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Abstract

We determine the exact minimax rate of a Gaussian sequence model under bounded convex
constraints, purely in terms of the local geometry of the given constraint set K. Our main
result shows that the minimax risk (up to constant factors) under the squared L2 loss is given
by ϵ∗2 ∧ diam(K)2 with

ϵ∗ = sup

{
ϵ :

ϵ2

σ2
≤ logM loc(ϵ)

}
,

where logM loc(ϵ) denotes the local entropy of the set K, and σ2 is the variance of the noise.
We utilize our abstract result to re-derive known minimax rates for some special sets K such as
hyperrectangles, ellipses, and more generally quadratically convex orthosymmetric sets. Finally,
we extend our results to the unbounded case with known σ2 to show that the minimax rate in
that case is ϵ∗2.

1 Introduction

This paper focuses on the Gaussian sequence model Yi = µi + ξi with n observations, where
ξi ∼ N(0, σ2) are independent and identically distirbuted (i.i.d.), and the vector µ ∈ Rn belongs
to a known bounded convex set K. In particular we would like to determine the minimax rate for
this problem. In detail, we would like to quantify (up to proportionality constants) the rate of the
following expression, also known as the minimax risk:

inf
ν̂

sup
µ∈K

E∥ν̂(Y )− µ∥2, (1.1)

where the infimum is taken with respect to all measurable functions (estimators) of the data, and
we use the shorthand ∥ · ∥ for the Euclidean norm. The minimax risk may appear to be overly
pessimistic to some, but everyone will agree that it represents an important measure of the difficulty
of the problem. The main contribution of this work is establishing matching (up to constants) upper
and lower bounds for the risk (1.1) for any bounded convex set K. In particular we would like to
single out the upper bound as the main contribution, as the lower bound is a simple consequence
of Fano’s inequality. In order to establish the upper bound, we demonstrate that there exists a
universal scheme which attains the minimax rate for any bounded convex set K. The existence
of such a general scheme should not be a priori obvious, nonetheless we show it does exist. In
order to do that we rely on techniques first proposed by LeCam [1973], Birgé [1983]. That being
said, while our result may be expected from these works, it is important to note that it cannot
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be directly derived by using any previously known results. In their work, LeCam [1973], Birgé
[1983] metrize the probability space using the squared Hellinger distance, and their loss function
between the estimate and the true parameter is also based on the squared Hellinger distance. For
two multivariate Gaussians N(ν1, σ

2I) and N(ν2, σ
2I) the squared Hellinger distance is given by

1−exp
(
− ∥ν1−ν2∥2

8σ2

)
[Pardo, 2018]. This is markedly distinct from the Euclidean norm of the mean

difference ∥ν1−ν2∥ which is what we use to metrize the problem, and results in a more natural loss
function for the Gaussian sequence model. In particular, the squared Hellinger distance behaves like
∥ν1−ν2∥2

8σ2 when ∥ν1−ν2∥ is “small”, but is of constant order when ∥ν1−ν2∥ is “large”. This difference
renders it impossible to use directly previous known results. We would also like to be upfront in
that we do not propose a fully satisfactory resolution of this problem for any bounded convex set
K, as our general algorithm, although very simple to state presents substantial implementational
challenges, and is not computationally tractable. We further extend our result to the unbounded
case with known variance of the noise.

The constrained Gaussian sequence model setting has numerous applications. For instance,
in the special case when the set K is an ellipse, Wei et al. [2020] show two examples — one of
constrained ridge regression with fixed design, and one of nonparametric regression with reproducing
kernels which can both be viewed through the Gaussian sequence model perspective. In addition,
functional regression with shape-constraints, such as isotonic regression or convex regression can
often be viewed through the sequence model lens [see, e.g. Bellec et al., 2018, Guntuboyina and
Sen, 2018, and references therein]. In the latter literature often times a preferred estimator is the
constrained least squares estimator (LSE), which is known to be minimax optimal in some settings.
Additional examples of how the Gaussian sequence model encompasses different models are given
in Chatterjee [2014], where the author illustrates how both constrained LASSO with fixed design
and isotonic regression can be thought of as sequence models under convex constraints. He also
shows that unfortunately the LSE is not minimax optimal in general, as there exist convex sets
where the gap between the minimax rate and the performance of the LSE can be as large as

√
n

(when σ = 1). Hence the need arises to find other estimators which always enjoy minimaxity.

1.1 Related Literature

There is a tremendous amount of work on the Guassian sequence model. Here we will only scratch
the surface. The interested reader can consult with books on the sequence model and nonparametric
statistics such as Johnstone [2011], Nemirovski [1998], Tsybakov [2009].

In one of the most classical results, Pinsker [1980] showed the precise linear minimax rate when
the set K is an ellipse, and in fact he showed that a linear estimate achieves the minimax rate
when σ → 0. Pinsker’s results are valid in a framework more general than the one we consider
in this paper as he looked at ellipses in the ℓ2 space, whereas we consider only subsets of Rn.
When n = 1 any bounded convex set is an interval and in that sense the works of Casella and
Strawderman [1981], Bickel [1981], Ibragimov and Khas’ minskii [1985] are very relevant. We will
later see when we consider the example of hyperrectangles that we are able to recover their result
up to constant factors. In a classic work, Donoho et al. [1990] consider almost the exact same
problem as we consider here (with ℓ2 instead of Rn) and work out a variety of special cases for K
— such as hyperrectangles, ellipses, and orthosymmetric quadratically convex sets. They show that
a linear projection estimator (also known as the truncated series estimator) is minimax optimal up
to constants in all of these examples. We will re-derive all of their results (up to constants) in the
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Examples section to follow. Javanmard and Zhang [2012] derive the minimax rate for symmetric
convex polytopes up to logarithmic factors using the truncated series estimator. Javanmard and
Zhang [2012] also point out in their introduction, that “it is still largely unkown how to compute
the minimax risk for an arbitrary convex body”. Zhang [2013] obtains the minimax rate up to
a logarithmic factor for ℓq balls for q ≤ 1, by using an estimator which is a mixture of LSE and
a linear projection estimator. Chen et al. [2017] extend results of Chatterjee [2014] to show that
the LSE and other regularized estimators are admissible up to universal constants in the same
setting that we consider. We will see later on that our estimator, although of different nature than
the aforementioned ones, also has this property due to the fact that it is minimax up to constant
factors. In a recent paper, Ermakov [2020] shows that the linear minimax risk in the sequence
model in ℓ2 can be explicitly quantified for certain convex sets of the form K = {x = {xi}∞i=1 :
sup a−1

k

∑∞
j=k x

2
j ≤ P0} with ak > 0 being a decreasing sequence. Moreover, Ermakov [2020] shows

that the asymptotic minimax risk when ak = k−2α can be precisely quantified as well.

Aside from the aforementioned works which focus on the Gaussian sequence model, we would
like to discuss the celebrated paper of Yang and Barron [1999] which is also highly relevant (yet
does not consider the sequence model per se). Yang and Barron [1999] based their work on the
premise that local entropy is hard to calculate in general, yet it had been shown that it leads
to optimal rates of convergence by LeCam [1973], Birgé [1983] in certain problems metrized with
the squared Hellinger distance as we alluded to previously. Therefore Yang and Barron [1999]
proposed to study the global entropy instead, which is often easier to handle. We must agree, that
local entropy (see Definition 2.2) is a challenging quantity to work with, nevertheless, as our result
shows it is precisely what is needed to calculate in order to determine the minimax rate for a general
convex set K. This is also easy to explain intuitively at this point of the paper even without going
into the mathematical details. Consider, e.g., the case where the set K is unbounded, e.g., K is
a subspace (which corresponds to the linear regression setting). The global entropy of such a set
is not even defined (as one cannot pack an unbounded set), yet its local entropy is well defined
and calculable. We would also further comment that for some sets K it is sufficient to calculate
the global entropy as it is of the same order as the local entropy. In fact, Yang and Barron [1999]
offer a result (see Lemma 3 in Section 7 therein), which connects the local and global entropies.
Sometimes, the order of the two quantities coincides, in which case one may resort to calculating
the global entropy of K instead. See also Subsection 3.4 where we illustrate this by considering the
example of an ℓ1 ball.

1.2 Organization

The paper is structured as follows. We present our main results on bounded convex sets K in
Section 2. Section 3 is dedicated to some examples. Section 4 argues that the estimator defined in
Section 2 is adaptive to the true point, and it also is admissible up to a universal constant. Section
5 extends our main results from the bounded case to the unbounded case with known σ2. A brief
discussion is given in Section 6.

1.3 Notation

We outline some commonly used notation here. We use ∨ and ∧ for max and min of two numbers
respectively. Throughout the paper ∥·∥ denotes the Euclidean norm. Constants may change values
from line to line. For an integer m ∈ N we use the shorthand [m] = {1, . . . ,m}. We use B(θ, r) to
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denote a closed Euclidean ball centered at the point θ with radius r. We use ≲ and ≳ to mean ≤
and ≥ up to absolute constant factors, and for two sequences an and bn we write an ≍ bn if both
an ≲ bn and an ≳ bn hold. Throughout the paper we use log to denote the natural logarithm.

2 Main Results

Here we focus on the following problem. We observe n observations Yi = µi + ξi, where µ ∈ K,
for K being a bounded convex set and ξi ∼ N(0, σ2) are i.i.d. random variables. We begin with
showing a lower bound.

2.1 Lower Bound

In this subsection we present our main lower bound. It is a simple consequence of Fano’s inequality,
which we state below for the convenience of the reader.

Lemma 2.1 (Fano’s inequality). Let µ1, . . . , µm be a collection of ϵ-separated points in the pa-
rameter space in Euclidean norm. Suppose J is uniformly distributed over the index set [m], and
(Y |J = j) = µj + ξ for ξ ∼ N(0, Iσ2). Then

inf
ν̂
sup
µ

E∥ν̂(Y )− µ∥2 ≥ ϵ2

4

(
1− I(Y ; J) + log 2

logm

)
.

In the above I(Y ; J) is the mutual information between Y and J , and can be upper bounded

by 1
m

∑
j DKL(Pµj ||Pν) =

1
m

∑
j
∥µj−ν∥2

2σ2 ≤ maxj
∥µj−ν∥2

2σ2 for any ν ∈ Rn. We will now define local
packing entropy.

Definition 2.2 (Local Entropy). Let θ ∈ K be a point. Consider the set B(θ, ϵ) ∩ K. Let
M(ϵ/c,B(θ, ϵ) ∩ K) denote the largest cardinality of an ϵ/c packing set [see Defintion 5.4 Wain-
wright, 2019, e.g., for a definition of a packing set] in B(θ, ϵ) ∩K. Let

M loc(ϵ) = sup
θ∈K

M(ϵ/c,B(θ, ϵ) ∩K).

We refer to logM loc(ϵ) as local entropy of K. Sometimes we will use M loc
K (ϵ) if we the set K is

not clear from the context.

Lemma 2.3. We have

inf
ν̂
sup
µ

E∥ν̂(Y )− µ∥2 ≥ ϵ2

8c2
,

for any ϵ satisfying logM loc(ϵ) > 4(ϵ2/(2σ2) ∨ log 2).

Proof. For a given ϵ we can build an ϵ/c-local packing of cardinality M loc(ϵ), around some point of
K. If such a point does not exist, we can take a sequence of points which achieve this in the limit,
which is good enough for our argument to follow. Suppose that logM loc(ϵ) > 2(ϵ2/(2σ2) + log 2).

From Fano’s inequality it immediately follows that the minimax risk is at least ϵ2

8c2
. The above is

implied when logM loc(ϵ) > 4(ϵ2/(2σ2) ∨ log 2).
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2.2 Upper Bound

In this subsection we focus on the upper bound. Let d = diam(K). We propose the estimator
described in Algorithm 1, where 2(C + 1) = c is the constant from the definition of local entropy
which is assumed to be sufficiently large. The reader will notice that our algorithm contains an
infinite loop. This means that our estimator can only be achieved in theory. The good news is
that if one knows a lower bound on σ, one need not run the procedure ad infinitum. In that case
the number of iterations can be determined through a concentration result to follow. We do not
provide these details so as to not overburden the presentation.

Before we proceed we pause to observe a quick fact about the packing sets that are introduced
in Algorithm 1. It is simple to see that if one takes the union of all points from the packing sets on
all levels, these points form a countable dense subset of K, and hence any point in K is potentially
achievable in the limit. Furthermore, as we will see later (see Lemma 5.2) if the point Y ∈ K,
Algorithm 1 will always output the point Y . The latter is clearly a desirable property, since when
σ = 0, one needs to pick the observed point to achieve minimaxity, and our estimator is not given
knowledge of σ.

Algorithm 1: Upper Bound Algorithm

Input: A point ν∗ ∈ K
1 k ← 1;
2 Υ← [ν∗] ; /* This array is needed solely in the proof and is not used by the

estimator */

3 while TRUE do

4 Take a d
2k(C+1)

maximal1packing set Mk of the set B
(
ν∗, d

2k−1

)
∩K ; /* The packing

sets should be constructed prior to seeing the data */

5 ν∗ ← argminν∈Mk
∥Y − ν∥ ; /* Break ties by taking the point with the least

lexicographic ordering */

6 Υ.append(ν∗);
7 k ← k + 1;

8 return ν∗ ; /* Observe that by definition Υ forms a Cauchy sequence2, so ν∗

can be understood as the limiting point of that sequence. */

Before we proceed any further we will argue that the so defined estimator ν∗ = ν∗(Y ) is a
measurable function of the data. We have

Theorem 2.4. The function ν∗ : Rn 7→ Rn is measurable (with respect to the Borel σ-field). As a
consequence we have that ν∗(Y ) is a random variable.

Proof. First we observe that for each j: Υj : Rn 7→ Rn are measurable (here we denote by Υj

the elements of the array Υ which is defined in Algorithm 1). In order to see this, we need to
realize that one can (and should) construct the packing sets before one sees the data Y . This will

2Here the maximality of the packing set is not really important; what is important is that the packing set is a
covering. This can be “constructed algorithmically” by greedily taking points one by one and carving balls centered
at those points.

2Take any two points Υm and Υm′ for m′ > m. Then ∥Υm − Υm′∥ ≤
∑m′−1

i=m ∥Υi − Υi+1∥ ≤
∑m′−1

i=m d/2i−1 ≤
d/2m−2, so we have a Cauchy sequence.
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form an infinite tree of packing sets rooted at the initial point Υ1. Each packing set splits Rn into
polytopes (some of which may be unbounded) where each point in the packing set is the closest to
any point in its corresponding polytope (this is the Voronoi tessellation in Eucledian norm). On
the boundaries of these polytopes more than one point can be the closest point — in that case in
order to consistently assign a single point always take the point with the least lexicographic order
(i.e. it has the smallest 1st coordinate of all points, and the smallest 2nd coordinate of all points
with equally small first coordinate and so forth).

Consider the event that Υj(y) belongs to a certain packing set, say,M (i.e. the point y is closest
to all ancestor nodes ofM which essentially means that y belongs to some intersection of polytopes
(which is again a polytope call it Q)). For a point m ∈ M we have that {y : Υj(y) = m} = (y ∈
P )∩{y : Υj(y) ∈M} = (y ∈ P )∩(y ∈ Q) = (y ∈ P ∩Q), where P is the polytope from the Voronoi
tessalation given by M , of the point m. Since (convex) polytopes are comprised of finitely many
linear inequalities they are Borel sets and hence the event (Υj(y) = m) is measurable. Repeating
this argument for any point on the same width of the tree on which the point m lies (i.e. on debth
j of the tree), shows that Υj is a measurable function and Υj(Y ) is a discrete random variable.

Next, we have ν∗(y) = limj Υj(y), where we know the limit exists since as we mentioned Υj(y)
form a Cauchy sequence (hence a converging sequence) by definition. It suffices to check whether
{y : ν∗(y) ∈ B} is a Borel set for any closed box (hyperrectangle parallel to the coordinate axes)
B. Since

{y : ν∗(y) ∈ B} =
n⋂

j=1

{y : BL
j ≤ νj∗(y) ≤ BU

j },

where νj∗ denotes the j-th coordinate of ν∗, and BL
j and BU

j are the upper and lower bounds of

the box B for the j-th coordinate, it suffices to show that the sets {y : BL
j ≤ limiΥ

j
i (y) ≤ BU

j } are
measurable. Note that since the sequence is converging

lim
i
Υj

i (y) = inf
i≥1

sup
k≥i

Υj
k(y).

Next

{y : BL
j ≤ lim

i
Υj

i (y) ≤ B
U
j }

= {y : inf
i≥1

sup
k≥i

Υj
k(y) ≤ B

U
j }

⋂
{ω : BL

j ≤ inf
i≥1

sup
k≥i

Υj
k(y)}

=
⋂
l≥1

⋃
i≥1

⋂
k≥i

{y : Υj
k(y) ≤ B

U
j + l−1}

⋂⋂
i≥1

⋃
k≥i

{y : BL
j ≤ Υj

k(y)}.

Finally note that the events {y : BL
j ≤ Υj

k(y)} and {y : Υj
k(y) ≤ B

U
j + l−1} are measurable since as

we showed Υk are measurable, and the sets R × . . . (−∞, BU
j + l−1] × R and R × . . . [BL

j ,∞) × R
are Borel sets in Rn. This completes the proof.

We will now argue that the estimator from Algorithm 1 attains the minimax rate. The ideas
we use are strongly inspired by the works of LeCam [1973], Birgé [1983]. We start with a simple
lemma.
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Lemma 2.5. Suppose we are testing H0 : µ = ν1 vs HA : µ = ν2 for ∥ν1 − ν2∥ ≥ Cδ for some
C > 2. Then the test ψ(Y ) = 1(∥Y − ν1∥ ≥ ∥Y − ν2∥) satisfies

sup
µ:∥µ−ν1∥≤δ

Pµ(ψ = 1) ∨ sup
µ:∥µ−ν2∥≤δ

Pµ(ψ = 0) ≤ exp

(
− (C − 2)2

δ2

8σ2

)
.

Proof. Observe that

∥Y − ν1∥2 − ∥Y − ν2∥2 = 2(µ+ ξ)T(ν2 − ν1) + ∥ν1∥2 − ∥ν2∥2.

Suppose ∥µ− ν1∥ ≤ δ. Then µ = ν1 + η, ∥η∥ ≤ δ and hence

2(µ+ ξ)T(ν2 − ν1) + ∥ν1∥2 − ∥ν2∥2

= 2ν1
T(ν2 − ν1) + 2ξT(ν2 − ν1) + ∥ν1∥2 − ∥ν2∥2 + 2ηT(ν2 − ν1)

= −∥ν1 − ν2∥2 + 2ηT(ν2 − ν1) + 2ξT(ν2 − ν1)

We have 2ηT(ν2 − ν1) ≤ 2δ∥ν1 − ν2∥ ≤ 2
C ∥ν1 − ν2∥

2. Hence the above is a normal with mean at
most (−1+ 2

C )∥ν1−ν2∥
2 < 0 (assuming C > 2) and variance equal to 4σ2∥ν1−ν2∥2. By a standard

bound on the normal distribution cdf [Van Der Vaart and Wellner, 1996, see Section 2.2.1] we have
that

P (N(m, τ2) ≥ 0) ≤ exp(−m2/(2τ2)),

for m < 0, therefore the type I error of the test is bounded by

exp

(
−
(
1− 2

C

)2 ∥ν1 − ν2∥2

8σ2

)
≤ exp

(
− (C − 2)2

δ2

8σ2

)
.

By symmetry the same argument holds true for the type II error, namely when ∥µ− ν2∥ ≤ δ.

Suppose now, we are given M points ν1, . . . , νM ∈ K ′ ⊂ K such that ∥νi − νj∥ ≥ δ and M is
maximal3, i.e., we are given a maximal δ-packing set of K ′ and it is known that µ ∈ K ′ ⊂ K.

Lemma 2.6. Under the setting described above, let i∗ = argmini ∥Y − νi∥. We will show that the
closest point to Y , νi∗ satisfies

P(∥νi∗ − µ∥ ≥ (C + 1)δ) ≤M exp(−(C − 2)2δ2/(8σ2)),

for any fixed C > 2.

Proof. Define the intermediate random variable

Ti =

{
maxj∈[M ] ∥νi − νj∥, s.t. ∥Y − νi∥ − ∥Y − νj∥ ≥ 0, ∥νi − νj∥ ≥ Cδ
0, if no such j exists,

3We comment once again, that it is not the maximality that is important; rather it is important for the packing
set to also be a covering set.
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Without loss of generality assume that ∥µ− νi∥ ≤ δ (here note that we have a δ-packing which is
also a δ-covering). Next, we have that

P(∥νi∗ − µ∥ ≥ δ + Cδ) ≤ P(i∗ ∈ {j : ∥νj − νi∥ ≥ Cδ})
≤ P (Ti > 0),

where the first inequality follows by the triangle inequality and the second because if i∗ ∈ {j :
∥νj − νi∥ ≥ Cδ} we have Ti ≥ ∥νi − νi∗∥ ≥ Cδ. But

P(Ti > 0) = P(∃j : ∥νj − νi∥ ≥ Cδ and ∥Y − νi∥ − ∥Y − νj∥ ≥ 0)

≤M exp(−(C − 2)2δ2/(8σ2)),

by Lemma 2.5. This is what we wanted to show.

Finally we will need the following simple lemma.

Lemma 2.7. The function ϵ 7→M loc(ϵ) is monotone non-increasing.

Remark 2.8. This lemma heavily uses the fact that K is a convex set.

Proof. It suffices to show that the function ϵ 7→M(ϵ/c,B(θ, ϵ)∩K) is non-increasing for any fixed
θ ∈ K. Upon rescaling one realizes that this is equivalent to packing the set [1ϵ (K − θ)] ∩ B(1)
at a 1/c distance, where B(1) = B(0, 1) is the unit ball centered at 0. Now we will show that if
ϵ′ < ϵ we have [1ϵ (K − θ)] ∩ B(1) ⊂ [ 1ϵ′ (K − θ)] ∩ B(1). Clearly this is implied if we showed that
1
ϵ (K−θ) ⊂

1
ϵ′ (K−θ). Take a point x ∈ 1

ϵ (K−θ). Hence x = (k−θ)/ϵ = 0(ϵ− ϵ′)/ϵ+ ϵ′/ϵ(k−θ)/ϵ′
for some k ∈ K. Since 0, (k− θ)/ϵ′ ∈ 1

ϵ′ (K − θ) and the set 1
ϵ′ (K − θ) is convex, this completes the

proof.

Finally we are in a good position to show the main result regarding the estimator of Algorithm
1.

Theorem 2.9. The estimator from Algorithm 1 returns a vector ν∗ which satisfies the following
property

E∥µ− ν∗∥2 ≤ C̄ϵ∗2,

for some universal constant C̄. Here ϵ∗ = ϵJ∗ and J∗ is the maximal J ≥ 1, J ∈ N, such that
ϵJ := d(c/2−3)

2J−2c
satisfies

ϵ2J
σ2

> 16 logM loc

(
ϵJ

c

(c/2− 3)

)
∨ 16 log 2, (2.1)

or J∗ = 1 if no such J exists. We remind the reader that c is the constant from the definition of
local entropy, which is assumed to be sufficiently large.
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Proof. Combining the results of Lemma 2.6 (with c = 2(C + 1) where c is the constant from the
definition of local packing entropy) and Lemma 2.7 we can conclude that

P(∥µ−ΥJ∥ ≥
d

2J−1
) ≤

J−1∑
j=1

|Mj | exp
(
− (C − 2)2d2

(22j(C + 1)2)8σ2

)

≤M loc

(
d

2J−2

) J−1∑
j=1

exp

(
− (C − 2)2d2

(22j(C + 1)2)8σ2

)

≤M loc

(
d

2J−2

)
a(1 + a4−1 + a16−1 + . . .)1(J > 1)

≤M loc

(
d

2J−2

)
a

1− a
1(J > 1), (2.2)

where Mj are the packing sets from Algorithm 1, and for brevity we put

a = exp

(
−(C − 2)2d2

(22(J−1)(C + 1)2)(8σ2)

)
,

and we are assuming that a < 1. So if one sets ϵJ = (C−2)d
2J−1(C+1)

, we have that if ϵ2J/(8σ
2) >

2 logM loc

(
ϵJ

2(C+1)
(C−2)

)
and a = exp(−ϵ2J/(8σ2)) < 1/2, the above probability will be bounded from

above by 2 exp(−ϵ2J/(16σ2)). Since 2 logM loc

(
ϵJ

2(C+1)
(C−2)

)
< 2

(
log 2 ∨ logM loc

(
ϵJ

2(C+1)
(C−2)

))
this

condition is implied when

ϵ2J
σ2

> 16 logM loc

(
ϵJ

2(C + 1)

(C − 2)

)
∨ 16 log 2. (2.3)

By the triangle inequality we have that

∥ν∗ − µ∥ ≤ ∥ν∗ −ΥJ∥+ ∥ΥJ − µ∥ ≤ 3ϵJ
C + 1

C − 2
, (2.4)

with probability at least 1−2 exp(−ϵ2J/(16σ2)) which holds for all J satisfying (2.3). Here we want
to clarify that the last inequality in (2.4) follows from the fact that ∥ν∗ − ΥJ∥ ≤ d/2J−2, as seen
when we verified that Υ forms a Cauchy sequence. Let J∗ be selected as the maximum J such that
(2.3) holds, or otherwise if such J does not exist J∗ = 1. Let κ = 3C+1

C−2 , C = 2 and C ′ = 1
16 . We

have established that the following bound holds:

P(∥µ− ν∗∥ ≥ κϵJ) ≤ C exp(−C ′ϵ2J/σ
2)1(J > 1) ≤ C exp(−C ′ϵ2J/σ

2)1(J∗ > 1),

for all 1 ≤ J ≤ J∗, where this bound also holds in the case when J∗ = 1 by exception. Observe
that we can extend this bound to all J ∈ Z and J ≤ J∗, since for J < 1 we have κϵJ ≥ 6d and so

P(∥µ− ν∗∥ ≥ κϵJ) ≤ 0 ≤ C exp(−C ′ϵ2J/σ
2)1(J∗ > 1).

Now for any ϵJ−1 > x ≥ ϵJ for J ≤ J∗ we have that

P(∥µ− ν∗∥ ≥ 2κx) ≤ P(∥µ− ν∗∥ ≥ κϵJ−1) ≤ C exp(−C ′ϵ2J−1/σ
2)1(J∗ > 1)

≤ C exp(−C ′x2/σ2)1(J∗ > 1),
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where the last inequality follows due to the fact that the map x 7→ C exp(−C ′x2/σ2) is monotoni-
cally decreasing for positive reals. We will now integrate the tail bound:

P(∥µ− ν∗∥ ≥ 2κx) ≤ C exp(−C ′x2/σ2)1(J∗ > 1), (2.5)

which holds true for x ≥ ϵ∗, where ϵ∗ = ϵJ∗ = (C−2)d

(C+1)2J∗−1 , always (since even if J∗ = 1 by exception,

this bound is still valid).
We have

E∥µ− ν∗∥2 =
∫ ∞

0
2xP(∥µ− ν∗∥ ≥ x)dx

≤ C ′′′ϵ∗2 +

∫ ∞

2κϵ∗
2xC exp(−C ′′x2/σ2)1(J∗ > 1)dx

= C ′′′ϵ∗2 + C
′′′′
σ2 exp(−C ′′′′′ϵ∗2/σ2)1(J∗ > 1).

Now ϵ∗2/σ2 is bigger than a constant (16 log 2) otherwise J∗ = 1. Hence the above is smaller than
C̄ϵ∗2 for some absolute constant C̄.

We will now formally illustrate that the above estimator achieves the minimax rate. The precise
expression of the rate is quantified in the following result:

Theorem 2.10. Define ϵ∗ as sup{ϵ : ϵ2/σ2 ≤ logM loc(ϵ)}, where c in the definition of local entropy
is a sufficiently large absolute constant. Then the minimax rate is given by ϵ∗2 ∧ d2 up to absolute
constant factors.

Proof. First suppose that ϵ∗ satisfies ϵ∗2/σ2 > 16 log 2. Then for δ∗ := ϵ∗/4 we have logM loc(δ∗) ≥
logM loc(ϵ∗) ≥ ϵ∗2/(2σ2) + ϵ∗2/(2σ2) > 8δ∗2/σ2 +8 log 2 and so this implies the sufficient condition
for the lower bound.

On the other hand we know that for a constant C > 1:

4Cϵ∗2/σ2 ≥ C logM loc(2ϵ∗) ≥ C logM loc(2ϵ∗
√
C) ≥ C logM loc

(
2ϵ∗
√
C

c

c/2− 3

)
,

and so setting δ = 2ϵ∗
√
C we obtain that

δ2/σ2 ≥ C logM loc

(
δ

c

c/2− 3

)
.

For C = 16 this will satisfy the inequality (2.1) (taking into account that ϵ∗2/σ2 > 16 log 2, which

implies δ2/σ2 ≥ 64 log 2C > 16 log 2). Since the map x 7→ x2/σ2 − 16 logM loc

(
x c
c/2−3

)
∨ 16 log 2

is non-decreasing, we have that δ ≥ ϵJ∗/2. This shows that the rate in this case is ϵ∗2.
Next, suppose that ϵ∗ defined by sup{ϵ : ϵ2/σ2 ≤ logM loc(ϵ)} satisfies ϵ∗2/σ2 ≤ 16 log 2. For

2ϵ∗, we have 64 log 2 > 4ϵ∗2/σ2 ≥ logM loc(2ϵ∗). If c in the definition of local packing is large
enough, we could put points in the diameter of the ball with radius 2ϵ∗ such that the packing set
has more than exp(64 log 2) many points. But that implies that the set K is entirely inside a ball
of radius

√
(64 log 2)σ (as ϵ∗2 ≤ 16 log 2σ2). In such a case, for the lower bound, we could pick ϵ to

be proportional to the diameter of the set (with a small proportionality constant). That will ensure
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that ϵ/σ is upper bounded by some constant (as 2
√
(64 log 2)σ is bigger than the diameter), and at

the same time logM loc(ϵ) can be made bigger than a constant (provided that c in the definition of
a local packing is large enough) – by taking θ (where θ is the center of the localized set B(θ, ϵ)∩K)
to be the midpoint of a diameter of the set K and then placing equispaced points on the diameter.
Hence the diameter of the set is a lower bound (up to constant factors) in this case, which is of
course always an upper bound too (up to constant factors). So we conclude that either for ϵ∗

defined by sup{ϵ : ϵ2/σ2 ≤ logM loc(ϵ)} satisfies ϵ∗2/σ2 > 16 log 2 or the lower and upper bounds
are of the order of the diameter of the set. In summary the rate is given by the ϵ∗2 ∧ d2. This is
true since in the second case, 4ϵ∗ is bigger than the diameter of the set.

In practice it may be challenging to calculate ϵ∗ precisely, but the following lemma can be useful.

Lemma 2.11. Suppose that ϵ and ϵ′ are such that ϵ2/σ2 > logM loc(ϵ) and ϵ
′2/σ2 < logM loc(ϵ′)

and ϵ ≍ ϵ′. Then the rate is given by ϵ2 ∧ d2.

Proof. It is clear from the definition of ϵ∗ that ϵ ≥ ϵ∗ while ϵ′ ≤ ϵ∗. Since ϵ ≍ ϵ′ it follows that
ϵ ≍ ϵ∗ which grants the result.

Remark 2.12. It should be clear that M loc(ϵ) can be bounded using Sudakov minoration to yield
an upper bound on the minimax rate. We give details in this remark as follows. Suppose that
ϵ2

σ2 ≥ 4c−2 logM loc(ϵ). Clearly upon rescaling such an ϵ (by c/2) we can obtain ϵ′ = ϵc
2 (which is of

the same order) and is ≥ ϵ∗. The latter follows by the fact that (ϵc)2

4 ≥ logM loc(ϵ) ≥ logM loc( ϵc2 )

since c is sufficiently large. By Sudakov minoration we have logM loc(ϵ) ≤ supθ∈K
w(B(θ,ϵ)∩K)2

ϵ2/c2
,

where w denotes the Gaussian width [Wainwright, 2019, see Section 5]. It follows that if there

exists an ϵ such that ϵ2

2σ ≥ supθ∈Kw(B(θ, ϵ) ∩ K) the minimax rate is upper bounded by ϵ2 ∧ d2.
An alternative way of seeing that this upper bound on the minimax rate holds, is to use Theorem
2.3. of Bellec et al. [2018], which shows that the constrained LSE grants this rate. We will also
see in our examples, that there exists another universal upper bound on the minimax rate in terms
of Kolmogorov complexity. An alternative way of seeing that bound, will be to use the projection
estimator PY where P is an orthogonal projection selected in a certain way (cf. Section 3.3.1 for
more details).

3 Examples

We now consider several examples, which have been studied previously; nevertheless we find it
enlightening to study them from this new perspective. Our examples are also meant to show the
reader a couple of methods one can utilize to attain bounds on the local entropy of the constraint
set. The first example is concerned with hyperrectangles.

3.1 Hyperrectangles

Let K =
∏n

i=1

[
− ai

2 ,
ai
2

]
⊂ Rn be a hyperrectangle. Without loss of generality we will assume that

0 < a1 ≤ a2 ≤ . . . ≤ an. We will show that the rate is given by (k + 2)σ2 ∧ d2 (for d2 =
∑

i∈[n] a
2
i )

where k is an integer such that (k + 1)σ2 ≤
∑n−k

i=1 a
2
i but (k + 2)σ2 >

∑n−k−1
i=1 a2i , and in the case

when
∑n

i=1 a
2
i ≤ σ2 the rate is d2.

11



3.1.1 Upper Bound

For the upper bound it suffices to consider the case when
∑n

i=1 a
2
i > σ2 (otherwise the rate is d2

which can trivially be achieved).
Suppose we select ϵ > c′

√
k + 2σ, for c′ being a large constant. We need to make an ϵ/c packing

of the set B(θ, ϵ) ∩K for any θ ∈ K. Suppose Mθ is the corresponding packing set. Take any two
points x, y ∈Mθ. We have

ϵ/c ≤ ∥x− y∥ ≤ ∥xn−k−1
1 − yn−k−1

1 ∥+ ∥xnn−k − ynn−k∥

≤

√√√√n−k−1∑
i=1

a2i + ∥x
n
n−k − ynn−k∥

≤
√
k + 2σ + ∥xnn−k − ynn−k∥,

where we denoted by xml = (xl, xl+1, . . . , xm)T. Hence for a large enough c′ we will have

∥xnn−k − ynn−k∥ ≥ ϵ/c′′,

where c′′ = (c′/c− 1). This means, that the packing set, also forms a ϵ/c′′ packing on the last k+1
coordinates. However, this set can at most be a (k+1)-sphere with radius ϵ, and so such a packing
number will be bounded by (k + 1) log(1 + 2c′′)≪ (c′

√
k + 2)2 [Wainwright, 2019] for a large c′.

3.1.2 Lower Bound

Next for the lower bound, we will show a lemma first.

Lemma 3.1. The log cardinality of a maximal packing set of a k-dimensional hypercube with side
length σ, to a distance

√
kσ/c for some sufficiently large c, is at least c̄k for some c̄ > 0.

Proof. For k = 1 the assertion is obviously true, so we assume k ≥ 2. We know that the packing
number is at least the ratio between the volumes [Wainwright, 2019]. The volume of the hypercube

is σk. The volume of a sphere of radius
√
kσ/c is (

√
kσ/c)kπk/2

Γ(k/2+1) . Taking the ratio we obtain

ckΓ(k/2 + 1)
√
k
k
πk/2

.

If k is even, by Stirling’s approximation

Γ(k/2 + 1) = k/2! >
√
2π(k/2)k/2+1/2 exp(−k/2) exp(1/(6k + 1)).

For c large enough, the log of the ratio can then be lower bounded by k log[c/(
√
2π exp(1/2))] +

1
2 log(k/2) + log(

√
2π) − 1

6k+1 . On the other hand, for odd k, since Γ is increasing (on the in-

terval [2,∞)), we have Γ(k/2 + 1) ≥ Γ((k − 1)/2 + 1) >
√
2π((k − 1)/2)(k−1)/2+1/2 exp(−(k −

1)/2) exp(1/(6(k − 1) + 1)), so that the same conclusion holds.

First suppose that d2 > σ2. We will now construct a ⌈(k + 1)/2⌉-dimensional hyperrectangle
out of the given points. First, assume that s of the a2i are at least σ2. If s ≥ k then we can
build a k-dimensional hyperrectangle of side lengths at least σ. In case s < k, we know all of
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the remaining n − s coordinates are < σ. Hence by greedily taking coordinates until we reach σ2

(and note that any such summation will be smaller than 2σ2) we can construct a hyperrectangle
of dimension at least ⌈(k+ 1)/2⌉ with sides at least σ (here we are using the fact that (k+ 1)σ2 ≤∑n−k

i=1 a
2
i by assumption). If we build a sphere centered at the center of this hyperrectangle of radius√

⌈(k + 1)/2⌉σ, this sphere contains a hypercube of side σ, which is fully inside the hyperrectangle.
When c from the definition of local packing is sufficiently large, this hypercube can be packed with
at least exp(c̄⌈(k + 1)/2⌉) points according to the lemma above. Hence for ϵ′ =

√
⌈(k + 1)/2⌉σ we

have ϵ
′2/σ2 ≲ logM loc(ϵ′). Thus by rescaling ϵ′ we can obtain ϵ

′2/σ2 < logM loc(ϵ′). Hence the
conclusion.

The last case is to consider d2 < σ2. This case can be handled by the same logic, as in the
proof of Theorem 2.10 since d < σ. This completes the proof.

3.2 Ellipses

Next we consider the example of ellipses. Let K = {x :
∑

i
x2
i

ai
≤ 1}, where we assume 0 < a1 ≤

. . . ≤ an. Define the Kolmogorov width [Pinkus, 2012] as

dk(K) = min
P∈Pk

max
θ∈K
∥Pθ − θ∥, (3.1)

where Pk denotes the set of all k-dimensional linear projections. It is known that that dk(K) =√
an−k, where a0 = 0 [see, e.g., Wei et al., 2020, and references therein]. We will show that the

minimax rate is (k+1)σ2∧d2, where k is such that an−k ≤ (k+1)σ2 but an−k+1 > kσ2, k = 1, . . . , n,
or d2 in the case an ≤ σ2.

3.2.1 Upper Bound

The upper bound proof is very similar to the bound for the hyperrectangles. We will only focus
on the case an > σ2 as otherwise the upper bound is trivial. Suppose ϵ2 > Ckσ2. We need an ϵ/c
packing set. Take two points x, y in that packing set and let P be the projection achieving the min
at (3.1). We have

ϵ/c ≤ ∥x− y∥ ≤ ∥x− Px− y + Py∥+ ∥Px− Py∥ ≤ 2dk(K) + ∥Px− Py∥

But d2k(K) ≤ (k + 1)σ2 so when C is sufficiently large we have

∥Px− Py∥ ≥ ϵ/c′′.

But this is a k-dimensional set, which is at most a k-sphere, which means that the packing set is
of cardinality at most kC ′′. Hence by potentially rescaling ϵ to some bigger value, we will obtain
ϵ2/σ2 > logM loc(ϵ).

3.2.2 Lower Bound

For the lower bound, observe that the ellipse, contains a k-dimensional ball of radius
√
kσ2. This

can be seen by setting the first n− k coefficients to 0 and then having the set∑
i≥n−k+1

x2i
ai
≤ 1,
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and since an−k+1 ≥ kσ2 we have the ball inside. This ball can be packed with at least kC log-
packing. Hence the lower bound upon rescaling ϵ2 = kσ2 down a bit.

The only case that we have not handled is if ai ≤ σ2 for all i (which implies that the diameter
is also smaller than σ). But that can be handled as in Theorem 2.10 to yield a rate equal to the
diameter of the set.

It is worth pointing out here that the LSE fails to be minimax optimal for certain ellipses. This
is shown in Zhang [2013] for instance, see their Lemma 7. For a different example of when the LSE
fails refer to Chatterjee [2014].

3.3 Compact Orthosymmetric Quadratically Convex Sets

In this section we consider an example of sets which was first proposed and analyzed in Donoho
et al. [1990]. The compact convex set K is called orthosymmetric if for x = (x1, . . . , xn)

T ∈ K we
have (±x1, . . . ,±xn)T ∈ K for all possible choices of ±. The set is called quadratically convex if
K2 := {x2 : x ∈ K} is a convex set, where x2 is x squared entry-wise. Examples of such sets are
hyperrectangles and ellipses. For even more examples refer to Donoho et al. [1990].

Using the definition of Kolmogorov widths the minimax rate is given by (k + 1)σ2 ∧ d0(K)2

where k is such that dk(K)2 ≤ (k+1)σ2 but d2k−1(K) > kσ2. If d0(K)2 ≤ σ2 we have that the rate
is d0(K)2 which is up to constants the diameter of the set.

3.3.1 Upper Bound

The upper bound is the same as in the ellipse case, and in fact this upper bound is always valid.
This reflects the fact that one can always use the optimal projection PY to estimate µ.

3.3.2 Lower Bound

For the lower bound we may assume

min
P∈Pk

max
θ∈K
∥θ − Pθ∥2 ≥ kσ2.

We can only consider projections aligned with the coordinates – there are
(
n
k

)
such projections.

Then the optimization is

min
P∈Pk

max
θ∈K
∥θ − Pθ∥2 ≤ min

S
max
θ∈K

∑
i

θ2i −
∑
i∈S

θ2i ,

where the minimum over S is taken with respect to all subsets of [n] with exactly k elements. Since
the set is quadratically convex the above can be written as

min
P∈Pk

max
θ
∥θ − Pθ∥2 ≤ min

S
max
t∈K2

∑
i

ti −
∑
i∈S

ti = min
w

max
t∈K2

1
Tt− wTt,

whre w ranges in the set {ek : ek has exactly k-entries equal to 1 and the rest are 0}. Since the
function −wTt is concave this is the same as the problem where w ranges in the convex hull of
these points (call that set Wk). By the minimax theorem (we have that both functions needed in
the statement of the minimax theorem are linear hence convex and concave) we have

min
w∈Wk

max
t∈K2

1
Tt− wTt = max

t∈K2
min
w∈Wk

1
Tt− wTt,
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Now, take t∗ maximizing the above, and w∗ to be equal to 1 when we have one of the k maximal
elements in t∗. We have,

1
Tt∗ − w∗⊤t∗ ≥ kσ2.

Since the set is orthosymmetric we have the hyperrectangle
∏

i∈[n][−
√
t∗i ,

√
t∗i ] ⊂ K. Hence the

logic is the same as in the hyperrectangular case — pick the s coefs in t∗ which are bigger than σ2.
If s ≥ k we are all set. If s < k we know on the remaining they are smaller than σ2 and they sum
up to kσ2. Hence we can create a large (⌈k/2⌉) hyperrectangle of side lengths at least σ, and the
proof can continue as in the hyperrectangle case. The final case to consider is when d0(K)2 ≤ σ2,
but that can be handled as in Theorem 2.10.

3.4 ℓ1 ball

In this section we will replicate a result of Donoho and Johnstone [1994]. Suppose the set K = {θ :
∥θ∥1 ≤ 1}. We will use the fact that

logM(ϵ/c) ≥ logM loc(ϵ) ≥ logM(ϵ/c)− logM(ϵ), (3.2)

where we denoted with logM(ϵ) the log cardinality of the maximal packing set of K at a distance
ϵ. The bounds (3.2) follow from Yang and Barron [1999]; actually Yang and Barron [1999] only
prove the bounds for the special case c = 2, but their results apply more generally.

Using the fact that the log cardinality of a maximal ϵ-packing set of the ℓ1 ball is given by
log(ϵ2n)/ϵ2 for ϵ ≳ 1/

√
n, (otherwise it is n if ϵ ≍ 1/

√
n and n log 1

ϵ2n
when ϵ ≲ 1/

√
n Guedon and

Litvak [2000], Schütt [1984]), for c large enough we have that

logM(ϵ/c)− logM(ϵ) ≍ log(ϵ2n)

ϵ2
≍ logM(ϵ/c).

Hence, for ϵ ≳ 1/
√
n, the equation ϵ2/σ2 ≍ log(ϵ2n)

ϵ2
determines the minimax rate. Suppose that

σ is such that log((σ2 log n)1/2n) ≍ log n, and (σ2 log n)1/4 ≳ 1/
√
n. Then setting ϵ ≍ (σ2 log n)1/4

solves the equation up to constant factors. This matches the example after Theorem 3 of Donoho
and Johnstone [1994] for σ = 1/

√
n.

It is worth pointing out that the orthogonal projection estimator, which works at a minimax
rate in all of the aforementioned examples, fails to attain the rate for the ℓ1 ball [see Zhang, 2013,
e.g.].

4 Adaptivity and Admissibility up to a Universal Constant

In this section we argue that the estimator constructed in Algorithm 1 is adaptive to the true point.
It will be beneficial to define local entropy in a slightly different manner than before.

Definition 4.1. Let θ ∈ K be a point. Consider the set B(θ, ϵ) ∩K. For θ ∈ K Let M(θ, ϵ, c) :=
M(ϵ/c,B(θ, ϵ) ∩K) denote the largest cardinality of an ϵ/c packing set in B(θ, ϵ) ∩K.

We first prove the following lemma.

Lemma 4.2. Suppose ν and µ are two points in K such that ∥ν − µ∥ < δ. Then M(ν, ϵ, c) ≤
M(µ, 2ϵ, 2c) for any ϵ > δ.
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Proof. It suffices to show that B(ν, ϵ) ∩K ⊂ B(µ, 2ϵ) ∩K. We will show directly that B(ν, ϵ) ⊂
B(µ, 2ϵ). Take any point x ∈ B(ν, ϵ). By the triangle inequality ∥x− µ∥ ≤ ∥x− ν∥+ δ ≤ 2ϵ since
we are assuming δ < ϵ. This completes the proof.

Using the above lemma, one can modify the proof of Theorem 2.9 to arrive at the following
adaptive version of the result.

Theorem 4.3. The estimator from Algorithm 1 returns a vector ν∗ which satisfies the following
property

E∥µ− ν∗∥2 ≤ C̄ϵ∗2,

for some universal constant C̄, where ϵ∗ = ϵJ∗ and J∗ is the maximal J ≥ 1 such that ϵJ := d(c/2−3)
2J−2c

satisfies

ϵ2J
σ2

> 16 logM

(
µ, 2ϵJ

c

(c/2− 3)
, 2c

)
∨ 16 log 2,

of J∗ = 1 if no such J exists.

The main thing that needs to be modified is the local entropy in the bound (2.2). We omit the
details.

The final remark of this section is to observe that due to the minimaxity of the estimator in
Algorithm 1, we have that it is admissible up to a universal constant. This is a trivial observation.
For any estimator ν̂(Y ), there exists a point θ ∈ K such that

E∥ν̂(Y )− θ∥2 ≥ c̄ϵ∗2 ∧ d2,

where c̄ is a universal constant. On the other hand we know that E∥ν∗(Y )− θ∥2 ≤ C̄ϵ∗2 ∧ d2 where
C̄ is another universal constant. Hence the conclusion.

5 Unbounded Sets with known σ2

In this section we generalize the results of Section 2 to the unbounded case with known σ2. A
new algorithm is needed which runs multiple bounded algorithms and “aggregates” them in a way
similar to how we constructed the bounded case algorithm. The only place where knowledge of σ2

is used is to “split” the sample into two independent samples.

5.1 Lower Bound

Note that for unbounded convex sets, the lower bound remains valid. Namely, as long as, logM loc(ϵ)
> 4ϵ2/σ2 ∨ 4 log 2 the minimax risk is at least ϵ2/8c2. Observe also, that for a sufficiently large c
the term 4 log 2 does not have effect on the lower bound. This is so since any unbounded convex
set in Rn contains a ray [see Lemma 1 Section 2.5 Grünbaum, 2013, e.g.], and therefore, one can
position a ball of radius ϵ on that ray so that part of the ray with length 2ϵ is fully in the ball.
Then one can put exp(4 log 2) balls of radius ϵ/c on that ray centered at equispaced points, which
will ensure that logM loc(ϵ) > 4 log 2 for any ϵ.
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5.2 Upper Bound

In this section we describe an algorithm for unbounded convex sets, and show it achieves the
minimax rate. We start with a simple lemma.

Lemma 5.1. For two convex sets S, S′ satisfying S′ ⊂ S, we have that M loc
S′ (ϵ) ≤M loc

S (ϵ) for any
ϵ > 0.

Proof. Since for any θ ∈ S′ we have B(θ, ϵ) ∩ S′ ⊂ B(θ, ϵ) ∩ S the proof is complete.

We first use the knowledge of σ2 to “split” the sample. To this end let us draw η ∼ N(0, Iσ2)
independently from the observed data Y . Consider the variables Ỹ 1 = Y + η and Ỹ 2 = Y − η.
These variables are independent. Take any fixed point ν ∈ K. We consider balls centered at ν
with different radiuses B(ν, 1) ∩K,B(ν, 2) ∩K, . . ., B(ν, 2m) ∩K, . . . and every time compute the
estimator from Algorithm 1 using Ỹ 1 as the “Y value”. Denote these estimators with {νm}∞m=1.
The intuition for constructing these, is that for large enough m these estimators will have good
properties as µ will belong to the set B(ν, 2m) ∩K. We have the following lemma regarding the
sequence of estimators νm.

Lemma 5.2. All estimators νm lie in a compact set.

Proof. For brevity throughout the proof we denote Ỹ 1 with Y . Let PKY denote the projection of
Y onto the set K which is the closure of K. At some point the radius 2N will be so big that PKY
will be in the set B(ν, 2N ) ∩K. From there on, i.e. m ≥ N , we will argue that the estimators νm
will be close to the point PKY . The first packing set is at distance d

2(C+1) where d ≤ 2m+1 and C

is the constant from Algorithm 1 (such that 2(C + 1) = c). Let x = ∥Y − PKY ∥. For any point
ν ∈ K we have

√
x2 + ∥ν − PKY ∥2 ≤ ∥ν − Y ∥ ≤ x+ ∥ν −PKY ∥, where the first inequality follows

by the cosine theorem, and the second one from the triangle inequality. On the other hand the
closest point ν̄ from the packing set to PKY satisfies ∥ν̄ − PKY ∥ ≤

d
2(C+1) , and therefore

∥ν̄ − Y ∥ ≤ x+ ∥ν̄ − PKY ∥ ≤ x+
d

2(C + 1)
.

Take ν̂ to be the closest point to Y . We then have√
x2 + ∥ν̂ − PKY ∥2 ≤ ∥ν̂ − Y ∥ ≤ ∥ν̄ − Y ∥ ≤ x+

d

2(C + 1)
.

It follows that

∥ν̂ − PKY ∥
2 ≤ 2x

d

2(C + 1)
+

(
d

2(C + 1)

)2

≤ 3

(
d

2(C + 1)

)2

,

assuming that x ≤ d
2(C+1) . Since C ≥ 2 this implies that ∥ν̂ − PKY ∥ ≤

d
2 , and thus the point

PKY will be in the chosen ball for the second step. We can continue this logic until, x ≥ d
2k(C+1)

.

At this point we know that the estimator will be within distance d
2k−2 of the central point, which

is at distance at most d
2k−1 from PKY , so that the final estimator will be at distance at most

3d
2k−1 ≤ 6(C + 1)x from PKY . This completes the proof that all estimators will be on a compact

set since the initial ones fall into a ball of radius 2N and are also in a compact set.
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Define C̃ = c
4 − 1, where c is the local packing constant from Definition 2.2. Once we have

established Lemma 5.2, we can proceed to propose Algorithm 2. As we mentioned previously,
this algorithm runs multiple bounded algorithms and “aggregates” them in a way similar to how
Algorithm 1 works.

Algorithm 2: Upper Bound Algorithm (Unbounded Case)

Input: A sequence of estimators E := {νm}m∈N ⊂ K; d the diameter of E which is
bounded by Lemma 5.2; ν∗ ∈ E an arbitrary point.

1 k ← 1;
2 Υ← [ν∗];
3 while TRUE do

4 Take a d

2k+1(C̃+1)
maximal4packing set Mk of the set B

(
ν∗, d

2k−1

)
∩ E ; /* The packing

sets should be constructed in a special way as described in the proof of

Theorem 5.3 to ensure measurability */

5 ν∗ ← argminν∈Mk
∥Ỹ 2 − ν∥ ; /* Break ties by taking the point with smallest

index in E */

6 Υ.append(ν∗);
7 k ← k + 1;

8 return ν∗ ; /* Observe that by definition Υ forms a Cauchy sequence, so ν∗

can be understood as the limiting point of that sequence. */

Before we proceed with the proof of why Algorithm 2 works, we will show that the estimator
produced by it is measurable. We have

Theorem 5.3. We have that ν∗ : Rn × Rn 7→ Rn is a measurable function (with respect to the
Borel σ-field). As a consequence ν∗(Y, η) is a random variable.

Proof. We will show that each element in the sequence Υj is measurable. Since they form a Cauchy
sequence their limit will also be measurable by an argument similar to the one in Theorem 2.4.
Throughout the proof, so as to not overburden notation, for the most part we will suppress the
dependence of the estimators νm on ỹ1 = y+ η and will simply write νm. We will also suppress the
dependence of Υj on y and η.

We will select a packing set greedily starting with the minimum index that belongs to the ball
on the k-th step, then carving a ball out centered at that minimum index, and next considering
the minimum index that is in the bigger ball but is out of the carved out ball and so on. We
will first show that Υ1 is measurable. For Υ1 the big ball on the 1-st step contains all estimators
νm hence we start from ν1. We will show that the event Υ1 = νj is a measurable event, and
since as we know from before each νj is measurable, and the identity (y, η : Υ1 ∈ B) = ∪j(y, η :
Υ1 = νj) ∩ (y, η : νj(y + η) ∈ B) for any hyperrectangle B we will have that Υ1 is measurable.
We will now give a little details about the measurability of the event (y, η : νj(y + η) ∈ B). For
(y, η : νj(y+ η) ∈ B) = (y, η : y+ η ∈ B′) for some Borel set B′ by the measurability of νj . This is
a Borel set since the function (y, η) 7→ y + η is continuous and hence measurable.

4It is not important for the packing set to be maximal as long as it is a covering set. See Theorem 5.3 for a
specification of how to construct these sets to ensure measurability.
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Let us call the index set of the chosen packing (according to the strategy described above), “the
index set”. We then have the identity:

{y, η : Υ1 = νj} = ∪S:j∈S,|S|≤M loc(r)

(
{y, η : S is the index set}∩

∩i∈S {y, η : ∥νj − ỹ2∥ ≤ ∥νi − ỹ2∥} ∩i∈S,i≤j {y, η : ∥νi − ỹ2∥ ≠ ∥νj − ỹ2∥}
)
,

where we put for brevity r = d/(4(C̃+1)) and ỹ2 = y−η. Let S = (s1, s2, . . . , sm) (note that s1 = 1
always has to belong in S). The above events in the latter two intersections are measururable since
for two measurable functions X and Y the events X ≤ Y and X ̸= Y are measurable, the function
∥·∥ is continuous hence measurable, the sum (difference) of two measurable functions is measurable,
and the maps νj(y + η) and y − η are measurable (as we argued earlier and by continuity). Now,
the event that S is the index set is

{y, η : S is the index set} = ∩s2−1
k=2 {y, η : ∥ν1 − νk∥ ≤ r} ∩ {y, η : ∥ν1 − νs2∥ > r}∩

∩s3−1
k=s2+1 {y, η : ∥ν1 − νk∥ ≤ r} ∪ {ω : ∥νs2 − νk∥ ≤ r}
∩ {y, η : ∥ν1 − νs3∥ > r} ∩ {y, η : ∥νs2 − νs3∥ > r}∩
. . .

∩k≥sm+1 ({y, η : ∥ν1 − νk∥ ≤ r} ∪ {y, η : ∥νs2 − νk∥ ≤ r}∪
. . . ∪ {y, η : ∥νsm − νk∥ ≤ r}),

which is clearly measurable (by continuity of ∥ · ∥, and the fact that the difference of measurable
functions is measurable). This completes the proof that Υ1 is measurable. We will now argue that
Υ2 is also measurable using the same trick. Observe that the identity:

{y, η : Υ2 = νj} = ∪S:j∈S,|S|≤M loc(r)

(
{y, η : S is the index set}∩

∩i∈S {y, η : ∥νj − ỹ2∥ ≤ ∥νi − ỹ2∥} ∩i∈S,i≤j {y, η : ∥νi − ỹ2∥ ≠ ∥νj − ỹ2∥}
)
,

continues to hold for Υ2 with the only difference that r = d/(8(C̃ + 1)). We will now show that
the event {y, η : S is the index set} continues to be measurable for Υ2. We have

{y, η : S is the index set} = ∩s1−1
k=1 {y, η : ∥Υ1 − νk∥ > d/2} ∩ {y, η : ∥Υ1 − νs1∥ < d/2}

∩s2−1
k=s1+1 ({y, η : ∥Υ1 − νk∥ > d/2} ∪ {ω : ∥νs1 − νk∥ ≤ r})
∩ ({y, η : ∥Υ1 − νs2∥ ≤ d/2} ∩ {y, η : ∥νs1 − νs2∥ > r})∩
. . .

∩k≥sm+1 ({y, η : ∥Υ1 − νk∥ > d/2} ∪ {y, η : ∥ν1 − νk∥ ≤ r}
∪ {y, η : ∥νs2 − νk∥ ≤ r} ∪ . . . ∪ {y, η : ∥νsm − νk∥ ≤ r}),

Clearly, all of the above are measurable events, and therefore Υ2 is measurable. Proving that
all subsequent Υj are measurable is the same as proving that Υ2 is measurable which completes
the proof.
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Next we prove a modification of Lemma 2.6. The setting is as follows. We are given M points
ν1, . . . , νM ∈ K such that min ∥νi − µ∥ ≤ ρ.

Lemma 5.4. Let i∗ = argmini ∥Ỹ 2 − νi∥. We will show that the closest point to Ỹ 2, νi∗ satisfies

P(∥νi∗ − µ∥ ≥ (C + 1)ρ) ≤M exp(−(C − 2)2ρ2/(16σ2)),

for any fixed C > 2.

Proof. Define the intermediate random variable

Ti =

{
maxj∈[M ] ∥νi − νj∥, s.t. ∥Ỹ 2 − νi∥ − ∥Ỹ 2 − νj∥ ≥ 0, ∥νi − νj∥ ≥ Cρ
0, if no such j exists,

Without loss of generality assume that ∥µ− νi∥ ≤ ρ. Next, we have that

P(∥νi∗ − µ∥ ≥ ρ+ Cρ) ≤ P(i∗ ∈ {j : ∥νj − νi∥ ≥ Cρ})
≤ P (Ti > 0),

where the first inequality follows by the triangle inequality and the second because if i∗ ∈ {j :
∥νj − νi∥ ≥ Cρ} we have Ti ≥ ∥νi − νi∗∥ ≥ Cρ. But

P(Ti > 0) = P(∃j : ∥νj − νi∥ ≥ Cρ and ∥Ỹ 2 − νi∥ − ∥Ỹ 2 − νj∥ ≥ 0)

≤M exp(−(C − 2)2ρ2/(16σ2)),

by Lemma 2.5 (here we used the fact that ξi−ηi ∼ N(0, 2σ2)). This is what we wanted to show.

Theorem 5.5. The estimator from Algorithm 2 returns a vector ν∗ which satisfies the following
property

E∥µ− ν∗∥2 ≤ C̄ϵ∗2,

for some universal constant C̄, where ϵ∗ is the smallest solution to

ϵ2

σ2
> 32 logM loc

(
ϵ

c

(c/2− 3)

)
∨ 32 log 2. (5.1)

We remind the reader that c is the constant from the definition of local entropy, which is assumed
to be sufficiently large.

Remark 5.6. For c large enough inequality (5.1) is equivalent to simply

ϵ2

σ2
> 32 logM loc

(
ϵ

c

2(c/4− 3)

)
,

since one can always take the center of the ball lying on an infinite ray (which exists [see Lemma
1 Section 2.5 Grünbaum, 2013, e.g.]), and then there will exist at least exp(log 2) equispaced points
on that ray.
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Remark 5.7. Note that the expected value in (5.1) is taken with respect to both ξ and η. It is clear
by Jensen’s inequality, that the estimator Eην

∗(Y, η) satisfies

Eξ∥µ− Eην
∗(Y, η)∥2 ≤ E∥µ− ν∗∥2 ≤ C̄ϵ∗2.

Note that since Eην
∗(Y, η) = E[ν∗(Y, η)|Y ] it is a measurable function of the data Y , and therefore

achieves the minimax rate as shown in Proposition 5.8.

Proof. Let ρ = infj ∥µ− νj∥, and let ν̄ be a limiting point of νj such that ρ = ∥µ− ν̄∥. Note that

ρ is fixed given Ỹ 1. We know that for the N -th estimator where N is such that 2N ≥ ∥µ− ν∥ we
have that the conditions of Theorem 2.9 are fulfilled and by (2.5) therefore

P(ρ ≥ 2κx) ≤ P(∥µ− νN∥ ≥ 2κx) ≤ C exp(−C ′x2/σ2)1(J∗ > 1),

which holds true for x ≥ ϵ∗, where ϵ∗ = ϵJ∗ = (C−2) diam(B(ν,2N )∩K)

(C+1)2J∗−1 , and where J∗ is the maximum

J selected so that
ϵ2J
2σ2 > 16 logM loc

B(ν,2N )∩K

(
ϵJ

2(C+1)
(C−2)

)
∨ 16 log 2 of J∗ = 1 if such J does not exist.

Here we have 2σ2 in the denominator since ξi + ηi ∼ N(0, 2σ2).
For any J such that d

2J+1(C̃+1)
≥ ρ by Lemma 5.4 we have the following bound (recall that

c = 4(C̃ + 1) where c is the constant from the definition of local packing entropy):

P
(
∥ν̄ −ΥJ∥ ≥

d

2J−1

∣∣∣∣∥ν̄ −ΥJ−1∥ ≤
d

2J−2
, Ỹ 1

)
≤ P

(
∥ν̄ −ΥJ∥ ≥ ρ+ (C̃ + 1)(

d

2J(C̃ + 1)
+ ρ)

∣∣∣∣∥ν̄ −ΥJ−1∥ ≤
d

2J−2
, Ỹ 1

)
≤ P

(
∥µ−ΥJ∥ ≥ (C̃ + 1)(

d

2J(C̃ + 1)
+ ρ)

∣∣∣∣∥ν̄ −ΥJ−1∥ ≤
d

2J−2
, Ỹ 1

)
≤ |MJ−1| exp(−(C̃ − 2)2(d/(2J(C̃ + 1)) + ρ)2/(16σ2))).

Telescoping this bound by the union bound gives us that

P(∥µ−ΥJ∥ ≥ ρ+
d

2J−1
|Ỹ 1) ≤

J∑
j=2

|Mj−1| exp(−(C̃ − 2)2(d/(2j(C̃ + 1)) + ρ)2/(16σ2)))

≤M loc

(
d

2J−2

) J∑
j=2

exp(−(C̃ − 2)2(d/(2j(C̃ + 1)) + ρ)2/(16σ2)))

≤M loc

(
d

2J−2

) J∑
j=2

exp(−(C̃ − 2)2(d/(2j(C̃ + 1))2/(16σ2)))

≤M loc

(
d

2J−2

)
a(1 + a4−1 + a16−1 + . . .)1(J > 1)

≤M loc

(
d

2J−2

)
a

1− a
1(J > 1)

where for brevity we put a = exp

(
−(C̃−2)2d2

(22J (C̃+1)2)(16σ2)

)
, and we are assuming that a < 1.
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So if one sets ϵJ = (C̃−2)d

2J (C̃+1)
, we have that if ϵ2J/(16σ

2) > 2 logM loc

(
ϵJ

4(C̃+1)

(C̃−2)

)
and

exp(−ϵ2J/(16σ2)) < 1/2, the above probability will be bounded from above by 2 exp(−ϵ2J/(32σ2)).
Since

2 logM loc

(
ϵJ

4(C̃ + 1)

(C̃ − 2)

)
≤ 2

(
log 2 ∨ logM loc

(
ϵJ

4(C̃ + 1)

(C̃ − 2)

))
,

this condition is implied when
ϵ2J
σ2 > 32 logM loc

(
ϵJ

4(C̃+1)

(C̃−2)

)
∨ 32 log 2.

Below constants can change values from line to line. By the triangle inequality we have that

∥ν∗ − µ∥ ≤ ∥ν∗ − ΥJ∥ + ∥ΥJ − µ∥ ≤ ρ + 6ϵJ
C̃+1

C̃−2
≤ 7ϵJ

C̃+1

C̃−2
with probability at least 1 −

2 exp(−ϵ2J/(32σ2)). Let J∗∗ be selected as the maximum J such that
ϵ2J
σ2 > 32 logM loc

(
ϵJ

4(C̃+1)

(C̃−2)

)
∨

32 log 2 otherwise if such J does not exist J∗∗ = 1. We have shown that for all J ≤ J∗∗ we have

P(∥µ− ν∗∥ ≥ 7

2

d

2J−1
) ≤ C exp(−C ′(d/2J−1)2/σ2)1(J∗∗ > 1)

+ 1

(
d

2J+1(C̃ + 1)
≤ 2κϵ∗

)
+ C ′′ exp(−C ′′′(d/2J−1)2/σ2)1(J∗ > 1),

where the last two summands, come from controlling the probability of the event d

2J+1(C̃+1)
< ρ.

Hence for any x ≥ ϵ∗∗ we have

P(∥µ− ν∗∥ ≥ 7x) ≤ C exp(−C ′x2/σ2)1(J∗∗ > 1)

+ 1

(
x

4(C̃ + 1)
≤ 2κϵ∗

)
+ C ′′ exp(−C ′′′x2/σ2)1(J∗ > 1),

where ϵ∗∗ = ϵJ∗∗ .
Integrating the tail bound as before we have

E∥µ− ν∗∥2 ≤ C ′′′ϵ∗∗2 + C
′′′′
σ2 exp(−C ′′ϵ∗∗2/σ2)1(J∗∗ > 1)

+ C ′′′′′ϵ∗2 + C
′′′′′′
σ2 exp(−Cϵ∗2/σ2)1(J∗ > 1).

Now ϵ∗∗2/σ2 is bigger than a constant (32 log 2) otherwise J∗∗ = 1, and similarly for ϵ∗ and J∗.
Hence the above is smaller than C̃max(ϵ∗2, ϵ∗∗2) for some absolute constant C̃. Finally observe
that ϵ∗ is smaller than 2ϵ∗∗∗ which is defined as the infimum ϵ such that

ϵ2

σ2
> 32 logM loc

(
ϵ
2(C + 1)

(C − 2)

)
∨ 32 log 2,

since M loc(x) ≥ M loc
B(ν,2N )∩K(x) for any x. In addition, since M loc

(
ϵ2(C+1)
(C−2)

)
≥ M loc

(
ϵ4(C̃+1)

(C̃−2)

)
(which follows since we have ϵ2C̃+1

C̃−2
> ϵC+1

C−2 and c = 4(C̃ + 1) = 2(C + 1)) we conclude that

2ϵ∗∗∗ ≥ ϵ∗∗ . This completes the proof.

Proposition 5.8. Define ϵ∗ as sup{ϵ : ϵ2/σ2 ≤ logM loc(ϵ)}, where c in the definition of local
entropy is a sufficiently large absolute constant. Then the minimax rate is given by ϵ∗2 up to
absolute constant factors.
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Proof. For δ∗ := ϵ∗/4 we have logM loc(δ∗) ≥ logM loc(ϵ∗) ≥ ϵ∗2/σ2 = 16δ∗2/σ2 and so this implies
the sufficient condition for the lower bound (note that here we don’t have a constant 4 log 2 per the
comment in Section 5.2).

On the other hand we know that for a constant C > 1:

4Cϵ∗2/σ2 ≥ C logM loc(2ϵ∗) ≥ C logM loc(2ϵ∗
√
C) ≥ C logM loc

(
2ϵ∗
√
C

c

c/2− 3

)
,

and so setting δ = 2ϵ∗
√
C we obtain that

δ2/σ2 ≥ C logM loc

(
δ

c

c/2− 3

)
.

Plugging in C = 32 grants the requirement of Remark 5.6, which completes the proof.

6 Discussion

In this paper we studied the minimax rate of the Gaussian sequence model under convex constraints.
We proposed a method which is minimax optimal up to constant factors for any bounded convex set
K, and an extension of the method which is minimax optimal for unbounded sets provided that σ2

is known. Unfortunately, our algorithm is not computationally tractable. A natural open question
is whether there exist computationally feasible general schemes which achieve the minimax rate
for any set K. In addition, it is clear that the algorithm we proposed in this paper has something
in common with the constrained LSE, as at each step it is looking for points which are closest
to the observed point Y . It will be interesting if this connection is studied more closely — in
particular if there exist sufficient conditions for K under which the two estimators are sufficiently
close. Furthermore, throughout the paper we assumed that the model is well-specified, i.e., that
µ ∈ K. In future work we would like to see whether the techniques proposed here can capture the
misspecified case. Finally an exciting question that remains is whether knowledge of σ2 is necessary
for the unbounded sets case. Our conjecture is that this is not the case, but at the moment we
can only guarantee minimaxity by aggregating bounded estimators for which the knowledge of σ2

seems to be required.
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