN
(SCNN), which incorporates explicit semantic information



(gender and side) of the training samples to extract more
comprehensive periocular features, helping to improve the
CNN’s performance. While the proposed ADPR framework
is motivated by SCNN, and similarly leverages soft biomet-
rics for periocular recognition, it additionally fuses soft bio-
metric features with periocular features in a joint learning
framework to predict soft biometrics and also improve peri-
ocular recognition accuracy.

3. Proposed Method

The proposed end-to-end deep learning framework is
shown in Fig. 3. It consists of four important blocks: The
backbone network, the only periocular recognition (PR)
block (green dashed section), the soft biometric classifier
(orange dashed section), and the joint periocular recognition
(JPR) block (red dashed section). Specifically, the archi-
tecture uses several CNN layers for the backbone network
whose output feeds into two separate branches (modality
specific layers); the first branch is for only periocular recog-
nition while the second branch is for soft biometric classi-
fication. The features from the soft biometric classifier and
the PR block are fused in the JPR block for a final joint
periocular recognition.

The backbone network is formed by only the convolu-
tional layers of VGG-16 [23] pretrained on ImageNet [4].
ResNet[5] can also be used in place of VGG-16 for the
backbone network. For the PR block and soft biometric
classifier, a new set of fully connected layers (green and
orange dashed sections) are integrated with the backbone
network. During optimization, the periocular layers (green)
are optimized for only periocular recognition followed by
optimization of the soft biometric layers (orange) for only
soft biometric prediction.

For the JPR block, the features from the periocular lay-
ers are fused with the features from the soft biometric layers
(shown in bold black arrows) in the fusion layer followed
by additional fully connected layers and a Softmax layer for
periocular recognition again. However, this time the perioc-
ular recognition uses features from both the soft biometric
layers and the periocular layers. This is why it is called
the joint periocular recognition block. Finally, the whole
network (except the Softmax layer in PR block) is trained
end-to-end for joint periocular recognition and soft biomet-
ric classification, and the loss from both the joint periocular
recognition and soft biometric classification is back propa-
gated through the network. The novelty is that, because of
this feature fusion and loss propagation, the soft biometrics
features enhance the discriminative power of the periocular
recognition network and therefore improve the overall pe-
riocular recognition performance. The implementation de-
tails for each block of the proposed architecture are defined
in the following subsections.
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Figure 3: Attribute-based Deep Periocular Recognition
(ADPR). The rectangular solid colored boxes with
numbers depict fully connected layers.

3.1. Backbone Network

The backbone network uses the 14 convolutional layers
from the VGG-16 architecture pre-trained on the ImageNet
dataset as a starting point. The fully connected layers of
the VGG-16 are discarded and not part of the backbone net-
work. There are multiple reasons for using the VGG-16
pre-trained on the ImageNet dataset for the backbone net-
work. In the proposed architecture, the backbone network
is only used as feature-extractor for periocular recognition
and soft biometric classification, and it can be seen from
the previous literature [9, 39, 8, 21, 26, 14] that the fea-
tures provided by VGG-16 pre-trained on ImageNet and
fine-tuned on different biometric image data are very dis-
criminative and therefore can be used as a starting point.
Moreover, starting with a well-known architecture makes
the work highly reproducible.

3.2. Only Periocular Recognition Block

For the PR block, a new set of fully connected layers
(green blocks in the green dashed section) for only perioc-
ular recognition are integrated with the backbone network.
Specifically, we add two fully connected layers with the first
layer having 2,048 nodes and the second layer having 1,024
nodes. The final layer in the PR block is the Softmax layer,
where the size of the layer depends on the number of classes
C in the given dataset.

3.3. Soft Biometric Classifier

In addition to improving periocular recognition, another
important objective of our proposed method is effective pre-
diction of soft biometrics using only the periocular region.
However, separating these two objectives by training mul-
tiple CNNs individually is not optimal since different ob-
jectives may share common features and have hidden re-



lationship, which can be leveraged to jointly optimize the
objectives. This notion of joint optimization has been used
in [40], where they train a CNN for face recognition, and
utilize the features for attribute prediction.

Therefore, for this task, we use the feature set output by
the first fully connected layer (size 2,048) of the PR block to
also predict the soft biometrics for a given periocular image.
For the soft biometric classifier we add two fully connected
layers, a first layer of size 512 and a second layer of size
256, as shown in Fig. 3. The final layer in the soft biometric
classifier is the set of & binary classifiers, where k denotes
the number of soft biometrics predicted.

3.4. Joint Periocular Recognition

After optimizing the soft biometric classifier and PR
block individually, the features from the soft biometric lay-
ers are fused with the features from the periocular layers at
the fusion layer of the JPR block. The fusion layer is fol-
lowed by additional fully connected layers and a Softmax
layer for the final periocular recognition. Thus, the final
periocular recognition utilizes the fused features from the
periocular layers and the soft biometric layers. The whole
system is then trained end-to-end and the loss from both the
joint periocular recognition block and soft biometric classi-
fication is back propagated through the network.

In our implementation, we use the output features from
the second fully connected layer (size 256) of the soft bio-
metric classifier and vertically concatenate it with the fea-
tures of the second fully connected layer (size 1,024) of the
PR block. This vertical concatenation is the fusion layer.
The output of the fusion layer is of size 1,280. In addition
to this fusion layer, we add another fully connected layer of
size 512 followed by a Softmax layer, whose output is equal
to the number of classes C in the given dataset.

4. Training of the Proposed Architecture

The proposed architecture is trained in three steps:

1. In the first step, only the PR block is optimized for the
periocular classification of the input images. Consider that
the input image to ADPR is a periocular image denoted by
2%, where the class label for the image is given by y* € C
fort = 1,--- , N where N is the number of training im-
ages in a mini-batch. In this step, we only optimize the PR
block’s layers for classification while keeping the backbone
network frozen. The classification formulation has been in-
corporated into the PR block by adding the Softmax layer
as shown in Fig. 3. Let EF; denote the objective function
required for classification:

1 & . .
Bi(wpr) = 5 > Li(f (&', wer),y') + Mwerl?, (1)
=1

where the first term L;(.) is the classification loss for train-
ing instance ¢ and N is the number of training images in a

mini-batch. f(z¢, wpg) is the predicted softmax output of
the PR network and is a function of the input training image
2% and the weights of the PR network wppg. The last term
is the regularization function where A governs the relative
importance of the regularization.

The choice of the loss function L;(.) depends on the ap-
plication. We use a classification loss function that uses
softmax outputs to minimize the cross-entropy error func-
tion. Let the predicted softmax output f(z°, wpr) be de-
noted by ¢°. The classification loss for the it training in-
stance is given as:

C
Li(glvyz) = Z y;n In @:n’ 2
m=1

where y¢, and ¢’ are the ground truth and the prediction
result for the mt" softmax output of the it" training instance,
respectively and C'is the number of softmax outputs.

2. In the second step, only the soft biometric classifier
block is optimized for the prediction of the soft biometrics.
For the soft biometric prediction task, a periocular image
is given as input to predict a set of soft biometrics. The
periocular image is again denoted by z?, the number of dif-
ferent soft biometrics being predicted is denoted by k, and
A? denotes the ground truth soft biometric label for training
sample ¢ and attribute ¢ for ¢t = 1,--- | k. In this case, using
the feature set from the second fully connected layer (size
256), the soft biometric prediction loss function is denoted
by E5, and is given as:

1 & . , ,
Ba(w) =+ 3D Lifala) < we), 4D, )

i=1 t=1

where ft(.) is a binary classifier for the soft biometric ¢ op-
erating on the feature set from the second fully connected
layer (size 256) of the soft biometric classifier. The classi-
fier is learned by using a binary cross-entropy loss function
Li(.). w; represents the weight parameters for the classi-
fier, and these parameters are learned separately for each
soft biometric attribute.

3. In the final step, the JPR block and the soft biometric
classifier are optimized together. The loss function used to
train the network in this step is a combination of F; and Fs,
which implies it is a combination of classification loss and
soft biometric prediction loss functions. Let E'3 denote this
combination given as:

Es(Wipr, W) = E1(Wipr) + Ea(wy), “4)

where w;pr signifies that the classification loss formula-
tion F is a function of the JPR block layers which includes
the fused feature vector of the soft biometric classifier fea-
tures and the periocular recognition features. Finally, the
whole network (except the Softmax layer in the PR block)
is trained end-to-end using the E5 loss function.



For each training step, we have used the stochastic gra-
dient descent (SGD) algorithm, with a batch size of 64 sam-
ples. The learning rate was 103, with a momentum of 0.9
and a weight decay of 5 x 1074 .

5. Open vs. Closed-World Setting

When CNNs are used for recognition, it is important
to understand and decide if the implemented system is ex-
pected to work in an open-world or closed-world mode; i.e.,
if the system has access to all the training time samples from
all the classes that will be seen at the testing time or not.
In a scenario where the CNNs are trained in a classifica-
tion protocol (i.e., the identity or the category of the input
data is known), the closed-world mode can be enabled and
the output of the nodes in the final Softmax layer can be
used as probabilities for each class label. However, in the
open-world mode, one-to-one matching for probably un-
seen subjects is the key problem and needs to be evaluated.
Therefore, in the open-world setting, the model needs to be
trained to be able to generalize to unseen subjects that are
not included in the training set. In this paper, we have eval-
uated our proposed architecture for both open-world and
closed-world settings.

5.1. Siamese Network for Open-World Setting

For the open-world setting, we use a Siamese network
[3] to train the ADPR, generalize to unseen subjects, and
predict the similarity between a pair of feature vectors. The
Siamese network is primarily designed for verification sce-
narios. The ADPR-based Siamese network architecture is
shown in Fig. 4. The Siamese network requires genuine
and impostor pairs of images. In the Siamese architecture,
we use identical ADPR networks with shared weights for
both the input images, and these two networks are coupled
together using a contrastive loss function (Leon:). We use
the output of the fully connected layer (size 512) of the JPR
block in ADPR as the feature representation of the input
data and for coupling the two networks using L ,,:. While
the Softmax layer in the JPR block represents the class
probabilities during the training process, the second-to-last
layer should contain the most relevant and aggregated in-
formation that can contribute to distinguishing the classes
or identities [38]. Therefore, it is reasonable to use the out-
put of the fully connected layer (size 512) of the JPR block
as the feature representation and generalize the model to
unseen subjects.

The loss function L,,; is minimized so as to drive the
genuine pairs (i.e., both the periocular images belonging to
the same subject) towards each other in the feature domain,
and at the same time, push the impostor pairs (i.e., the pe-
riocular images belonging to different subjects) away from
each other. Let ' denote the one input periocular image,
and 27 denote the other input periocular image as shown in

Figure 4: ADPR-based Siamese

Contrastive
Loss (Leoni)

Fig. 4. Define ¢(i, 7) to be a binary label, which is equal to
0 if 2% and 27 belong to a genuine pair, and equal to 1 if 2*
and 27 belong to an impostor pair. Let 21(.) and z3(.) de-
note the ADPR network to transform x* and 27, respectively
into their feature representation of size 512. If ¢(i,5) = 0
(i.e., genuine pair), the contrastive loss function is:

Leont (21 (%), 22(27), (i, §)) = % HZ1($Z) — zz(mj)Hz
)

Similarly if ¢(7, j) = 1, then contrastive loss function is :
Lcont (Zl ('TZ>7 z2 (Ij)a C(ia ])) =

1 i j
2max(O,m — ||z (=) - 22($])Hz)v
(6)

where m is the contrastive margin used to “tighten” the con-
straint. Therefore, the total loss function for training the
Siamese architecture is denoted by L,; and is given as:

1 N N ) )
chl - ﬁ ZZLcont(zl(xz)aZQ(IJ)vc(imj))v (7)

i=1 j=1

where N is the number of training samples. The main mo-
tivation for using the coupling loss is that it has the capacity
to find the discriminative embedding subspace because it
uses the class labels implicitly, which may not be the case
with some other metrics such as the Euclidean distance.
Our approach for periocular recognition in the open-
world setting using the trained Siamese ADPR network
does not require that the training and testing samples belong
to the same dataset, which is a key advantage over other
state-of-the-art (SOTA) approaches [34, 17, 24]. In our ex-
periments for the open-world setting, the ADPR is trained
with one database and tested on a separate dataset. The test-
ing and training sets have mutually exclusive subjects and
highly different image qualities, conditions, and/or sensors.

6. Performance Evaluation

In this section, we discuss the datasets and the perfor-
mance evaluation of our proposed architecture when com-



pared to other state-of-the-art methods. For fair compar-
ison, we have maintained consistency with [17] and [38]
with respect to the dataset and the testing protocol.

6.1. Datasets

We have used the following publicly available databases
for the experiments:

1) UBIPr [12]: We have used the UBIPr database only
for training our proposed ADPR architecture in the open-
world setting. Originally, this database contains 5,126 im-
ages for each of the left and right perioculars from 344 sub-
jects. However, following the protocol in [38], we have re-
moved those subjects that are also in UBIRISV2 [16]. Fi-
nally, for each of the left and right perioculars, we end up
with 3,359 images from 224 subjects.

2) UBIRISV2 [16]: The UBIRISV2 database contains
periocular images, and is mainly used for assessment of
at-a-distance iris recognition algorithms under visible illu-
mination and challenging imaging environments [38]. We
have used this dataset to evaluate the performance of both
open-world and closed-world settings. For the open-world
setting, using the protocol defined in [38], we have used
a subset of about 1,000 images from this dataset for the
performance evaluation. This subset contains both left and
right periocular images corresponding to 161 subjects, that
are captured from a distance of 3 to 8 meters. For the
closed-world setting, we have made our dataset protocol
consistent with [17] and used all 11,100 images correspond-
ing to 522 different eyes for the training and evaluation
of the proposed architecture. The UBIPr and UBIRISV2
datasets are annotated with only gender as a soft biometric.

3) Face Recognition Grand Challenge (FRGC) [15]:
The FRGC dataset consists of full facial images. We
have used Multi-task Cascaded Convolutional Networks
(MTCNN) [37] to crop out left and right periocular images.
We have used the FRGC dataset for both open-world and
closed-world settings. For the open-world setting, consis-
tent with [38], we have used only right periocular images
from the Fall 2002 subset with subject IDs from 202-269 to
202-317. This corresponds to about 540 right eye images
from 163 subjects. For the closed-world setting, we have
used the Spring 2004 subset which consists of about 25,000
images corresponding to 690 classes. The FRGC dataset is
annotated with only gender and ethnicity as soft biometrics.

For open-world setting experiments, it is important to
clarify the difference in the training techniques for four
methods (Our proposed approach and the three compara-
ble approaches from [38, 24, 34]). For our approach and
[38], the model is trained on the UBIPr database and tested
on the UBIRISV?2 and FRGC databases, which is identical
to the train/test configuration in [38] and therefore provides
a fair comparison. The other two methods [24, 34] require
within-database training and testing and this offers better

results for these two methods. Therefore, the training and
testing are performed on the same dataset for them. Addi-
tionally, for fair comparison, the train/test configuration for
these two methods is similar to the configuration in [38].

6.2. Open-World Performance

We first examine the advantage of the fusion of soft bio-
metric features and periocular recognition features in the
JPR block. We have compared the performance of a perioc-
ular recognition at the output of the PR block (ADPR (PR))
with the performance of a periocular recognition at the out-
put of the JPR block (ADPR (JPR)). We have used the pro-
posed Siamese architecture with contrastive loss, which is
designed for open-world verification. The model is trained
on the UBIPr dataset and tested on the UBIRISV2, and
FRGC datasets. When training with contrastive loss, the
margins are discretely tuned in the range [0.5, 5], and the
results providing best performance are used for comparison.
The results from the verification experiments using receiver
operating characteristic (ROC) curves are illustrated in Fig.
5. It can be observed that the proposed ADPR (JPR) consis-
tently outperforms the output of the PR block (ADPR (PR)).
This observation suggests that, due to the feature fusion and
back propagation of the combined loss function, the soft
biometrics are directly influencing the discriminative power
of the network and therefore improving the overall periocu-
lar recognition performance.

We also compared the performance of our approach
with other SOTA approaches [38, 24, 34] on the periocular
recognition problem. We have made the test protocols con-
sistent with [38]. The verification results (ROC) for these
comparisons are also shown in Fig. 5. It can be observed
from Fig. 5 that the proposed approach using ADPR con-
sistently outperforms the three SOTA approaches; SCNN
[38], PPDM [24], Texton [34]. For instance, in case of the
UBIRISV?2 dataset, the EER for our proposed ADPR (JPR)
is improved by 3% over the second best method SCNN [38].

6.3. Closed-World Performance

As discussed earlier, the proposed Siamese ADPR net-
work is primarly designed for open-world verification.
However, some recent techniques [19, 17] also focus on
the closed-world setting, where there is an overlap of sub-
jects during training/testing phase. Under the closed-world
setting, we have maintained the ADPR architecture from
Fig. 3. The size of the Softmax layer C' is consistent dur-
ing training and test phases in this closed-world setting.
The output for each neuron of the Softmax layer is con-
sidered the probability that the input sample belongs to a
specific subject, and therefore is used as the verification
score. Fig. 6 provides ROCs for the verification results un-
der the closed-world setting on UBIRISV2 and FRGC, and
includes a comparison to the performance when using only
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Figure 5: ROC curve comparison for open-world setting against the output of PR block and other state-of-the-art methods
for two different datasets.

the PR block (ADPR (PR)), and three other SOTA methods.

From Fig. 6, we observe that our approach consistently
outperforms the recent SOTA method DEEP-PRWIS [17].
Under the closed-world settings, our results have scored sig-
nificantly low EER (1.73%). This is due to the fact that,
with the feature fusion and back propagation of the com-
bined loss function, the soft biometric features enhance the
discriminative power of the network and therefore improve
the overall periocular recognition performance.

We have also evaluated the Area Under the Curve
(AUC), Rank-1 accuracy, and Equal Error Rate (EER) of
our proposed system and compared it against the earlier
SOTA methods [38, 34, 17]. Table 1 summarizes the per-
formance observed in our experiments, for the three algo-
rithms and two data sets considered. The proposed method
outperforms the earlier methods, with the true identity be-
ing reported at the first position (Rank-1) over 92.68% of
the time. In all performance measurements, the differences
with respect to the second-best method [17] is evident.

6.4. Soft Biometric Prediction

In this section, we evaluate the effect of fusing the
soft biometric features with the periocular recognition fea-
tures on periocular recognition performance and on soft-
biometric prediction performance. In this experiment, we
evaluated the soft biometric prediction performance using
classification accuracy before the fusion of the features
(ADPR (SB)) and also after the feature fusion with end-
to-end model training (ADPR (JPR)). This experiment has
been performed on the UBIRISV2 and the FRGC datasets
under the closed-world setting. Additionally, for the FRGC
dataset we have compared the performance with another

Table 1: Performance comparison between proposed
method and other sate-of-the-art methods for closed-world
setting. Values given are percentages.

Method AUC Rank-1 EER
UBIRISV2

ADPR (JPR) 99.9 £0.02 92.68 +1.04 1.73 +0.04

ADPR (PR) 98.2 +0.07 83.95 + 0.87 4.85+0.12
DEEP-PRWIS [17]  99.8 +0.04 87.64 + 1.68 1.89 +0.04

SCNN [38] 98.6 + 0.05 79.3+1.6 5.4+ 0.04

Texton [34] 84.3 +£0.09 64.6 + 2.3 17.57 £0.32

FRGC

ADPR (JPR) 99.9 £0.01 93.65+ 0.88 0.58 & 0.02

ADPR (PR) 98.7 +0.04 88.25 + 0.87 2.19 4+ 0.09
DEEP-PRWIS [17]  99.9 £+ 0.04 92.05 +0.92 0.71£0.02

SCNN [38] 99.1 +0.04 89.2 +0.79 2.25 +0.04

Texton [34] 94.1 +£0.05 73+2.1 7.9+045

earlier method based on LBP features [7].

Table 2 provides the comparisons of gender accuracy and
ethnicity accuracy for the different models discussed above.
It can be observed from Table 2 that after feature fusion,
there is an improvement of at least 1.5% in soft biometric
prediction accuracy. This improvement can be attributed
to the feature fusion and end-to-end model training of the
ADPR, where the periocular recognition features enhance
the soft biometric discriminative space and therefore im-
prove the soft biometric prediction accuracy.

6.5. Effect of the Number of Soft Biometrics on
Periocular Recognition

We have also evaluated the effect of the number of soft
biometrics being used on the periocular recognition perfor-
mance. We have performed this experiment on the FRGC
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Figure 6: ROC curve comparison for closed-world setting against the ADPR (PR) and other state-of-the-art methods.

Table 2: Soft biometric prediction performance compari-
son.

Method Gender Acc.  Ethnicity Acc.
UBIRISV2
ADPR (JPR) 97.6 -
ADPR (SB) 95.76 -
FRGC
ADPR (JPR) 97.5 98.7
ADPR (SB) 96.1 97.1
LBP [7] 92.5 94.5
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Figure 7: Performance comparison for different number of
soft biometrics.

dataset under a closed-world setting. For this experiment,

we have trained the ADPR model using only one soft bio-
metric (gender or ethnicity) and tested it for verification.
We have compared the performance of no soft biometric fu-
sion (ADPR (PR)), only the gender being used as the soft
biometric (ADPR (gender)), only the ethnicity being used
as the soft biometric (ADPR (ethnicity)), and both gender
and ethnicity being used (ADPR (JPR)). Fig. 7 provides the
ROC curve comparison for different models. It can be ob-
served from Fig. 7 that fusion of soft biometrics with the pe-
riocular features helps to improve the overall performance
and also that using more soft biometric attributes improves
the performance. This is because with more soft biometrics,
it becomes easier for the network to the learn the discrimi-
native space, which improves the overall performance.

7. Conclusion

We have presented a periocular recognition framework
based on a convolutional neural network (CNN) architec-
ture and the fusion of soft biometric features with perioc-
ular features. The utility of this framework is that, due
to the fusion of soft biometrics and periocular features,
along with end-to-end model training, the soft biometric
features enhance the discriminative power of the network
and therefore improve the overall periocular recognition
performance. We observed an improvement in EER of at
least 3% in the open-world setting verification performance
and an improvement in Rank-1 accuracy of at least 2% in
the closed-world setting, when compared to the state-of-
the-art methods. We have also evaluated the soft biometric
prediction performance and observed an improvement of at
least of 1.5% in accuracy due to the fusion of periocular
features with the soft biometric features.
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