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Abstract

Capacity expansion models for the power sector are used to project future decisions over the coming
decades by simulating investment and operation decisions for the use of electricity. Due to model
performance constraints, these models typically do not explicitly simulate every hour within a year, but
instead simulate representative time segments (groups of hours). This paper evaluates different
approaches for selecting time segments across three methods: sequential, categorical, and clustering,
across a wide range of time-segment quantities, for a total of 204 temporal profiles. To measure the
performance of each profile’s ability to accurately represent data, the root-mean-square-error of each
profile’s time segments are compared to the data’s original hourly data. The temporal alignment across
regions is also measured (i.e., how often windy days align across regions). Different spatial resolutions
were applied for a subset of the temporal selection methods to investigate the impact spatial resolution
has on performance. This paper provides a framework for measuring the value of different temporal
selection methods and of adding more granular data to energy system models. Overall, multi-criteria
clustering yields the lowest root-mean-square-error across all datasets evaluated and provides a holistic
view of the intertwined relationships between renewable generation and electricity demand.
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Highlights:

e Temporal selection methods analyzed across three commonly used techniques.

e Measured performance of representing model data within representative hours.

e Measured temporal performance across electric load and wind and solar generation.
e C(Clustering techniques performed better than sequential or categorical techniques.

Abbreviations:
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BA Balancing Authority

CEM Capacity expansion models

EPA Environmental Protection Agency

IPM Integrated Planning Model

LDC Load duration curves

NERC North American Electric Reliability Corporation
NREL National Renewable Energy Laboratory

PV Solar photovoltaic

ReEDs NERL’s Regional Energy Deployment System
RMSE Root-mean-square-error

VRE Variable renewable energy
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1. Introduction

As the energy transition moves forward there is a need to understand how data variability impacts
recommendations derived from modeling. A key characteristic of modeling is that it relies on simplifying
assumptions to characterize real world behaviors. In this way, models are simplified versions of reality
that allow us to observe, understand, and make conjectures about behavior.

Capacity expansion models (CEMs) apply optimization techniques to project power sector investment
decisions over a span of decades (IRENA, 2017). These optimization models differ from other types of
energy sector models in how they simplify inputs. For example, simulation models simulate prescribed
future energy systems and are generally capable of modeling all 8,760 hours within a year (Lund et al.,
2017). However, in the case of CEMs, which endogenously evaluate investment decisions across
decades, representing every hour of every year over a model’s projection period is generally deemed
computationally unrealistic. To maintain computational tractability, CEMs leverage simplifications in
terms of representative hours within a year (temporal resolution) and representative regions across a
set of power producers (spatial resolution). The characteristics of some of the more widely recognized
national-scale CEMs are featured in Huntington et al. (2020) and in Chang et al. (2021).

CEMs have become more complex over time due to recent and expected changes within the power
sector (Nock & Baker, 2019; Solomon & Krishna, 2011). For example, in the United States, generation
from variable renewable energy (VRE), such as wind and solar, recently overtook natural gas as the
fastest-growing source of electricity generation (EIA, 2020). One drawback of VRE generation stems
from the variability of VRE supply, which makes it a challenge to model (Cole et al., 2017; Mai et al.,
2018). Yet incorporating these resource dynamics is important to improving cost estimations of system
expansion (Spittler et al. 2020). Looking forward this modeling complexity is compounded by the push to
decarbonize the power sector, increase demand response capabilities (Hamidpour et al. 2022), and
increase VRE supply (Sepulveda et al., 2018).

In addition to the uncertain nature of VRE, electricity demand varies, influenced by changes in
consumption habits like heating and cooling, which adds stochasticity to the grid (Eshraghi et al., 2021).
Increasing VRE combined with demand uncertainty creates an inherent risk in the mismatch of supply
and demand for energy system planners (Lund, 2018), particularly in deterministic models (Scott et al.,
2021). Models of the power sector should aim to have sufficient temporal resolution to incorporate the
stochasticity of load and VRE generation while also retaining computational tractability and overall
system accuracy.

This paper uses statistical methods to measure the performance of common temporal selection
approaches. The key contribution to the literature is benchmarking the performance of temporal section
methods across resource and demand types, and identifying best practices. Temporal selection methods
dilute information necessary for power-sector investment decisions. Thus, understanding the difference
between initial data and simplifying assumptions applied can improve the validity of different energy
analyses. Specifically, this paper fills this gap in the literature by evaluating the performance of 204
temporal resolution profiles on load, wind, and solar datasets to identify the discrepancies between
temporal selection methods and highlight the benefits of higher temporal resolutions. This is
accomplished by quantifying the error between reduced time-segment input (i.e., temporal resolution)
and actual variability between load, wind, and solar profiles.

Previous studies have evaluated different temporal resolutions on outcomes of power-sector models



Mallapragada et al., 2018; Reichenberg et al., 2018). Others have presented methods for selecting time-
segments based on load or VRE availability (Nahmmacher et al., 2016; van der Heijde et al., 2019).
Furthermore, Blanford et al. (2018) and Pineda & Morales (2018) have presented methods on selecting
time-segments based on correlated load and VRE availability, but do not have comparisons between
other temporal selection methods. Here we build on the previous research to systematically compare
across temporal selection methods, considering both load and VRE availability, by calculating the error
of the various methods using yearlong hourly data.

Furthering the complexity, spatial resolution can compound the error produced from temporal
resolution. Krishnan & Cole (2016) demonstrate that aggregating regions in their CEM from the 134
balancing authorities to states and North American Electric Reliability Corporation (NERC) regions can
mute variability and impact model investment decisions. In addition, the correlation of load and VRE
availability between regions may result in the misalignment of time segments in some temporal
selection methods. This work fills this void in the literature by investigating three different spatial
resolution assumptions (e.g., electricity interconnections, NERC market regions, and native model
regions) and then evaluates the temporal selection methods performance at each.

The novelty of this work revolves around quantifying the impact of different temporal modeling
assumptions. When selecting how much granularity to incorporate within the models there is an
inherent trade-off between solve time and model performance. Too high of a temporal resolution
contributes to lengthy solve times which hamper the ability to practically perform analysis. On the other
hand, as this paper illustrates, reducing resolution is directly related to decreases in data accuracy.
Different temporal selection methods can optimize the representation of the underlying data while
meeting the time segment criteria of a given model.

2. Methods

The research approach for measuring the performance of different temporal selection methods involves
a mix of energy planning models and temporal selection methods. The data is sourced from
Environmental Protection Agency’s (EPA) Power Sector Modeling Platform version 6 (EPA Platform v6)
using the Integrated Planning Model (IPM) (EPA, 2018). Multiple temporal selection methods are
applied to the model regions (i.e., EPA’s current approach (EPA, 2018), as well as sequential, categorical,
and clustering approaches, as defined in the sections below) across a range of time-segment
combinations. Across all approaches, temporal selection methods effectiveness is measured by
comparing the root-mean square error (RMSE), where RMSE is defined by the difference between the
actual (observed) hourly data and the derived time segments.

In addition, alternative spatial aggregation methods are investigated. Within each dataset different
levels of regional aggregation are applied (see Figure 4). Then the RMSE and the temporal-spatial
alignment results are calculated. Temporal-spatial alighnment measures the frequency at which the hours
within a time-segment align with neighboring regions.

2.1 Datasets and Model Regions

EPA Platform v6 (EPA, 2018) 8760-hourly input data was used for evaluating the temporal and spatial
resolution of different temporal selection methods. The selection methods were applied to three
datasets: electricity load, solar photovoltaic (PV) capacity factors, and onshore wind capacity factors.



For electricity demand, this paper relies on EPA Platform v6 electricity load data (Table 2-2 of EPA,
2018). The data includes a single year (8760 hours) of load data for regions that cover the continental
United States. The data is scaled by the peak capacity for each region. EPA Platform v6 has a total of 78
model regions; however, only 63 model regions were included in this analysis, the 11 Canadian regions
and 4 US supply-only regions were excluded due to data limitations, and being outside the scope of this
analysis.

In terms of resources, only onshore wind and solar PV resource profiles are considered in this analysis
due to the wide inclusion of these resources in continental US and capacity expansion models. Wind and
solar data from Table 4-39 and 4-43 of EPA (2018) are converted to hourly capacity factors. In addition
to the 63 model regions, VRE availability is further subdivided by the state boundaries within each
model region. This results in approximately 120 subregions for wind and solar. Each technology and
region is then further subdivided by resource class. The data includes up to 10 different resource classes
for onshore wind and up to seven for solar PV. In total, the data used contains 621 onshore wind profiles
and 245 solar PV profiles.

2.2 Temporal Selection Methods

Temporal selection methods were analyzed across three categories: sequential, categorical, and
clustering. These individual methods reflect commonly used approaches in CEMs (Connolly et al., 2009;
Huntington et al., 2020). We also include the EPA Platform v6 selection method (EPA, 2018), which
applies a mixed approach (combining both categorical and clustering techniques).

2.2.1 Sequential Method

The sequential method averages every set of hours within a specified interval. For example, an interval
of two hours would average the data in hours one and two together, then hours three and four
together, etc., resulting in half as many time segments. A two-hour interval results in 12 time-segments
per day, 4,380 per year. Intervals can also span across multiple days, such as a 120-hour interval
averaging the hours across five days, which yields 73 time-segments. However, load and solar data have
diurnal patterns (i.e., solar generation follows the rise and fall of the sun), meaning that averaging
values across five days yields poor results. Figure 1(a) shows a six-hour interval, four time-segments per
day. Figure 1(b) illustrates how the six-hour interval aggregation method spans across a period of 6 days.
The sequential approach presents results for every multiple of 8,760, yielding 32 profiles total.
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Figure 1: Sequential Temporal Selection Method for Example Load Dataset



2.2.2 Categorical Method

The categorical method better respects diurnal load and VRE availability compared to the sequential
method by selecting representative days throughout the year to define a time-segment set. Day-types
are selected categorically, for example, by month of the year or day of the week. Additionally, one can
reduce the number of time segments within a representative day by applying categorical hour-types. For
example, representing all 24 hours within a single representative day-type for each month of the year
results in 288 time-segments; however, this can be reduced further to 72 time-segments by using 4-hour
intervals within each day-type.

Figure 2(a) walks through creating a representative day. Here each hour of the day is averaged across 6
days to form a representative day. Next, Figure 2(b) maps the representative day across the original 6-
days of data.
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Figure 2: Categorical Temporal Selection Method for Example Load Dataset

The three most common categories (month-, day-, and hour-type) are applied. Month-types explored
include using all months, grouping into pairs of consecutive months, and grouping months by seasonal
attributes (where spring/fall are combined). Day-types explored were all weekdays, weekend/weekday
groupings, and a third category that identified the peak day within each month. Weekday/weekend
groupings were selected because load profiles differ across the two day-types, as electricity
consumption shifts from commercial/industrial loads on the weekdays to residential loads on the
weekends, and a peak day was included to ensure peak characteristics of load could also be captured.
Hour-types explored included all hours within the day and then 4-hour intervals within a day-type.

Every combination of these categories was investigated, yielding 18 categorical day-type profiles. The
profile time-segment count ranged between 18 and 864 time-segments. A final category was added that
included a single representative day for each week out of the year, which resulted in 1,248 time-
segments. Table 1 summarizes the profiles used for the categorical method.



Table 1: Categorical Profiles

PROFILE MONTH-TYPE DAY-TYPE HOUR-TYPE SEGMENT #
W52-D1-H24 Single 24 Hours 24

M12-D3-H24 | [Monthiy | - 24 Hours 2 864
MO06-D3-H24 ‘ Bi-Monthly 6 24 Hours 24 432
MO03-D3-H24 ‘ Seasons 3 24 Hours 24 216
M12-D2-H24 _ 24 Hours 24 576
MO06-D2-H24 ‘ Bi-Monthly 6 24 Hours 24 288
M03-D2-H24 | Seasons 3 24 Hours 24 144
M12-D1-H24 | {Monehly | 42| single 24 Hours 24 288
MO06-D1-H24 ‘ Bi-Monthly 6 Single 1 | 24 Hours 24 144
MO03-D1-H24 ‘ Seasons ‘ 24 Hours 24 72
M12-D3-H06 4-Hour Int 6 216
MO06-D3-H06 ‘ Bi-Monthly 4-Hour Int 6 108
MO03-D3-H06 ‘ Seasons 4-Hour Int 6 54
MO06-D2-H06 ‘ Bi-Monthly 4-Hour Int 6 72
M03-D2-H06 | Seasons 128 4-Hour int 6 36
M12-D1-H06 _- Single 1 | 4-Hour Int 6 72
MO06-D1-HO6 | Bi-Monthly 6 | single 1 | 4-Hour Int 6 36
MO03-D1-H06 ‘ Seasons 3 Single ‘ 4-Hour Int 6 18

Note: For this paper, seasons were based on the EPA Platform v6 definition of seasons (EPA, 2018), where fall and spring are
combined into one shoulder season.

2.2.3 Clustering Method

The clustering method identifies hours of the year with common characteristics, and groups them
together. Load duration curves (LDCs) are a commonly applied example of this approach. Here hours
within a year are sorted from highest to lowest load value and then grouped (or clustered) together. For
example, one could sort all the load hours and then use the top 1% of hours as one time-segment,
followed by the next 4% and so on. Figure 3 presents a breakdown of this approach. In Figure 3(a) the
hours are sorted across 6 days and averaged them by their sort order. Figure 3(b) shows how the
segments look across the 6 days. For this paper agglomerative hierarchical clustering is applied to group
hours together. The agglomerative hierarchical clustering method starts with each point as a separate
cluster, then measures the distance between points, or a set of points, and merges sets with the
shortest Euclidean distances until a user-specified number of clusters is achieved.
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Figure 3: Clustering Temporal Selection Method for Example Load Dataset

Here the clustering approaches are examined across four different data groupings: three include
clustering the data on each of the three datasets in this analysis (load, solar, and wind) separately, and
the fourth approach involves clustering data across all three datasets at once (referred to as 3-way or
multi-criteria clustering approach throughout this paper). Next, two methods for clustering were
applied: an hourly method and a day-type method. The hourly clustering method clusters the data
across two dimensions: the 8,760-hours of the year and the number of profiles (e.g., wind, solar, and
load). The day-type clustering method clusters the data across three dimensions: the 365 days of the
year, the 24-hours of the day, and the number of profiles. The day-type method yields best-fit
representative day-types, while the hourly method clusters data regardless of the hour of day.

Under the day-type method, the four clustering approaches were applied to 18 specified time-segment
numbers, ranging from one to 50 days or 24 to 1,200 (50x24) time-segments, and resulting in 72
profiles. Under the hourly method, the four clustering approaches were applied to 20 different specified
time-segment numbers, matching the time segment numbers that aligned with the day-type method
and adding two additional profiles at 6 and 12 time-segments, and resulting in 80 profiles.

2.2.3 Summary of Temporal Selection Methods
Table 2 summarizes the temporal selection methods evaluated in this paper and the number of time
segments considered for each method. A total of 204 temporal selection profiles were tested.



Table 2: Summary of Profiles

Methods Methods Time Segments Time Segments
Considered | Description Considered Description
Sequential | The sequential approach 1,2,3,4,5,6,8, 10, 12, 15, 20, every factor of 8760;
averages hours across a set | 24, 30, 40, 60, 73, 120, 146, 219, | total of 32 profiles
interval. 292, 365, 438, 584, 730, 876,
1095, 1460, 1752, 2190, 2920,
4380, 8760
Categorical | The categorical approach 18, 36, 36, 54, 72,72, 72, 108, see Table 1 for day-type
groups hours based on a 144, 144, 144, 216, 216, 288, combinations applied;
set of attributes associated | 288, 432, 576, 864, 1248 total of 19 profiles
with that hour.
Clustering Hourly Approach: 6,12, 24, 48,72, 96, 120, 144, hour list = 6, 12, 24, 48, 72, 96,
The hourly clustering 168, 192, 216, 240, 360, 480, 120, 144, 168, 192, 216, 240,
approach clusters hours 600, 720, 840, 960, 1080, 1200 360, 480, 600, 720, 840, 960,
together that are closest in 1080, 1200;
value to one another. 20 profiles per dataset (load,
wind, solar, and all 3 combined),
total of 80 profiles
Day-Type Approach: 24,48,72,96, 120, 144, 168, daylist=1,2,3,4,5,6,7,8,9,
The day-type clustering 192, 216, 240, 360, 480, 600, 10, 15, 20, 25, 30, 35, 40, 45, 50;
approach clusters days 720, 840, 960, 1080, 1200 18 profiles per dataset (load,
together where the values wind, solar, and all 3 combined),
within each hour of the day total of 72 profiles
are closest to one another.
EPA Defines time-segments by 72 total of 1 profile
Platform v6 | a three by 24-step LDC. The
(IPM) year is divided into three
seasons, which are sorted
into LDCs and clustered
into six groups. Each group
is then separated into four
time-of-day categories.

2.3 Relative Root Mean Square Error Measure
The RMSE is a frequently used measure of the differences between values predicted by a model and
true values that have been observed. To measure the performance of each profile’s ability to represent
data accurately, the RMSE across each dataset’s original spatial resolution is calculated using Equation 1.
There are multiple statistical ways to measure the error of modeling efforts. The RMSE is used in this
analysis because it returns the error as a single value that is easily comparable between profiles and
penalizes large errors more than smaller errors. One advantage of using RMSE is that the RMSE gives a
higher weight to larger errors, thereby potentially identifying approaches that are more successful at
representing critical load hours, like peak load.




Explicitly, the RMSE can be computed as a function of the summed differences across regions (r) and
time segments (h) from predicted (p) values the actual (a) values at each resource group (g) for a
number of observations (n):

Zr,h,g (pr,h,g - ar,h,g ) ’
n

RMSE =

Equation 1

Here the predicted value (p) is the calculated average value for each time-segment derived from the
different methods summarized in Table 2. The actual value (a) is the corresponding hourly value of the
resource. For the results, a relative RMSE for each profile is calculated by scaling the RMSE for a given
profile by the max RMSE value for each dataset. The max RMSE for each dataset is defined as the RMSE
from applying a single time segment, an annual average value.

One challenge with using a statistical method to evaluate input assumptions is that it does not consider
the accuracy of the model outcomes. It is important to note that the level of accuracy of the temporal
resolution only matters to the extent that it impacts model results. For instance, high temporal
resolution may not be necessary in a system predominantly served by dispatchable resources now and
in the future. But since these models are used to evaluate a range of scenarios, ensuring the model is
well equipped to evaluate all alternative futures holds merit. Additionally, the statistical approach allows
for a more efficient means of evaluating different temporal selection methods compared with the time
associated with setting up and running different CEMs for each individual profile presented here.

2.4 Spatial Aggregation Methods

For a subset of temporal selection methods, the impact that different spatial resolutions have on the
performance metrics is evaluated. The spatial resolutions evaluated in this paper includes the EPA
Platform v6 model regions (63 regions), NERC market regions (16 regions), and interconnect regions (3
regions), as seen in Figure 4. The datasets were aggregated up to each region by summing load data and
averaging wind and solar capacity factors at each hour.

(a) EPA Platform v6 model (b) NERC (b) US Interconnect

Figure 4: Spatial Aggregation Regions for (a) EPA Platform v6 model regions, (b) NERC market regions, and (c) Interconnect
regions.

2.5 Temporal-Spatial Alignment Measure

Temporal-spatial alignment is important for the instances where information is transferred from one
region to another. In CEMs, this transfer plays out in the form of electricity trading. Clustering time
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segment selection can occur at different spatial resolutions. Clustering time-segments at individual
model regions, may yield lower RMSE as compared to NERC or interconnect regions, but may lead to
mismatches of information across regions. This information is critical in evaluating interregional trade,
where mismatches of information could lead to unrealistic interregional transfers in model results.

EPA Platform v6 defines 140 model region pairs that allow for interregional electricity trade (Table 3-21
of EPA, 2018), referred to as total energy transfer capabilities. Total energy transfer capabilities define
the upper limit of what can be transferred on an hourly basis given existing transmission infrastructure.
The maximum megawatt value of electricity trade between each pair is used as the basis for evaluating
the temporal-spatial alignment, as summarized in Figure 5.

Figure 5: Maximum Energy Total Transfer Capabilities Between Model Regions

Each region (r) contains a set of data that matches all 8,760 hours to a given number of time-segments.
For each model region pair (y) identified, the frequency at which the hours within a given time-segment
align are measured. The weighted frequency (WF), as defined in Equation 2, is weighted by the total
transfer capability between the regional pair (TTC,).

WF = Zy (TTCy x |y 0 1y])
¥, (TTC, ) x 8,760

Equation 2

Equation 2 is applied across all regional pairs within the clustering results. The sequential and categorical
approaches were excluded from this section of the analysis because, although their RMSE results may
vary with different spatial resolutions, the temporal-spatial alignment results would not. They result in
100% frequency match regardless of the spatial resolution assumed. This is due to the fact that the data
in these approaches is grouped based on information like interval hours or the months of the year —
information which does not change from one region the next — whereas the clustering approach could
have hours grouped in different time segments from one region to the next based on differences in load
or VRE availability. See supplemental materials for addition details on Equation 2.

3. Results and Discussion

This section first presents the RMSE results for the sequential, categorical, and clustering approaches,
and then a comparison across all three temporal selection methods. Then, the clustering approach is
used to examine temporal-spatial alignment.
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3.1 Sequential Method

The sequential approach averages hours across a set interval. One of the main advantaged to a
sequential approach is its ability to maintain chronology. This can be beneficial for modeling
technologies like energy storage, which require chronology to account for charging/discharging. The
main disadvantage to this approach is that it is not an effective tool for reducing model complexity down
to the size typically needed in CEMs.

As the datasets are hourly, an interval of 1-hour (i.e., 8,760 time-segments) results in zero error.
Conversely, choosing an interval of 8,760-hours (i.e., an average value for the entire year) for each
dataset defines the max error for each dataset.

The RMSE, shown in Figure 6(a), for load (blue) is less than that of solar (yellow) and wind (green). One
reason for this stems from a larger set of profiles for solar and wind (245 and 621 respectively)
compared to load (63 total) as there are multiple resource groups for wind and solar within each model
region (see Section 2.1 Datasets and Model Regions). Secondly, the capacity factors for wind and solar
have higher variability than load. For example, the capacity factor for solar may reach as high as 100%
during the midday in the summer and will drop to zero overnight. The load hours are scaled to reach
100% at the peak hour of demand, but never drop to zero, as there is always demand on the system. To
account for these differences, the rest of the results in the paper report the relative RMSE, as shown in
Figure 6(b). The relative RMSE adjusts the profiles for load, solar, and wind scaling them by their max
RMSE (the annual average).

(a) 0.30 (b)
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0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

number of time-segments number of time-segments

Figure 6: Sequential Approach RMSE (a) and Relative RMSE (b) by Dataset

Figure 6 illustrates there is a distinct tradeoff between computational complexity (number of time
segments) and the associated error. Using just a two-hour interval instead of all 8,760 hours reduces the
number of time segments in half but only results in 0.11-0.24 increase in the relative RMSE.
Unsurprisingly, this relationship is not linear and instead the RMSE increases exponentially as the
number of time-segments decreases.

While the sequential results have illustrated the expected tradeoff between accuracy and complexity

across the entire 8,760 landscape, the rest of the results in this paper focus on practical reductions in
model size, examining time-segment numbers at or below 1,300 and then at or below 130.
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3.2 Categorical Method

The categorical approach groups hours based on a set of attributes associated with that hour, like
month of the year or day of the week. This approach allows for representative day-types that can be
used to map data across the year. Representative days can account for chronology like the sequential
approach and have the added benefit of lower error results at lower time-segment numbers.

Figure 7 shows the relative RMSE results for the 19 categorical profiles evaluated for each of the three
datasets (load (a), solar (b), and wind (c)) and then the average (d) relative RMSE across all three. The
top panel row (Figure 7 a-d) shows the profiles between zero and 1,300 time-segments and the bottom
panel row (Figure 7 e-h) hows the RMSE of highly reduced time-segments more commonly seen in
today’s CEMs (i.e., up to 130).

Load and solar data perform better under the categorical approach compared to wind data. In Figure
7(e—h), the relative RMSE drops by 0.13 for load, 0.10 for solar, but only 0.02 for wind, between the
profile with 18 time-segments and the one with 120 time-segments. The difference in the categorical
day-type approaches relative RMSE results between load and solar versus wind illustrates the strong
diurnal alignment of load and solar data. This suggests that alternative metrics beyond day-types that
focus on wind availability may be needed to improve representation of wind data in CEMs.

It is also important to note that there is a diminishing incremental improvement on the relative RMSE
for the categories explored here, especially for load and solar data. As shown in Figure 7(a-d), there
seems to be little incremental benefit between the three day-types shown with time segments beyond
500. These profiles include: M12-D2-H24, M12-D3-H24, and W52-D1-H24 (see Table 1 for definition).
Increasing from 576 time-segments to 1,248 only yields and additional reduction in the relative RMSE of
0.03 for load and solar and 0.06 for wind.
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Figure 7: Categorical Approach Relative RMSE for Each Dataset Load (a, e), Solar (b, f), and Wind (c, g), and their Average (d, h).
Note the x-axis differences between a-d and e-h. The second row (e-h) presents a zoomed in view of the results.

Figure 7(e-h) also highlights the tradeoffs between representative hours verses representative months.
In these panels, there are two categorical day-type approach combinations that result in 72 time-
segments, M03-D1-H24 and M12-D1-H06. For load, the M12-D1-HO6 day-type (more representative
months, fewer representative hours) results in the lower relative RMSE, while the M03-D1-H24 (fewer
representative months, more representative hours) results in the lower for solar (with wind they are
nearly the same). This suggests that the daily hourly intervals are more important to reflect for solar,
whereas monthly trends may be more important for load.

3.3 Clustering Method

The clustering approach groups hours based on their data characteristics. This approach can allow for
the lowest measures of error achievable for a given number of time segments, particularly for hourly
clustering approach. In exchange for this reduced error, this approach loses its ability to maintain
chronology, which limits its ability for advanced representation of technologies like storage. The day-
type clustering approach allows for the development of representative days, which allows for some
limited representation of chronology and still achieves relatively low error results. In addition, both
hourly and day-type clustering introduces challenges with temporal-spatial alignment, as discussed in
Section 3.5 Temporal-Spatial Alignment.

For each number of segments identified, the clustering approach was applied across four cluster

approaches: clustering the data on each of the three datasets (load, solar, and wind) separately, and
then a fourth multi-criteria clustering approach, which clustered data across all three datasets at once
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(referred to as 3-way). Two clustering methods were applied: first clustering across all 8,760 hours
(hourly approach) and second across 365 days (day-type approach).

Figure 8 shows the relative RMSE results from the clustering method applied across 8,760 hours (hourly
approach) and Figure 9 across 365 days (day-type approach). Each series in the figures shows a different
clustering approach applied: clustering data on load (blue), solar (yellow), wind (green), or clustering on
all three (purple). Both figures show the relative RMSE for each dataset: load (a), solar (b), wind (c) and
then the average value for each profile (d), this time only for results with less than 130 time-segments.

(a) (b) (c) (d)

load solar wind average
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Figure 8: Hourly Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d)
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Figure 9: Day-Type Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d)

The first observation is that fitting time-segments to reduce the error for one dataset results in a
increasing the relative RMSE in other datasets. For hourly clustering (Figure 8), the relative RMSE
increases by 0.88 on average for load clustering load data, as compared to solar or wind clustering load
data. We see similar trends for the solar and wind data (0.72 and 0.53 respectively).

In almost all cases, the next lowest relative RMSE to the matching approaches (e.g., load clustering load
data, etc.) is the multi-criteria clustering approach, which clusters data on load, solar, and wind
simultaneously. When comparing Figure 8 and Figure 9, the hourly sets have a lower relative RMSE
compared to the day-type results for the matching and multi-criteria cluster approaches and higher
relative RMSE for the non-matching approaches. Interestingly, when looking at the average for the day-
type clustering approach, Figure 9(d), load clustering outperforms multi-criteria clustering, mainly due to
the notable difference seen in the relative RMSE results for load Figure 9(a).
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3.4 Comparison Across All Approaches

This section compares the relative RMSE results across the three temporal selection methods:
sequential, categorical, and clustering. Figure 10 shows the relative RMSE for profiles up to 1,300 time-
segments. The relative RMSE is measured for load (a), solar (b), and wind (c) and then the average (d).
The EPA platform v6 results are shown in red, sequential green, categorical purple, and clustering blue.

The clustering results are broken out into hourly (light blue) and day-type (dark blue). Both hourly and
day-type clustering approaches are further broken out into multi-criteria clustering (o marker) and each
dataset’s matching or native clustering approach (x markers). Only the multi-criteria approach is
included in the average (d).
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Figure 10: All Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and the Average (d)

One observation is the decrease in the incremental relative RMSE reduction as the temporal resolution
increases. In most cases, the sequential profiles (green) act as an upper bound for relative RMSE; except
for some wind day-type profiles. This is because wind data doesn’t have the same diurnal patterns of
load and solar.

The clustering approaches have the least error. The lower bound for the relative RMSE for all profiles
tested is the hourly clustering approach. However, as observed in the previous section, the matching
clustering approaches only perform well for the dataset in which they match and perform poorly when
they do not match. When looking at the average (d) the multi-criteria hourly clustering approach shows
the lowest relative RMSE across all time segments.

Another takeaway from Figure 10 is that the wind dataset has the highest relative RMSE for all profiles,
which is partly a function of the number of wind profiles represented, but also indicates that
representing wind in temporal resolution approaches is more difficult than the other datasets due to the
variable nature of the data.
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Figure 11 displays regional differences in relative RMSE for select profiles (all with near 72 time-
segments). The first key observation is that not all regions necessarily have the same level of error,
meaning results will vary and what is the best fit for one region may not be the best fit for another.

For the load dataset in Figure 11(a), day clustering and day-type approaches perform better in the south
and west compared to the central and east, perhaps due to less seasonal variation in those regions. For
the solar dataset (b), the best performing profile across all regions is the Cluster Solar 72-Hrs profile. In
those cases, Wyoming and regions in the Southeast have higher relative RMSEs compared to the rest of
the regions. This suggests that the solar data is more variable in those regions. Across the wind dataset
(c), Wyoming, Colorado, and parts of Texas has a lower relative RMSE than other regions. One reason for
this may be related to the strength of the resource in these regions. There tends to be more availability
of wind in these regions, which results in more consistent availability of the resource.

Overall, it is more advantageous to use a three-way clustering approach as opposed to a single approach
if interested in appropriately characterizing all three sets. It is also important to be aware of differences
in regional performance of temporal resolution to identify which regions a model may be less or more
accurate in modeling load, solar, and wind resources.

3.5 Temporal-Spatial Alignment

The results have thus far utilized temporal selection methods applied at the model region level (63
regions); however, temporal selection approaches can also be applied at different levels of spatial
aggregation. In this section the clustering approaches are applied at the NERC (16 regions) and
interconnect level (3 regions) and the impact on the results is measured. Aligning time segments across
broader regions improves the evaluation of trade outcomes, but often at the expense of the RMSE.

Figure 12 shows the results from changing the spatial resolution for a subset of profiles, the clustering
profiles highlighted in Figure 11 (e.g., 72-hour and 3-day clustering approaches). In Figure 12, clustering
(x marker) is more sensitive to spatial aggregation compared to day-type clustering (o marker).

It appears that for most of the profiles considered, decreasing the spatial resolution from 63 regions to 3
regions results in an increase in the error. This is especially true when considering multi-criteria
clustering and each dataset’s matching or native clustering approach. Specifically, in Figure 12, going
from 63 to 3 regions results in large increases (greater than 0.3) in the relative RMSE for the matching
hourly cluster approaches for all datasets and for the multi-criteria clustering approach for the solar and
wind datasets. Its only in the cases where the relative RMSE is already relatively high at 63 regions
where the value would decrease when the method is applied to fewer regions.

Interestingly, as seen in Figure 12(a), the largest decrease (-0.18) in the relative RMSE from 63 to 3
regions is for the day-type multi-criteria cluster approach applied to load data (purple o markers). This is
likely due the fact that larger regions more effectively smooth out extremes in variability seen in wind
and solar day-type data while still capturing daily load patterns. This is consistent with observations
made in Section 3.3 Clustering Method.
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Figure 12: Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d) at
Different Spatial Resolutions

Another consideration with temporal resolution is the extent the selected hours align from one region
to the next. Figure 13 shows the impact of applying different spatial resolutions to the temporal
selection method has on hourly alignment. The y-axis shows the percentage of hours that fall within like
time-segments weighted across all trade regions. Figure 13(a,c) shows the day-type clustering approach
and (b,d) the hourly clustering approach. Each of the series shows the weighted frequency for the
different spatial resolutions across the four profiles within each clustering approach (load, solar, wind,
and 3-way). The square markers show the frequency at 3 regions, the circles at 16 regions, and the
triangles at 63 regions.

Selecting the three interconnections as the point of spatial resolution applied to the temporal selection
method yields near perfect alighment of hours across trade regions, although, as observed previously in
Figure 12, at the expense of higher relative RMSE results. This near perfect alignment of hours is due to
the facts that little to no trade of electricity is occurs across the three interconnections. Of the 306 GW
of energy total transfer capabilities across regions evaluated in this analysis, 98% (or 300 GW) of that
energy total transfer capabilities occurs within interconnection boundaries. For NERC regions, 49% (or
155 GW) of the energy total transfer capabilities evaluated occurs within NERC boundaries.

For the three spatial resolutions evaluated, at higher time-segments (a,b) the clustering approach
essentially reflects the share of the total energy transfer capabilities that occurs within its respective
boundaries. Fewer time-segments (c,d) lead to a higher probability of more aligned hours. Figure 13(c,d)
show the day-type clustering approach performs better than the hourly clustering approach at aligning
hours because hours of the day within the day-type are already aligned, ensuring greater alignment.
Although hourly clustering yields lower relative RMSE results, this comes at a tradeoff between
interregional hourly alignment as compared to the day-type clustering approach.

19



—
[+¥)
—

(b)

day-type clustering hourly clustering

1.0
m  3-Way

G
o © 0.8 B load
s 3
< 2 06 Solar
- T .
E % 0.4 B Wind
'%r__u —B— interconnects
= 0.2

—&— NERC

o
o

—&— model regions

e e 29
o ®

weighted share of
aligned hours

©

¥

o
o

number of time-segments

Figure 13: Interregional Alignment for Day-Type (a, c) and Hourly (b, d) Clustering Profiles at Different Spatial Resolutions

Across the four profiles (load, solar, wind, and 3-way) and within each clustering approach and spatial
resolution evaluated there is little difference between alignment results. The exceptions to this are the
load-day-type clustering profiles in (a,c) and the solar-hourly clustering profiles in (b,d). Weather
conditions on a day-to-day basis likely assist in the greater alignment between neighboring regions
relative to the other profiles in the clustering approach.

Conclusions

Our work has highlighted differences in time-segment representations across three temporal selection
methods, and three subnational region groupings. The purpose of this paper is to provide guidance for
modelers and assess the most-commonly applied temporal selection methods. This work is also useful
for considering the tradeoffs between model resolution and fidelity to underlying data.

Through this research, there are a few salient insights into temporal selection methods. First is that the
sequential approach had the highest error. In certain instances, for example where modelers want to
retain a high number of time segments and properly represent technologies like energy storage, the
method could still prove viable but, in general, there are better methods for selecting data for CEMs.

One of the approaches that particularly excelled is the hourly multi-criteria clustering of simultaneous
wind, solar, and load datasets. Although it could be bested in terms of reduced error by other
approaches for each individual dataset, across all datasets it performed particularly well. This could
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prove to be a viable approach for modelers that are not particularly concerned with a specific
technology or load patterns and instead want a holistic view of the intertwined relationships of
technology availability and electricity demand. One challenge with the hourly multi-criteria clustering
approach is the lack of chronology, which can be important for modeling certain technologies, like
storage.

Additionally, this analysis highlights the tradeoffs between temporal and spatial resolution for time
selection methods. Applying broader regional definitions to clustering approaches improves the
alignment of hours across neighboring model regions. Alignment of hours is important for modeling
trade between regions; however, the improvement of aligned hours often came at the expense of the
higher error. In particular, hourly clustering profiles, which often performed the best at reducing error
performed poorly at aligning hours across regions. This suggests that modelers should use caution when
interpreting results that have large quantities of trade across regions unless care is taken to ensure
those hours are aligned. However, more generally, improving temporal-spatial alignment should not
come at the expense of the key performance metric, the relative RMSE, as the majority of power sector
investment decisions within CEMs are based on intra-regional rather than inter-regional model
decisions.

For modelers concerned with striking a balance between representing the underlying input data,
modeling chronology, and aligning interregional trade, an alternative approach that excelled well across
all of these concerns was the day-type load clustering approach, which yielded the next lowest relative
RMSE after the hourly clustering approach across all three datasets. In addition, with certain care, the
categorical approaches could be designed in a way to achieve similar results to the day-type load
clustering approach and avoid concerns regarding interregional trade, but as the results show, this is
sensitive to the categories selected. Both of approaches also tend to perform significantly worse at
representing wind data, which does not reflect the same level of diurnal pattern compared to load and
solar.

A fruitful direction for future work would be to test the temporal resolution approaches identified
within a model to measure the impact on model results and computational time. It is important to note
that the level of accuracy of the temporal resolution only matters to the extent that it impacts model
outcomes and changes the dispatch or level of investment for capacity expansion. The value of this work
has been quantifying the error reduction in including high temporal resolution at different spatial scales.
This work can help other energy modelers understand how the temporal resolution can impact the
accuracy of their energy analyses, and lead to better representation of resource profiles in energy
system models.
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