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Summary. The last several decades have seen a surge of papers dealing with ana-
lytical and semi-analytical solutions to the problem of one-dimensional consolidation
of soils. But rarely has any of these contributions focused on the time scales aris-
ing from combined primary and secondary compression. Primary compression has
always been attributed to the dissipation of excess pore pressure as fluid is expelled
from the soil skeleton to the drainage boundaries. However, there have been several
schools of thought when it comes to the process governing the secondary compres-
sion. In this paper, we attribute the secondary compression to any of the following
processes occurring either individually or in combination: (a) rate-dependent (vis-
coplastic) constitutive response of the soil skeleton; (b) existence of a secondary pore
scale system that expels fluid from the smaller-scale pores to the larger-scale pores;
and (c) delayed compression due to creep following Bjerrum’s concept of secondary
consolidation. Contributions of the present work include closed-form analytical so-
lutions to the problem of combined primary and secondary compression of soils in
one dimension, as well as a quantitative analysis of the time scales involved in such
coupled hydromechanical processes.

Keywords. Consolidation, creep, double porosity, primary and secondary
compression, time scale, viscoplasticity

1 Introduction

Significant advances in the modeling of the stress-strain-time behavior of
geomaterials have been made in the last several decades. Most works have
revolved around clay because of its tendency to exhibit time-dependent re-
sponses. However, coarse-grained materials such as sand can also show time-
dependent responses especially when they are mixed with fine-grained mate-
rials, organics, and water.

The best understood theory governing the time-dependent flow process in
soils is the one-dimensional consolidation theory of Terzaghi. This theory as
well as its variations have dominated the literature in the past several decades.
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In the context of one-dimensional deformation and flow processes, some major
improvements on the theory have been made taking into consideration the ef-
fect of partial saturation [20, 30, 37, 47, 49, 50, 56, 60, 87, 89], time-dependent
surface loading [3, 31, 51, 57, 71, 73, 73, 76], layered soil systems [10, 43, 52,
62, 65, 75, 77], and simple nonlinearity including plasticity [58, 78, 82, 90]
and varying compressibility and permeabilitiy [27, 39, 40, 61, 64, 75], among
others. Even though the 1D kinematics have imposed limits on the applica-
bility of these theories, they are still valuable contributions to the literature
because they can be represented with closed-form analytical solutions.

However, it is also generally recognized that time-dependent deformation
behavior of soils cannot be attributed to Terzaghi’s consolidation theory alone.
Terzaghi’s theory states that the time-dependent deformation behavior of soil
is due to the gradual transfer of stress from excess pore pressure to the effective
stress as water is expelled from the pores. But continuing deformation in soil
under a constant effective stress, also known as creep [17, 18, 41, 54, 67],
has been observed after the excess pore pressure has fully dissipated or even
in the absence of water [26, 29, 35, 72]. It is thus common to attribute the
time-dependent deformation of soil to two processes: primary compression
described by the Terzaghi theory and secondary compression representing
additional deformation beyond the primary compression.

Secondary compression in soils is usually represented via rheological mod-
els [5, 7, 32, 46, 53, 70, 79, 88] or phenomenological relations between strain,
stress, and time [8, 44, 55, 66]. Among them, Bjerrum [8] proposed a phe-
nomenological model via a set of parallel straight lines on the void ratio-
logarithm of effective vertical stress plane, where each line represents a cer-
tain duration of sustained loading. During the secondary compression stage,
the void ratio of the soil decreases linearly with the logarithm of time under
a constant effective vertical stress. Despite its wide use, Bjerrum’s theory is
faced with certain limitations as it predicts a compression increasing indefi-
nitely with time under a constant effective stress, in contradiction with actual
behavior that secondary consolidation does not persist indefinitely [2, 36].
Furthermore, an ‘anomalous’ behavior has been reported for some soils in
which the secondary compression exhibits a nonlinear relation in the form of
an S-shaped curve with logarithm of time [2, 25, 33, 36].

The mechanisms underlying the secondary compression is not yet well un-
derstood. Several theories include the fact that it arises from the viscous inter-
action of the solid surface with the adsorbed water [4, 68, 81], and/or inter-
particle sliding or rotation that evolves with time [19, 42], and/or physico-
chemical interaction of the electric double layers formed on the clay particles
[9, 69]. Another school of thought attributes the secondary compression to
the existence of two levels of pore sizes in the soil [23, 45, 48, 74], in which
water is discharged from the smaller-scale pores to the larger-scale pores, a
process that occurs at a much slower rate compared to the rate of primary
compression [6, 28, 81].



Time scales in the primary and secondary compression of soils 3

The consolidation of soil is of complex nature involving multiple hydrome-
chanical processes, and a better understanding of the time scale associated
with each process enables us to predict the duration and to separate effects of
different processes over the time domain. These time scales can be determined
from the simple geometry and basic hydromechanical properties of soil, and
collectively carry sufficient information to estimate the start and end of all
stages of compression. Therefore, they play a significant role in the prediction
of the long-term behavior of ground settlement in engineering practice with
limited experimental data.

This paper focuses on the one-dimensional compression of soil with com-
bined primary and secondary compression. We derive closed-form analytical
solutions that accommodate for different secondary compression processes,
including the viscoplastic rheological response of the soil skeleton, discharge
of pore fluid from smaller-scale pores in a dual porosity system, and delayed
compression of soil under Bjerrum’s theory of secondary consolidation. The
characteristic time scales involved in each case are identified mathematically.
Quantitative studies are also conducted on how the time-dependence of the
solutions are determined by the different time scales taken collectively.

2 Elasto-viscoplastic consolidation

We first consider the one-dimensional consolidation problem shown in Fig-
ure 1, where one layer of saturated soil of thickness H is subjected to a uni-
formly distributed pressure q on top. The bottom of the layer is impervious
with no flux in or out, and is also constrained from vertical displacement,
while the top surface is at zero pressure allowing water to drain freely. For the
sign convention, the downward z direction is taken as positive and so is ten-
sion. The layer is assumed to deform elasto-viscoplastically and modeled by
the simple frictional-link and dashpot system shown in Figure 2, where D is
the constrained elastic modulus of the spring and H is the constrained plastic
modulus of the link. The setup readily reduces to a Maxwell viscoelastic model
when the initial yield stress σ0 and plastic modulus H are both zero [34, 63];
however, it does not reduce to the Kelvin arrangement [1, 34, 38]. The plastic
modulus H can be made to be a nonlinear function of deformation to closely
match real soil behavior [14], but for now we shall assume it to be constant.
In terms of the effective vertical stress σ′v, the viscoplastic vertical strain rate
is given by the Perzyna over-stress model [12, 59, 80] as

ε̇vpv =
f

η
sign(σ′v) , (1)

where η is the dashpot coefficient and f is the yield function given by

f = σ′v − σY . (2)
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Fig. 1. Problem description

Fig. 2. Elasto-viscoplastic model

We consider a simple linear hardening given by

σY = σY0 +Hεvpv . (3)

We also assume that the material is yielding throughout the process, so we
set σY0 = 0. Thus,

ε̇vpv =
σ′v −Hεvpv

η
. (4)

Solving the above differential equation, we obtain a closed form solution for
the viscoplastic strain as

εvpv =

∫ t

0

σ′v
η
e−H(t−τ)/ηdτ. (5)

The relation between the total vertical strain and the effective vertical stress
can be expressed as
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εv = εev + εvpv =
σ′v
D

+

∫ t

0

σ′v
η
e−H(t−τ)/ηdτ , (6)

from which the corresponding strain rate is derived as

ε̇v =
σ̇′v
D

+
σ′v
η
− H
η

∫ t

0

σ′v
η
e−H(t−τ)/ηdτ . (7)

The above strain rate equation has a form similar to the one developed by
Xie et al. [76] for a viscoelastic soil model.

We make the following additional assumptions similar to those adopted
in the derivation of Terzaghi’s one-dimensional consolidation theory: (a) the
solid grain and fluid are both incompressible, and (b) deformation in the soil
skeleton is infinitesimal. Under these assumptions, the volumetric change in
the solid due to compression is simply equal to the amount of fluid coming
in/out of the pore space. The strong form of the boundary-value problem is
stated as follows: Find the vertical displacement u of the soil skeleton and
excess fluid pressure p such that, for 0 < z < H,

∂σ′v
∂z
− ∂p

∂z
= 0

ε̇v −
k

ρwg

∂2p

∂z2
= 0

 , (8)

subject to boundary and initial conditions

p(z = 0, t) = 0

∂p

∂z

∣∣∣
z=H,t

= 0

σ′v(z, t = 0) = 0

p(z > 0, t = 0) = q


, (9)

where p is the excess pore water pressure, ρw is the mass density of fluid, g is
the gravity acceleration constant, and k is the hydraulic conductivity of the
soil. Substituting the constitutive equation relating σ′v and εv, we obtain

cv
∂2p

∂z2
− ∂p

∂t
− D

η

∫ t

0

∂p

∂τ
e−H(t−τ)/ηdτ = 0 , (10)

where

cv =
kD

ρwg
(11)

is the coefficient of consolidation.
The problem can be solved by separation of variables, followed by Laplace

transformation adopted in [76]. First, we assume that p(z, t) = Z(z)T (t),



6 Yingxiao Liu1 · Ronaldo I. Borja1,∗

and substitute this expression back into Equation (10) to obtain an ordinary
differential equation (ODE) of the form

Z ′′ + λ2Z = 0 , (12)

where λ is some undetermined coefficient. The general solution to Z is of the
form

Z = a1 cosλz + a2 sinλz . (13)

Using the two boundary conditions Z(0) = 0 and Z ′(H) = 0, we find

a1 = 0 (14)

and

λm =
2m− 1

2H
π, m = 1, 2, 3 . . . (15)

Therefore, any arbitrary function of excess pore water pressure can be ex-
pressed as

p(z, t) =
∞∑
m=1

Tm(t) sin
(M
H
z
)
, (16)

with M = (2m − 1)π/2. Substituting p(z, t) into Equation (10), we obtain
another ODE for the variable t of the form

cv
M2

H2
Tm(t) + T ′m(t) +

D

η

∫ t

0

T ′m(τ)e−H(t−τ)/ηdτ = 0 . (17)

The initial value of Tm can be derived from the condition

p(t = 0) = q =
∞∑
m=1

2q

M
sin

M

H
z (18)

as Tm(0) = 2q/M . Performing the Laplace transformation on the ODE and
letting Fm(s) = L (Tm(t)), we get

cv
M2

H2
Fm(s) +

(
sFm(s)− 2q

M

)
+
D

η

(
sFm(s)− 2q

M

) 1

s+H/η
= 0 . (19)

Before solving for the explicit form of Fm(s), we first define three terms
representing different characteristic time scales for this problem:

τh =
H2

cv
(20)

related to primary compression, where cv is the coefficient of consolidation
defined in Equation (11), and two terms,

τv1 =
η

H
(21)
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and
τv2 =

η

D +H
(22)

related to secondary compression attributed to viscoplastic deformation.
Then, the solution of Fm(s) can be expressed in terms of these three charac-
teristic time scales as

Fm(s) =
2q

M

s+ 1/τv2
s2 + (1/τv2 +M2/τh)s+M2/τhτv1

=
2q

M

( rm1

s− sm1
+

rm2

s− sm2

)
, (23)

with

sm1 = −1

2

[( 1

τv2
+
M2

τh

)
−

√( 1

τv2
+
M2

τh

)2
− 4M2

τhτv1

]

sm2 = −1

2

[( 1

τv2
+
M2

τh

)
+

√( 1

τv2
+
M2

τh

)2
− 4M2

τhτv1

]

rm1 =
M2/τh + sm2

sm2 − sm1

rm2 =
M2/τh + sm1

sm1 − sm2



. (24)

The time function can then be calculated by inverse Laplace transformation
[22] as

Tm(t) =
2q

M

(
rm1e

sm1t + rm2e
sm2t

)
, (25)

which gives the final expression for the excess pore pressure as

p(z, t) =
∞∑
m=1

2q

M
sin (

M

H
z)
(
rm1e

sm1t + rm2e
sm2t

)
. (26)

Substituting the equation into the expression for strain, we obtain

εv(z, t) = − q
E
− q

H
(1− e−Ht/η) +

∞∑
m=1

2q

M
sin (

M

H
z)gm(t) , (27)

where

gm(t) =
rm1e

sm1t + rm2e
sm2t

D
+

rm1

H+ sm1η
(esm1t − e−Ht/η)

+
rm2

H+ sm2η
(esm2t − e−Ht/η) .
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The normalized settlement can be calculated by taking the integral of −εv
over the whole depth and then dividing the result by the thickness of the soil
layer H. The final result is

∆H(t)

H
=

q

D
+

q

H
(1− e−Ht/η)−

∞∑
m=1

2q

M2
(1− cosM)gm(t) . (28)

The first term of the solution depends only on the elastic modulus of the soil
and determines the elastic component of the strain in the consolidating layer.
The second term depends only on the viscoplastic parameters, which can be
treated as the uncoupled portion of the viscoplastic strain. The third term,
where all mechanical parameters enter together with the hydraulic conductiv-
ity, gives the combined effects of primary and secondary compression. Both
the second and the third terms are time-dependent.

It can be observed that the two parameters η and k, which contain time in
their dimensions, only appear in the three characteristic time scales defined
before, namely, τh, τv1, and τv2. Therefore, the relative magnitudes of these
time scales completely determine the time-dependent components of the so-
lution. We shall elaborate these three time scales with numerical examples
in the sections below. In the numerical examples, we assume the following
parameters: surface load q = 10 kPa, thickness of soil layer H = 10 m, and
viscosity of the soil η = 1010 kPa · s.

2.1 Effect of τv1 versus τv2

In this example, τh and τv1 were fixed at 102 s and 105 s, respectively, while
the ratio

c1 =
τv2
τv1

=
H

D +H
(29)

was made to vary between 0 and 1 depending on the value of τv2.
Figure 3 shows how the relative magnitude of τv1 and τv2 changes the shape

of the settlement-time curves. The ratio between the current settlement and
the final settlement when time approaches infinity, Ū = ∆H(t)/∆Hult, also
known as the average degree of consolidation, is plotted against time in log
scale. The vertical axis is presented in the reverse order to ensure that the
resulting curves are consistent with those used in engineering practice.

Apart from the two limiting cases where c1 is equal to 0 or 1, all curves
show a double S-shaped variation representing a separation of two different
settlement stages across different time scales. Such a separation is most obvi-
ous when c1 is close to 0.5. The first S-shaped curve represents the first stage
of settlement, which occurs after the surface load is applied and concludes at
around 200 s. Thereafter, a plateau forms on these curves representing the
transition from the first settlement stage to the second stage. This is followed
by a second settlement stage and a second S-shaped variation on the semi-log
plot.
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Fig. 3. Variation of average degree of consolidation Ū with c1.

If the two settlement stages are interpreted as “primary” and “secondary”
stages, it can be inferred that only the primary stage can be observed for c1 = 1
while only the secondary stage can be observed for c1 = 0. As c1 increases
from 0 to 1, the curve changes from a long-tail double-S curve where the
secondary stage is dominant to a curve where the primary stage is dominant.
All curves merge to the same point at a time instant that lies somewhere
between 105 s and 106 s when the whole settlement process has concluded,
which is on the same order of magnitude as τv1. In addition, the primary
settlement stage for all curves concludes nearly simultaneously at around 100
s, which is approximately equal to τh. Incidentally, this is also the same time
instant when the ground settlement has concluded for the limiting case when
c1 = 1, where only the primary settlement can be observed. Therefore, τh and
τv1 can be interpreted as the durations of the primary settlement stage and
the entire settlement process, respectively.

The coefficient c1 can also be provided with a physical meaning. If the
presence of fluid was excluded in this problem, the instantaneous settlement
would be equal to q/D while the final settlement when time approaches infinity
would be equal to q/D + q/H, and the ratio between these two values would
be equal to c1. If fluid was included, we would have time-dependent primary
and secondary stages instead, but c1 still represents the ratio between the
settlements that would occur in the primary stage and the whole process, as
shown in Figure 3. Therefore, with two different settlement stages considered,
the primary stage would be more closely related to the hydrodynamically
damped elastic deformation of the soil, while the effect of viscoplasticity would
become significant in the secondary stage.
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We should note that the above analysis is based on the condition that
both τv1 and τv2 are greater than τh, which implies that the fluid dissipation
occurs faster compared to the viscoplastic deformation of the soil.

2.2 Effect of τv1 versus τh

In the second example, τv1 and τv2 were fixed at 108 s and 5×107 s, resulting
in c1 = 0.5. Based on the analysis from the previous section, the primary
settlement would have the same magnitude as the secondary settlement. Dif-
ferent τh values, ranging from 105 s to 1010 s, were analyzed by varying the
hydraulic conductivity k, and the resulting curves are plotted in Figure 4. For
convenience, we define a second coefficient c2 as

c2 =
τh
τv1

=
H2

cv

H
η

(30)

to represent the ratio between the time scales for the pressure dissipation and
the viscoplastic deformation of the soil. Since τh and τv1 together determine
the duration of different settlement stages, the shape of the curve would be
affected by different c2 values.

Fig. 4. Variation of average degree of consolidation with c2.

As shown in Figure 4, the case when c2 is smaller than 1 produces double
S-shaped curves and is similar to the case presented before. All curves end
at the same time instant determined by τv1. The whole settlement process
takes the same amount of time to finish regardless of the values of hydraulic
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conductivity k. When c2 is very small (less than 0.01), primary settlement
develops very fast compared with the secondary settlement, and a separation
of the two settlement stages can be clearly seen. A transition region, shown
as a plateau on the curve, is very distinct, and its duration is determined by
the coefficient c2: the smaller the c2, the greater the difference between τv1
and τh, resulting in a more distinct separation of time scales. We also see that
the shape of the second S curve, representing the secondary settlement, is
insensitive to the value of the hydraulic conductivity, which implies that the
hydrodynamic effect is negligible during the viscoplastic deformation stage.

As c2 becomes larger, the first S curve shifts to the right while the second
S curve remains fixed. When c2 = 0.1, which means τh is only one order of
magnitude smaller than τv1, the first S curve shifts to the right by a distance
that is enough for it to be smoothly connected to the second S curve, and
from then on the separation of the two curves is no longer evident. As c2
increases further to 1, the first S curve begins to cover the second S curve. Up
to this point the duration of the whole settlement process remains unchanged,
being approximately equal to τv1. Finally, as c2 increases beyond the value 1,
the primary settlement becomes the more dominant process and τh becomes
the more dominant time scale. The duration of the total settlement is now
determined solely by τh, and varying the hydraulic conductivity values simply
results in a series of parallel curves in which the effect of viscoplasticity is no
longer evident.

2.3 Summary of main points

For a one-dimensional system in which the primary compression is attributed
to pore pressure dissipation and the secondary compression is attributed to
viscoplastic deformation of the soil skeleton, the shape of the settlement-time
curve is determined by three characteristic time scales represented by τh, τv1,
and τv2. The duration of the compression process is determined by the larger
of τh and τv1: If τh > τv1, only one settlement stage would form, whereas if
τh < τv1, both the primary and secondary settlement stages would manifest
themselves on the settlement-time curves. The time scale τh determines the
duration of the primary compression stage, whereas the time scale τv1 deter-
mines the duration of the secondary compression stage. The relative values
of τv1 and τv2 determine the shape of the resulting settlement-time response
curves, which can be either in the form of a single S-shaped curve or a double
S-shaped curve.

The results presented above are supported by field observations. Chang et
al. [21] reported an unexpected result of a survey at the Gulf of Mexico shale
gas reservoir in which two different land subsidence rates were observed, the
second one being recorded after the production has ceased. They postulated
a multi-layer model consisting of permeable sand and impermeable viscous
shale layers to explain the two subsidence rates. However, the results of this
study suggest that the two subsidence rates can also be explained with a
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single saturated viscoplastic shale layer experiencing combined primary and
secondary compression.

3 Double porosity consolidation

It is generally recognized that natural geomaterials can exhibit two distinct
porosity scales. In fissured rocks, the two pore scales can be represented by
the micro-fracture pores and the matrix pores [83, 84]; in aggregated soils
they can be represented by the inter-aggregate pores and intra-aggregate
pores [13, 15, 24, 85]. In this section, we shall call the larger-scale pores as
the “macropores” and the smaller-scale pores as the “micropores.” Fluid flow
mechanisms considered in the following discussions include flow through the
macropores, flow through the micropores, and fluid mass exchanges between
the macropores and micropores.

From here on, we shall dispense with the assumption of incompressible
solid grains and fluids and consider both of them to be compressible. Conse-
quently, both fluid density and porosity can vary with the pore pressure. Let
ψ1 and ψ2 denote the pore fractions occupied by the micropores and macro-
pores, respectively, which satisfy the closure condition ψ1 +ψ2 = 1. Denoting
the excess fluid pressure at the macropores and micropores as p1 and p2, re-
spectively, the balance of fluid mass in the macropores and micropores takes
the form

ṗ1
m1

+ β1∇ · u̇ = −∇ · q1 + c1 , (31)

ṗ2
m2

+ β2∇ · u̇ = −∇ · q2 + c2 , (32)

where u is the displacement vector of the soil skeleton; m1 and m2 are the
Biot moduli [85, 86]; β1 = Bψ1 and β2 = Bψ2 are the products of the Biot
coefficient B [11, 16] and pore fractions ψ1 and ψ2; q1 and q2 are the Darcy
fluxes in the macropores and micropores, respectively; and c1 and c2 are the
fluid mass transfer terms between the two pore scales.

Specializing now to the 1D case, we first define σ′v as the effective vertical
stress in a double-porosity medium using the expression developed by Borja
and Koliji [15] as

σ′v = σv + β1p1 + β2p2 , (33)

where σv is the total vertical stress in the soil column. Furthermore, we assume
Darcy’s law in the macropores and micropores and write

q1 = −k1
∂p1
∂z

, q2 = −k2
∂p2
∂z

, (34)

where k1 and k2 are the hydraulic conductivities in the macropores and mi-
cropores, respectively. Lastly, we assume that the fluid mass exchange rates
are proportional to the pressure difference at the two pore scales,
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c1 = κ(p2 − p1) = −c2 . (35)

We now state the strong form of the boundary-value problem: Find the
vertical displacement u of the soil skeleton and excess fluid pressures p1 and
p2 in the macropores and micropores, respectively, such that for 0 < z < H,

∂(σ′v − β1p1 − β2p2)

∂z
= 0

ṗ1
m1

+ β1ε̇v −
k1
ρwg

∂2p1
∂z2

= κ(p2 − p1)

ṗ2
m2

+ β2ε̇v −
k2
ρwg

∂2p2
∂z2

= −κ(p2 − p1)


. (36)

The first equation above is the equilibrium condition in the vertical direction,
whereas the last two equations are the fluid mass balance equations in the
macropores and micropores.

Before stating the boundary and initial conditions, we first note that the
constrained 1D condition allows the displacement and fluid pressures to be
uncoupled. This is facilitated by using the elasto-viscoplastic constitutive re-
lation (7) to express σ′v in terms of εv in the equilibrium condition, solving
for εv in terms of p1 and p2, and substituting the result into the fluid mass
balance conditions. The equivalent strong form then reads: Find p1 and p2
such that for 0 < z < H,

N1ṗ1 + β1
2ṗ1 + β2

1

D

η

∫ t

0

∂p1
∂τ

e−H(t−τ)/ηdτ + β1β2
D

η

∫ t

0

∂p2
∂τ

e−H(t−τ)/ηdτ

+ β1β2ṗ2 +
(β1C1

2
+
β2C2

2
− 1
) q
η
e−Ht = cv1

∂2p1
∂x2

+ γ(p2 − p1) ; (37)

N2ṗ2 + β2
2ṗ2 + β2

2

D

η

∫ t

0

∂p2
∂τ

e−H(t−τ)/ηdτ + β1β2
D

η

∫ t

0

∂p1
∂τ

e−H(t−τ)/ηdτ

+ β1β2ṗ1 +
(β1C1

2
+
β2C2

2
− 1
) q
η
e−Ht = cv2

∂2p2
∂x2

− γ(p2 − p1) , (38)

with boundary and initial conditions

∂pi
∂z

∣∣∣
z=H,t

= 0

pi(z, t = 0) = Ciq/2

pi(z = 0, t) = 0

 for i = 1, 2 , (39)

where q is defined in Equation (9).
The coefficients introduced in the foregoing equations are defined as fol-

lows:
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Ni =
D

mi
, cvi =

kiD

ρwg
, i = 1, 2 ; (40)

and γ = κD. The other two coefficients C1 and C2 determine the initial excess
pore pressures and are calculated from the fact that immediately after the load
is applied, undrained condition prevails and the change in the fluid content in
the pores must be equal to zero. Thus, the jump in the excess pore pressures
satisfies the conditions

Nidpi + βidσ
′
v = 0, i = 1, 2 (41)

and
dσ′v = β1dp1 + β2dp1 − q , (42)

from which we arrive at

dp1 =
N2β1

N1N2 +N2β2
1 +N1β2

2

q =
C1

2
q , (43)

dp2 =
N1β2

N1N2 +N2β2
1 +N1β2

2

q =
C1

2
q . (44)

We further use the coefficient C3 to denote the negative of the coefficient
before the term qe−Ht/η as

C3 = 1− β1C1

2
− β2C2

2
=

N1N2

N1N2 +N2β2
1 +N1β2

2

. (45)

Using the same techniques as before, we first separate the variables and
express p1 and p2 as Fourier series as

p1(z, t) =
∞∑
m=1

Am(t) sin
(M
H
z
)
, (46)

p2(z, t) =
∞∑
m=1

Bm(t) sin
(M
H
z
)
, (47)

with M = (2m− 1)π/2. Substituting p1(z, t) and p2(z, t) into Equations (37)
and (38), we obtain a system of ODEs in terms of Am(t) and Bm(t) only:(

cv1
M2

H2
+ γ
)
Am(t) + (N1 + β2

1)A′m(t) + β2
1

D

η

∫ t

0

A′m(τ)e−H(t−τ)/ηdτ − γ

·Bm(t) + β1β2B
′
m(t) + β1β2

D

η

∫ t

0

B′m(τ)e−H(t−τ)/ηdτ = 2C3β1
D

η

q

M
e−Ht/η ,

(48)(
cv2

M2

H2
+ γ
)
Bm(t) + (N2 + β2

2)B′m(t) + β2
2

D

η

∫ t

0

B′m(τ)e−H(t−τ)/ηdτ − γ

·Am(t) + β1β2A
′
m(t) + β1β2

D

η

∫ t

0

A′m(τ)e−H(t−τ)/ηdτ = 2C3β2
D

η

q

M
e−Ht/η ,

(49)
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with the initial solution

Am(0) =
C1q

M
, (50)

Bm(0) =
C2q

M
. (51)

We next perform the Laplace transformation on these equation by defin-
ing Fm(s) = L (Am(t)) and Gm(s) = L (Bm(t)), and then use the relation
L (f ′(t)) = sL (f(t))− f(0) to arrive at[

cv1
M2

H2
+ γ + (N1 + β2

1)s+ β2
1

Ds

ηs+H

]
Fm(s)

+
[
− γ + β1β2s+ β1β2

Ds

ηs+H

]
Gm(s)

=
[
C1(N1 + β2

1) + C2β1β2 + β1(C1β1 + C2β2 + 2C3)
D

ηs+H

] q
M

, (52)[
− γ + β1β2s+ β1β2

Ds

ηs+H

]
Fm(s)

+
[
cv2

M2

H2
+ γ + (N2 + β2

2)s+ β2
2

Ds

ηs+H

]
Gm(s)

=
[
C2(N2 + β2

2) + C1β1β2 + β2(C1β1 + C2β2 + 2C3)
D

ηs+H

] q
M

. (53)

To simplify the final expression, we define four characteristic time scales

τah =
H2

cv1
, τ bh =

H2

cv2
, τv1 =

η

H
, τv2 =

η

D
, (54)

and several other terms
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M1 = N1N2 +N1β
2
2 +N2β

2
1 , (55)

M2 =
(M2

τah
+ γ
)

(N2 + β2
2) +

(M2

τ bh
+ γ
)

(N1 + β2
1) + 2γβ1β2 , (56)

M3 =
M4

τah τ
b
h

+ γM2
( 1

τah
+

1

τ bh

)
, (57)

M4 =
M2

τah
β2
2 +

M2

τ bh
β2
1 + γ(β1 + β2)2 , (58)

M5 = N1β
2
2 +N2β

2
1 , (59)

M6 =
M1

τv1
+M2 +

M5

τv2
, (60)

M7 =
M2

τv1
+M3 +

M4

τv2
, (61)

Ma
8 = [C1(N1 + β2

1) + C2β1β2]
M2

τ bh

+ γ[C1(N1 + β2
1) + C2(N2 + β2

2) + (C1 + C2)β1β2] , (62)

Mb
8 = [C2(N2 + β2

2) + C1β1β2]
M2

τah

+ γ[C1(N1 + β2
1) + C2(N2 + β2

2) + (C1 + C2)β1β2] , (63)

Ma
9 =

[M2

τ bh
β1 + γ(β1 + β2)

]
(C1β1 + C2β2 + 2C3) , (64)

Mb
9 =

[M2

τah
β2 + γ(β1 + β2)

]
(C1β1 + C2β2 + 2C3) , (65)

Ma
10 =

C1M1

τv1
+
C1M5 + 2C3N2β1

τv2
+Ma

8 , (66)

Mb
10 =

C2M1

τv1
+
C2M5 + 2C3N1β2

τv2
+Mb

8 , (67)

Ma
11 =

Ma
8

τv1
+
Ma

9

τv2
, (68)

Mb
11 =

Mb
8

τv1
+
Mb

9

τv2
, (69)

and solve for Fm(s) and Gm(s) as

Fm(s) =
q

M

C1M1s
2 +Ma

10s+Ma
11

M1s3 +M6s2 +M7s+M3/τv1
, (70)

Gm(s) =
q

M

C2M1s
2 +Mb

10s+Mb
11

M1s3 +M6s2 +M7s+M3/τv1
. (71)

For the special case where N1 = N2 = 0, the resulting M1 is zero and
we obtain a second order polynomial in the denominator and a first order
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polynomial in the numerator. In this case, the solution has the form similar
to what we have derived in Equation (23) and will not be repeated here. For
the general case where M1 is not zero, the solution can be formulated as

Fm(s) =
q

M

( ram1

s− sm1
+

ram2

s− sm2
+

ram3

s− sm3

)
, (72)

Gm(s) =
q

M

( rbm1

s− sm1
+

rbm2

s− sm2
+

rbm3

s− sm3

)
, (73)

where sm1, sm2 and sm3 are the roots of the third-order polynomial in the
denominator of Equations (70) and (71). The closed form expressions for these
roots can be found in mathematical handbooks. The six coefficients r can be
calculated from the equations ram1

ram1

ram1

 =

 1 1 1
sm2 + sm3 sm1 + sm3 sm1 + sm2

sm2sm3 sm1sm3 sm1sm2

−1  C1

−Ma
10/M1

Ma
11/M1

 , (74)

 rbm1

rbm1

rbm1

 =

 1 1 1
sm2 + sm3 sm1 + sm3 sm1 + sm2

sm2sm3 sm1sm3 sm1sm2

−1  C2

−Mb
10/M1

Ma
11/M1

 . (75)

Finally, we perform an inverse Laplace transformation and obtain

Am(t) =
q

M

(
ram1e

sm1t + ram2e
sm2t + ram3e

sm3t
)
, (76)

Bm(t) =
q

M

(
rbm1e

sm1t + rbm2e
sm2t + rbm3e

sm3t
)
. (77)

The excess pressures at the two pore scales can then be obtained as

p1(z, t) =
∞∑
m=1

q

M
sin

(
M

H
z

)(
ram1e

sm1t + ram2e
sm2t + ram3e

sm3t
)
, (78)

p2(z, t) =
∞∑
m=1

q

M
sin

(
M

H
z

)(
rbm1e

sm1t + rbm2e
sm2t + rbm3e

sm3t
)
. (79)

The vertical strain can be calculated by substituting the excess pore pres-
sures into Equation (33) to obtain the effective vertical stress, and then to the
elasto-viscoplastic constitutive Equation (7) to obtain

εv = − q

D
− q

H

[
1− e−Ht/η

]
+
∞∑
m=1

q

M
sin

(
M

H
z

)(
β1g

a
m(t) + β2g

b
m(t)

)
(80)

with
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gam(t) =
1

D

(
ram1e

sm1t + ram2e
sm2t + ram3e

sm3t
)

+
ram1

ηsm1 +H

(
esm1t − e−Ht/η

)
+

ram2

ηsm2 +H

(
esm2t − e−Ht/η

)
+

ram3

ηsm3 +H

(
esm3t − e−Ht/η

)
,

(81)

gbm(t) =
1

D

(
rbm1e

sm1t + rbm2e
sm2t + rbm3e

sm3t
)

+
rbm1

ηsm1 +H

(
esm1t − e−Ht/η

)
+

rbm2

ηsm2 +H

(
esm2t − e−Ht/η

)
+

rbm3

ηsm3 +H

(
esm3t − e−Ht/η

)
.

(82)

Taking the integral of the negative strain over the depth and dividing the
result by H gives the normalized settlement

∆H(t)

H
=

q

D
+
q

H
(1−e−Ht/η)−

∞∑
m=1

q

M2
(1−cosM)

(
β1g

a
m(t)+β2g

b
m(t)

)
. (83)

Observe the similar form of this solution to Equation (28).
We recall the four characteristic time scales for a double-porosity system

identified in Equation (54): τah , τ bh, τv1, and τv2. The first two of these four
time scales are associated with the expulsion of fluid from the macropores and
micropores, whereas the last two are associated with the elasto-viscoplastic
response of the soil skeleton. The previous study in Section 2 reveals that the
relative magnitude of τv1 and τv2 simply defines the shape of the settlement-
time response (whether it is a single or double S-shaped curve), which is
the same result for the double-porosity system. Therefore, in the following
analyses we shall only focus on the three time scales: τah , τ bh, and τv1.

For a double porosity system, a few other variables such as N , β and
γ could influence the time-dependent response. The variables that have the
greatest influence on the system response are the coefficients N1 = D/m1 and
N2 = D/m2, which depend on the elastic constrained modulus D of the soil
skeleton and the Biot moduli m1 and m2. Thus, we will group the following
presentation according to the values of these variables.

3.1 Low D/m moduli ratio

The coefficient Ni = D/mi, which represents the ratio between the con-
strained bulk modulus D of the soil skeleton and the Biot modulus mi for
pore scale i, determines the effective vertical stress initially carried by the soil
skeleton as a result of the applied surface load q. If this ratio is close to zero,
then Ni � βi and

C3 =
N1N2

N1N2 +N2β2
1 +N1β2

2

≈ 0 , (84)
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which means that all of the load is carried by the excess pore pressures at
t = 0+ and none of the load is carried by the effective stress in the soil
skeleton. In addition, the ratios

O

(
M1

M2

)
= O

(
Niτ

a
h

M2

)
(85)

appearing in Equations (70) and (71) are small, implying that even though
the denominators for Fm(s) and Gm(s) are in the form of a cubic polynomial,
they can be approximated by quadratic polynomials like the one considered
in Section 2. Next we set H = D so that τv1 = τv2 := τv and assume β1 =
β2 = 0.5 to reduce the number of variables. Defining γ = k2D/ρwg using the
formula

c1 =
ᾱ

µ
(p2 − p1) =

γ

D
(p2 − p1) (86)

provided in [13], and setting

ᾱ = κ2 =
µk2
ρwg

, (87)

we can then investigate how τah , τ bh and τv affect the resulting settlement-time
responses.

To investigate the resulting settlement-time responses, we first fix the time
scales at τah = 10 s and τv = 108 s and vary τ bh from 104 to 1010 s by changing
the hydraulic conductivity k2 of the micropores. Defining

cb =
τ bh
τv

=
H2

cv2

H
η
, (88)

the corresponding consolidation curves are plotted in Figure 5. We see that for
small cb the double S-shaped consolidation curves are very distinct, implying
that the dissipation of excess pore pressure is completed well before the sig-
nificant development of viscoplastic strain in the soil skeleton. The duration
of the consolidation is determined by τv, and an increase of τ bh only increases
the duration of the first stage of settlement. However, as τ bh further increases
to a value greater than τv, the pore pressure dissipation effect begins to cover
the viscoplastic stage of settlement. Eventually, the curve reduces to a single
S shape with the duration determined by τ bh. This trend is comparable to that
reported in Figure 4.

We next investigate the effect of τah by fixing the remaining time scales at
τ bh = 106 s and τv = 108 s, thus fixing cb at the value 10−2. From Figure 6,
we see that the ratio

ca =
τah
τv

=
H2

cv1

H
η

(89)
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Fig. 5. Variation of average degree of consolidation with cb.

Fig. 6. Variation of average degree of consolidation with ca.

has a negligible influence on the settlement-time curve when it is at least two
orders of magnitude smaller than cb. Only when the hydraulic conductivity
of the macropores k1 becomes small enough and the time scale τah becomes
comparable to the time scale τ bh does the primary settlement curve begin to
shift to the right. On the other hand, we know that the hydraulic conductivity
of the macropores is typically much greater than that of the micropores, so
we conclude that ca does not have a significant impact on the settlement-time



Time scales in the primary and secondary compression of soils 21

Fig. 7. Time-histories of excess pore pressures for τah = 103 and τ bh = 106 s.

Fig. 8. Time-histories of excess pore pressures for τah = 104 s and τ bh = 106 s.

curve. This implies that the hydrodynamic properties of the double-porosity
system is dominated by the hydrodynamic properties of the micropores.

Nevertheless, ca can still impact the time-histories of the excess pore pres-
sures in the macropores and micropores. Figures 7 and 8 show the time-
histories of p1, p2, and the mean excess pore pressure p̄ = β1p1 + β2p2 at a
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depth of z = H/2 for the double-porosity system. In these figures, the time
scale τ bh was fixed at 106 s while τah was assigned two different values, namely,
103 and 104 s.

Fig. 9. Time-histories of excess pore pressures for β1 = 0.8 and β2 = 0.2.

Fig. 10. Time-histories of excess pore pressures for β1 = 0.2 and β2 = 0.8.
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The two figures show that the evolution of the excess pore pressures can
be separated into three stages. In the first stage, the excess pore pressure
decreases in the macropores but increases in the micropores. Both excess
pore pressures plateau in the second stage. In the third stage, the two excess
pressures decrease, but the decrease in the micropore pressure is faster. The
beginning and end of the first stage are determined by τah . Furthermore, the
pressure drop in the macropores and the pressure rise in the micropores in-
crease with τah . On the other hand, the beginning and end of the third stage
are determined by τ bh, while the duration of the second stage is determined by
the difference between τah and τ bh. In any case, the mean pressure p̄ remains
constant during the first and second stages, and only decreases during the
third stage. Since the effective vertical stress is determined by p̄, we again
conclude that the settlement-time history is not affected by τah .

We have previously mentioned that the coefficients β1 and β2 also affect the
initial solutions for the excess pore pressures. When the macropores occupy
most of the pore spaces like the case shown in Figure 9, we see that the
initial excess pore pressure in the macropores is higher than in the micropores.
However, when the micropores occupy most of the pore spaces like the case
shown in Figure 10, the initial excess pore pressures in the micropores is
higher. Regardless of which pore scale occupies more pore space, we always
see three stages in the pressure histories, but the mean excess pore pressure
p̄ remains unaffected by the values of β1 and β2.

Fig. 11. Time-histories of excess pore pressures for γ = 5k2D/ρwg.

Finally, we investigate the effect of parameter γ in Figure 11. When this
parameter is increased five times than the value used in Figure 8, we see that
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the fluid exchange efficiency at the two pore scales is improved, effectively ho-
mogenizing the excess pore pressures. In other words, both p1 and p2 approach
the mean excess pore pressure p̄. However, neither p̄ nor the settlement-time
history is affected by γ.

3.2 High D/m moduli ratio

For hard geomaterials such as rock, the value of the coefficient Ni is com-
parable to βi, and so, C3 can no longer be neglected. This means that an
initial effective vertical stress due to the applied load q will develop in the
soil skeleton, resulting in an instantaneous settlement at t = 0+. In addition,
the coefficient M1 in Equations (70) and (71) can no longer be neglected. In
the following examples, we show that for hard geomaterials, γ becomes an
important parameter of the solution.

We first consider a large value of γ on the order of 100k∗D/ρwg, where
k∗ = 10−7 m/s. We also assume B = 0.8 and set β1 = β2 = 0.4 so that the
pore fractions of the two pore scales are the same. We first vary τ bh by varying
the hydraulic conductivity k2 across a range centered about k∗ in the log scale
while holding the following time scales fixed: τah = 1 s and τv1 = 108 s. Figure
12 shows that the resulting settlement-time curves are insensitive to the values
of cb. Next we fix τ bh = 104 s and vary τah . Figure 13 shows that ca now shifts
the position of the primary settlement stage. This parametric study means
that for hard geomaterials and large values of γ, the hydrodynamic properties
of the double porosity system is influenced by the hydrodynamic properties
of the macropores.

Fig. 12. Variation of average degree of consolidation with cb for large values of γ.
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Fig. 13. Variation of average degree of consolidation with ca for large values of γ.

Fig. 14. Variation of average degree of consolidation with γ/cv2.

Next, we assume different values of γ and observe the resulting system
response. To this end, we fix the three time scales at τah = 1 s, τah = 104 s,
and τv1 = 6.7 × 107 s. For better visualization, we select an H/D ratio of
1.5, although the results do not really depend much on the value of this ratio.
We see from Figure 14 that when γ is large, only two settlement stages can
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Fig. 15. Time-histories of excess pore pressures for γ = 0.01cv2.

be identified from the settlement-time curve, one characterized by τah and the
other by τv1. However, as the value of γ is reduced, a third (intermediate)
settlement stage emerges with a characteristic time scale somewhere between
τah and τ bh. As the value of γ is reduced further and approaches the value
0.01cv2, the time scale approaches τ bh, and decreasing γ further no longer
affects the system response.

Figure 15 shows how γ impacts the excess pore pressure variations in
the double-porosity medium. We see that the mean excess pore pressure p̄
decreases in two steps, first following the drop in p1, and then following the
drop in p2. This is unique to this solution in that previous simulations showed
p̄ remaining essentially steady despite the wild variations in p1 and p2 until it
begins to decrease. The pressure-time history shown in Figure 15 demonstrates
that p̄ could also be influenced by the excessive variations of the fluid pressures
in the two pore scales.

Finally, Figure 16 shows the effect of β1 and β2 on the settlement-time
curve. The first S-shaped curve signifies primary compression of the macropes;
the second S-shaped curve is the secondary compression of the micropores; the
third S-shaped curve is the additional compression due to viscoplastic creep.
Note that larger β1 means higher macropore fraction and greater settlement
as the excess macropore pressure dissipates.

3.3 Summary of main points

For a double-porosity system, the primary compression is attributed to pore
pressure dissipation. Depending on the moduli ratio D/m, the secondary com-
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Fig. 16. Variation of average degree of consolidation with β1 (note: β2 = 0.8− β1).

pression is attributed to either the elasto-viscoplastic deformation of the soil
skeleton alone, or the combined effect of fluid discharge from the micropores
to the macropores or outside the system, followed by the elasto-viscoplastic
deformation of the soil skeleton. Four characteristic time scales exist for both
cases, namely, τah , τ bh, τv1 and τv2, but the first three time scales are sufficient
to characterize the settlement-time history of the system.

For soft geomaterials where the moduli ratio D/m is small, the behav-
ior of the system is very close to that of a single-porosity system where the
settlement-time history may exhibit one or two stages of deformation across
the time scale. For hard geomaterials where D/m is large, the behavior of
the system is sensitive to the value of the coefficient γ related to the fluid ex-
change at the two pore scales. When γ is large, the hydrodynamic properties
of the system are dominated by those of the macropores. However, when γ is
small, the system response depends on the hydrodynamic properties of both
the macropores and micropores. In the latter case, the first three time scales
can produce a settlement-time history exhibiting three stages of deformation
across the time scale.

4 Time scale in Bjerrum’s creep model

Creep is a time-dependent deformation that takes place under a condition
of sustained load. If the vertical effective stress σ′v is constant, then the vis-
coplastic strain predicted in Equation (5) becomes the creep strain, i.e.,
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εcr = εvp|σ′
v=const =

σ′v
η

∫ t

0

e−H(t−τ)/η dτ =
σ′vτv1
η

(1− e−t/τv1) , (90)

where τv1 = η/H is the characteristic viscoplastic time scale defined in Section
2. We recall that σ′v is the full over-stress value in Equation (5) from the
assumption that σY0 = 0. Furthermore, εcr → σ′vτv1/η as t → ∞, which
means that there is a finite long-term creep strain that develops in the soil.
We can view this long-term creep strain as developing at an average rate of
σ′v/η and having a duration of τv1, thus providing a further physical meaning
for this time scale.

We now differentiate the above viscoplastic model with the phenomeno-
logical creep model proposed by Bjerrum [8]. Under one-dimensional consol-
idation, Bjerrum identified parallel straight lines on the void ratio-logarithm
of effective vertical stress plane and associated each line with a certain “age”
of the soil sample. Borja and Kavazanjian [18] referred to this age as “vol-
umetric age” to distinguish it from “deviatoric age” that characterizes the
straight lines constructed from undrained triaxial creep tests [67]. If the vol-
umetric age of one of the straight lines is 10 times larger than the volumetric
age of the straight line above it, then the parallel lines will be equidistant
from each other. This means that the vertical creep strain (equal to the vol-
umetric creep strain under 1D constrained condition) can be expressed as a
logarithmic function of the volumetric age, i.e.,

εcr = εcr0 − cα log10

( t
t0

)
, (91)

where εcr0 is the creep strain at reference time t0 and cα is a secondary compres-
sion coefficient characterizing the creep response of the soil. Since εcr → −∞
as t→∞, Bjerrum’s model predicts that the soil will creep indefinitely. This
implies that the time scale in Bjerrum’s creep model is infinity.

An upshot of the above result is that, when combined with hydrodynamic
lag, Bjerrum’s creep model predicts only one S-shaped curve on the settlement
versus logarithm-of-time response due to primary consolidation, followed by
a straight-line tail due to secondary consolidation. We present a numerical
example to illustrate this point below. In this example, the following param-
eters of the soil were obtained from Borja and Kavazanjian [18] for an over-
consolidated clay: recompression index κ = 0.054 and secondary compression
coefficient cα = 0.0065. Figure 17 shows the settlement-time history responses
for three values of hydraulic conductivity. Two different stages of settlement
can be observed from the curves: an S-shaped curve characterizing the pri-
mary consolidation stage, and a straight-line tail characterizing the secondary
consolidation stage. All curves converge to the same secondary consolidation
line at the completion of the primary consolidation.

To conclude, the primary-secondary consolidation behavior of a soil mod-
eled with Bjerrum’s phenomenological creep theory exhibits two stages of
settlement. The primary settlement is determined by the hydrodynamic prop-
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Fig. 17. Variation of ground settlement with k for an overconsolidated clay. See
Borja and Kavazanjian [18] for a full formulation of the model.

erties of the system and has an associated time scale that is inversely propor-
tional to the hydraulic conductivity of the system. The secondary settlement
represents the creep deformation that accumulates without limit and has no
finite time scale.

5 Closure

We have presented analytical solutions to the problem of combined primary
and secondary compression of soils in one dimension considering different
secondary compression processes and the associated time scales. For a single-
porosity system or a double-porosity system with a low D/m moduli ratio,
the relevant processes include the dissipation of excess pore pressure either
in the pore spaces for a single-porosity system or in the micropores for a
double-porosity system, and the viscoplastic deformation of the soil skeleton.
For a double-porosity system with a high D/m ratio, the fluid transfer effi-
ciency between the two pore scales determines the overall system response.
Finally, when combined with the primary consolidation process, Bjerrum’s
phenomenological creep model does not exhibit a finite time scale and only
the time scale associated with the primary compression can be identified.



30 Yingxiao Liu1 · Ronaldo I. Borja1,∗

Acknowledgments

Support for this work was provided by the National Science Foundation under
Award Number CMMI-1914780.

Data availability statement

The datasets generated during the course of this study are available from the
corresponding author upon reasonable request.

References

[1] Abousleiman YA, Cheng AH-D, Jiang C, Roegiers JC (1996). Porovis-
coelastic analysis of borehole and cylinder problems. Acta Mechanica 119:
199–219.

[2] Alexandre G, Martins I (2014). An Interpretation of Secondary Consoli-
dation for the Batiscan Clay.

[3] Baligh MM, Levadoux JN (1978). Consolidation theory for cyclic loading.
Journal of the Geotechnical Engineering Division 104(4):415–431.

[4] Barbour SL, Fredlund DG (1989). Mechanisms of osmotic flow and vol-
ume change in clay soils. Canadian Geotechnical Journal 26(4):551–562.

[5] Barden L (1965). Consolidation of clay with non-linear viscosity.
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Géotechnique 17:81–118.

[9] Bolt GH (1956). Physico-chemical analysis of the compressibility of pure
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Géotechnique, 15(2):161–173.

[28] De Jong GDJ (1968). Consolidation models consisting of an assembly of
viscous elements or a cavity channel network. Géotechnique 18(2):195–
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