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Abstract 
Capacity expansion models for the power sector are used to project future decisions over the coming 
decades by simulating investment and operation decisions for the use of electricity.  Due to model 
performance constraints, these models typically do not explicitly simulate every hour within a year, but 
instead simulate representative time segments (groups of hours). This paper evaluates different 
approaches for selecting time segments across three methods: sequential, categorical, and clustering, 
across a wide range of time-segment quantities, for a total of 204 temporal profiles. To measure the 
performance of each profile’s ability to accurately represent data, the root-mean-square-error of each 
profile’s time segments are compared to the data’s original hourly data. The temporal alignment across 
regions is also measured (i.e., how often windy days align across regions).  Different spatial resolutions 
were applied for a subset of the temporal selection methods to investigate the impact spatial resolution 
has on performance. This paper provides a framework for measuring the value of different temporal 
selection methods and of adding more granular data to energy system models. Overall, multi-criteria 
clustering yields the lowest root-mean-square-error across all datasets evaluated and provides a holistic 
view of the intertwined relationships between renewable generation and electricity demand.  
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Highlights: 

 Temporal selection methods analyzed across three commonly used techniques.  

 Measured performance of representing model data within representative hours. 

 Measured temporal performance across electric load and wind and solar generation.  

 Clustering techniques performed better than sequential or categorical techniques.  
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Acronym  Description 
BA Balancing Authority 
CEM Capacity expansion models 
EPA Environmental Protection Agency 
IPM Integrated Planning Model 
LDC Load duration curves 
NERC North American Electric Reliability Corporation 
NREL National Renewable Energy Laboratory 
PV Solar photovoltaic 
ReEDs NERL’s Regional Energy Deployment System 
RMSE Root-mean-square-error  
VRE Variable renewable energy 

Variable  Description 
a Actual value 
g Resource group 
h Time segments 
n Number of observations 
p Predicted value 
r Regions 
RMSE Root-mean-square-error 
TTC Total transfer capability 
WF Weighted frequency 
y Region pairs 
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1. Introduction 
As the energy transition moves forward there is a need to understand how data variability impacts 
recommendations derived from modeling. A key characteristic of modeling is that it relies on simplifying 
assumptions to characterize real world behaviors. In this way, models are simplified versions of reality 
that allow us to observe, understand, and make conjectures about behavior.  
 
Capacity expansion models (CEMs) apply optimization techniques to project power sector investment 
decisions over a span of decades (IRENA, 2017). These optimization models differ from other types of 
energy sector models in how they simplify inputs. For example, simulation models simulate prescribed 
future energy systems and are generally capable of modeling all 8,760 hours within a year (Lund et al., 
2017). However, in the case of CEMs, which endogenously evaluate investment decisions across 
decades, representing every hour of every year over a model’s projection period is generally deemed 
computationally unrealistic. To maintain computational tractability, CEMs leverage simplifications in 
terms of representative hours within a year (temporal resolution) and representative regions across a 
set of power producers (spatial resolution). The characteristics of some of the more widely recognized 
national-scale CEMs are featured in Huntington et al. (2020) and in Chang et al. (2021).  
 
CEMs have become more complex over time due to recent and expected changes within the power 
sector (Nock & Baker, 2019; Solomon & Krishna, 2011). For example, in the United States, generation 
from variable renewable energy (VRE), such as wind and solar, recently overtook natural gas as the 
fastest-growing source of electricity generation (EIA, 2020). One drawback of VRE generation stems 
from the variability of VRE supply, which makes it a challenge to model (Cole et al., 2017; Mai et al., 
2018). Yet incorporating these resource dynamics is important to improving cost estimations of system 
expansion (Spittler et al. 2020). Looking forward this modeling complexity is compounded by the push to 
decarbonize the power sector, increase demand response capabilities (Hamidpour et al. 2022),  and 
increase VRE supply (Sepulveda et al., 2018). 
 
In addition to the uncertain nature of VRE, electricity demand varies, influenced by changes in 
consumption habits like heating and cooling, which adds stochasticity to the grid (Eshraghi et al., 2021). 
Increasing VRE combined with demand uncertainty creates an inherent risk in the mismatch of supply 
and demand for energy system planners (Lund, 2018), particularly in deterministic models (Scott et al., 
2021). Models of the power sector should aim to have sufficient temporal resolution to incorporate the 
stochasticity of load and VRE generation while also retaining computational tractability and overall 
system accuracy.  
 
This paper uses statistical methods to measure the performance of common temporal selection 
approaches. The key contribution to the literature is benchmarking the performance of temporal section 
methods across resource and demand types, and identifying best practices. Temporal selection methods 
dilute information necessary for power-sector investment decisions. Thus, understanding the difference 
between initial data and simplifying assumptions applied can improve the validity of different energy 
analyses.  Specifically, this paper fills this gap in the literature by evaluating the performance of 204 
temporal resolution profiles on load, wind, and solar datasets to identify the discrepancies between 
temporal selection methods and highlight the benefits of higher temporal resolutions. This is 
accomplished by quantifying the error between reduced time-segment input (i.e., temporal resolution) 
and actual variability between load, wind, and solar profiles.  
 
Previous studies have evaluated different temporal resolutions on outcomes of power-sector models  
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Mallapragada et al., 2018; Reichenberg et al., 2018). Others have presented methods for selecting time-
segments based on load or VRE availability (Nahmmacher et al., 2016; van der Heijde et al., 2019). 
Furthermore, Blanford et al. (2018) and Pineda & Morales (2018) have presented methods on selecting 
time-segments based on correlated load and VRE availability, but do not have comparisons between 
other temporal selection methods. Here we build on the previous research to systematically compare 
across temporal selection methods, considering both load and VRE availability, by calculating the error 
of the various methods using yearlong hourly data.  
 
Furthering the complexity, spatial resolution can compound the error produced from temporal 
resolution. Krishnan & Cole (2016) demonstrate that aggregating regions in their CEM from the 134 
balancing authorities to states and North American Electric Reliability Corporation (NERC) regions can 
mute variability and impact model investment decisions. In addition, the correlation of load and VRE 
availability between regions may result in the misalignment of time segments in some temporal 
selection methods. This work fills this void in the literature by investigating three different spatial 
resolution assumptions (e.g., electricity interconnections, NERC market regions, and native model 
regions) and then evaluates the temporal selection methods performance at each.  
 
The novelty of this work revolves around quantifying the impact of different temporal modeling 
assumptions. When selecting how much granularity to incorporate within the models there is an 
inherent trade-off between solve time and model performance. Too high of a temporal resolution 
contributes to lengthy solve times which hamper the ability to practically perform analysis. On the other 
hand, as this paper illustrates, reducing resolution is directly related to decreases in data accuracy. 
Different temporal selection methods can optimize the representation of the underlying data while 
meeting the time segment criteria of a given model.  
 

2. Methods  
The research approach for measuring the performance of different temporal selection methods involves 

a mix of energy planning models and temporal selection methods. The data is sourced from 

Environmental Protection Agency’s (EPA) Power Sector Modeling Platform version 6 (EPA Platform v6) 

using the Integrated Planning Model (IPM) (EPA, 2018).  Multiple temporal selection methods are 

applied to the model regions (i.e., EPA’s current approach (EPA, 2018), as well as sequential, categorical, 

and clustering approaches, as defined in the sections below) across a range of time-segment 

combinations. Across all approaches, temporal selection methods effectiveness is measured by 

comparing the root-mean square error (RMSE), where RMSE is defined by the difference between the 

actual (observed) hourly data and the derived time segments.  

 

In addition, alternative spatial aggregation methods are investigated. Within each dataset different 

levels of regional aggregation are applied (see Figure 4). Then the RMSE and the temporal-spatial 

alignment results are calculated. Temporal-spatial alignment measures the frequency at which the hours 

within a time-segment align with neighboring regions. 

 

2.1 Datasets and Model Regions 
EPA Platform v6 (EPA, 2018) 8760-hourly input data was used for evaluating the temporal and spatial 
resolution of different temporal selection methods. The selection methods were applied to three 
datasets: electricity load, solar photovoltaic (PV) capacity factors, and onshore wind capacity factors. 
 



      

      
5 

For electricity demand, this paper relies on EPA Platform v6 electricity load data (Table 2-2 of EPA, 
2018). The data includes a single year (8760 hours) of load data for regions that cover the continental 
United States. The data is scaled by the peak capacity for each region.  EPA Platform v6 has a total of 78 
model regions; however, only 63 model regions were included in this analysis, the 11 Canadian regions 
and 4 US supply-only regions were excluded due to data limitations, and being outside the scope of this 
analysis.  
 
In terms of resources, only onshore wind and solar PV resource profiles are considered in this analysis 
due to the wide inclusion of these resources in continental US and capacity expansion models. Wind and 
solar data from Table 4-39 and 4-43 of EPA (2018) are converted to hourly capacity factors. In addition 
to the 63 model regions, VRE availability is further subdivided by the state boundaries within each 
model region. This results in approximately 120 subregions for wind and solar. Each technology and 
region is then further subdivided by resource class. The data includes up to 10 different resource classes 
for onshore wind and up to seven for solar PV. In total, the data used contains 621 onshore wind profiles 
and 245 solar PV profiles.  
 

2.2 Temporal Selection Methods   
Temporal selection methods were analyzed across three categories: sequential, categorical, and 
clustering. These individual methods reflect commonly used approaches in CEMs (Connolly et al., 2009; 
Huntington et al., 2020). We also include the EPA Platform v6 selection method (EPA, 2018), which 
applies a mixed approach (combining both categorical and clustering techniques).  
 
2.2.1 Sequential Method 

The sequential method averages every set of hours within a specified interval. For example, an interval 
of two hours would average the data in hours one and two together, then hours three and four 
together, etc., resulting in half as many time segments. A two-hour interval results in 12 time-segments 
per day, 4,380 per year. Intervals can also span across multiple days, such as a 120-hour interval 
averaging the hours across five days, which yields 73 time-segments. However, load and solar data have 
diurnal patterns (i.e., solar generation follows the rise and fall of the sun), meaning that averaging 
values across five days yields poor results. Figure 1(a) shows a six-hour interval, four time-segments per 
day. Figure 1(b) illustrates how the six-hour interval aggregation method spans across a period of 6 days.  
The sequential approach presents results for every multiple of 8,760, yielding 32 profiles total. 
 

 
Figure 1: Sequential Temporal Selection Method for Example Load Dataset 
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2.2.2 Categorical Method 

The categorical method better respects diurnal load and VRE availability compared to the sequential 
method by selecting representative days throughout the year to define a time-segment set. Day-types 
are selected categorically, for example, by month of the year or day of the week. Additionally, one can 
reduce the number of time segments within a representative day by applying categorical hour-types. For 
example, representing all 24 hours within a single representative day-type for each month of the year 
results in 288 time-segments; however, this can be reduced further to 72 time-segments by using 4-hour 
intervals within each day-type.  
 
Figure 2(a) walks through creating a representative day. Here each hour of the day is averaged across 6 
days to form a representative day. Next, Figure 2(b) maps the representative day across the original 6-
days of data. 
 

 
Figure 2: Categorical Temporal Selection Method for Example Load Dataset 

 
The three most common categories (month-, day-, and hour-type) are applied. Month-types explored 
include using all months, grouping into pairs of consecutive months, and grouping months by seasonal 
attributes (where spring/fall are combined). Day-types explored were all weekdays, weekend/weekday 
groupings, and a third category that identified the peak day within each month. Weekday/weekend 
groupings were selected because load profiles differ across the two day-types, as electricity 
consumption shifts from commercial/industrial loads on the weekdays to residential loads on the 
weekends, and a peak day was included to ensure peak characteristics of load could also be captured. 
Hour-types explored included all hours within the day and then 4-hour intervals within a day-type.  
 
Every combination of these categories was investigated, yielding 18 categorical day-type profiles. The 
profile time-segment count ranged between 18 and 864 time-segments. A final category was added that 
included a single representative day for each week out of the year, which resulted in 1,248 time-
segments. Table 1 summarizes the profiles used for the categorical method.  
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Table 1: Categorical Profiles 

PROFILE MONTH-TYPE  DAY-TYPE  HOUR-TYPE  SEGMENT #  

W52-D1-H24 Weekly 52 Single 1 24 Hours 24 1248 

M12-D3-H24 Monthly 12 W-day/W-end/Peak 3 24 Hours 24 864 

M06-D3-H24 Bi-Monthly 6 W-day/W-end/Peak 3 24 Hours 24 432 

M03-D3-H24 Seasons 3 W-day/W-end/Peak 3 24 Hours 24 216 

M12-D2-H24 Monthly 12 W-day/W-end 2 24 Hours 24 576 

M06-D2-H24 Bi-Monthly 6 W-day/W-end 2 24 Hours 24 288 

M03-D2-H24 Seasons 3 W-day/W-end 2 24 Hours 24 144 

M12-D1-H24 Monthly 12 Single 1 24 Hours 24 288 

M06-D1-H24 Bi-Monthly 6 Single 1 24 Hours 24 144 

M03-D1-H24 Seasons 3 Single 1 24 Hours 24 72 

M12-D3-H06 Monthly 12 W-day/W-end/Peak 3 4-Hour Int 6 216 

M06-D3-H06 Bi-Monthly 6 W-day/W-end/Peak 3 4-Hour Int 6 108 

M03-D3-H06 Seasons 3 W-day/W-end/Peak 3 4-Hour Int 6 54 

M12-D2-H06 Monthly 12 W-day/W-end 2 4-Hour Int 6 144 

M06-D2-H06 Bi-Monthly 6 W-day/W-end 2 4-Hour Int 6 72 

M03-D2-H06 Seasons 3 W-day/W-end 2 4-Hour Int 6 36 

M12-D1-H06 Monthly 12 Single 1 4-Hour Int 6 72 

M06-D1-H06 Bi-Monthly 6 Single 1 4-Hour Int 6 36 

M03-D1-H06 Seasons 3 Single 1 4-Hour Int 6 18 

Note: For this paper, seasons were based on the EPA Platform v6 definition of seasons (EPA, 2018), where fall and spring are 
combined into one shoulder season. 

 
2.2.3 Clustering Method 

The clustering method identifies hours of the year with common characteristics, and groups them 
together. Load duration curves (LDCs) are a commonly applied example of this approach. Here hours 
within a year are sorted from highest to lowest load value and then grouped (or clustered) together. For 
example, one could sort all the load hours and then use the top 1% of hours as one time-segment, 
followed by the next 4% and so on. Figure 3 presents a breakdown of this approach. In Figure 3(a) the 
hours are sorted across 6 days and averaged them by their sort order. Figure 3(b) shows how the 
segments look across the 6 days. For this paper agglomerative hierarchical clustering is applied to group 
hours together. The agglomerative hierarchical clustering method starts with each point as a separate 
cluster, then measures the distance between points, or a set of points, and merges sets with the 
shortest Euclidean distances until a user-specified number of clusters is achieved. 
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Figure 3: Clustering Temporal Selection Method for Example Load Dataset 

 
Here the clustering approaches are examined across four different data groupings: three include 
clustering the data on each of the three datasets in this analysis (load, solar, and wind) separately, and 
the fourth approach involves clustering data across all three datasets at once (referred to as 3-way or 
multi-criteria clustering approach throughout this paper). Next, two methods for clustering were 
applied: an hourly method and a day-type method. The hourly clustering method clusters the data 
across two dimensions: the 8,760-hours of the year and the number of profiles (e.g., wind, solar, and 
load). The day-type clustering method clusters the data across three dimensions: the 365 days of the 
year, the 24-hours of the day, and the number of profiles. The day-type method yields best-fit 
representative day-types, while the hourly method clusters data regardless of the hour of day. 
 
Under the day-type method, the four clustering approaches were applied to 18 specified time-segment 
numbers, ranging from one to 50 days or 24 to 1,200 (50×24) time-segments, and resulting in 72 
profiles. Under the hourly method, the four clustering approaches were applied to 20 different specified 
time-segment numbers, matching the time segment numbers that aligned with the day-type method 
and adding two additional profiles at 6 and 12 time-segments, and resulting in 80 profiles. 
 
2.2.3 Summary of Temporal Selection Methods 

Table 2 summarizes the temporal selection methods evaluated in this paper and the number of time 
segments considered for each method. A total of 204 temporal selection profiles were tested.  
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Table 2: Summary of Profiles 

Methods  
Considered 

Methods  
Description 

Time Segments  
Considered  

Time Segments  
Description 

Sequential The sequential approach 
averages hours across a set 
interval.  

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 
24, 30, 40, 60, 73, 120, 146, 219, 
292, 365, 438, 584, 730, 876, 
1095, 1460, 1752, 2190, 2920, 
4380, 8760 

every factor of 8760;  
total of 32 profiles  

Categorical The categorical approach 
groups hours based on a 
set of attributes associated 
with that hour. 

18, 36, 36, 54, 72, 72, 72, 108, 
144, 144, 144, 216, 216, 288, 
288, 432, 576, 864, 1248 

see Table 1 for day-type 
combinations applied; 
total of 19 profiles 

Clustering Hourly Approach:  
The hourly clustering 
approach clusters hours 
together that are closest in 
value to one another.  

6, 12, 24, 48, 72, 96, 120, 144, 
168, 192, 216, 240, 360, 480, 
600, 720, 840, 960, 1080, 1200 

hour list = 6, 12, 24, 48, 72, 96, 
120, 144, 168, 192, 216, 240, 
360, 480, 600, 720, 840, 960, 
1080, 1200; 
20 profiles per dataset (load, 
wind, solar, and all 3 combined), 
total of 80 profiles 

 Day-Type Approach:  
The day-type clustering 
approach clusters days 
together where the values 
within each hour of the day 
are closest to one another.  

24, 48, 72, 96, 120, 144, 168, 
192, 216, 240, 360, 480, 600, 
720, 840, 960, 1080, 1200 

day list = 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 15, 20, 25, 30, 35, 40, 45, 50; 
18 profiles per dataset (load, 
wind, solar, and all 3 combined), 
total of 72 profiles 

EPA 
Platform v6 
(IPM) 

Defines time-segments by 
a three by 24-step LDC. The 
year is divided into three 
seasons, which are sorted 
into LDCs and clustered 
into six groups. Each group 
is then separated into four 
time-of-day categories.  

72 total of 1 profile 

 

2.3 Relative Root Mean Square Error Measure 
The RMSE is a frequently used measure of the differences between values predicted by a model and 
true values that have been observed. To measure the performance of each profile’s ability to represent 
data accurately, the RMSE across each dataset’s original spatial resolution is calculated using Equation 1. 
There are multiple statistical ways to measure the error of modeling efforts. The RMSE is used in this 
analysis because it returns the error as a single value that is easily comparable between profiles and 
penalizes large errors more than smaller errors. One advantage of using RMSE is that the RMSE gives a 
higher weight to larger errors, thereby potentially identifying approaches that are more successful at 
representing critical load hours, like peak load.  
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Explicitly, the RMSE can be computed as a function of the summed differences across regions (r) and 
time segments (h) from predicted (p) values the actual (a) values at each resource group (g) for a 
number of observations (n): 
 

𝑅𝑀𝑆𝐸 = √∑ (𝑝𝑟,ℎ,𝑔  − 𝑎𝑟,ℎ,𝑔)
2

𝑟,ℎ,𝑔

𝑛
 

Equation 1 

 
Here the predicted value (p) is the calculated average value for each time-segment derived from the 
different methods summarized in Table 2. The actual value (a) is the corresponding hourly value of the 
resource. For the results, a relative RMSE for each profile is calculated by scaling the RMSE for a given 
profile by the max RMSE value for each dataset. The max RMSE for each dataset is defined as the RMSE 
from applying a single time segment, an annual average value. 
 
One challenge with using a statistical method to evaluate input assumptions is that it does not consider 
the accuracy of the model outcomes. It is important to note that the level of accuracy of the temporal 
resolution only matters to the extent that it impacts model results. For instance, high temporal 
resolution may not be necessary in a system predominantly served by dispatchable resources now and 
in the future. But since these models are used to evaluate a range of scenarios, ensuring the model is 
well equipped to evaluate all alternative futures holds merit. Additionally, the statistical approach allows 
for a more efficient means of evaluating different temporal selection methods compared with the time 
associated with setting up and running different CEMs for each individual profile presented here.  
 

2.4 Spatial Aggregation Methods 
For a subset of temporal selection methods, the impact that different spatial resolutions have on the 
performance metrics is evaluated. The spatial resolutions evaluated in this paper includes the EPA 
Platform v6 model regions (63 regions), NERC market regions (16 regions), and interconnect regions (3 
regions), as seen in Figure 4. The datasets were aggregated up to each region by summing load data and 
averaging wind and solar capacity factors at each hour.  
 

   

(a) EPA Platform v6 model  (b) NERC  (b) US Interconnect 

 
Figure 4: Spatial Aggregation Regions for (a) EPA Platform v6 model regions, (b) NERC market regions, and (c) Interconnect 

regions.  

 

2.5 Temporal-Spatial Alignment Measure 
Temporal-spatial alignment is important for the instances where information is transferred from one 
region to another. In CEMs, this transfer plays out in the form of electricity trading.  Clustering time 
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segment selection can occur at different spatial resolutions. Clustering time-segments at individual 
model regions, may yield lower RMSE as compared to NERC or interconnect regions, but may lead to 
mismatches of information across regions. This information is critical in evaluating interregional trade, 
where mismatches of information could lead to unrealistic interregional transfers in model results.  
 
EPA Platform v6 defines 140 model region pairs that allow for interregional electricity trade (Table 3-21 
of EPA, 2018), referred to as total energy transfer capabilities. Total energy transfer capabilities define 
the upper limit of what can be transferred on an hourly basis given existing transmission infrastructure. 
The maximum megawatt value of electricity trade between each pair is used as the basis for evaluating 
the temporal-spatial alignment, as summarized in Figure 5.  
 

 
Figure 5: Maximum Energy Total Transfer Capabilities Between Model Regions 

 
Each region (r) contains a set of data that matches all 8,760 hours to a given number of time-segments. 
For each model region pair (y) identified, the frequency at which the hours within a given time-segment 
align are measured. The weighted frequency (WF), as defined in Equation 2, is weighted by the total 
transfer capability between the regional pair (TTCy).  
 

𝑊𝐹 =  
∑  ( 𝑇𝑇𝐶𝑦  ×  |𝑟𝑦

𝑜  ∩  𝑟𝑦
′| ) 𝑦

∑  ( 𝑇𝑇𝐶𝑦 )𝑦 ×  8,760
 

Equation 2 

 
Equation 2 is applied across all regional pairs within the clustering results. The sequential and categorical 
approaches were excluded from this section of the analysis because, although their RMSE results may 
vary with different spatial resolutions, the temporal-spatial alignment results would not. They result in 
100% frequency match regardless of the spatial resolution assumed. This is due to the fact that the data 
in these approaches is grouped based on information like interval hours or the months of the year ─ 
information which does not change from one region the next – whereas the clustering approach could 
have hours grouped in different time segments from one region to the next based on differences in load 
or VRE availability. See supplemental materials for addition details on Equation 2. 
 

3. Results and Discussion 
This section first presents the RMSE results for the sequential, categorical, and clustering approaches, 
and then a comparison across all three temporal selection methods. Then, the clustering approach is 
used to examine temporal-spatial alignment. 
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3.1 Sequential Method 
The sequential approach averages hours across a set interval. One of the main advantaged to a 
sequential approach is its ability to maintain chronology. This can be beneficial for modeling 
technologies like energy storage, which require chronology to account for charging/discharging. The 
main disadvantage to this approach is that it is not an effective tool for reducing model complexity down 
to the size typically needed in CEMs.  
 
As the datasets are hourly, an interval of 1-hour (i.e., 8,760 time-segments) results in zero error. 
Conversely, choosing an interval of 8,760-hours (i.e., an average value for the entire year) for each 
dataset defines the max error for each dataset.  
 
The RMSE, shown in Figure 6(a), for load (blue) is less than that of solar (yellow) and wind (green). One 
reason for this stems from a larger set of profiles for solar and wind (245 and 621 respectively) 
compared to load (63 total) as there are multiple resource groups for wind and solar within each model 
region (see Section 2.1 Datasets and Model Regions). Secondly, the capacity factors for wind and solar 
have higher variability than load. For example, the capacity factor for solar may reach as high as 100% 
during the midday in the summer and will drop to zero overnight. The load hours are scaled to reach 
100% at the peak hour of demand, but never drop to zero, as there is always demand on the system. To 
account for these differences, the rest of the results in the paper report the relative RMSE, as shown in 
Figure 6(b). The relative RMSE adjusts the profiles for load, solar, and wind scaling them by their max 
RMSE (the annual average).  
 

 
Figure 6: Sequential Approach RMSE (a) and Relative RMSE (b) by Dataset 

 
Figure 6 illustrates there is a distinct tradeoff between computational complexity (number of time 
segments) and the associated error. Using just a two-hour interval instead of all 8,760 hours reduces the 
number of time segments in half but only results in 0.11-0.24 increase in the relative RMSE. 
Unsurprisingly, this relationship is not linear and instead the RMSE increases exponentially as the 
number of time-segments decreases.  
 
While the sequential results have illustrated the expected tradeoff between accuracy and complexity 
across the entire 8,760 landscape, the rest of the results in this paper focus on practical reductions in 
model size, examining time-segment numbers at or below 1,300 and then at or below 130.  
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3.2 Categorical Method 
The categorical approach groups hours based on a set of attributes associated with that hour, like 
month of the year or day of the week. This approach allows for representative day-types that can be 
used to map data across the year. Representative days can account for chronology like the sequential 
approach and have the added benefit of lower error results at lower time-segment numbers. 
 
Figure 7 shows the relative RMSE results for the 19 categorical profiles evaluated for each of the three 
datasets (load (a), solar (b), and wind (c)) and then the average (d) relative RMSE across all three. The 
top panel row (Figure 7 a-d) shows the profiles between zero and 1,300 time-segments and the bottom 
panel row (Figure 7 e-h) hows the RMSE of highly reduced time-segments more commonly seen in 
today’s CEMs (i.e., up to 130). 
 
Load and solar data perform better under the categorical approach compared to wind data. In Figure 
7(e–h), the relative RMSE drops by 0.13 for load, 0.10 for solar, but only 0.02 for wind, between the 
profile with 18 time-segments and the one with 120 time-segments. The difference in the categorical 
day-type approaches relative RMSE results between load and solar versus wind illustrates the strong 
diurnal alignment of load and solar data. This suggests that alternative metrics beyond day-types that 
focus on wind availability may be needed to improve representation of wind data in CEMs.  
 
It is also important to note that there is a diminishing incremental improvement on the relative RMSE 
for the categories explored here, especially for load and solar data. As shown in Figure 7(a-d), there 
seems to be little incremental benefit between the three day-types shown with time segments beyond 
500. These profiles include: M12-D2-H24, M12-D3-H24, and W52-D1-H24 (see Table 1 for definition). 
Increasing from 576 time-segments to 1,248 only yields and additional reduction in the relative RMSE of 
0.03 for load and solar and 0.06 for wind.  
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number of time-segments 

 
Figure 7: Categorical Approach Relative RMSE for Each Dataset Load (a, e), Solar (b, f), and Wind (c, g), and their Average (d, h). 

Note the x-axis differences between a-d and e-h. The second row (e-h) presents a zoomed in view of the results.   

 
Figure 7(e-h) also highlights the tradeoffs between representative hours verses representative months. 
In these panels, there are two categorical day-type approach combinations that result in 72 time-
segments, M03-D1-H24 and M12-D1-H06. For load, the M12-D1-H06 day-type (more representative 
months, fewer representative hours) results in the lower relative RMSE, while the M03-D1-H24 (fewer 
representative months, more representative hours) results in the lower for solar (with wind they are 
nearly the same). This suggests that the daily hourly intervals are more important to reflect for solar, 
whereas monthly trends may be more important for load.  
 

3.3 Clustering Method 
The clustering approach groups hours based on their data characteristics. This approach can allow for 
the lowest measures of error achievable for a given number of time segments, particularly for hourly 
clustering approach. In exchange for this reduced error, this approach loses its ability to maintain 
chronology, which limits its ability for advanced representation of technologies like storage. The day-
type clustering approach allows for the development of representative days, which allows for some 
limited representation of chronology and still achieves relatively low error results. In addition, both 
hourly and day-type clustering introduces challenges with temporal-spatial alignment, as discussed in 
Section 3.5 Temporal-Spatial Alignment.  
 
For each number of segments identified, the clustering approach was applied across four cluster 
approaches: clustering the data on each of the three datasets (load, solar, and wind) separately, and 
then a fourth multi-criteria clustering approach, which clustered data across all three datasets at once 
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(referred to as 3-way). Two clustering methods were applied: first clustering across all 8,760 hours 
(hourly approach) and second across 365 days (day-type approach).  
 

Figure 8 shows the relative RMSE results from the clustering method applied across 8,760 hours (hourly 
approach) and Figure 9 across 365 days (day-type approach). Each series in the figures shows a different 
clustering approach applied: clustering data on load (blue), solar (yellow), wind (green), or clustering on 
all three (purple). Both figures show the relative RMSE for each dataset: load (a), solar (b), wind (c) and 
then the average value for each profile (d), this time only for results with less than 130 time-segments.  
 

 
number of time-segments 

Figure 8: Hourly Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d) 

 

 
number of time-segments 

Figure 9: Day-Type Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d) 

 
The first observation is that fitting time-segments to reduce the error for one dataset results in a 
increasing the relative RMSE in other datasets.  For hourly clustering (Figure 8), the relative RMSE 
increases by 0.88 on average for load clustering load data, as compared to solar or wind clustering load 
data. We see similar trends for the solar and wind data (0.72 and 0.53 respectively).  
 
In almost all cases, the next lowest relative RMSE to the matching approaches (e.g., load clustering load 
data, etc.) is the multi-criteria clustering approach, which clusters data on load, solar, and wind 
simultaneously. When comparing Figure 8 and Figure 9, the hourly sets have a lower relative RMSE 
compared to the day-type results for the matching and multi-criteria cluster approaches and higher 
relative RMSE for the non-matching approaches. Interestingly, when looking at the average for the day-
type clustering approach, Figure 9(d), load clustering outperforms multi-criteria clustering, mainly due to 
the notable difference seen in the relative RMSE results for load Figure 9(a).  
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3.4 Comparison Across All Approaches 
This section compares the relative RMSE results across the three temporal selection methods: 
sequential, categorical, and clustering. Figure 10 shows the relative RMSE for profiles up to 1,300 time-
segments. The relative RMSE is measured for load (a), solar (b), and wind (c) and then the average (d). 
The EPA platform v6 results are shown in red, sequential green, categorical purple, and clustering blue.  
 
The clustering results are broken out into hourly (light blue) and day-type (dark blue). Both hourly and 
day-type clustering approaches are further broken out into multi-criteria clustering (o marker) and each 
dataset’s matching or native clustering approach (x markers). Only the multi-criteria approach is 
included in the average (d).   
 

 
number of time-segments 

 
Figure 10: All Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and the Average (d) 

 
One observation is the decrease in the incremental relative RMSE reduction as the temporal resolution 
increases. In most cases, the sequential profiles (green) act as an upper bound for relative RMSE; except 
for some wind day-type profiles. This is because wind data doesn’t have the same diurnal patterns of 
load and solar.  
 
The clustering approaches have the least error. The lower bound for the relative RMSE for all profiles 
tested is the hourly clustering approach. However, as observed in the previous section, the matching 
clustering approaches only perform well for the dataset in which they match and perform poorly when 
they do not match. When looking at the average (d) the multi-criteria hourly clustering approach shows 
the lowest relative RMSE across all time segments.  
 
Another takeaway from Figure 10 is that the wind dataset has the highest relative RMSE for all profiles, 
which is partly a function of the number of wind profiles represented, but also indicates that 
representing wind in temporal resolution approaches is more difficult than the other datasets due to the 
variable nature of the data.  
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Figure 11: Select Profiles Regional Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c) 

 

(b) 

(c) 

(a) 
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Figure 11 displays regional differences in relative RMSE for select profiles (all with near 72 time-
segments). The first key observation is that not all regions necessarily have the same level of error, 
meaning results will vary and what is the best fit for one region may not be the best fit for another.  
 
For the load dataset in Figure 11(a), day clustering and day-type approaches perform better in the south 
and west compared to the central and east, perhaps due to less seasonal variation in those regions. For 
the solar dataset (b), the best performing profile across all regions is the Cluster Solar 72-Hrs profile. In 
those cases, Wyoming and regions in the Southeast have higher relative RMSEs compared to the rest of 
the regions. This suggests that the solar data is more variable in those regions. Across the wind dataset 
(c), Wyoming, Colorado, and parts of Texas has a lower relative RMSE than other regions. One reason for 
this may be related to the strength of the resource in these regions. There tends to be more availability 
of wind in these regions, which results in more consistent availability of the resource.  
 
Overall, it is more advantageous to use a three-way clustering approach as opposed to a single approach 
if interested in appropriately characterizing all three sets. It is also important to be aware of differences 
in regional performance of temporal resolution to identify which regions a model may be less or more 
accurate in modeling load, solar, and wind resources.  
 

3.5 Temporal-Spatial Alignment 
The results have thus far utilized temporal selection methods applied at the model region level (63 
regions); however, temporal selection approaches can also be applied at different levels of spatial 
aggregation. In this section the clustering approaches are applied at the NERC (16 regions) and 
interconnect level (3 regions) and the impact on the results is measured. Aligning time segments across 
broader regions improves the evaluation of trade outcomes, but often at the expense of the RMSE. 
 
Figure 12 shows the results from changing the spatial resolution for a subset of profiles, the clustering 
profiles highlighted in Figure 11 (e.g., 72-hour and 3-day clustering approaches). In Figure 12, clustering 
(x marker) is more sensitive to spatial aggregation compared to day-type clustering (o marker).  
 
It appears that for most of the profiles considered, decreasing the spatial resolution from 63 regions to 3 
regions results in an increase in the error. This is especially true when considering multi-criteria 
clustering and each dataset’s matching or native clustering approach. Specifically, in Figure 12, going 
from 63 to 3 regions results in large increases (greater than 0.3) in the relative RMSE for the matching 
hourly cluster approaches for all datasets and for the multi-criteria clustering approach for the solar and 
wind datasets.  Its only in the cases where the relative RMSE is already relatively high at 63 regions 
where the value would decrease when the method is applied to fewer regions.  
 
Interestingly, as seen in Figure 12(a), the largest decrease (-0.18) in the relative RMSE from 63 to 3 
regions is for the day-type multi-criteria cluster approach applied to load data (purple o markers). This is 
likely due the fact that larger regions more effectively smooth out extremes in variability seen in wind 
and solar day-type data while still capturing daily load patterns. This is consistent with observations 
made in Section 3.3 Clustering Method. 
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number of regions 

 
Figure 12: Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d) at 

Different Spatial Resolutions 

 
Another consideration with temporal resolution is the extent the selected hours align from one region 
to the next. Figure 13 shows the impact of applying different spatial resolutions to the temporal 
selection method has on hourly alignment. The y-axis shows the percentage of hours that fall within like 
time-segments weighted across all trade regions. Figure 13(a,c) shows the day-type clustering approach 
and (b,d) the hourly clustering approach. Each of the series shows the weighted frequency for the 
different spatial resolutions across the four profiles within each clustering approach (load, solar, wind, 
and 3-way). The square markers show the frequency at 3 regions, the circles at 16 regions, and the 
triangles at 63 regions.  
 
Selecting the three interconnections as the point of spatial resolution applied to the temporal selection 
method yields near perfect alignment of hours across trade regions, although, as observed previously in 
Figure 12, at the expense of higher relative RMSE results. This near perfect alignment of hours is due to 
the facts that little to no trade of electricity is occurs across the three interconnections. Of the 306 GW 
of energy total transfer capabilities across regions evaluated in this analysis, 98% (or 300 GW) of that 
energy total transfer capabilities occurs within interconnection boundaries. For NERC regions, 49% (or 
155 GW) of the energy total transfer capabilities evaluated occurs within NERC boundaries.  
 
For the three spatial resolutions evaluated, at higher time-segments (a,b) the clustering approach 
essentially reflects the share of the total energy transfer capabilities that occurs within its respective 
boundaries. Fewer time-segments (c,d) lead to a higher probability of more aligned hours. Figure 13(c,d) 
show the day-type clustering approach performs better than the hourly clustering approach at aligning 
hours because hours of the day within the day-type are already aligned, ensuring greater alignment. 
Although hourly clustering yields lower relative RMSE results, this comes at a tradeoff between 
interregional hourly alignment as compared to the day-type clustering approach.  
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number of time-segments 

 
Figure 13:  Interregional Alignment for Day-Type (a, c) and Hourly (b, d) Clustering Profiles at Different Spatial Resolutions 

 
Across the four profiles (load, solar, wind, and 3-way) and within each clustering approach and spatial 
resolution evaluated there is little difference between alignment results. The exceptions to this are the 
load-day-type clustering profiles in (a,c) and the solar-hourly clustering profiles in (b,d). Weather 
conditions on a day-to-day basis likely assist in the greater alignment between neighboring regions 
relative to the other profiles in the clustering approach.  
 

Conclusions 
Our work has highlighted differences in time-segment representations across three temporal selection 
methods, and three subnational region groupings. The purpose of this paper is to provide guidance for 
modelers and assess the most-commonly applied temporal selection methods. This work is also useful 
for considering the tradeoffs between model resolution and fidelity to underlying data. 
 
Through this research, there are a few salient insights into temporal selection methods. First is that the 
sequential approach had the highest error. In certain instances, for example where modelers want to 
retain a high number of time segments and properly represent technologies like energy storage, the 
method could still prove viable but, in general, there are better methods for selecting data for CEMs. 
 
One of the approaches that particularly excelled is the hourly multi-criteria clustering of simultaneous 
wind, solar, and load datasets. Although it could be bested in terms of reduced error by other 
approaches for each individual dataset, across all datasets it performed particularly well. This could 
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prove to be a viable approach for modelers that are not particularly concerned with a specific 
technology or load patterns and instead want a holistic view of the intertwined relationships of 
technology availability and electricity demand. One challenge with the hourly multi-criteria clustering 
approach is the lack of chronology, which can be important for modeling certain technologies, like 
storage.  
 
Additionally, this analysis highlights the tradeoffs between temporal and spatial resolution for time 
selection methods. Applying broader regional definitions to clustering approaches improves the 
alignment of hours across neighboring model regions.  Alignment of hours is important for modeling 
trade between regions; however, the improvement of aligned hours often came at the expense of the 
higher error. In particular, hourly clustering profiles, which often performed the best at reducing error 
performed poorly at aligning hours across regions. This suggests that modelers should use caution when 
interpreting results that have large quantities of trade across regions unless care is taken to ensure 
those hours are aligned. However, more generally, improving temporal-spatial alignment should not 
come at the expense of the key performance metric, the relative RMSE, as the majority of power sector 
investment decisions within CEMs are based on intra-regional rather than inter-regional model 
decisions. 
 
For modelers concerned with striking a balance between representing the underlying input data, 
modeling chronology, and aligning interregional trade, an alternative approach that excelled well across 
all of these concerns was the day-type load clustering approach, which yielded the next lowest relative 
RMSE after the hourly clustering approach across all three datasets. In addition, with certain care, the 
categorical approaches could be designed in a way to achieve similar results to the day-type load 
clustering approach and avoid concerns regarding interregional trade, but as the results show, this is 
sensitive to the categories selected. Both of approaches also tend to perform significantly worse at 
representing wind data, which does not reflect the same level of diurnal pattern compared to load and 
solar.  
 
A fruitful direction for future work would be to test the temporal resolution approaches identified 
within a model to measure the impact on model results and computational time. It is important to note 
that the level of accuracy of the temporal resolution only matters to the extent that it impacts model 
outcomes and changes the dispatch or level of investment for capacity expansion. The value of this work 
has been quantifying the error reduction in including high temporal resolution at different spatial scales. 
This work can help other energy modelers understand how the temporal resolution can impact the 
accuracy of their energy analyses, and lead to better representation of resource profiles in energy 
system models.  
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