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Abstract

We extend the multireference driven similarity renormalization (MR-DSRG) method

to compute core-excited states by combining it with a GASSCF treatment of or-

bital relaxation and static electron correlation effects. We consider MR-DSRG treat-

ments of dynamical correlation truncated at the level of perturbation theory (DSRG-

MRPT2/3) and iterative linearized approximations with one- and two-body operators

[MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-

electron treatment of scalar relativistic effects. This approach is calibrated and tested

on a series of 16 core-excited states of five closed- and open-shell diatomic molecules

containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show

excellent agreement with experimental adiabatic transitions energies, with mean ab-

solute errors ranging between 0.17 and 0.35 eV, even for the challenging partially
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doubly-excited states of the N2
+ molecule. The vibrational structure of all these tran-

sitions, obtained from using a full potential energy scan, shows a mean absolute error

as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-

LDSRG(2). We generally find that a treatment of dynamical correlation that goes

beyond the second-order level in perturbation theory improves the accuracy of the

potential energy surface, especially in the bond-dissociation region.

1 Introduction

The emergence over the past few decades of new generations of synchrotrons and free-electron

lasers has enabled high-resolution and time-resolved X-ray absorption spectroscopy (XAS)

to flourish.1–6 The core-excited states probed via X-ray spectroscopy can shed light on the

electronic and geometric structure of molecules, and more importantly, offer a way to follow

the dynamics of electrons and nuclei down to the attosecond scale. Interpreting the data

produced in these state-of-art XAS experiments requires accurate and cost-effective electronic

structure calculations. However, the theoretical modeling of even the simplest diatomic

molecules investigated in the earliest high-resolution XAS studies7,8 already proves to be

difficult. Though significant advances have been made in the electronic structure theory and

electron dynamics of core-excited states,3,9,10 an important research direction is expanding

existing techniques to open-shell species.

Core excitations are more challenging to characterize computationally than valence ex-

citations. They require an accurate description of polarization and orbital relaxation ef-

fects resulting from the creation of a core hole,9,10 and for elements past the first row, it

becomes increasingly important to account for both scalar and spin-orbit relativistic ef-

fects.11–14 A wide range of electronic theories have been developed for core-excited states.

Among the most economical and widely applied methods are those based on density func-

tional theory (DFT), including ∆ self-consistent-field,15–20 time-dependent DFT,21–29 and
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transition-potential DFT.30,31 Wave function methods offer a systematic way to increase

the accuracy of core-excited states at the price of higher computational cost. The majority

of wave function methods for core-excited states are based on a single-reference formalism

and include the static exchange method,32,33 configuration-interaction based approaches,34–37

non-orthogonal configuration interaction,38,39 excited-state mean-field theory,40 coupled clus-

ters response41–45 and equation-of-motion theory (EOM-CC),46–51 and other many-body ap-

proaches.52,53 In many of these approaches, orbital relaxation effects are treated with a linear

level instead of infinite order (i.e., by fully relaxing the orbitals or by including the exponen-

tial of single excitations). Therefore, it is often the case that the accuracy of core-excitation

energies is somewhat inferior to that of valence excitations. The algebraic diagrammatic

construction (ADC), which originates in Green’s function theory,54–56 has also seen wide

application to core-excited states. In addition, real-time methods including both real-time

TDDFT57–60 as well as real-time EOM-CC61 theories have also been applied to simulate

attosecond electron dynamics and XAS spectra.

In many cases, when a single electronic configuration cannot accurately describe either

the ground or core-excited state,62 it might be necessary to go beyond single reference for-

malisms. This is, for example, the case when modeling core-excited states of molecules

stretched along dissociative pathways, open-shell species, and excited states that have pro-

nounced multideterminantal character. The most common multireference (MR) methods

for treating core-excited states include multiconfigurational self-consistent-field (MCSCF)

based methods,63–66 MR configuration interaction,67–69 and multireference coupled cluster

(MRCC) theories.70–73 Due to the inherent challenges of generalizing multireference methods

beyond low-order perturbation theory,74–76 most applications of MR methods to core-excited

states have focused on treating dynamic correlation up to second order.

A convenient way to generate zeroth-order reference wave functions for MR treatments of

core-excited states is the restricted active space SCF (RASSCF) method.77 RASSCF can be

used to limit the reference space to determinants with one or more core electrons promoted
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to the valence orbitals, avoiding variational collapse to the ground state. RASSCF and

RASSCF with second-order perturbative corrections (RASPT2)78,79 find wide application

in the simulation of X-ray spectra and have recently been applied80,81 to the CO+ and N+
2

molecules considered in this work. Other variants of MCSCF related to RASSCF have been

applied to study CO and NO.63,82 MCSCF-based methods have also been widely applied in

other systems where single-reference methods fail, such as transition metal complexes both

in the gas-phase65,83–86 and solution.87,88

Beyond low-order perturbative theories, there are only few applications of multireference

coupled-cluster theories to XAS. Most of the early studies70–72 computed vertical core ex-

citation energies of small molecules with MRCC truncated to singles and doubles, yielding

results that are comparable with single-reference EOM-CC with singles and doubles. More

recently, Maganas and co-workers73 compared the performance of MR-EOM-CC and MRCI

theories on metal L-edge XAS, expanding the domain of application of earlier MRCC works.

In this work, we report a strategy to compute core-excited states that combines a

generalized-active-space SCF (GASSCF)89,90 treatment of static correlation with a treat-

ment of dynamical correlation based on the multireference driven similarity renormalization

group (MR-DSRG).91,92 The GASSCF method generalizes the restrictions imposed by the

RASSCF method and offers a flexible approach to apply multireference methods to core-

excited states. Previous studies that examined the accuracy of multireference perturbation

theories based on the DSRG (DSRG-MRPT) showed that a third-order treatment (DSRG-

MRPT3) reaches similar accuracy to MRCI with singles and doubles and improves upon

its second-order analog (DSRG-MRPT2),93 an improvement also observed in the case of

CAS plus perturbative corrections (CASPT).94,95 Compared to same-order CASPTn theo-

ries (n = 2, 3), DSRG-MRPTn methods avoid higher-order density cumulants at the cost of

a small loss of accuracy. Other truncated MR-DSRG schemes include the MR-LDSRG(2)

method, an iterative approach that accounts for dynamical correlation at the level of sin-

gle and double excitations (analogous to the CCSD method).96 Previous benchmark stud-
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ies93,97,98 revealed that the hierarchy of DSRG-MRPT2, DSRG-MRPT3, and MR-LDSRG(2)

theories systematically converge energies and properties of ground and valence excited states

towards experimental values.

In this study, we test the performance of MR-DSRG methods in computing potential

energy curves of core-excited states of diatomic molecules. Specifically, we have computed

ground- and core-excited state potential energy curves for five diatomic molecules and deter-

mined their corresponding vibrational levels. The article is structured as follows. In Sec. 2

we briefly summarize the GAS and MR-DSRG approaches. In Sec. 3 we provide details of the

computations performed in this study. Next, in Sec. 4 we calibrate the calculation parameters

(basis set and flow parameter) used in the core-excited computations and test the MR-DSRG

methods on the CO, CO+, N2, N2
+ and NO molecules. The accuracy of core-excited states

computed with the MR-DSRG methods is accessed by comparing vertical transition energies

and the vibrational structure of sixteen core excitations to the experimental ones. Lastly, in

Sec. 5 we summarize the findings of this work and provide a perspective on the application

of MR-DSRG methods to the computation of core-excite states of large molecules.

2 Theory

In this section we briefly summarize the main features of MR-DSRG theory and its combi-

nation with GASSCF references used to compute core-excited states. The general computa-

tional scheme underlying our approach is illustrated in Fig. 1. Here the GASSCF reference

provides a zeroth-order description of the ground and core-excited states, while a truncated

MR-DSRG method is used to include dynamical correlation effects.

2.1 General Active Spaces References

Our modeling of core-excited states begins by defining a set of GASSCF zeroth-order refer-

ence states {Ψα} that account for orbital relaxation and static correlation in the core and
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Figure 1: Computational scheme employed to compute core-excited states using a GASSCF
reference and multireference DSRG methods. A) A GASSCF reference is used to provide
a zeroth-order approximation to a target core excitation (e.g., O K-edge). B) Dynamical
correlation effects are added using a truncated MR-DSRG method and the 1-,2-, and 3-body
reduced density matrices of the GASSCF reference. C) The converged DSRG amplitudes
are used to build the DSRG Hamiltonian (H̄). D) Diagonalization of H̄ provides the relaxed
energy E ′ and reference Ψ′. E) Optionally, the relaxed reference Ψ′ is passed back to the
MR-DSRG code and steps B–E are iterated until self consistency is reached.

valence orbitals. In the GAS approach,89,90 the orbitals are partitioned into core (doubly oc-

cupied), active (partially occupied), and virtual (empty), with the active space being further

partitioned into a variable number of orbital subspaces (GASn, with n = 1, 2, . . .). Given

this partitioning, the determinant space defined by GAS is specified by imposing restrictions

on the minimum and maximum number of electrons in each GASn space. Each reference

state is a generalized active space self-consistent-field wave function of the form

|Ψα〉 =
GAS∑
µ

Cα
µ |Φµ〉 (1)

where |Φµ〉 is a determinant that satisfies the GAS restrictions and Cα
µ its corresponding

coefficient. Compared to the RAS partitioning77—which defines only three spaces and im-

poses restrictions only on the first and last—GAS allows for more flexibility in the definition

of the zeroth-order reference.
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As shown in Fig. 1, in core-excited state calculations based on GAS wave functions, we

include the core orbital(s) from which electrons are excited in the GAS1 space, and enforce

the presence of one or more holes depending on the type of excitation targeted. Valence

orbitals are included in the GAS2 space (without occupation restrictions), thus allowing to

capture core-excited states that have multi-determinantal character. We generally employ

different GAS partitionings to describe different core excitations. For example, in modeling

the K-edge spectra of CO, we perform separate computations in which only the C 1s or the

O 1s orbitals are included in the GAS1 space to simulate excitations from the carbon and

oxygen atoms, respectively. The ground electronic state is similarly described by a GAS

reference, restricting GAS1 to be fully occupied. We note that for the purpose of this work,

the determinants spaces here obtained with a GAS could also be reproduced with the RAS

approach with extra restriction on the minimum number of holes in the RAS1 (core orbitals).

2.2 Multireference DSRG treatment of dynamical correlation

The GASSCF zeroth-order references described in the previous section provide a qualitative

approximation to core-excited states. To include the missing dynamical correlation effects

and reference relaxation effects induced by dynamical correlation, we augment the GASSCF

states with the multireference DSRG theory.91,92,96,98–100 The MR-DSRG is a unitary for-

malism in which the Hamiltonian Ĥ is gradually block-diagonalized by a unitary (canonical)

transformation:

Ĥ → H̄(s) = e−Â(s)ĤeÂ(s) (2)

The operator Â(s) is anti-Hermitian and it is expressed in terms of a generalized form of

the coupled cluster excitation operator T̂ (s) as Â(s) = T̂ (s) − T̂ †(s). The amplitudes that

enter into T̂ (s) depend on the number s ∈ [0,∞), usually referred to as flow parameter. The

purpose of this unitary transformation is to eliminate the second-quantized components of

H̄(s) that couple active orbitals to the core and virtual spaces. These components of H̄(s)
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are referred to as non-diagonal, and are indicated with H̄N(s). When this decoupling is

achieved exactly [i.e., H̄N(s) = 0], one can obtain the exact eigenvalues for a manifold of

states by diagonalizing H̄(s) in the space of CAS determinants.

One of the challenges associated with the block-diagonalization of the Hamiltonian via

Eq. (2) is the appearance of numerical instabilities. These are related to excitations with

small energy denominators, which, in perturbation theory lead to divergences of the dynam-

ical correlation energy (the intruder state problem). To avoid intruders, the DSRG seeks

only a partial block-diagonalization of the Hamiltonian by solving the following modified

equation

H̄N(s) = R̂(s) (3)

The source operator R̂(s) regularizes excitations with small denominators, and the flow

parameter s determines to which extent excitations are suppressed. This statement has a

precise interpretation in perturbative truncation schemes based on the MR-DSRG: 93 exci-

tations with denominators ∆ less than the energy cutoff Λ = 1/
√
s are suppressed (and

are equal to zero when ∆ = 0), while excitations with ∆ � Λ are nearly-identical to those

obtained from the corresponding unregularized equations. The detailed form of the source

operator is reported in Appendix A.

Once the DSRG equation [Eq. (3)] is solved, the energy is given by one of the eigenvalues

of the DSRG Hamiltonian [H̄(s)] in the space of GAS determinants

H̄(s) |Ψ′〉 = E ′(s) |Ψ′〉 (4)

where E ′(s) and |Ψ′〉 are the relaxed energy and reference, respectively. The relaxed energy

includes contributions from dynamical correlation plus reference relaxation effects. It is also

possible to obtain a fully relaxed energy, whereby Eqs. (3) and (4) are solved iteratively until

self consistency is reached. The formalism described here is state-specific, in the sense that

the operator T̂ (s) is optimized for a single electronic state. For near-degenerate electronic
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states of the same symmetry, we instead employ a state-averaged version of the MR-DSRG

that allows to compute more than one state at a time.93

Generalized Fock matrix

GAS2

GAS1

Doubly occupied 0

0Virtual
Zeroth
order

First
order

GAS-to-GAS
coupling

Figure 2: Structure of the generalized Fock matrix for a GASSCF state defined by two GAS
spaces.

In this work we consider both perturbative and iterative approximations to the MR-

DSRG. Partitioning the Hamiltonian into a zeroth- plus first-order component, the DSRG

equation and the DSRG energy can be expanded order-by-order into closed expression. To

define the zeroth-order Hamiltonian, we consider the generalized Fock matrix:

f pq = hpq +
∑
jk

〈pj‖qk〉γjk (5)

defined in terms of the one-electron integrals (hpq), antisymmetrized two-electron integrals

(〈pj‖qk〉), and the one-body reduced density matrix of the reference state (γjk). For conve-

nience, we work in a semi-canonical basis in which the generalized Fock matrix is diagonal

in each orbital space (doubly occupied, GAS1, GAS2, . . . ). For a GASSCF reference, the

matrix f pq in the semi-canonical basis has the structure shown in Fig. 2.

We take the zeroth-order Hamiltonian to be the diagonal component of the generalized

Fock matrix

Ĥ(0) =
∑
p

εp{âpâ†p} (6)

where the quantities εp = f pp are diagonal elements of the generalized Fock matrix. Trun-

cation of the MR-DSRG using this partitioning leads to second- and third-order DSRG
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multireference perturbation theories (DSRG-MRPTn, n = 2, 3). Detailed derivations of

these methods are reported in Refs. 99 and 100 and we encourage the reader to consult

those works for further details.

It is important to note one difference between the current formulation of the DSRG-

MRPTn methods based on a GAS reference and a complete active space, as reported previ-

ously.99 In the case of CAS references, there are no first-order one-body terms that couple

active orbitals, and consequently, the first-order correlation energy is null. Instead, with

our choice of Ĥ0, the perturbation contains off-diagonal one-body terms (see Fig. 1) that

introduce GAS-to-GAS internal excitations and a corresponding first-order energy correc-

tion. These first-order corrections correspond to excitations from core to valence orbitals,

and are currently neglected in the present implementation. In the case of core-excited states,

neglecting internal GAS-to-GAS excitations may be justified using a perturbative argument

on the basis of the large difference in the energy between the core and valence orbitals. An

alternative solution to the one adopted here would be to semicanonicalize the union of all

GAS blocks of the generalized Fock matrix. This, would however, cause a mixing of orbitals

in different GAS spaces and change the reference energy.

We also consider treatments that go beyond perturbation theory, specifically, the lin-

earized MR-DSRG approach with one- and two-body operators [MR-LDSRG(2)]. 96 In the

MR-LDSRG(2), Â(s) is truncated to one- and two-body operators [Â(s) ≈ Â1(s)+Â2(s)] and

the DSRG Hamiltonian is computed as a series of commutators using the Baker–Campbell–

Hausdorff (BCH) formula

H̄1,2(s) =Ĥ + [Ĥ, Â(s)]1,2

+
1

2
[[Ĥ, Â(s)]1,2, Â(s)]1,2 + . . .

(7)

The notation [·, ·]1,2 means that the operator resulting from the commutator is truncated

to its one- and two-body components. Note that the presence of both excitation and de-

excitation operators in Â(s) makes the BCH expansion of the DSRG Hamiltonian a non-
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truncating series. In practice, this series is truncated when the norm of the last term is less

than a threshold, yielding in general a total of 10–15 terms. The MR-LDSRG(2) truncation

scheme is similar to the unitary coupled-cluster with singles and doubles scheme (although

it is only complete up to second order), and the resulting DSRG Hamiltonian contains up to

two-body interactions, as the original Hamiltonian. Like for the DSRG-MRPTn methods,

we exclude from Â those operator components that correspond to GAS-to-GAS excitations.

3 Computational Details

As part of this work, we implemented both GASSCF and GAS-based variants of the MR-

DSRG methods in Forte,101 an open-source plugin for the Psi4 ab initio quantum chem-

istry package.102 Our recent implementation of spin-free MR-DSRG theories98 enables these

GAS based MR-DSRG calculations on open-shell molecules. The GASSCF-MR-DSRG cal-

culations are performed according to the following procedure. First, ground-state molec-

ular orbitals are obtained using restricted Hartree–Fock (RHF) using a spin-free exact-

two-component (X2C) one-electron treatment of scalar relativistic effects. 103 In this work

we have tested a variety of basis sets, including the correlation-consistent polarized va-

lence set (cc-pVXZ) optimized for Douglass–Kroll (DK) relativistic Hamiltonians (cc-pVXZ-

DK) (X=D,T,Q),104,105 cc-pVXZ-DK augmented with diffuse functions (aug-cc-pVXZ-DK,

X=D,T,Q),104–107 cc-pVXZ and cc-pVXZ-DK basis set augmented with core functions (cc-

pCVXZ/cc-pCVXZ-DK),104–106 the def2-XZVP (X=T,Q),108,109 and ANO-RCC-XZVP (X=T,Q).110

For molecules like N2
+ with partially occupied π orbitals, orbital degeneracy is enforced

by performing a state-averaged CASSCF (SA-CASSCF) calculation using as an active space

that includes all valence and core orbitals of both atoms. Next, these initial molecular

orbitals are optimized using GASSCF theory where the active spaces are separated into

multiple GAS and the number of electrons in each GAS is constrained. The active space

in this GASSCF step is also formed by all the valence and core orbitals, i.e., 1s, 2s and 2p
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orbitals for second period elements. Depending on whether or not two nuclei of the molecule

are identical, the active space is separated into two GAS differently. For CO, CO+, and

NO, one core level is selected for each atom from which the electron is excited and included

in the GAS1 space, while all other active orbitals belong to the GAS2 space. In the case

of N2 and N+
2 , the lowest two molecular orbitals (corresponding to in- and out-of-phase

combinations of 1s orbitals) form the GAS1 space, and the rest of the orbitals belong to the

GAS2 space. The number of electrons in GAS1 is always 2n for the ground state and 2n− 1

for the electronic state where n is the number of GAS1 orbitals. To simplify the discussion,

we use the notation (n1
oo, n1

ee;n2
oo, n2

ee; · · · ) to represent a specific distribution of electrons

in GAS where nmo and nme are the number of orbitals and the number of electrons in the

m-th GAS space. For example, the GAS for the ground and core-excited electronic states

of N2
+ under this notation are (2o,4e;8o,5e) and (2o,3e;8o,6e), respectively. We note for the

cases discussed in this work each GAS space has a constant number of electrons; however,

our GAS implementation is general, such that restrictions on the minimum and maximum

number of electrons can also be applied to each GAS.

For all transitions, state-specific GASSCF computations are performed on each electronic

state, unless two core-excited states undergo mixing due to strong coupling along the poten-

tial curve. We found this to be the case for two 1s1
C5σ12π1 states of CO+, two 1s1

O5σ12π1

states of CO+, two 1σ1
u3σ

1
g1π

1
g states of N+

2 , and three 1s1
O2π1 states of NO. Finally, us-

ing the optimized GASSCF MOs for each electronic state, DSRG-MRPT2, DSRG-MRPT3

and MR-LDSRG(2) levels of theories are applied to account for dynamical electron correla-

tion. State-average MR-DSRG (SA-MR-DSRG)93 calculations are performed if the electronic

states are obtained with SA-GASSCF. In all DSRG computations, a one-step reference re-

laxation correction is computed, in a manner consistent with state averaging or state specific

calculations.

The current code GASSCF-MR-DSRG computations assumes several approximations.

First, orbital rotations between two different GAS are frozen to prevent the collapse of a
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core-excited state to the ground state. This approximation has been widely used in the

core-excited state calculation based on RASSCF optimizations.65,80,81,84 Second, the number

of electrons within each GAS is frozen in both the ground and excited state calculations.

This approximation neglects the coupling between core-excited determinants and all other

determinants, and leads to a difference in the vertical transition energy for about 50 meV

near the equilibrium geometry. This energy difference may increase to 100 meV as a bond

is stretched, but preliminary tests show that including these couplings has only little effect

(less than 1 %) on the final vibrational Franck–Condon factors. Therefore, this term is

ignored in our calculations to significantly decrease the number of determinants involved in

the GASSCF step. Last, internal amplitudes that correspond to electron excitations between

different GAS spaces are ignored in the MR-DSRG treatment. This approximation generally

leads to a tiny correction to the transition energy, for example, of around 2 meV for N2
+.

These three approximations can be justified using a perturbation theory argument and the

large energy difference between orbitals from different GASs.

The vibronic spectra of all core-excited transitions are then calculated from potential

energy scans on both ground and excited electronic states that range from the equilibrium

geometry to the bond-dissociation region. The potential scans use uniform grid with a

spacing of 0.05 Å. Tests on a denser grid with 0.01 Å spacing show that the Franck–Condon

factors change at most by 1%. The equilibrium geometry of each electronic state is computed

from a cubic spline potential fitted to energies evaluated on a grid of 0.001 Å spacing.

Using these potentials, the vibrational eigenvalues and eigenvectors are then obtained

using the discrete variable representation (DVR) method111,112 with the values of potential

energy at each grid points evaluated through cubic spline interpolation. The intensity of the

vibronic spectrum peaks are approximated with the corresponding Franck–Condon factors,

which are obtained by computing the overlap of the ground and excited vibrational eigenvec-

tors and ignoring the nuclear dependence of the transition dipole moment. All spectra are

simulated at a vibrational temperature set to 0 K. All core-valence separated ADC (CVS-
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ADC) results reported in this work were computed using Psi4102 and adcc package.113,114

All core-valence-separated coupled cluster singles and doubles (CVS-EOM-CCSD) results

reported in this work were computed using a modified version of the CFOUR package.115–117

4 Result and Discussion

4.1 Basis set and flow parameter choice

To test the accuracy of core excitation energies computed with the GASSCF-MR-DSRG

approach, we compute a total of 16 K-edge transitions for CO, CO+, NO, N2, and N+
2 .

These systems comprise both open- and closed-shell molecules and their high-resolution,

vibrationally resolved core-excited transitions have been studied both experimentally and

theoretically.8,63,80–82,118–124 To calibrate the GASSCF-MR-DSRG approach, we begin by

studying the sensitivity of core-excited transitions to the choice of basis set. For this pur-

pose, we report adiabatic transition energies (the electronic energy difference between the

equilibrium geometries of two states) for the 1σu → 3σg transition of N+
2 computed with

the DSRG-MRPT2 method and a variety of basis sets. In these calculations, the same

experimentally-determined molecular geometries81,125 are used for all basis functions (rNN

= 1.116 and 1.076 Å for the ground and core-excited states, respectively). Adiabatic tran-

sition energies (Te) and the number of basis functions (Nb) for each basis set are listed in

Table 1. Complete basis set adiabatic transition energies for the Dunning basis sets were

obtained by extrapolation, following previous studies.126–128 The GASSCF energies (ESCF
X )

and the DSRG-MRPT2 correlation energies (Ecorr
X ) for each state were fitted to the equations

ESCF
X = ESCF

∞ +A exp(−bX) and Ecorr
X = Ecorr

∞ +C/X3 (where X = 3 for a triple-zeta basis,

etc.), respectively, and extrapolated to obtain the corresponding values in the limit of an

infinite basis (ESCF
∞ and Ecorr

∞ ).

In analyzing the different basis set choices, we take as a reference transition energy the

extrapolated cc-pCVXZ-DK value (394.49 eV). This value is in good agreement with the
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energy computed with the largest two basis sets: a fully decontracted cc-pCVQZ-DK basis

(394.49 eV) and the cc-pCVQZ-DK basis augmented with diffuse functions (394.53 eV). We

generally find that double-ζ basis sets are insufficiently accurate, overestimating transition

energies by as much as 2–3 eV. Basis sets that do not include core-valence functions (cc-

pVXZ-DK, ANO-RCC-VXZP, def2-XZVP) generally underestimate transition energies even

at the quadruple-ζ level. In particular, the def2-QZVP basis, which lacks core functions

and is designed for non-relativistic computations, underestimates Te by as much as 0.66 eV.

Comparing the cc-pCVQZ and cc-pCVQZ-DK results, the X2C relativistic effects amount

to a correction of 0.2 eV, as expected for first-row elements. Note that a similar correction

is observed if this comparison is performed using the cc-pCVQZ-DK basis in both the non-

relativistic and X2C computations. This analysis shows that the cc-pCVQZ-DK offers a

good compromise between accuracy and cost for highly-accurate computations, deviating

from the reference value by only 0.03 eV. Therefore, all of the results following this section

will assume a cc-pCVQZ-DK basis with an X2C treatment of relativistic effects.

A second aspect we investigate is the sensitivity of the computed transition energies with

respect to the DSRG flow parameter s. In Table 2 we report excitation energies for the

1σu → 3σg transition of N+
2 computed with different MR-DSRG treatments of dynamical

correlation and flow parameter values in the range 0.25–4 E−2
h . For all MR-DSRG methods,

transition energies show a very small dependence on the value of s, until it reaches a relatively

large value (s = 2 E−2
h ) where the MR-LDSRG(2) computations fail to converge. The lack of

convergence of the MR-LDSRG(2) method for large values of s has been previously observed;

however, the best way to address this issue still remains an open question in the context

of MR-DSRG theory. The fluctuation of the adiabatic excitation energy for DSRG-MRPT3

and DSRG-MRPT2 is within 0.1 eV, which is comparable to the energy correction from

spin-free relativistic effects.

We also note a similar sensitivity for the adiabatic excitation energy for the lowest sulphur

K-edge line in CS. In this heavier analog of CO, relativistic effects will be significantly larger
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Table 1: Adiabatic transition energy (Te) and basis set size (Nb) for the 1σu → 3σg transition
of the N+

2 ion calculated with GASSCF-DSRG-MRPT2 and different basis sets. Unless
otherwise noted, all results are obtained with a one-electron spin-free X2C Hamiltonian.

Basis Set Nb Te (eV)
cc-pCVDZ-DK 36 396.74
cc-pCVTZ-DK 86 394.65
cc-pCVQZ-DK 168 394.52
CBS/cc-pCVXZ-DK – 394.49
cc-pCVDZ-DK (decontracted) 60 395.34
cc-pCVTZ-DK (decontracted) 110 394.67
cc-pCVQZ-DK (decontracted) 194 394.49
aug-cc-pCVDZ-DK 54 396.69
aug-cc-pCVTZ-DK 118 394.65
aug-cc-pCVQZ-DK 218 394.53
cc-pCVDZa 36 396.54
cc-pCVTZa 86 394.45
cc-pCVQZa 168 394.31
cc-pVDZ-DK 28 397.59
cc-pVTZ-DK 60 394.31
cc-pVQZ-DK 110 394.14
ANO-RCC-VTZP 60 394.55
ANO-RCC-VQZP 110 394.06
def2-TZVPa 62 394.46
def2-QZVPa 114 393.83

a Results obtained with a non-relativistic Hamiltonian.
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than the fluctuation introduced by the choice of s.

Due to the low sensitivity of the results with respect to s, in this study we use s = 0.5

E−2
h , the optimal empirical choice determined in previous studies.96,100 The optimal value of

s can be different for molecules containing heavier atoms, as shown in our previous study98

on spin splittings of iron complexes. All MR-LDSRG(2) computations reported in this work

were obtained using this value of s without encountering convergence issues.

Table 2: Dependence of the adiabatic transition energies for 1σu → 3σg of N+
2 ion as a

function of the flow parameter s. Results were calculated with a GASSCF reference and
various levels of theory [PT2 = DSRG-MRPT2, PT3 = DSRG-MRPT3, LDSRG(2) = MR-
LDSRG(2)] using the cc-pCVQZ-DK basis and a spin-free X2C 1-electron treatment of scalar
relativistic effects.

s Te (PT2) (eV) Te (PT3) (eV) Te(LDSRG(2)) (eV)
0.25 394.54 394.76 394.65
0.5 394.51 394.75 394.64
1.0 394.53 394.71 394.59
2.0 394.52 394.67 –a

4.0 394.47 394.65 –a

a MR-LDSRG(2) computation on the ground state failed to converge.

4.2 Adiabatic transition energies

Next, we assess the effect of different MR-DSRG treatments of dynamical electron correlation

on the computed adiabatic transition energies. In Fig. 3 we plot the potential energy curve of

the ground and the 1sO → 2π excited state of CO. This example shows very good agreement

between all treatments of dynamical correlation, especially beyond second order, with the

DSRG-MRPT3 potential energy curve differing consistently from the MR-LDSRG(2) one

only by 0.13–0.17 eV in the core excited state and 0.06–0.10 eV in the ground state. This

level of agreement is consistent with our previous calculations on the valence-valence tran-

sition energies using DSRG theories.100 In contrast, the DSRG-MRPT2 shows considerable

deviations in the potential energy curves, especially in the ground state where the absolute

difference with respect to the MR-LDSRG(2) energy at the equilibrium geometry is as large

17



0

2

4

En
er

gy
 (e

V)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

 C-O Bond length (Å)

0

2

4

6

8

10

533.84 eV

En
er

gy
 (e

V)

DSRG-MRPT2

DSRG-MRPT3
MR-LDSRG(2)

Core-excited state

Ground state

DSRG-MRPT2 DSRG-MRPT3
MR-LDSRG(2)

Figure 3: The potential energy surface for the (a) 1s1
O2π1 state and (b) ground state of

CO calculated using GASSCF-MR-DSRG level of theory and cc-pCVQZ-DK basis. All the
curves are shifted so that the values of MR-LDSRG(2) potential energy in both traces at
each minimum are zero.

as 0.5 eV, and only 0.26 eV in the core-excited state.

The trends illustrated for the CO example are generally observed for all computed tran-

sitions. Table 3 lists Te values from different level of GASSCF-MR-DSRG theory as well as

the corresponding experimental values. Experimental Te values do not include zero-point

vibrational contributions, and in certain cases were obtained from zero-point corrected elec-

tronic energies, T0, using the experimental zero-point energy. The absolute value for these

zero-point vibrational energy corrections are small (typically around 0.05 eV). As can be

seen from Table 3, the MR-DSRG predictions are in good agreement with experiment, show-

ing a mean absolute error (MAE) less than 0.4 eV in energy for all methods. Among the

three GASSCF-MR-DSRG theories, DSRG-MRPT2 yields a MAE of just 0.17 eV, nearly

half the MAEs of the more expensive DSRG-MRPT3 and MR-LDSRG(2) methods. The

better performance of the DSRG-MRPT2 is likely due to fortuitous error cancellation. The

18



Table 3: Adiabatic transition energies (in eV) for the five diatomic molecules reported as
deviations from the experiment values. Results were calculated with a GASSCF reference
and various levels of theory [PT2 = DSRG-MRPT2, PT3 = DSRG-MRPT3, LDSRG(2) =
MR-LDSRG(2)] using the cc-pCVQZ-DK basis and a spin-free X2C 1-electron treatment of
scalar relativistic effects.

Excitation Te(Exp.) Error(GASSCF) Error(DSRG)
PT2 PT3 LDSRG(2)

CO, 1sC → 2π 287.41
a

2.24 –0.01 0.28 0.30

CO, 1sO → 2π 533.62
b

2.38 –0.04 0.25 0.22
N2, 1σu → 3σg 400.76

c
3.72 0.13 0.75 0.64

CO+, 1sC → 5σ 282.00
d

1.56 0.34 0.25 0.20

CO+, 1sC → 2π(L) 289.85
d

2.19 0.10 0.36 0.35

CO+, 1sO → 5σ 528.48
d

1.79 0.49 0.44 0.36

CO+, 1sO → 2π(L) 533.44
d

2.54 0.36 0.54 0.51
N2

+, 1σu → 3σg 394.28
e

2.41 0.24 0.36 0.25
N2

+, 1σu → 1πg(L) 402.24
e

2.98 –0.22 0.23 0.19
N2

+, 1σu → 1πg(H) 403.11
e

3.61 0.19 0.69 0.63

NO, 1sN → 2π(2∆) 399.40
f

1.94 0.15 0.31 0.28

NO, 1sN → 2π(2Σ−) 399.69
f

1.98 0.22 0.40 0.37

NO, 1sN → 2π(2Σ+) 400.01
f

1.82 0.14 0.33 0.30

NO, 1sO → 2π(2Σ−) 531.53
b

1.58 –0.01 0.10 0.06

NO, 1sO → 2π(2∆) 532.64
b

1.97 0.02 0.13 0.08

NO, 1sO → 2π(2Σ+) 533.56
b

1.77 0.00 0.19 0.14
MAE 2.28 0.17 0.35 0.31
MSE 5.60 0.05 0.12 0.10

a From Ref. 121.
b From Ref. 123.
c From Ref. 129.
d From Ref. 80.
e From Ref. 81.
f From Ref. 124.
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small error displayed by all the MR-DSRG methods is a significant improvement from the

GASSCF theory with a MAE of 2.28 eV, which indicates the dynamic correlation is crucial

to achieve sub-eV accuracy in X-ray computations. However, it is necessary to combine both

orbital optimization and a multireference treatment of dynamic correlation to achieve high

accuracy, as shown, for example, by GASCI-DSRG-MRPT2 computations based on ground

state Hartree–Fock orbitals, which yield Te values with a higher MAE (1.02 eV).

The excellent agreement of GASSCF-MR-DSRG methods with experiment is found to be

better than other many-body methods like core-valence separated algebraic-diagrammatic-

construction (CVS-ADC) or core-valence separated equation-of-motion coupled cluster theo-

ries (CVS-EOM-CC), as seen from the adiabatic transition energies listed in Table 4. Among

the three CVS-ADC theories, the CVS-ADC(2)-x method shows the overall best agreement

compared with experiment, which is consistent with a previous study.56 The error at the

CVS-EOM-CCSD level is generally between 1–3 eV from experiment, which agrees with pre-

vious benchmark studies on the K-edge ionization energies of first-row elements.116 Although

the ADC and EOM-CCSD results show slightly higher errors than the GASSCF-MR-DSRG

results, it is important to highlight that these single-reference methods are simpler to use

(they do not require selecting an active space) and have a wide applicability range in terms

of molecular size due to their efficient implementation.

However, we have found that potential energy scans using CVS-ADC and EOM-CCSD

theories lead to qualitatively incorrect curves in the bond-dissociation region and may contain

artificial “humps.”

The accuracy observed for the MR-DSRG methods is also comparable to other multiref-

erence theories. For example, a recent study from Lindblad and co-workers81 computed

transition energies for N2
+ using MS-RASPT2, and obtained a MAE of 0.46 eV for three

transitions (unshifted), while GASSCF-MR-DSRG yields MAEs for the same transitions

in the range 0.22–0.43 eV. For the CO+, the MR-DSRG Te values have a MAE in the

range 0.32–0.40 eV, which are slightly larger than the 0.24 eV MAE for the (unshifted)
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MS-RASPT2 data by Couto et al.80 We note that their study used an imaginary shift of 0.3

Eh to avoid intruder states, a problem addressed in MR-DSRG theories by regularization of

the equations via the source operator. For the neutral molecules CO and NO, the predicted

adiabatic transition energies from DSRG-MRPT2 theory differ at most by 0.1 eV from those

computed with the multi-configurdational coupled electron pair approach (MCCEPA)82,123

based on an inner-shell CASSCF reference (CASSCF combined with restricted occupation

of the inner shell orbitals).63

Another important metric to evaluate the accuracy of a theoretical treatment is the en-

ergy splitting between core-excited states, which reflects the accuracy with which a method

predicts the peak structure of NEXAS spectra. In Table 5 we report a comparison of ex-

perimental and calculated adiabatic energy splittings. Energy splittings are in excellent

agreement with experimental values, with MAEs less than 0.15 eV for all three MR-DSRG

treatments of dynamical correlation. This data again shows no significant improvements

when going from DSRG-MRPT2 to the DSRG-MRPT3 and MR-LDSRG(2) results.

4.3 Vibrational features
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Figure 4: Spectrum of the CO 1sO → 2π transition simulated from the potential calculated at
the DSRG-MRPT2, DSRG-MRPT3, MR-LDSRG(2) levels of theory using the cc-pCVQZ-
DK basis set, as well as the experimentally-determined Morse operator constants. The
theoretical spectra are shifted to align the 0–0 transition with experiment. Each transition
is labeled with the vibrational quantum number ν ′ of the upper state.
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Table 4: Adiabatic transition energies (in eV) evaluated using the experimental ground and
excited state equilibrium geometries for the five diatomic molecules. Results were calculated
with different MR-DSRG theories based on a GASSCF reference [PT2 = DSRG-MRPT2,
PT3 = DSRG-MRPT3, LDSRG(2) = MR-LDSRG(2)] , CVS-ADC theory [ADC(2) = CVS-
ADC(2), ADC(2)-x = CVS-ADC(2)-x, ADC(3) = CVS-ADC(3)] and CVS-EOM-CCSD level
of theory using the cc-pCVQZ-DK basis and a spin-free X2C 1-electron treatment of scalar
relativistic effects. The ADC adiabatic energies are approximated as the sum of the vertical
transition energy at the excited state equilibrium geometry and the ground state energy
difference between the ground and excited state equilibrium geometries of the ground state.
The ground state energies are evaluated using the corresponding Møller–Plesset perturbation
theories [MP2 for ADC(2) and ADC(2)-x, MP3 for ADC(3)].

Excitation Te(Exp.) Error(DSRG) Error(ADC) Error(EOMCC)
PT2 PT3 LDSRG(2) ADC(2) ADC(2)-x ADC(3) CCSD

CO, 1sC → 2π 287.41
a

0.03 0.32 0.33 2.74 −0.42 0.56 0.77

CO, 1sO → 2π 533.62
b −0.04 0.25 0.22 0.78 −1.92 6.25 2.23

N2, 1σu → 3σg 400.76
c

0.13 0.72 0.62 2.81 −1.24 2.17 1.31

CO+, 1sC → 5σ 282.00
d

0.34 0.25 0.20 1.83 −0.46 −0.14 0.52

CO+, 1sC → 2π(L) 289.85
d

0.10 0.36 0.35 0.92 −2.22 −1.27 −0.88

CO+, 1sO → 5σ 528.48
d

0.49 0.44 0.36 3.82 0.20 7.37 3.05

CO+, 1sO → 2π(L) 533.44
d

0.36 0.54 0.51 1.75 −1.72 1.76 1.64
N2

+, 1σu → 3σg 394.28
e

0.24 0.36 0.25 2.09 −1.54 1.21 0.61
N2

+, 1σu → 1πg(L) 402.24
e −0.22 0.23 0.19 1.84 −2.17 0.97 0.42

N2
+, 1σu → 1πg(H) 403.11

e
0.19 0.69 0.63 2.31 −2.04 1.81 0.81

NO, 1sN → 2π(2∆) 399.40
f

0.15 0.31 0.28 1.63 −2.00 −0.48 −0.19

NO, 1sN → 2π(2Σ−) 399.69
f

0.22 0.40 0.37 3.06 −0.89 1.09 0.94

NO, 1sN → 2π(2Σ+) 400.01
f

0.14 0.33 0.30 2.91 −0.98 0.72 0.77

NO, 1sO → 2π(2Σ−) 531.53
b −0.01 0.10 0.06 0.90 −2.42 4.45 1.46

NO, 1sO → 2π(2∆) 532.64
b

0.02 0.13 0.08 0.55 −2.91 4.22 1.17

NO, 1sO → 2π(2Σ+) 533.56
b

0.00 0.19 0.14 0.50 −2.61 5.20 1.81
MAE 0.17 0.35 0.31 1.90 1.61 2.48 1.16
MSE 0.05 0.15 0.29 4.55 3.23 10.96 1.86

a From Ref. 121.
b From Ref. 123.
c From Ref. 129.
d From Ref. 80.
e From Ref. 81.
f From Ref. 124.
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Table 5: Selected adiabatic energy splittings (in eV) between core-excited states reported as
deviations from the experiment values. Results were calculated with a GASSCF reference
and various levels of theory [PT2 = DSRG-MRPT2, PT3 = DSRG-MRPT3, LDSRG(2) =
MR-LDSRG(2)] using the cc-pCVQZ-DK basis and a spin-free X2C 1-electron treatment of
scalar relativistic effects.

Splitting ∆Te(Exp.) Error(GASSCF) Error(DSRG)
PT2 PT3 LDSRG(2)

CO+,1s1
C5σ2−1s1

C5σ12π1(L) 7.85
a

0.63 –0.24 0.11 0.15
CO+,1s1

O5σ2−1s1
O5σ12π1(L) 4.96

a
0.75 –0.13 0.10 0.15

N2
+,1σ1

u3σ
2
g−1σ1

u3σ
1
g1π

1
g(L) 7.96

b
0.57 –0.46 –0.13 –0.06

N2
+,1σ1

u3σ
2
g−1σ1

u3σ
1
g1π

1
g(H) 8.83

b
1.20 –0.05 0.33 0.38

N2
+,1σ1

u3σ
1
g1π

1
g(L)−1σ1

u3σ
1
g1π

1
g(H)

c
0.87

b
0.63 0.41 0.46 0.50

NO,1s1
N2π2(2∆)−1s1

N2π2(2Σ−) 0.29
d

0.04 0.07 0.09 0.09

NO,1s1
N2π2(2∆)−1s1

N2π2(2Σ+) 0.61
d

–0.12 –0.01 0.02 0.02
NO,1s1

O2π2(2Σ−)−1s1
O2π2(2∆) 1.11

e
0.39 0.03 0.03 0.02

NO,1s1
O2π2(2Σ−)−1s1

O2π2(2Σ+) 2.03
e

0.18 0.01 0.09 0.08
MAE 0.49 0.13 0.11 0.12
MSE 0.37 0.04 0.02 0.03

a From Ref. 80.
b From Ref. 81.
c Not included in MAE or MSE evaluation.
d From Ref. 124.
e From Ref. 123.

Moving beyond the the electronic structure near the equilibrium geometry, we investigate

the overall quality of the potential energy surface by calculating vibrational spectra of all

electronic transitions in the test set. As an example, in Figure 4 we report the vibrational

spectra of the CO 1sO → 2π transition calculated from the potential energy surfaces shown

in Figure 3. In the bottom panel of Figure 4, we report a comparison with the vibrational

spectrum obtained from Morse potentials fitted to experiment.123 Furthermore, the theoret-

ical traces are shifted to align the 0–0 transition to the experimental one. The intensity in

all these traces are normalized so that the sum of the Franck–Condon factors is equal to

1. Due to the relatively large difference between the ground and excited state equilibrium

geometries, the vibrational transitions of this core-excited transitions populate vibrational

states up to ν ′ = 15 and the band is more than 2 eV wide. In general, all MR-DSRG levels of
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theory are in excellent agreement with the frequencies derived from experiment. The most

intense peak, found at ν ′ = 5, is predicted correctly by all GASSCF-MR-DSRG theories.

For the most intense part of this vibrational pattern (ν ′ = 0–10), the DSRG-MRPT3 and

MR-LDSRG(2) predict frequencies that are in better agreement with the experimentally-

derived ones. However, for larger ν ′ values, there is slightly better agreement between the

DSRG-MRPT2 results and the experimentally derived frequencies.

Table 6: The average vibrational frequency difference with respect to the experiment (in
meV). Results were calculated with a GASSCF-MR-DSRG theories [PT2 = DSRG-MRPT2,
PT3 = DSRG-MRPT3, LDSRG(2) = MR-LDSRG(2)] using the cc-pCVQZ-DK basis and a
spin-free X2C 1-electron treatment of scalar relativistic effects.

Excitation ν′t ∆ω̄(DSRG)
PT2 PT3 LDSRG(2)

CO, 1sC → 2π 2 2 3 2
CO, 1sO → 2π 13 25 14 12
N2, 1σu → 3σg 5 17 2 5
CO+, 1sC → 5σ 2 12 5 5
CO+, 1sC → 2π(L) 2 10 5 6
CO+, 1sO → 5σ 2 10 4 2
CO+, 1sO → 2π(L) 6 30 12 16
N2

+, 1σu → 3σg 2 11 1 1
N2

+, 1σu → 1πg(L) 3 6 11 11
N2

+, 1σu → 1πg(H) 7 53 38 34
NO, 1sN → 2π(2∆) 8 41 16 19
NO, 1sN → 2π(2Σ−) 6 36 8 11
NO, 1sN → 2π(2Σ+) 6 44 11 14
NO, 1sO → 2π(2Σ−) 4 5 13 14
NO, 1sO → 2π(2∆) 4 5 4 5
NO, 1sO → 2π(2Σ+) 5 3 8 9
All lines 77 25 12 13

To quantify the quality of the vibrational spectra for all the molecules considered, we

evaluate two metrics: i) the averaged vibrational frequency difference, and ii) the intensity

ratio. The former is reported in Table 6, while the latter is reported in Table ?? and

discussed in the Supplementary Information. The average vibrational frequency difference,

∆ω̄, is defined as

∆ω̄ =
1

ν ′max

ν′max∑
ν′=1

|fDSRG
0→ν′ − f

exp
0→ν′ |, (8)

where f0→ν′ are line positions for the transition from the ν ′′ = 0 vibrational state of the
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ground electronic state and the ν ′ vibrational state of the core-excited state. The quantity

ν ′max is the highest quantum number used in the averaging, and is chosen as the larges ν ′

with corresponding normalized intensity (I0→ν′) greater than 0.01. The resulting ∆ω̄ is 25

meV for the DSRG-MRPT2 level of theory, and only 14 and 12 meV for the DSRG-MRPT3

and MR-LDSRG(2) theories. Under this metric, the DSRG-MRPT3 and MR-LDSRG(2)

theories lead to a significant improvement in terms of agreement with the experiment. This

trend is also true for nearly all the transitions, as it can be seen in Table 6. For N2, CO+

and the nitrogen K-edge of NO, this improvement in accuracy is even more significant.

The only case where GASSCF-MR-DSRG theories deviate significantly from the experi-

mentally derived vibrational frequencies is the 1σ1
u3σ

1
g1π

1
g (H) state of N2

+. SA-RASPT281

accurately predicts the 0.87 eV splitting between the 1σ1
u3σ

1
g1π

1
g (H)/(L) states (0.91 eV

from theory), and it yields harmonic frequencies [212.15 and 214.53 meV for (H)/(L)] for the

two states that agree relatively well with their experimental values [218.8 and 215.4 meV for

(H)/(L)]. However, a key difference between the SA-RASPT2 calculation and our results is

the use of a larger active space consisting of 13 orbitals and averaged over 24 states, which

suggests that the accurate prediction of each state may be sensitive to the details in the

selection of active space and state-averaging.

To investigate the effect of active space in this molecule, we performed GASSCF-MR-

DSRG calculations for N2
+ with a larger active space (2o,3e;11o,6e). The corresponding

ground state calculations are also performed with the GAS space (2o,4e;11o,5e). Figure 5

shows the potential energy curves of the 1σ1
u3σ

1
g1π

1
g (H) and (L) states using two differ-

ent active spaces and the corresponding orbitals. The potential energy plots show that the

splittings between the 1σ1
u3σ

1
g1π

1
g (L) and (H) states decreases significantly around the equi-

librium region of two potentials in the larger active space. The adiabatic energy splittings

between these two states are 0.94, 0.97, and 0.96 eV for the DSRG-MRPT2, DSRG-MRPT3,

and MR-LDSRG(2) level of theories, respectively, values that are much closer to experiment

(0.87 eV) than the values obtained with the smaller active space (1.28–1.37 eV, reported
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Figure 5: Molecular orbitals used for the GASSCF calculations. A) The potential energy
surface for the 1σ1

u3σ
1
g1π

1
g (L) and 1σ1

u3σ
1
g1π

1
g (H) states of N+

2 calculated using GASSCF-MR-
DSRG level of theory and cc-pCVQZ-DK basis. The solid and dashed lines are calculated
with the general (2o, 3e; 8o, 6e) and enlarged (2o, 3e; 11o, 6e) active spaces, respectively.
All the curves are shifted so that the value of MR-LDSRG(2) potential energy for 1σ1

u3σ
2
g

state (the lowest K-edge core-excited state) at its minimum is zero. B) Orbitals and ground
state electronic configuration of N2

+. The orbitals surrounded by solid and dashed lines
are included in the full valence (2o,3e;8o,6e) and enlarged (2o,3e;11o, 6e) active spaces,
respectively.

in Table 5). The vibrational features of these two states are also well reproduced as the

∆ω̄ values for the 1σ1
u3σ

1
g1π

1
g (H) state decrease to 24, 3, and 4 meV for DSRG-MRPT2,

DSRG-MRPT3, MR-LDSRG(2) level of theory, respectively, improving significantly upon

the values reported in Table 6 (53, 38, and 34 meV, respectively). Similar improvements are

observed for the ∆ω̄ value of the 1σ1
u3σ

1
g1π

1
g (L) state across all MR-DSRG theories.

In terms of the wave function, at the experimental ground state geometry (1.116 Å) the

leading contributions from a full valence active space GASSCF-MR-LDSRG(2) calculation

to the 1σ1
u3σ

1
g1π

1
g (L) state are the configurations

|Φ1〉 = |1σ2
g1σ

1
u2σ

2
g2σ

2
u1π

4
u3σ

1
g1π

1
g〉

|Φ2〉 = |1σ1
g1σ

2
u2σ

2
g2σ

1
u1π

4
u3σ

2
g1π

1
g〉

(9)
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with weights equal to 60% and 20%, respectively. In the large active space calculation

the contributions of these two terms is nearly unchanged, with weights of 60% and 17%,

respectively. Similarly, the leading terms in the 1σ1
u3σ

1
g1π

1
g (H) state are |Φ1〉 (71%) and the

following doubly excited configuration (5%)

|Φ3〉 = |1σ1
g1σ

2
u2σ

2
g2σ

2
u1π

3
u3σ

1
g1π

2
g〉 (10)

with nearly identical weights in the full valence and the larger active space. Although

increasing the size of the active space does not introduce significant difference in terms

of CI coefficient, the improved energetics and frequencies are consistent with the general

improvement of MCSCF results with active space size.130 As previously observed in a SA-

RASPT2 study,81 an important role is played by the doubly excited configurations Φ2 and

Φ3 that involve the 2σu and 1πu orbitals. For example, if we constrain the number of

electrons in the 2σg/2σu orbitals to 2, the vertical splitting between the H and L states

reduces significantly from 1.58 to 0.59 eV.

5 Conclusions

This study explores a multireference approach for computing core-excited electronic states

based on the driven similarity renormalization group (DSRG). Core-excited states are mod-

eled at zeroth-order by a generalized-active-space self-consistent-field reference, followed by

a treatment of dynamical electron correlation via a perturbative or iterative MR-DSRG ap-

proach. We first investigated how the choice of basis functions and the DSRG flow parameter

affect the accuracy of core-excitation energies. Three GASSCF-MR-DSRG approaches are

then used to simulate the vibrationally-resolved K-edge X-ray absorption spectra of C, N,

and O atoms in five diatomic molecules. The computed adiabatic electronic energies and the

vibrational structure of these transitions are in good agreement with experimental results

and are comparable with other multireference methods such as RASPT280,81 and inner-shell
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CASSCF-MCCEPA.82,123 Third- and high-order terms bring significant improvements in the

potential energy curves along dissociative pathways. For example, going beyond second-order

perturbation theory, the calculated vibrational spectra agree better with the experimental

ones, halving the average vibrational frequency errors to below 15 meV. We additionally in-

vestigate the effect of active space choices for the 1σ1
u3σ

1
g1π

1
g (H) and (L) states N2

+, where

augmenting the full valence space with additional 3s σ and 3p π orbitals in the GAS2 space

is crucial to obtain accurate excitation energies and vibrational frequencies.

This study points towards two major advantages of state-specific multireference strate-

gies, like the GASSCF-MR-DSRG, when it comes to modeling core-excited states. Firstly,

they can be applied to multideterminantal states that arise in bond-breaking processes, open-

shell states, and multi-electron excitations, avoiding some limitations of single-reference for-

malisms. For example, ground and core-excited states GASSCF-MR-DSRG potential energy

curves are qualitatively and quantitatively accurate along dissociation pathways. Further-

more, excited states with multi-electron character, like the H/L 1σ1
u3σ

1
g1π

1
g states of N2

+,

can be accurately modeled already using GASSCF-MR-DSRG second-order perturbation

theory. Secondly, the variational treatment of the dominant contributions to core-excitation

energies (reference-relaxation and static correlation) leads to a balanced treatment of the

electronic structure, as reflected in the high accuracy of the excitation energies computed in

this work. Such a strategy reduces the burden on the MR-DSRG to correct the wave function

and yields excitation energies that are already in excellent agreement at second-order and

converge rapidly with the inclusion of higher-order dynamical correlation effects.

Despite their advantages, there are two aspects of the current state-specific approach that

merit further developments. The first one is evaluating transition intensities. While there

are challenges associated with computing matrix elements of the dipole operator between

two state-specific MR-DSRG solutions, we expect that the leading contribution could be

captured by matrix elements of the GASSCF reference states, augmented with low-order

corrections. A second challenge is extending computations beyond the first few low-lying
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core-excited states, and that we expect could be achieved by introducing elements of state-

averaged formalisms.

In the future, we envision several developments of the GASSCF-MR-DSRG approach.

We expect that the balance of low cost and relatively high accuracy of the GASSCF-DSRG-

MRPT2 level of theory could provide a viable method to compute core-excited states in

larger open-shell systems like transition metal complexes. Another interesting extension of

the present formalism is the computation of core-excitation of valence-excited states, which

would enable the application of these methods to the X-ray spectroscopy of transient species.
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A Expressions of the DSRG source operator

The DSRG source operator R̂(s) can be written as sum of normal ordered many-body oper-

ators of different rank

R̂(s) = R̂1(s) + R̂2(s) + · · · (11)

where R̂k(s) can be written as

R̂k(s) =
1

(k!)2

∑
ij···

∑
ab···

rij···ab···(s)({â
ij···
ab···}+ {âab···ij··· }) (12)

and

rij···ab···(s) = [H̄ ij···
ab···(s) + tij···ab···(s)∆

ij···
ab···]e

−s(∆ij···
ab···)

2

(13)

In these equations, H̄ ij···
ab···(s) is a rank 2k tensor associated with the k-body operator of

H̄N(s). The cluster amplitude tij···ab···(s) corresponds to excitations from orbitals i, j, · · · to

orbitals a, b, · · · . The quantity ∆ij···
ab··· = εa + εb + · · · − εi− εj − · · · is the generalized Møller–

Plesset denominator defined in terms of the semicanonical orbital energies εp.
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Odelius, M.; Föhlisch, A. Orbital-specific mapping of the ligand exchange dynamics

of Fe(CO)5 in solution. Nature 2015, 520, 78–81.

(89) Fleig, T.; Olsen, J.; Marian, C. M. The generalized active space concept for the rel-

ativistic treatment of electron correlation. I. Kramers-restricted two-component con-

figuration interaction. J. Chem. Phys. 2001, 114, 4775–4790.

(90) Ma, D.; Li Manni, G.; Gagliardi, L. The generalized active space concept in multicon-

figurational self-consistent field methods. J. Chem. Phys. 2011, 135 .

41



(91) Evangelista, F. A. A driven similarity renormalization group approach to quantum

many-body problems. J. Chem. Phys. 2014, 141 .

(92) Li, C.; Evangelista, F. A. Multireference Theories of Electron Correlation Based on

the Driven Similarity Renormalization Group. Annu. Rev. Phys. Chem. 2019, 70,

245–273.

(93) Li, C.; Evangelista, F. A. Driven similarity renormalization group for excited states:

A state-averaged perturbation theory. J. Chem. Phys. 2018, 148, 124106.

(94) Werner, H.-J. Third-order multireference perturbation theory The CASPT3 method.

Mol. Phys. 1996, 89, 645–661.

(95) Grabarek, D.; Walczak, E.; Andruniów, T. Assessing the Accuracy of Various Ab Initio

Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal

Model by Comparison with CASPT3 Results. J. Chem. Theory Comput. 2016, 12,

2346–2356.

(96) Li, C.; Evangelista, F. A. Towards numerically robust multireference theories: The

driven similarity renormalization group truncated to one- and two-body operators. J.

Chem. Phys. 2016, 144 .

(97) Zhang, T.; Li, C.; Evangelista, F. A. Improving the Efficiency of the Multireference

Driven Similarity Renormalization Group via Sequential Transformation, Density Fit-

ting, and the Noninteracting Virtual Orbital Approximation. J. Chem. Theory Com-

put. 2019, 15, 4399–4414.

(98) Li, C.; Evangelista, F. A. Spin-free implementation of the multireference driven sim-

ilarity renormalization group: A benchmark study of open-shell diatomic molecules

and spin-crossover energetics. 2021.

42



(99) Li, C.; Evangelista, F. A. Multireference driven similarity renormalization group: A

second-order perturbative analysis. J. Chem. Theory Comput. 2015, 11, 2097–2108.

(100) Li, C.; Evangelista, F. A. Driven similarity renormalization group: Third-order mul-

tireference perturbation theory. J. Chem. Phys. 2017, 146 .

(101) Forte, a suite of quantum chemistry methods for strongly correlated electrons. For

current version see https://github.com/evangelistalab/forte, 2020.

(102) Smith, D. G.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.;

Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; James, A. M.;

Lehtola, S.; Misiewicz, J. P.; Scheurer, M.; Shaw, R. A.; Schriber, J. B.; Xie, Y.;

Glick, Z. L.; Sirianni, D. A.; O’Brien, J. S.; Waldrop, J. M.; Kumar, A.; Ho-

henstein, E. G.; Pritchard, B. P.; Brooks, B. R.; Schaefer, H. F.; Sokolov, A. Y.;

Patkowski, K.; Deprince, A. E.; Bozkaya, U.; King, R. A.; Evangelista, F. A.; Tur-

ney, J. M.; Crawford, T. D.; Sherrill, C. D. P SI4 1.4: Open-source software for

high-throughput quantum chemistry. J. Chem. Phys. 2020, 152 .

(103) Verma, P.; Derricotte, W. D.; Evangelista, F. A. Predicting Near Edge X-ray Absorp-

tion Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogo-

nality Constrained Density Functional Theory. J. Chem. Theory Comput. 2016, 12,

144–156.

(104) Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(105) De Jong, W. A.; Harrison, R. J.; Dixon, D. A. Parallel Douglas-Kroll energy and gradi-

ents in NWChem: Estimating scalar relativistic effects using Douglas-Kroll contracted

basis sets. J. Chem. Phys. 2001, 114, 48–53.

(106) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular

43

https://github.com/evangelistalab/forte


calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 1995,

103, 4572–4585.

(107) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row

atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96,

6796–6806.

(108) Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta valence

quality for atoms H-Kr. J. Chem. Phys. 2003, 119, 12753–12762.

(109) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys.

Chem. Chem. Phys. 2005, 7, 3297–3305.

(110) Roos, B. O.; Lindh, R.; Malmqvist, P. Å.; Veryazov, V.; Widmark, P. O. Main Group
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