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ABSTRACT: The deployment of many-body quantum chemistry methods onto massively
parallel high-performance computing (HPC) platforms is reviewed. The particular focus is
on highly accurate methods that have become popular in predictive description of chemical
phenomena, such as the coupled-cluster method. The account of relevant literature is
preceded by a discussion of the modern and near-future HPC landscape and the relevant
computational traits of the many-body methods, in their canonical and reduced-scaling
formulations, that underlie the challenges in their HPC realization.
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1. INTRODUCTION
The goal of this article is to review the progress in deploying
accurate many-body electronic structure methods of interest to
chemists onto modern and emerging parallel computer
platforms. The many-body electronic structure methods, by
describing explicitly the correlations between states of two or
more electrons in an n-electron system, are computationally
more costly than the mainstream Kohn−Sham density
functional theory (DFT) methods,1,2 but can surpass the
limitations of DFT by allowing systematic improvement
toward the exact solution. The many-body electronic structure
methods in use in chemistry, physics, and materials science can
be loosely grouped according to their computational and
formal traits into methods related to the many-body
perturbation theory (e.g., coupled-cluster, Green’s function),
quantum Monte Carlo methods, tensor network methods, and
combinations thereof. While each group of methods has
strengths and weaknesses, methods based on many-body
perturbation theory, and in particular the coupled-cluster
method,3−5 have had the most impact so far in the field of
chemistry, enabled by efficient computer implementations
nowadays available in most fully featured open-source and
commercial quantum chemistry packages (ACES,6 CFOUR,7

Molpro,8 Orca,9 Q-Chem,10 Turbomole,11 Gaussian,12

GAMESS,13 and NWChem,14 just to name a few prominent
examples); thus, our focus will be almost exclusively on such
methods.
Two key factors limit the usefulness of the accurate many-

body electronic structure methods, like coupled-cluster, to
practical problems of interest to experimentalists:

• First, the rapid (high-order polynomial) growth of the
computational cost with the molecular size N. For
example, the conventional coupled cluster singles and
doubles (CCSD)15 and CCSD with perturbative treat-
ment of triples [CCSD(T)]16 methods have computa-
tional complexity of N( )66 and N( )76 , respectively.
Hence, doubling the system size increases the computa-
tional expense by roughly 2 orders of magnitude.

• Second, the slow convergence of the correlation energy
with respect to the size of the atomic orbital basis set. It
is known empirically that huge basis sets are required
(100+ basis functions/atom) to reduce the basis set
error of standard wave functions such as CCSD to
“chemical” accuracy levels. Furthermore, decreasing the
basis set error through brute force is futile because the
computational cost of such methods depends on the
basis set error ϵ as approximately 6(ϵ−4).17,18 Hence,
reducing the basis set error by a factor of 2 increases the
computational expense by more than an order of
magnitude.

The high computational costs of the many-body methods
can be overcome somewhat by taking advantage of modern
massively parallel computers, but this is barely a remedy: even
a million-fold increase in concurrency would allow an increase
of the system size by only a factor of 10. Fortunately, the high
polynomial complexities with size and precision issues of the
many-body methods were solved to a certain extent in recent
years by the emergence of efficient reduced-scaling formula-
tions of these methods and the explicitly correlated formalisms,
respectively. This opens a pathway to rapid increase in the
utilization of many-body methods as an alternative to the
mainstream DFT methods in everyday computational

chemistry experiments. However, to realize the great promise
of reduced-scaling many-body methods, they need to be
deployed efficiently to modern computer platforms to compete
with DFT on cost while offering much greater accuracy.
The deployment of the most recent advances in the many-

body electronic structure toolkit onto modern hardware can to
some appear successful, as evidenced by the presence of robust
many-body capabilities in most comprehensive quantum
chemistry software suites, with most capable of efficient
execution of modern multicore processors and some even on
heterogeneous platforms. On the other hand, the rate of
deployment is unfortunately slow and does not match the rate
of evolution of the hardware platforms and the theories
themselves. This can be partially attributed to the complexity
of the many-body formalisms and algorithms, both conven-
tional and reduced-scaling, and partially to the increasing
complexity of the high-performance computing (HPC)
platforms themselves. Modern HPC platforms are charac-
terized by critical importance of data parallelism, many
execution units within each memory domain, complex memory
hierarchies, and heterogeneity (increasingly so at the low end,
almost exclusively so at the high end). Tackling this complexity
is made harder by the relative immaturity and rapid evolution
of the programming models, particularly within the node; the
asynchronous nature of the intranode programming today is a
massive change from the way most computational scientists are
used to program.
As we continuously need to adapt our implementation,

algorithms, and even electronic structure methods themselves
to the realities of the rapidly evolving HPC hardware, it is
useful to review the evolution of many-body methods on the
high-end hardware of years past. This is the main objective of
this review. As argued above, our primary (but not exclusive)
focus will be on the many-body methods that evolved in the
chemistry context (coupled-cluster and perturbation theory).
Of course, the many-body methods of chemistry are also used
in other contexts (e.g., nuclear physics), and furthermore, their
computational traits are shared by related methods like Green’s
function methods less common in chemistry but very popular
in physics. Because the efficient (i.e., early crossover) reduced-
scaling many-body formalisms have emerged relatively
recently, much of the prior work that we discuss will deal
with the conventional (full-scaling) variants of these methods.
The emergence of the reduced-scaling methods does not make
the full-scaling methods obsolete. First, there is still the need to
be able to benchmark the reduced-scaling methods. Second,
the conventional methods become faster than the reduced-
scaling counterparts as the target precision increases. Third,
the advantages of reduced-scaling formalisms may not hold for
all molecular properties equally. Lastly, in some contexts, like
high-order coupled-cluster methods, it is not obvious whether
the current reduced-scaling methodologies will be viable
anyway. Thus, it is essential to understand the computational
traits of both full- and reduced-scaling formalisms and how
they relate to the hardware evolution.
The primary focus of this review will be on distributed-

memory and accelerated (e.g., heterogeneous) computed
platforms that are representative of the modern and likely
future HPC environments. Albeit the vast majority of chemical
applications of the many-body methods to date have not used
either distributed-memory or accelerated platforms, such HPC
platforms are becoming (or, rather, have become) the norm
rather than the exception for most users, primarily due to their
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greater price-to-performance ratio and better power efficiency.
Thus, in the near future, the practitioners of many-body
electronic structure methods will expect to be able to routinely
and efficiently utilize what may appear to some as esoteric
HPC platforms. Lastly, we decided to group together the
discussion of distributed-memory architectures and accelerated
platforms due to the great overlap in considerations that factor
into efficient programming of both; namely, explicit manage-
ment of data and computation flow across multiple disjoint
execution and memory spaces, the need to optimize for data
movement and load balance, and the importance of balancing
task granularity and performance, among many. Increasingly,
the same considerations apply even to programming modern
multisocket CPU nodes. Thus, the lessons learned from
deploying conventional many-body methods on massively
parallel clusters of yesteryear will continue to be relevant to
deployment of modern reduced-scaling many-body formalisms
onto the complex HPC platforms of today and tomorrow.

2. OVERVIEW OF THE MANY-BODY FORMALISMS OF
QUANTUM CHEMISTRY

To discuss the algorithmic and implementation aspects of the
many-body quantum chemistry, it is necessary to introduce,
however briefly, its formalism. Because the main focus of the
review is on the technical developments, here we discuss only
the essential elements of the many-body formalism that are
relevant to the discussion of the literature. For details,
interested readers are referred to the original literature as
well as the relevant monographs and reviews.
2.1. Notation and Conventions

In this work we largely follow the long-established19,20 tensor
notation of the many-body quantum chemistry. Einstein
summation convention will be implied, unless noted otherwise:
namely, summation is implied over every symbol that appears
once in a contravariant (upper) position and once as in a
covariant (lower) position in a given tensor product, with the
summation range defined by the symbol.
The following convention for the orbital spaces and their

index labels will be utilized in this paper. i, j, k, and l will
denote active occupied orbitals (i.e., orbitals that occur in the
reference determinant and are correlated); their rank will be
denoted o. m and n will denote all occupied orbitals. The union
of occupied orbitals with an orthogonal complement of
unoccupied (or virtual) orbitals a, b, c, and d (rank = v) will
be denoted by p, q, r, and s (rank = n); in the textbook
formulation of many-body theory, these are typically
represented by canonical Hartree−Fock orbitals. κ, λ, μ, and
ν will denote a formal complete set of orbitals that includes the
{p} orbital set. The orbitals in {κ} that are not occupied will be
denoted α, β, and γ. Automatically generated equations will
utilize additional positive integer subscripts to distinguish
indices from the same space, e.g., a1 and a2 will refer to two
vectors from the unoccupied orbital set.
Dependent orbital spaces, such as orbital- and orbital-pair-

specific subsets (“domains”) of projected atomic orbitals, pair-
natural orbitals, etc., occur as subsets or linear transformations
of a base space. They will be denoted by annotating the base
space index with one or more indices on which they depend
on. The annotation will be shown, as is traditional in the
literature, as subscript or, in automatically generated equations,
as superscript.

Matrix elements of one-, two-, and higher-body operators
will be denoted as follows:

∫ ϕ ϕ⟨ | ̂ | ⟩ ≡ * ̂ ≡p o q o o(1) (1) (1) (1)d1p q p
q

(1)

∫ ϕ ϕ ϕ ϕ⟨ | ̂ | ⟩ ≡ * * ̂

≡

p p o q q o

o

(1, 2) (1) (2) (1, 2) (1) (2)d1d2

, etc.

p p q q

p p
q q

1 2 1 2 1 2 1 2

1 2
1 2 (2)

All operators encountered in this article are particle-symmetric,
i.e. o(1,2) = o(2,1), hence oq1q2

p1p2 = oq2q1
p2p1. The antisymmetrized

versions of the two- and higher-body operators will be denoted
by an overbar, etc.:

̅ ≡ − = −o o o o oq q
p p

q q
p p

q q
p p

q q
p p

q q
p p

1 2
1 2

1 2
1 2

2 1
1 2

1 2
1 2

1 2
2 1

(3)

Matrix elements of the one- and two-particle parts of the
Hamiltonian and the Fock operator (of the Hartree−Fock
method) will be denoted by hλκ, gμνκλ, and fλκ, respectively.
Overlap (inner product) of two functions will be denoted by Spq

≡ ⟨p|q⟩.
The index set antisymmetrizers will be defined as follows:

̂ ≡ −A f p p f p p f p p( , ) ( , ) ( , )p p 1 2 1 2 2 11 2 (4)

̂ ≡ −
−

− +
+

A f p p p f p p p f p p p
f p p p

f p p p f p p p
f p p p

( , , ) ( , , ) ( , , )
( , , )

( , , ) ( , , )
( , , ), etc.

p p p 1 2 3 1 2 3 2 1 3

1 3 2

3 2 1 2 3 1

3 1 2

1 2 3

(5)

Composite antisymmetrizers will also be used:

̂ ≡ ̂ ̂A A Ap p
q q

p p q q1 2

1 2

1 2 1 2 (6)

The convention in the quantum chemistry literature is to
only include multiplies in floating point operation (FLOP)
counts, not the additions (due to the lower effective
throughput of multiplies on older HPC platforms). To be
able to compare the measured FLOPS (1 FLOPS ≡ 1 FLOP
per second) to the hardware peak performance, we will count
both multiplies and additions [a pair of these is typically
implemented in modern hardware as a single fused multiply
add (FMA) instruction]. Thus, for example, the naıv̈e
algorithm for multiplication of two square matrices of size n
will involve 2n3 FLOPs. In discussing the asymptotic
computational costs we will use the standard “Big O” notation
convention used in the quantum chemistry literature which is
identical to the Θ notation used in the computer science
literature, namely that:

= { ∃ > ∃ > ∃ ∀
> ≤ ≤ }

g n f n k k n

n n k g n f n k g n

( ( )) ( ): 0, 0, ,

, ( ) ( ) ( )
1 2 0

0 1 2

6

The ranks of all independent index spaces are assumed to grow
proportionally to the system size N; thus, for example,

=o v N( )2 4 66 . The meaning of generalized “Big O” notation,
such as o v( )2 46 , is also clear.
2.2. Coupled-Cluster and Many-Body Perturbation Theory

2.2.1. Ground-State Formalism. Our narrative starts with
a quick introduction to the coupled-cluster (CC) method; the
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reader is referred to the existing reviews21,22 and mono-
graphs5,23 for complete discussion.
In its standard single-reference formulation, the coupled-

cluster wave function for a system of N electrons is obtained by
the action of exponentiated cluster operator T̂ onto the
reference determinant |0⟩:

|Ψ ⟩ = | ⟩̂e 0T
CC (7)

The cluster operator is parametrized to be able to connect the
reference determinant |0⟩ to every determinant producible
from the given finite (orthonormal) basis of orbitals (one-
electron states); thus, it is written systematically as a linear
combination of operators that substitute 1, 2, ..., N orbitals in
the reference determinant:

̂ ≡ ̂ + ̂ + + ̂T T T T... N1 2 (8)

̂ ≡ †T t a aa
i

a i1 (9)

̂ ≡
!

† †T t a a a a1
(2 ) ab

ij
a b j i2 2 (10)

̂ ≡
!

† † †T t a a a a a a1
(3 )

, etc.abc
ijk

a b c k j i3 2 (11)

the cluster amplitudes tai , tabij , tabcijk , ... are thus classified according
to their rank as one-body or singles (“S”), two-body, or
doubles (“D”), three-body, or triples (“T”), and so on.
Fermionic annihilators aκ and creators aκ ≡ aκ† remove and add
the corresponding orbitals from the determinants with the
usual canonical anticommutator relations,

[ ] =κ λ +a a, 0 (12)

δ[ ] =κ λ κ
λ†

+a a, (13)

enforcing the Fermi−Dirac statistics. In the traditional
formulation of the coupled-cluster method, the energy and
cluster amplitudes are determined by the following projections:

⟨ | ̅ | ⟩ =H E0 0 CC (14)

⟨ | ̅ | ⟩ =HS 0 0 (15)

⟨ | ̅ | ⟩ =HD 0 0 (16)

⟨ | ̅ | ⟩ =HT 0 0, etc. (17)

where S, D, and T denote projections on all singly-, doubly-,
and triply-substituted determinants. In eqs 14−17 we
introduced the similarity-transformed Hamiltonian,

̅ ≡ ̂− ̂ ̂H Hee T T (18)

where:

̂ ≡ + ̅λ
κ

λ κ μν
κλ

μ ν λ κ
† † †H h a a g a a a a1

4 (19)

The programmable version of the CC equations are derived
straightforwardly by expanding H̅ as

̅ = ̂ + [ ̂ ̂] + ! [[ ̂ ̂] ̂]

+ ! [[[ ̂ ̂] ̂] ̂] + ! [[[[ ̂ ̂] ̂] ̂] ̂]

H H H T H T T

H T T T H T T T T

, 1
2

, ,

1
3

, , , 1
4

, , , ,

(20)

where the series truncates at the fourfold commutator due to
the quartic dependence of the Hamiltonian (eq 19) on the
creators/annihilators. The matrix elements in the coupled-
cluster equations are then evaluated by the application of the
canonical anticommutation relations or related techniques
(Wick’s theorem, diagrammatics, etc.). Additional simplifica-
tions such as tracing out the spin degrees of freedom can be
performed on the programmable equations24 directly or by
starting with a spin-adapted ansatz for the cluster oper-
ator;25−28 spin-adaptation for open-shell states is in general far
more complicated.29 Even more complex is the extension of
these ideas to the case of multideterminantal reference state:
although implementations of the multireference coupled-
cluster methods have been long explored,30−38 but the practical
use is largely limited to the linearized coupled-cluster
approximations39,40 as well the related methods of multi-
reference perturbation theory41−43 and multireference config-
uration interaction.44

The key feature of the coupled-cluster method for chemistry
is its rapid and systematic convergence toward the exact
solution when the reference state is a good approximation to
the exact ground-state wave function; this is in stark contrast
with the older configuration interaction (CI) method which
employs linear (in T̂) rather than the exponential para-
metrization. Specifically, the magnitude of the coupled-cluster
amplitudes decreases with their rank roughly geometri-
cally,45,46 and chemically accurate energies and other proper-
ties are often obtained with cluster operator including up to
three-body amplitudes; thus, the methods of primary interest
to chemists span CCSD (“coupled-cluster singles, doubles”),15

CCSDT,47 and CCSDTQ.48 Unfortunately, the computational
cost of these truncated coupled-cluster methods, when
formulated in the conventional form, grows with the system
size N as N( )66 , N( )86 , and N( )106 , respectively. The high
computational complexity of the coupled-cluster methods is
related to their high storage complexity, defining the number
of computational intermediates that appear in the method,
namely N( )46 , N( )66 , and N( )86 . Thus, reductions in scaling
via the reduced-scaling formalisms, discussed later, are essential
for the chemical application of these methods.

2.2.2. Excited States and Properties. Excited eigenstates
and transition properties can be obtained via the linear
response formalism,49−51 the related equation of motion
(EOM) CC formalism52 (independently developed under
the name “symmetry-adapted-cluster configuration interac-
tion”53), or via the propagator approach.54 Due to the
computational similarity of these formalisms, we will only
discuss the EOM-CC methods. Only a brief recap of the
formalism is given here; the reader is referred to the
aforementioned reviews and monographs of coupled-cluster
as many excellent reviews dedicated to the EOM52,55 and
response CC formalisms.56

The (right-hand) kth excited-state wave function is obtained
in a CI fashion by the action of a linear excitation operator
acting on the ground-state CC wave function:

| ⟩ ≡ ̂ | ⟩̂k R e 0k
T

( ) (21)

where R̂(k) is parametrized analogously to the cluster operator
T̂ (eqs 8−11):

δ̂ ≡ + ̂ + ̂ + + ̂R R R R...k k k k N k( ) 0 1( ) 2( ) ( ) (22)
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̂ ≡ †R r a a( )k k a
i

a i1( ) ( ) (23)

̂ ≡
!

† †R r a a a a1
(2 )

( ) , etc.k k ab
ij

a b j i2( ) 2 ( )
(24)

where δk0 is the Kronecker delta. Extension to particle number
nonconserving R̂(k) is also straightforward, leading to the Fock-
space extensions (EOM-IP-CC, EOM-EA-CC, etc.). R̂(k) and
the corresponding energies E(k) are obtained by diagonalizing
the similarity-transformed Hamiltonian (eq 18):

̅ ̂ | ⟩ = ̂ | ⟩HR E R0 0k k k( ) ( ) ( ) (25)

In practice, the diagonalization uses Krylov subspace methods,
with the time-determining step being evaluation of the action
of the similarity-transformed Hamiltonian onto each Krylov
subspace vector. Similar considerations apply to the response
and propagator approaches, in which application of H̅-like
linear operator to the guess vector is the time-consuming step.
For computational feasibility, most applications limit

expansion eq 22 to singles and doubles only (EOM-CCSD).
The storage and operation complexities of the CCSD and
EOM-CCSD methods are N( )46 and N( )66 , respectively,
with prefactors linear in the Krylov subspace size and with the
number of solutions (roots) sought.
2.2.3. Higher-Order Coupled-Cluster Methods and

Approximations. The coupled-cluster methods limited to the
double substitutions are not sufficiently accurate to describe
energies and other properties with sufficient accuracy for
chemical applications. The introduction of triples is therefore
mandatory, but comes with a steep increase in the storage
( N( )66 ) and operation ( N( )86 ) complexities compared to its
lower-order counterparts. The most popular treatment of
triples in the coupled-cluster framework is by perturbation
theory with respect to the CCSD reference state; this gives rise
to the CCSD(T) method16 and other related methods.57−59

The computational complexity of these methods is N( )76 , i.e.
lower than that of the full CCSDT method, and more
importantly, the storage of three-body amplitudes is avoided,
thus the storage complexity is the same as that of CCSD.
Similar extensions of CCSDT, namely CCSDT(Q), are also
available.60 A rich variety of iterative approximations to
CCSDT have also been considered, with N( )66 storage
complexity and N( )76 computational complexity.61−63 Similar
approximate treatment of high-order clusters for excited states
and response properties have also been considered.64−68

2.3. Numerical Representation and Approximations
2.3.1. Explicitly Correlated Many-Body Methods. The

basis set problem of the traditional many-body methods can be
efficiently addressed by the explicit use of the interelectronic
distances to express the wave function/operator. For example,
in the context of CC, this can be achieved by adding explicitly
correlated terms to the cluster operator:

̂ ≡
!

−αβ α β
† † † †T R a a a a R a a a a1

(2 )
( )ij

j i ab
ij

a b j iF12 2 (26)

with R denoting integrals of a correlation function (a
spherically symmetric function of interparticle distance). The
role of these terms is to approximate the analytic cusp behavior
of exact eigenstates at short interelectronic distances.69,70

Inclusions of such terms in the electronic wave functions is
almost as old as the quantum mechanics itself.71 Due to the

appearance of the numerous and expensive 3- and higher-body
integrals (versus the 2-body integrals in the conventional
methods), practical application to molecules did not begin
until Kutzelnigg proposed the R12 formalism72 in which such
integrals are treated approximately. Further improvements of
the original ideas73−76 culminated in the F12 formalism77−79

which can robustly decrease the basis set error of wave
function and Green’s function many-body methods.
The explicitly correlated R12/F12 formalism of the coupled-

cluster method was first developed in simplified form by Noga,
Kutzelnigg, and others.80,81 More rigorous modern F12
variants of CCSD and higher-order CC were realized with
the help of specialized computer algebra systems.82−85

Although the F12 extensions of CCSD does not change its
storage or computational complexity, due to the dramatically
greater cost of the rigorous formulation of the CCSD-F12
compared to CCSD, practical incorporation of the F12 terms
into the coupled-cluster hierarchy must involve approxima-
tions. Iterative approximations to CCSD-F12, such as the
CCSD(F12),86 CCSD-F12{a,b},87 CCSD(F12*), and CCSD-
[F12]88 variants, retain only the most essential F12 terms in
the CCSD-F12 amplitude equations. In contrast, perturbative
approximations to CCSD-F12 are obtained by low-order
expansion of the CCSD-F12 Lagrangian with respect to the
CCSD zeroth-order state.89 Both styles of approximations have
similar costs (albeit CCSD(F12) is substantially more
expensive than others) and their performance is comparable.
For chemical energy differences (atomization energies,
reaction energies, reaction barrier heights) and noncovalent
interaction energies, the use of explicitly correlated terms in
CC results in a basis set error reduction that approximates that
the effect of increasing by two the cardinal number of the basis
set (two for double-ζ, three for triple-ζ, etc.), thus resulting in
savings of one to two orders of magnitude.90,91

2.3.2. Integral Approximations. Significant computa-
tional advantages can be gained in many-body methods by
various approximations to the matrix elements of the
Hamiltonian (eq 19), specifically the two-electron integrals
gρσκλ . Although the motivation of these approximations is best
understood from the perspective of approximating individual
integrals, for our purposes it is sufficient to view these
approximations as various factorizations (or more generally,
decompositions92) of the two-electron Coulomb integral
tensor.
The oldest of such approximations is the density-fitting

(DF) approximation, also for historical reasons known in
quantum chemistry as the resolution of the identity (RI). In
the DF approximation, products of two or more orbitals are
approximated by a linear combination of density-fitting (also
referred to generically as auxiliary) basis functions:93−95

∑≈ =g C g C C Cg g( ( ) )( ) )rs
pq

r
pX

XY s
qY

Z
r
pX

XZ ZY s
qYDF 1/2 1/2

(27)

∑= B B
Z

r
pZ

s
qZ

(28)

where the density-fitting coefficients Cr
pX are determined by

solving a least-squares problem at the N( )46 cost. Thus, from
the tensor factorization perspective, DF represents the order-4
Coulomb integral tensor as a contraction of two order-3
tensors. In the basis of molecular orbitals, evaluation of the
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Coulomb integrals and their DF evaluation both cost N( )56 .
Thus, the use of DF in many-body methods does not lower
their overall complexity. However, it can significantly lower
their prefactor, as is the case of DF-MP2,96,97 and DF can help
reduce the complexity of some (but not all) terms in the
CCSD98 and other methods. Another use case for DF is the
computations utilizing basis sets including AOs with high
angular momenta, in which the cost of the AO integral
evaluation contributes significantly to the cost of MO integral
evaluation, the DF approximation can greatly reduce the
overall cost; this is why, for example, the F12 methods in
practice require the use of the DF approximation.99 The use of
local DF is also crucial in the context of some reduced-scaling
coupled-cluster methods (see below).100−106 Careful engineer-
ing of the density-fitting basis sets107,108 allows to make the DF
error sufficiently small and systematically improvable, and
largely canceling in practically relevant energy differences.
Similar in spirit to DF is the use of Cholesky decomposition

of the Coulomb integral tensor grspq represented as an pr by qs
matrix (matricized).109−111 The apparent connection between
the two techniques is obvious from the form of eq 28; note,
however, that tensor B in the DF case does not have a lower-
triangular shape as it would in the case of Cholesky. Despite
the formal similarity, the Cholesky approximation cannot be
applied directly to indefinite operators whereas the DF can be
easily applied to this case.112 DF is also technically simpler,
albeit its reliance on fitting basis set optimization does not
permit control of the fitting error as robustly as for the
Cholesky case (this is not in practice a significant drawback).
As noted, DF and Cholesky approximations alone cannot

reduce complexity of many-body methods without additional
approximations. Thus, these techniques are often discussed
together with other cost-saving measures that do not fall under
the umbrella of integral approximation, like the frozen natural
orbitals (FNO) method113−116 and variable/mixed preci-
sion.117−122 The former is related to (and was motivated by)
the use of natural orbitals (e.g., pair-natural orbitals) in
reduced-scaling formalisms of many-body methods discussed
later.
More general factorizations of the Coulomb integral tensor

have also been considered, such as the CP decomposition (or
separated representation),123,124 Cholesky-plus-SVD,125 Clus-
tered Low-Rank,126 and tensor hypercontraction,127−129 which
is closely related to the pseudospectral approximation.130 By
numerically approximating the Hamiltonian these techniques
can reduce the complexity of many-body methods by one
degree, but numerical approximations for the wave function are
also needed to be able to reduce the complexity more
significantly, as we discuss next.
2.4. Reduced-Scaling Formulations

Strategies that reduce the asymptotic complexity of the many-
body methods fall into one of the two camps:

• Fast Methods: In this group of approaches, the wave
function of the whole system is computed using fast
techniques for application of the Hamiltonian to the
wave function, e.g., by changing the representation to
maximize data-sparsity of the Hamiltonian and the wave
function. This general strategy can appear in many
disguises, such as the use of localized bases to reveal
sparsity of states and operators, and fast resummations
like Fast Fourier Transform (FFT)131 or Fast Multipole
Method (FMM).132,133 In the molecular context, the

sparse representations take many forms, e.g. atomic basis
sets, localized molecular orbitals, finite-element repre-
sentations and grids. Among the most successful
approaches of this kind were the correlation methods
expressed in terms of localized molecular orbitals
(conventional localized occupied orbitals and redundant
nonorthogonal projected atomic orbitals (PAOs) for the
unoccupied basis) proposed by Pulay and Saebø.134,135

Its further development and large-scale use has been
made possible by the work of Werner, Schütz, and
coworkers.136−141 Another alternative is to express
many-body methods in terms of canonical (hence
delocalized) orbitals and attain reduced scaling by
exploiting sparsity in the AO basis representation;
these methods were pioneered by Almlöf142,143 and
developed further by Scuseria, Ochsenfeld, Head-
Gordon, and others.144−146 Combined use of localized
occupied orbitals and atomic orbitals for the unoccupied
space has also been considered.147 Other choices of
bases for unoccupied orbitals that have been used over
the years: pair-natural orbitals (PNOs) investigated in
1960s and 70s by Edmiston, Krauss, Meyer, and
others148−154 and recently redeployed in the context of
local correlation by Neese and others;102−106 orbital-
specific virtuals (OSVs) of Chan and Manby;155 and
localized virtual orbitals of Jørgensen.156,157 Other tensor
factorization techniques, such as tensor hypercontrac-
tion, can also be used in a similar vein.128 Lastly, we
should mention scaling reduction via the use of (non-
LCAO) numerical representations, e.g., real-space/
reciprocal-space grids, that permit fast application of
operators.158−162

• Divide-and-Conquer: In this group of approaches, the
whole system is divided into small fragments and the
properties of the whole system are patched up
(assembled) from the contributions of its fragments.
The defining feature of these methods is that the
computations on the fragments are completely in-
dependent of one another. The fragment definition can
be made ad hoc (e.g., using chemical intuition or
following the natural partitioning that exists in liquids
and molecular crystals), as is done for example in the
fragment molecular orbital (FMO)163 and its many
cousins,164−171 or using an approximate (e.g., mean-
field) description of the system as a whole. Examples of
such approaches include the divide-and-conquer meth-
od,172 the incremental scheme,173 the cluster-in-
molecules approach,174 and the divide-expand-consol-
idate (DEC) scheme,175,176 among others. These
approaches are closely related to the quantum
embedding approaches177−182 that usually aim at
accurate description of a single fragment of the whole
system, with the rest of the system (bath) described at a
lower level of theory. A significant challenge posed by
these methods is how to increase the size of fragments
for systematic control of the error. For the approaches
with ad hoc fragment definitions, the many-body
expansion183−186 is a popular strategy to systematically
grow the fragment size.

For iterative (infinite-order) many-body methods like
coupled-cluster or Green’s function methods, the divide-and-
conquer strategy usually requires redundancy in the fragment
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definition, i.e. the fragments must be overlapping because the
independent description of each fragment needs to span the
relevant correlation length scales. Thus, iterative methods are
in principle more efficiently implemented using the fast
techniques which avoid the redundancy. However, perturbative
methods, such as MP2 and the perturbative triples treatment in
CCSD(T), can avoid the need for redundant fragments.
Namely, perturbative energy corrections in these methods can
be expressed via a Laplace transform as a sum (trace) over
local basis states (AOs and/or localized MOs); note that when
expressed in a local basis without the Laplace transform, these
methods are iterative. The sum can then be perfectly divided
into independent fragment contributions without any addi-
tional approximations. Not only the energy but also the wave
functions in these methods can be perfectly divided into
independent contributions. It is of course possible to combine
the two strategies; because the fragment size is commensurate
with the correlation length scales, as the correlation length
scale grows, fast methods become viable for describing
individual fragments.187−191 Fast methods also have advantages
for treatment of excited states and properties due to the
availability of a consistent single representation of the wave
function.
Impressive production realization for reduced complexity

coupled-cluster computations on molecules with thousands of
atoms have been demonstrated recently via both types of
strategies. Namely, methods combining ideas of local
correlation with PNO-style compression have been demon-
strated with reduced192,193 and asymptotically linear complex-
ity105,194−201 for coupled-cluster and single- and multireference
perturbation theories.202−205 These techniques have also been
extended to treatment of analytic nuclear forces,206−208

excitation energies,209−212 and electron attachment/detach-

ment energies.213−215 Divide-and-conquer methodologies have
been demonstrated for ground-state energies up to the
CCSD(T) level189,190 and forces up to MP2 level.216

3. COMPUTATIONAL TRAITS OF MANY-BODY
METHODS

The iterative coupled-cluster method in the context of which
we discussed the computational aspects of many-body
quantum chemistry shares most computational characteristics
with the other traditional many-body methods (algebra of
dense high-dimensional tensors, importance of symmetries,
ability to reduce complexity by change of representation). In
this section, we will discuss the central computational traits of
many-body methods that will be needed to understand the
design of algorithms and implementation on parallel computer
platforms.
3.1. Traditional Many-Body Methods

The traditional formulation of the many-body methods
reduces to algebra of dense tensors. To demonstrate this
more concretely, consider the equations for the CCSD
method:
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where Φi1
a1 ≡ aa1

⧧ai1 |0⟩ and Φi1i2
a1a2 ≡ aa1

† aa2
† ai2ai1 |0⟩. The key

computational aspects include the following:
Technical Complexity: Even for a relatively low-order

method like CCSD, explicit tensor algebra is complex and
automated techniques for derivation and evaluation of these
equations are advised. This is especially true if additional

approximations are introduced, such as Hamiltonian factoriza-
tion or wave function compression. For more complex
methodsand especially when a new method is consid-
eredmanual implementation of tensor algebra rapidly
crosses from “error prone” to “intractable”. Thus, automated
manipulation of quantum many-body algebra has a long
history in quantum chemistry217 and is employed in related
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areas (e.g., nuclear physics218 and high-energy physics219).
Nevertheless, the majority of many-body methods are still
implemented manually; technical complexity of implementing
complex tensor algebra nowadays is usually lowered by the use
of high-level array/tensor libraries220−227 or languages228 that
keep the abstraction level of the code as close to the math as
necessary.
Optimization: As written, the expressions are not suitable for

implementation due to suboptimal computational complexity.
The singles and doubles equations include terms with N( )66
and N( )86 complexity. Techniques like strength reduction
(factorization), common subexpression elimination (CSE),
and fusion can be used to reduce the complexity of these
expressions to N( )56 and N( )66 . Indeed, it is very easy to see
that even trivial strength reduction of each term in eqs 29 and
30, namely evaluation of ABC... as ((AB)C)..., will reduce the
complexity to optimal; e.g., evaluating the last term in eq 30 as

̅g t t t t(((( ) ) ) )i i
a a

a
i

a
i

a
i

a
i1

4 3 4

3 4
3
1

4
2

1
3

2
4 reduces its complexity from N( )86 to

N( )56 at the cost of introducing intermediate tensors of size
N( )46 (i.e., the storage complexity is not increased, albeit the

total storage size does). In general, the optimization problem is
hard and open-ended. It is hard because the search space is
factorial: e.g., the number of possible factorizations of each
term is factorial, and so is the number of candidates for CSE
and fusion. The optimization problem is open-ended because it
permits an arbitrary number of objective functions (optimize
for time, for space, etc.) and constraints, and in general
optimization for time requires complete specification of the
performance model for each operation type. Due to the latter
consideration, the expression optimization should be, if
possible, performed at runtime, when the problem dimensions
and runtime parameters (number of processors, details of
memory hierarchy, kernel performance model, etc.) are known.
Due to the complexity of writing a compiler that can perform
the expression optimization, implementation of basic methods
like CCSD is performed manually using prefactorized
heuristically optimized expressions available in the literature
(e.g., for CCSD15,27,229,230). For higher-order methods, both
manual and automated approaches have been applied.47,48,231

With a few exceptions,231 usually optimization of coupled-
cluster expressions is done at “compile” (code generation) time
and transformed expressions are optionally transformed into
compilable code.29,217,232−234

Large Tensors: In the traditional formulation of the many-
body methods, the tensors (Hamiltonian matrix elements,
amplitudes, and expression intermediates) are treated as dense.
This results in high-order polynomial storage complexity,
namely N( )46 for CCSD, N( )66 for CCSDT, etc. More
specifically, the number of CC amplitudes of rank r is orvr.
Using as a concrete example of the computation of the CC
energy of a 20-molecule water cluster performed by Apra et
al.,235 with o = 80 and v = 920, the two- and three-body
amplitudes in 64-bit representation occupy 43.3 GB and 3.2
PB, respectively. The shocking rise of the size of amplitude
tensor with the particle rank highlights the corresponding
shocking rise of the computational cost of the coupled-cluster
methods with the rank, and the increasing importance of
numerical approximations to achieve reduced scaling of storage
and cost. Whereas the rank-2 amplitudes can fit into RAM of a
typical node of a modern HPC platform, multiple quantities of
this size appear in the course of solving CCSD equations and

thus even on “fat” types of nodes, it may be necessary to
distribute the 2-body amplitudes and other tensors of this size.
In CCSD equations, there are also larger tensors, of size ov3

and v4, occupying 498 GB and 5.7 TB, respectively which do
not fit into memory of a typical HPC node of today and must
be distributed; alternative formulations with numerical
approximations like density fitting can help avoid these
intermediates (see below). Clearly the triples amplitudes can
only be stored in the aggregate memory of a large parallel
platform and thus must be distributed among nodes.
Most Operations are in Tensor Contractions: Most of the

arithmetic operations in many-body methods like coupled-
cluster occur in tensor contractions. Normally this term is
applied to purely covariant products in which common indices
of 2 or more tensors are summed over and thus do not appear
in the final result (Hadamard product, mixed covariant-
Hadamard product (e.g., the Khatri-Rao product), hyper-
contraction, and other generalized products92,236 also appear in
nonstandard formulations of many-body methods). For
example, consider the second term in eq 30, due to its
diagrammatic structure referred to as the particle−particle
ladder (PPL):
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This is the most expensive step in CCSD with realistic basis
sets. Its cost is o2v4 floating-point additions and o2v4 floating-
point multiplications, for the total of 2o2v4 floating-point
operations, or FLOPs (note that in the quantum chemistry
literature it is more common to see the operation count written
as o2v4, without the factor of two; see section 2.1 for more
details); for the 20-water example we considered above, this
translates into 9.2 × 1015 FLOPs ≡ 9.2 PFLOPs. In contrast,
addition of individual terms on the r.h.s. of eq 30 costs o2v2 or
only 5.4 GFLOPs. Binary covariant tensor contraction can be
viewed as a generalization of matrix multiplication and can be
mapped onto matrix multiplication by appropriate matriciza-
tion of the tensors. Because high-performance matrix multi-
plication routines, via the standard BLAS library,237 are
available on all modern HPC platforms, tensor contraction
and by extension traditional many-body formalism have
potential to reach high fraction of the peak performance on
modern architectures.
Symmetry: Due to the Fermionic symmetry of the electronic

states, as well as the geometric symmetry of the molecular
framework, the tensors in many-body methods possess a
variety of symmetries. For example, tensor g̅a1a2

a3a4 is antisym-
metric with respect to the permutation of the contravariant/
covariant indices, as well as Hermitian with respect to the
permutation of the contravariant indices with the correspond-
ing covariant indices:
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This means that only ≈1/8 of the elements of this tensor are
unique. Utilization of this permutational symmetry is thus
essential to minimize the prefactor (but not the complexity) of
storage and operation costs. For finite large systems, geometric
symmetry is rarely exploitable, but periodic infinite crystals are
a notable exception where the translational symmetry of the
(reciprocal) lattice can be exploited very effectively.
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Freedom to Choose Basis: The covariant property of eqs 29
and 30, namely that every sum is over a {covariant,contravar-
iant} pair of indices is the result of the invariance of the
coupled-cluster method to basis transformation within
occupied and unoccupied subspaces. The freedom to change
the representation allows to choose orbital basis that
maximizes the data sparsity of the Hamiltonian and amplitude
tensors. This simple idea is the foundation of reduced-scaling
formulations in which the use of localized orbital basis is the
prerequisite to exploiting the data sparsity and lowering the
storage and operation complexity of the many-body methods.
Their computational traits will be discussed next.
3.2. Reduced-Scaling Many-Body Methods
Near-optimal exploitation of the data sparsity significantly
increases the formal and computational complexity of the
reduced-scaling many-body theory. Due to the great variety of
the approaches for complexity reduction in the many-body
theory, we can only broadly discuss the relevant computational
traits; in this section, we will use the categorization of the
reduced-scaling methods into fast and divide-and-conquer that
we introduced in section 2.4.

In fast methods, we typically have to solve different and
more complex equations that involve sparse data, with
potentially many changes in representation needed between
steps. For example, in PNO-style many-body methods, the
equations themselves become more complicated due to the
hierarchical dependencies between index spaces; this is best
demonstrated by the PNO−CCSD example:

⟨Φ | ̅ | ⟩= − −

+ − +

+ −

−

− −

+

− +

H f g t g t

f t f t S g t t

g t S f t S

g t t S

g t t S f t t S

g t t S

g t t S g t t t S

0 1
2

1
2

1
2

1
2

i
a

a
i

i a
i a

a
i

i a
a a

a a
i i

a
a

a
i

i
i

a
i

a
a

i a
a a

a
i

a
i

i i
i a

a a
i i

a
a

i
a

a a
i i

a
a

i i
a a

a
i

a a
i i

a
a

i i
i a

a
i

a
i

a
a

i
a

a
i

a
i

a
a

i i
a a

a
i

a a
i i

a
a

i i
a a

a
i

a a
i i

a
a

i i
a a

a
i

a
i

a
i

a
a

i

i i

i

i i

i i i i

i i i i

i

i

i i i

i

i

i i

i i

i i
i i i i i

i i i i
i i i i i

i i

i i i
i i i i i i

i i

i
i i i

i i
i i i

i

i i i
i i i i i i

i i

i i i i
i i i i i i

i i i
i i i i

i

1
1
1

1
1

1
2 1

1
1 2

2

2
2

2
2 1

1
2
1 2

3
1 2

2
1 2

3
1 2

1 2

1
1
2
1

2
1

1
2
1

2
2

2

1
1
2
2

2 1
1

2
2

3
1

2
2

2

3
1

1

2 3
1 2

2 3

2
2 3

3
2 3

2 3

1
1
3
2 3

2
2
1 2

2
1 2

3
1 2

1 2

1
1
3
1 2

2 3
2
2

3
1 3

2
2

2

3
1 3

4
1 3

1 3

1
1
4
1 3

2 3
1 2

3

3
2

2

2
3

3

1
1
3
2

2
2
1

3
2

2

2
1

1

1
1
3
2

2 3
2
1

3
2 3

2
1

1

3
2 3

4
2 3

2 3

1
1
4
2 3

2 3
2
1 3

3
1 3

4
2

2

2
1 3

3
1 3

1 3

1
1
4
2

2 3
2
3

3
1

4
2

2

2
3

3

3
1

1

1
1
4
2

(33)

⟨Φ | ̅ | ⟩ = ̂ − + + + −

+ + + − +

+ + + −

+ + + −

− − +

+ + +

+ − +

− + +

LNMMM

\̂]]]

H A g f t g t g t g t S g t t

g t S g t t g t t S f t t S g t S S

g t t S g t t S f t S S g t t S

g t t S S f t t S S g t t S S g t t S S

g t t S S g t t S S g t t S S

g t t S S g t t t S g t t t S

g t t t S S g t t t S S g t t t S S

g t t t S S g t t t S S g t t t t S S

0 1
4

1
2

1
8

1
2

1
2

1
2

1
4

1
2

1
8

1
4

1
2

1
4

1
16

1
2

1
4

1
2

1
4

1
4

1
2

1
2

1
2

1
8

1
2

1
2

1
8

1
4

i i
a a

i i
a a

a a
i i

a
a

a a
i i

a a
a a

a a
i i

a a
i a

a
i

i a
i i

a
i

a
a

i a
a a

a
i

a a
i i

i a
i a

a a
i i

a
a

a a
a a

a
i

a
i

i a
i a

a
i

a
i

a
a

i
a

a
i

a a
i i

a
a

i i
i i

a a
i i

a
a

a
a

i a
a a

a
i

a a
i i

a
a

i a
a a

a
i

a a
i i

a
a

i
i

a a
i i

a
a

a
a

i i
a a

a a
i i

a a
i i

a
a

i i
a a

a a
i i

a a
i i

a
a

a
a

i
a

a
i

a a
i i

a
a

a
a

i i
i i

a
i

a
i

a
a

a
a

i i
i a

a
i

a a
i i

a
a

a
a

i i
i a

a
i

a a
i i

a
a

a
a

i i
a a

a a
i i

a a
i i

a
a

a
a

i i
i a

a
i

a a
i i

a
a

a
a

i i
a a

a a
i i

a a
i i

a
a

a
a

i a
a a

a
i

a
i

a
i

a
a

i i
a a

a
i

a
i

a a
i i

a
a

i i
a a

a
i

a
i

a a
i i

a
a

a
a

i i
a a

a
i

a
i

a a
i i

a
a

a
a

i i
i a

a
i

a
i

a
i

a
a

a
a

i i
a a

a
i

a
i

a a
i i

a
a

a
a

i i
a a

a
i

a
i

a a
i i

a
a

a
a

i i
a a

a
i

a
i

a
i

a
i

a
a

a
a

i i i i i i i i

i i i i i i

i i

i i i i i i i i

i i i i

i i i i i i i i

i

i i i i i i

i

i i

i i i

i i i i i

i i

i i

i i i i i i

i i

i i i i

i i

i i i i

i

i i i i

i i i

i i i i i i i

i

i i i i i i

i i

i i

i i

i i

i i i i

i i i i i i i

i

i i

i i i

i i i i i i i

i i

i i i i i i

i i

i i

i i i i i i

i i i i i i i i i i

i i

i i i i

i i i i i i i i i i

i i

i i

i i i

i i i i i i i

i i

i i

i i

i i i i

i

i i

i i i

i i i i i i i

i i

i i

i

i

i i i i i i i

i i

i i

i i i i i i

i i i i i i i i i i

i i

i i

i i i

i i i i i i i

i i

i i

i i

i i i i

i i i i i i i i i i

i i

i i

i i

i i

i i

i i i i i

i i i i

i i i i i i i i

i

i i

i i i i i i i i

i i

i i

i i i i i

i i i i i i i i

i i

i i

i i

i i i i i

i

i i

i

i i

i i i i i i i i

i i

i i

i i i i i i

i i i i i i i i

i

i i

i i i

i i i i i i

i

i i

i

1 2
1
1 2

2
1 2

1 2

1
1 2

2
1 2

1
1 2

2
1 2

1 2

1
1 2
3
1 2

2
1 2

3
1 2

1 2

1
1 2

2
1 2

3
1 2

4
1 2

3
1 2

4
1 2

1 2

1
1 2

2
1 2

1 3
2

3
2

2

3 1
1 2

1 2

3
3

3

2
1 2
3
3

3 1
1 2

3
3

4
1 2

3
3

3

2
1 2

4
1 2

1 2

3 1
1 2

1 3
2 3

3
2 3

4
2 3

2 3

2
1 2

4
2 3

1
1 2

2
1 2

3
1

4
2

3
1

1

4
2

2

3 1
1 2

1 3
2

4
3

3

3
2

2

2
1 2

4
3

3

3
1 2

4
3

3

1
1 2

3
1 2

1 2

2
1 2

4
3

3 4

1 2

3
3 4

4
3 4

3 4

1
1 2
3
3 4

2
1 2

4
3 4

3 1
1 2

3
1 2

4
1 2

5
3

3

3
1 2

4
1 2

1 2

2
1 2
5
3

3 1
1 2

3
1

4
2 3

3
1

1

4
2 3

5
2 3

2 3

2
1 2
5
2 3

3

1

3
2 3

4
2 3

2 3

1
1 2
3
2 3

2
1 2

4
2 3

3 4

3
3 4

4
1 2

3
3 4

5
3 4

3 4

1
1 2

4
1 2

1 2

2
1 2
5
3 4

3 4

3
1 2

4
1 2

5
3 4

6
3 4

3 4

3
1 2

4
1 2

1 2

1
1 2
5
3 4

2
1 2
6
3 4

3

3
1

3
1

1

4
2 3

5
2 3

2 3

1
1 2
4
2 3

2
1 2
5
2 3

3 4

1 2

3
3

3

4
4

4

1
1 2
3
3

2
1 2

4
4

3 4

1 3
2 4

4
3

3

3
2 4

5
2 4

2 4

1
1 2
5
2 4

2
1 2

4
3

3 4

1 3
3

3
3

3

4
2 4

5
2 4

2 4

1
1 2
4
2 4

2
1 2
5
2 4

3 4

3
2 4

4
2 4

5
1 3

6
1 3

1 3

3
2 4

4
2 4

2 4

1
1 2
5
1 3

2
1 2
6
1 3

3 4

1 3
2

3
2

2

4
3 4

5
3 4

3 4

1
1 2
4
3 4

2
1 2
5
3 4

3 4

3
1 3

4
2 4

3
1 3

5
1 3

1 3

4
2 4

6
2 4

2 4

1
1 2
5
1 3

2
1 2
6
2 4

3 1
1 2

3
1

4
2

5
3

3

3
1

1

4
2

2

2
1 2
5
3

3 4

3
4

4
1 2

5
3

3

3
4

4

1
1 2

4
1 2

1 2

2
1 2
5
3

3 4

3
1

4
2

3
1

1

4
2

2

5
3 4

6
3 4

3 4

1
1 2
5
3 4

2
1 2
6
3 4

3 4

3
1

4
2 4

5
3

3

3
1

1

4
2 4

6
2 4

2 4

1
1 2
6
2 4

2
1 2
5
3

3 4

1 3
2

4
3

3

5
4

4

3
2

2

1
1 2
4
3

2
1 2
5
4

3 4

3
1

4
3

3
1

1

4
3

3

5
2 4

6
2 4

2 4

1
1 2
5
2 4

2
1 2
6
2 4

3 4

3
1 2

4
1 2

5
3

3

6
4

4

3
1 2

4
1 2

1 2

1
1 2
5
3

2
1 2
6
4

3 4

3
1

4
2

5
3

3

6
4

4

3
1

1

4
2

2

1
1 2
5
3

2
1 2
6
4

(34)

Although these expressions are seemingly far more complex
than their respective counterparts eqs 29 and 30, the structure
of these equations is very similar due to the identical physics;
the only difference is the change of representation of the
unoccupied orbitals, but there are extra overlaps due to the
nonorthonormality of the new basis. The more serious issue is
that the algebra of dense tensors has been replaced by the
algebra of data-sparse tensors with irregular structure. The
latter is more difficult to implement, to optimize, and to
parallelize.
Specifically, the covariance of eqs 29 and 30 is lost due to

the orbital dependence of the unoccupied indices on the
occupied. In computational terms, the perfectly nested loops in
eqs 29 and 30, which can be optimized and parallelized by a
variety of powerful polyhedral model techniques,238 become
nonaffine loop nests that cannot be optimized by the existing
automatic tools.239 Furthermore, the inner loop ranges can
vary widely due to the physics of electron correlation, e.g.,
range of aij is typically >100 when orbital i is spatially close to
orbital j; in contrast, the range can approach 0 for ij pairs

composed of spatially distant orbitals. This translates into
massive variance of the computational load of block
operations, and the elementary block operations themselves
(like contractions) unable to reach significant proportion of
the hardware peak throughput due to the limited amount of
data parallelism and increased logic overhead.
Next, the tensors in eqs 33 and 34 can be represented as a

number of data structures (hierarchical tensors, sparse tensors,
etc.), but irrespective of the representation, these are less
amenable to parallelization. Their sparse structure is
determined by dynamical factors such as properties of the
particular molecular system (e.g., effective dimensionality, such
as 1-d for linear molecules vs 3-d for globular molecules),
variations between iterations, etc. Higher effective surface to
volume ratio means that the ratio of communication to
computation is lower, just like in, e.g., sparse matrix algebra.
Thus, attaining high performance even on a single processor
becomes more difficult; scalable parallel implementation is also
more complicated than that of the traditional formalism.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00006
Chem. Rev. XXXX, XXX, XXX−XXX

I

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00006?ref=pdf


Note that some fast methods, for example, the AO-based
methods,144,145 do not involve the hierarchical space depend-
encies. But the equations are still more complex than the
standard approaches, and the need to deal with the sparse data
causes similar issues that make them more difficult to
implement, optimize, and parallelize.
Divide-and-conquer approaches are typically significantly

simpler to implement than their fast counterparts, because for
each fragment, we solve the same or a trivially modified (due
to the embedding) “base” conventional-scaling method. Thus,
the implementation complexity is greatly diminished and
usually only modest modifications to the dense implementa-
tion are sufficient to compose the divide-and-conquer
methods. The often-cited advantage of the fragment methods
is their strong scalability (i.e., their parallel efficiency does not
decay with the number of processors), due to the
independence of the individual fragment computations and
lack of the communication during the fragment calculations.
Note that there are global communication costs related to the
work distribution and aggregation of the results, which limit
scalability of these methods, but typically these costs are small
relative to the cost of the fragment computations. The load
imbalance is the primary factor that limits strong scaling of
these methods, nevertheless truly massive computations are
possible.240 Note that the individual fragment computations
may need to be parallelized also due to their size.

4. OVERVIEW OF HIGH-PERFORMANCE COMPUTING
PLATFORMS

Although the expected computational environment will vary
greatly from user to user, the high-end HPC platforms of today
are likely to become the typical HPC platforms of tomorrow.
Thus, it is instructive to review typical and high-end HPC
platforms with an eye toward the ongoing and anticipated
trends in their evolution.
A typical HPC platform used by today’s scientist is likely to

be a commodity cluster.241 A commodity cluster is an
ensemble of independent computers (nodes) connected by a
network fabric (interconnect), with both built from off-the-
shelf (commodity) components. The popularity of commodity
clusters is primarily due to their low cost, which is driven down
by the economy of scale for the mass-market components.
Commodity clusters are ubiquitous in everyday computing in
academia, government laboratories, and industry alike: for
example, our institution’s campus research computing facility
features 4 commodity clusters, each containing as few as 48
and as many as 408 nodes.242,243 The same is true for high-end
computing: as of November 2019, more than 90% of the
systems on the Top500 list244 are commodity clusters (with
thousands and even tens of thousands of nodes each), and they
account for more than 80% of the total performance on the list.
(The term “cluster” as utilized by the Top500 list245 for our
purposes is synonymous with “commodity cluster”. The
noncluster systems on Top500 for our purposes will be
classified as the “high-end” systems.) Although these figures
include systems not used for academic and government
research, it is clear that the vast majority of research HPC
platforms todayand likely to be true in the future as well
are commodity platforms.
The conventional processors (“CPU”) account for the vast

majority of the total throughput of the commodity systems,
and of the Top500 list as a whole. By far the most popular are
CPUs of the x86 family, primarily from Intel and AMD: they

account for >95% of systems on the list and >73% of the total
throughput. Other CPU families represented on the Top 500
List include PowerPC (e.g., IBM POWER9), ARM (e.g.,
SPARC64 XIfx), and others (e.g., Sunway SW26010).
All CPUs represented on the Top500 list are multicore

CPUs, with at least 4 cores per CPU chip (socket) and as
many as 260 cores per socket (Sunway SW26010). Most
common (over 35% system share) are the systems with 20-
core x86 CPUs; coupled with the typical use multiple sockets
per node, a typical node of an HPC system contains on the
order of 30−50 cores. To extract the peak performance from a
modern CPU requires utilization of vector arithmetic logic
units (ALUs) using data-parallel single-instruction-multiple-
data (SIMD) instructions. Vector ALUs typically process
vectors composed of 256/512 bits (4/8 double- or 8/16 single-
precision floating point values). Because a typical core can
issue up to 4 vector floating point operations (in the form of 2
fused multiply add instructions), thus, a typical HPC node can
execute 40 cores × 8 SIMD lanes × 4 instructions/clock tick ×
2 billion clock ticks/second ≈ 2.5 TFLOPS from its CPU(s).
Of course, the peak performance depends on the instruction
mix and thus on the details of the computational task itself.
Not only the cluster nodes but also the interconnect fabrics

represented on the Top500 list are dominated (more than 80%
of system share) by two commodity technologies, Gigabit
Ethernet and Infiniband, with the rest of the systems utilizing
custom or proprietary interconnects.
A significant and increasing part of the total performance of

the Top500 list is attributed to the systems equipped with
various accelerators: ≈29% of all systems on the November
2019 list include accelerators, whereas 10 years ago the
corresponding figure was only ≈1.4%. The top 10 is dominated
by the heterogeneous systems even more thoroughly: 6 out of
10 systems are heterogeneous, including the top 2 systems.
The vast majority of accelerators are commodity components,
namely the general-purpose graphical processing units
(GPGPUs, or, simply, GPUs) produced almost exclusively by
NVIDIA and accelerator cards based on Intel Xeon Phi
processor. The recent rate of transition to the heterogeneous
HPC platforms is nothing short of stunning: for example, 94
systems (18.8% of all systems) on the Top500 list use NVIDIA
GPUs based on the Volta microarchitecture as accelerators,
compared to 1 system with NVIDIA Volta only 2 years ago.
This suggests that the majority of new entrants to the list are
heterogeneous systems. This trend is only likely to accelerate,
and we can expect that soon the majority of the list, and the
HPC ecosystem as a whole, will be dominated by
heterogeneous systems.
The transition to accelerators is driven largely by the cost

and power considerations. It is useful to perform rough
comparison using as an example the latest cluster at our
institution’s campus research computing facility.243 This
cluster includes 40 nodes, each equipped with 2 Intel Xeon
Gold 6136 processors and 2 NVIDIA Titan V100 cards. The
peak double-precision performance of a single NVIDIA Tesla
V100 PCIe GPU is 7 TFLOPS with peak power utilization of
250W and the list price of ≈ $8,500.246 One 12-core Intel
Xeon Gold 6136 processor is capable of ≈1.15 TFLOPS in
double precision utilizing 150W and priced at $2460.00. Thus,
the V100 accelerator delivers ≈80% more FLOPS per dollar.
Another important criterion is the energy efficiency, or
FLOPS/watt, because the total power consumption is already
a significant portion of the total cost of ownership of HPC
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resources. Here, the V100 also has the advantage over its CPU
counterpart by delivering ≈3.7 more FLOPS per watt (this is a
merely theoretical estimate; the practical FLOPS/watt figures
listed in the Green500 list247 are much lower). This is clearly a
very crude comparison of relative costs of commodity GPUs to
commodity CPUs: a more precise total cost comparison must
take into account the cost of other system components, the
average system load, the cost of powering and maintaining the
system and, most importantly, the cost of porting software
applications to the GPU. Nevertheless, it is safe to say that at
least in the commodity segment, the heterogeneous platforms
are significantly more cost efficient than their CPU counter-
parts.
Due to these advantages, it is therefore not surprising that

most high-end HPC platforms of today are heterogeneous,
composed of relatively “fat” nodes equipped with multiple
CPUs and multiple accelerators in each node. The #1 machine
in the November 2019 Top500 list (and bumped to #2 in the
June 2020 list) is the Summit machine248 installed at Oak
Ridge Leadership Computing Facility (OLCF) consists of
4,608 nodes, each with 2 IBM POWER9 processors and 6
NVIDIA V100 accelerators yielding ≈48 TFLOPS peak
performance (only ≈1.1 TFLOPS is attributed to the
CPUs). The use of complex fat nodes is a significant departure
from relatively recent CPU-only high-end architectures such as
the IBM Blue Gene/Q (e.g., the Mira system249 at the
Argonne LCF) with many (tens of thousands) relatively “thin”
nodes. Programming of the fat multiaccelerator nodes is a key
challenge due to the relative immaturity and the explicitly
asynchronous character of the programming models for
programming accelerators (CUDA, OpenCL, etc.), the
complexity of the memory hierarchy, and the vast amount of
parallelism.
Most planned high-end HPC resources in the US and

elsewhere will be heterogeneous machines as well. The Aurora
machine250 to be installed at the Argonne Leadership
Computing Facility (ALCF) in 2021 will feature nodes
equipped Intel Xeon CPUs and multiple Xe GPGPUs. The
Frontier machine251 to be installed at the Oak Ridge LCF
(OLCF) will feature nodes equipped with AMD CPUs and
multiple AMD GPGPUs. Heterogeneous architectures are also
considered for the China’s exascale system planned for
deployment in 2020.252 However, despite the cited advantages
of heterogeneous HPC platforms, homogeneous platforms are
not going to disappear from the scene. For example, the pre-
exascale computer Fugaku,253 recently deployed at the RIKEN
Center for Computational Science in Japan and in June 2020
Top500 list becoming the world’s top supercomputer, features
a “homogeneous” architecture, with a large number (158,976)
of “thin” nodes equipped with custom A64FX processor based
on the ARM technology.
Lastly, we should mention a number of emerging computing

technologies that could have an impact on our field in a not-
too-distant future. Application-specific integrated circuit
(ASIC) devices, such as the tensor processing unit (TPU) of
Google254 and tensor cores in NVIDIA Volta and Ampere
architectures,255 aimed at applications in machine learning
(ML) could be used for some computational tasks in electronic
structure. Similar benefits can be achieved with general-
purpose programmable hardware, such as Field Programmable
Gate Arrays (FPGAs),256 which could be used for custom
tensor algebra, integral evaluation, etc. Of course, a quantum

computer could also be viewed as a specialized coprocessor/
accelerator for a classical HPC platform.

5. DEPLOYMENT OF MANY-BODY QUANTUM
CHEMISTRY TO PARALLEL COMPUTERS

In this section, we will review the existing literature on
distributed-memory parallel implementation of many-body
electronic structure methods. (We did our best to discuss all
implementations whose details of distributed-memory parallel
execution we could find from public sources. In the interest of
keeping the presentation focused we excluded implementations
that only target shared memory platforms.) We start out by
discussing canonical formulations of the many-body methods
on conventional (nonheterogeneous) platforms, followed by
discussions of reduced-scaling variants and the implementa-
tions for heterogeneous platforms. Because our focus is on
high-performance implementations, we discuss those works
that do not use global shared storage, like parallel file system,
to share data due to the poor scalability of such approaches.
In discussing parallel performances, we will refer to the

traditional performance measures for parallel programs, such as
(parallel) speedup and efficiency,257 only slightly modified.
The speedup corresponding to an increase in the number of
“processors” (nodes, unless specified otherwise) from pi to pf
will be defined as

≡→S
T p

T p

( )

( )p p
f

i
i f (35)

where T(p) is the value of a performance metric (wall time,
unless specified otherwise) for a computation utilizing p
processors. The ideal value for Spi → pf is pf/pi. The traditional
term “speedup on p processors” thus corresponds to S1→p, with
the ideal value for speedup equal to p. (Parallel) efficiency of
metric T will be defined as

≡→E
pT p

p T p

( )

( )p p
i f

f i
i f

(36)

The traditional term “efficiency on p processors” thus
corresponds to E1→p. The ideal value for efficiency is 1, or
100%. Both of these measures correspond to the computations
for a fixed problem size, thus are useful to characterize strong
scalability.
5.1. Many-Body Perturbation Theory

The most popular, and simplest, many-body method in
chemistry is the Møller−Plesset perturbation theory truncated
at the second-order for energy (MP2). Despite its historical
significance and its continued utility in some contexts, it is
generally not accurate enough for chemical applications. It is
also fairly simple from the computational standpoint, thus only
brief remarks will suffice. There are many parallel implementa-
tions of the MP2 method; a detailed analysis of several
representative algorithms for the canonical MP2 method with
exact evaluation of integrals and a brief review of older
algorithms can be found in the book by Janssen and
Nielsen.258 Modern implementations of the MP2 method
almost always use some numerical approximations, such as
density fitting, Laplace transform, and related techniques. A
number of massively parallel variants of DF-MP2 have been
described in the literature.259−262 Approximate variants of
canonical MP2, such as DF-MP2, are much cheaper than the
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prerequisite Hartree−Fock calculation until the system size
approaches 100 atoms or so (the crossover depends on the
basis and the nature of the system); by that point the reduced-
scaling variants of MP2 become faster (e.g., see Pinski et al.,104

Werner et al.106). Thus, for all practical purposes MP2 is never
a bottleneck.
An important use case for perturbation theory are problems

where single Slater determinant does not provide a good
zeroth-order description of the wave function. For small
molecules the multireference configuration interaction and
related infinite-order methods are still the most robust
approaches, with parallel implementations long established263

and further developments continuing.264,265 For larger systems
the most robust approach is the multireference perturbation
theory, or more generally, quasidegenerate perturbation theory.
Few distributed memory parallel implementations of multi-
reference perturbation theories exist.266−268 Note the recent
development of analytic gradient formalism43 that in
conjunction with efficient parallel implementation allowed
realization of ab initio direct multistate dynamics.269

5.2. CCSD

Early efforts to deploy conventional CCSD to distributed-
memory parallel machines were reviewed by Watts.270 A more
recent overview was presented by Peng et al.98

5.2.1. Pioneering Work. The first implementation of the
conventional CCSD energy for a distributed memory
computer was reported in 1992 by Rendell, Lee, and
Lindh.271 It was restricted to closed-shell systems and used
the spin-adapted CCSD formulation of Scuseria, Janssen, and
Schaefer.27 Due to the limited memory available per node, the
authors designed their algorithm to optimize for space, with
only o v( )26 memory required on each node, with the rest of
the data stored on a distributed file system. Due to this, the
permutational symmetry was only partially exploited, with the
most expensive PPL term (eq 31) ≈ 4 times more expensive
than optimal.27,272 The performance was evaluated on Intel
i860 parallel computers with up to 128 nodes. Modest
scalability was demonstrated: for the valence triple-ζ CCSD
computation for the HCNO molecule, E1→16 = 34.5% was
demonstrated, with steep decrease in efficiency upon further
increase of the processor count. The parallel disk I/O was
identified as the bottleneck, with the dominant contribution to
the I/O costs coming from the 2-electron integrals with 3 and
4 unoccupied indices. To reduce the I/O bottleneck, the
authors proposed a semidirect algorithm in which the
contributions of integrals with 3 and 4 unoccupied indices to
the doubles amplitude equations were computed in an integral-
direct fashion, with Gaussian AO integrals computed on the
fly; the rest of the terms were evaluated as in the base
algorithm using the MO integrals in persistent distributed
storage. The authors estimated the potential benefit of the
semidirect algorithm by replacing disk I/O for the integrals
with 3 and 4 unoccupied indices with using local buffers with
dummy (constant) values; the simulated semidirect algorithm
resulted in an excellent strong scaling, with E1→64 = 74.4%.
Note that this is clearly an upper bound to the efficiency of the
real implementation because the costs of the AO integral
evaluation were not included in the simulated calculations.
Nevertheless, this was an important milestone as this work
demonstrated the critical importance of communication
minimization in parallel many-body methods like CCSD. It
also demonstrated the utility of integral-direct formalisms for

communication minimization. The authors also discussed the
potential benefits of replicating amplitudes and intermediates
for communication minimization.
It is important to understand that the integral-direct

algorithm is just another instance of a time-space trade-off.
Namely, the AO integral set is computed every iteration, at the

N( )46 cost (or even N( )26 , if the sparsity of the AO integral
tensor is taken into account), to avoid globally accessible
storage of 2-electron integrals with 3 and 4 unoccupied indices
and the communication costs associated with these integrals.
How do these communication costs scale with the system size?
For simplicity, consider the PPL term (eq 31). It can be viewed
as nothing but a multiplication of an o2 × v2 matrix by a v2 × v2

matrix producing an o2 × v2 matrix. With all the matrices
distributed among processors, the communication cost of the
parallel matrix multiplications are asymptotically the same as
the operation count. Thus, the communication cost of the PPL
term (and the CCSD itself) for all data fully distributed is

N( )66 , with the prefactor determined by the particular
algorithm used to implement the distributed tensor contrac-
tion. It is clear that the extra N( )46 cost of computing the AO
integrals every CCSD iteration is (asymptotically) insignificant
as it allows to replace the N( )66 amount of communication.
Additional improvements to the base algorithm of Rendell et

al.271 along with larger computations were reported by Rendell,
Guest, and Kendall in a follow-up paper in 1993.273 A key
advance here was the use of one-sided data accesses
implemented using interrupt handlers. This allowed the use
of global distributed memory rather than parallel file system to
store amplitudes and intermediates.

5.2.2. NWChem. A complete distributed-memory imple-
mentation of the semidirect algorithm for closed-shell CCSD
was demonstrated in 1997 by Kobayashi and Rendell274 in the
NWChem275 program. Although the authors call this
algorithm “direct”, the on-the-fly evaluation of integrals is
only used for some terms, namely those involving the integrals
with 3 and 4 unoccupied indices, just like in the original
proposal of Rendell et al.271 Instead of the use of interrupt
handlers as in ref 273, one-sided memory accesses were
implemented using the Global Array (GA) library.276,277 GA is
a portable high-level abstraction for distributed multidimen-
sional arrays that provides one-sided accesses to the data (put,
get, accumulate, scatter, gather, etc.) and some collective
operations such as linear algebra (the original GA API
supported two-dimensional arrays only, but the recent GA
API supports up to arrays with seven dimensions). GA is a
Partitioned Global Address Space (PGAS) abstraction, as it
represents distributed memory as a single address space
partitioned between application processes; hence, the GA is
often described as a “shared-memory” programming model for
a distributed memory machine. Although the extension of the
GA abstraction to disk-based arrays (Disk Resident Arrays) has
been implemented, by default, GA arrays reside in the main
memory (dynamic random-access memory, or DRAM); thus,
the per-process memory use by this algorithm is −o v p( )2 2 16 ,
where p is the number of processors. The implementation
exhibited excellent strong scaling: the all-electron CCSD
computation on glycine in cc-pVDZ basis attained E16→256 =
71% on Cray T3D. Similar results were obtained on the faster
Cray T3E machine: the same computation attained E8→64 =
101%, i.e. superlinear scaling.
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The CCSD implementation of Kobayashi and Rendell274 in
NWChem was further improved by Anisimov et al.278 by
replicating the (symmetrized) doubles amplitudes to reduce
the communication volume in the integral-direct CCSD
algorithm. This specifically eliminated all remote reads at the
cost increased memory requirement per node; note that
remote accumulation was still needed. The improved CCSD
implementation demonstrated E1100→20 000 ≈ 30% for a 2-base
DNA fragment in an augmented triple-ζ basis (63 atoms, o =
103, n = 1042) on a Cray XE6 cluster (NCSA’s “Blue Waters”
machine). Although the strong scaling was good, the absolute
efficiency of these calculations was shown later to be relatively
low by Peng et al.279

The Tensor Contraction Engine (TCE)232,280 furnishes
another family of implementations of the conventional
coupled-cluster methods in NWChem. TCE consists of a
many-body algebra compiler for derivation of programmable
equations and their symbolic optimization (e.g., by common
subexpression elimination, strength reduction, etc.) and a code
generator that transforms the tensor expressions into low-level
FORTRAN code. The generated code uses Global Array
toolkit to implement tensor algebra using one-sided distributed
memory operations. NWChem’s TCE module supports a
number of CC methods for ground and excited states, both in
spin−orbital form and with partial utilization of the spin
symmetry for closed-shell systems. All TCE methods are
formulated in the MO basis, i.e., integral-direct evaluation is
not employed. The TCE compiler was recently improved by
evaluating several parts of the tensor expression in parallel.
This coarse-grained parallel evaluation strategy, termed
alternative task scheduling (ATS),281 improved the strong
scalability of the code. For example, the ATS-enabled CCSD
exhibited 84% parallel efficiency on a commodity infiniband
cluster when the core count increased from 768 to 3072.282

The TCE-based CCSD algorithms in NWChem have their
data fully distributed in memory; hence, the per-process
memory requirement is −v p( )4 16 , which is much larger than
that of the implementation by Kobayashi and Rendell274 and
all TCE CC computations require large-scale HPC platforms
(i.e., large p).
5.2.3. PQS. The Parallel Quantum Solutions (PQS)

software suite from the Pulay group includes efficient AO-
driven implementation of CCSD and CCSD(T).283,284 The
implementation uses closed-shell spin-adapted generator-
state26 CCSD formalism of Hampel et al.,230 which is closely
related to that of Scuseria et al.27 The distributed data is
managed by the Array Files (AF) middleware,285 which stores
the data on each node’s local disk (thus avoiding the use of
complex distributed file systems); global one-sided access to
the disk-resident data is provided to greatly simplify
programming. Calculations on systems as large as a benzene
dimer with 1512 basis functions without symmetry were
demonstrated using the quadratic configuration interaction
singles and doubles method (closely related to CCSD). The
CCSD program exhibited 90% parallel efficiency upon increase
in node count from 2 to 16.284 Notably, the integral-direct
evaluation of the CCSD doubles residual evaluation exploits
the AO integral sparsity to reduce the formal arithmetic
complexity.
5.2.4. CFOUR. Parallel implementation of closed- and

open-shell CCSD energies and up to its second geometric
derivatives was developed in the CFOUR package7 by Harding
et al.286 The amplitudes are replicated to simplify paralleliza-

tion and reduce communication. Only the time-determining
steps are parallelized, which limits the parallel efficiency for
smaller basis sets.

5.2.5. Molpro. Parallel implementation of coupled-cluster
models in Molpro8 exists, but its details are not described. The
amplitudes seem to be replicated to simplify parallelization.
The distributed data abstraction, implemented on top of the
GA toolkit, used to implement the parallel CC methods in
Molpro was described by Wang et al.287

5.2.6. GAMESS. The GAMESS package includes two
implementations of parallel CC. The original CCSD and
CCSD(T) implementations288 developed by the Gordon
group utilized a hybrid approach (similar to that of Kobayashi
and Rendell274) in which some terms were evaluated in AO
basis using integral-direct approach; these implementations
utilized the spin-adapted CC formalism of Piecuch et al.289

This implementation managed distributed data using the
Distributed Data Interface (DDI) library and utilized hybrid
parallelism (message passing + interprocess UNIX System V
communication) to optimize intranode data sharing. Modest
parallel efficiency was demonstrated, with the MO-basis tensor
contractions in CCSD identified as the primary bottleneck.
Another implementation of parallel CC was developed by

Asadchev and Gordon,290 first as a standalone library and then
integrated into GAMESS. The key innovation of their work
was, similarly to the PQS implementation, to explicitly manage
disk storage as part of the memory hierarchy, with one-sided
access to distributed memory provided by the Global Arrays
toolkit. Another innovation was the use of explicit thread-level
programming for intranode parallelism. Yes another innovation
was the ability to offload matrix multiplication work to CUDA-
enabled NVIDIA accelerators. The CCSD implementation
exhibited parallel efficiency as high as ≈83% upon core
increase from 24 to 96 on a small commodity cluster; efficiency
of ≈93% was attained on a high-end Cray XE6 supercomputer
upon core increase from 256 to 1024.

5.2.7. ACES. The ACES III package6 is the result of re-
engineering the ACES II suite of Bartlett et al. for massively
parallel architectures. It includes a full lineup of ground- and
excited-state coupled-cluster methods, e.g., CCSD and CCSD-
(T) energy and forces are available for both closed- and open-
shell references. A custom domain-specific language (DSL),
the super instruction assembly language (SIAL), was used to
implement all methods; the DSL programs are executed by the
super instruction processor (SIP) interpreter.228,291 The DSL
statements are implicitly parallelized by distributing “super-
instructions” (i.e., operations on individual tensor blocks) to
the execution agents residing on each node. The DSL does
include explicit control of data I/O. Excellent strong scaling
(sometimes, superlinear) was demonstrated for CCSD292 and
other CC methods.293 On a Cray XT5 cluster 80% of parallel
efficiency was attained when the number of processors was
increased from 2000 to 8000.228

The development of the ACES series of programs continued
recently with Aces4, the reengineered version of the ACES III
program using updated DSL and the DSL interpreter.294 The
major development is the efficient support for block-sparse
tensors with high degree of sparsity. This allowed implemen-
tation of efficient fragment-based reduced-scaling methods. A
variety of conventional CC methods has been implemented.
Performance of the CCSD energy was demonstrated for 1-d
arrays of Ne atoms with 15, 20, 25, and 30 atoms on a Cray
XC40 cluster (the Excalibur system located at the U.S. Army
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Research Laboratory). Our conservative interpretation of the
Ne15 aug-cc-pVTZ CCSD performance data in Figure 5 in
Sanders et al.294 is E700→20 000 ≲ 25% (processor counts refer to
cores).
5.2.8. CTF. Several implementations of CC methods have

been recently realized with the help of the Cyclops Tensor
Framework (CTF) of Solomonik et al.225 Most notable of
these include Devin Matthews’ Aquarius code295 as well as the
commercial Q-Chem suite.10,296 CTF is a library that
implements basic algebra of distributed-memory dense and
element-sparse tensors. CTF is implemented using MPI and
OpenMP. CTF includes communication-optimal algorithms
for tensor contraction (e.g., implemented using the 2.5D297

SUMMA298 for distributed matrix multiplication). The
Aquarius program includes a number of ground- and excited-
state MO-basis CC methods, up to full treatment of
quadruples, with all tensors fully distributed in memory.
Excellent strong scaling of the CCSD implementation was
demonstrated on a large-scale Cray XC30 cluster;295 e.g.,
parallel efficiency is conservatively estimated at ≈50% for a
cluster of 15 water molecules in cc-pVDZ basis upon
increasing the node count from 16 to 256. The CTF-based
CCSD exhibited better parallel efficiency than the TCE-based
CCSD in NWChem; however, it is not clear if the NWChem’s
CCSD code included the improvements of ref 281 (for the
timings reported by the NWChem team please see ref 299).
The sequential performance of Aquarius was worse than that of
NWChem, and modest scaling with the number of threads was
demonstrated.
CTF can also be used as a backend to libtensor,222 a C++

tensor library designed with support for symmetries necessary
for implementing quantum many-body and used to implement
the coupled-cluster features of the popular Q-Chem package.10

Ibrahim et al. assessed the parallel performance of CCSD
implemented using libtensor.296 Both the native shared-
memory backend of libtensor and the CTF-based distributed
memory backend were used. On a single node the native
backend outperformed the CTF-based one, due to the more
effective utilization of symmetry in the tensor contraction
expressions. Several test systems and five different super-
computing platforms were considered. For a medium-sized
system, methylated uracil−water cluster (o = 58, n = 410), the
CTF-based backend demonstrated good strong scaling
(E32→128 ≈ 64%) on the Cray XC30 Cori system at NERSC,
and was roughly 4× faster than NWChem. For the largest
system, a AATT nucleobase tetramer in a triple-ζ basis (o = 98,
v = 830), computations were performed on the Titan
supercomputer at OLCF,300 and the Mira supercomputer at
ALCF249 with as many as 8192 nodes each (131 072 cores); at
such scale, the majority of the execution time was attributed to
the communication.
5.2.9. MPQC. An unfortunate fact about most implementa-

tions discussed so far is that their absolute efficiency, defined as
the percentage of the effective FLOPS rate to the hardware
peak, is relatively low, usually <10% (few exceptions include
refs 284 and 290). Of course, most literature does not include
the absolute performance analysis, so the efficiency can only be
coarsely estimated. Because for realistic CCSD calculations o
≪ v, the cost of CCSD is usually dominated by the PPL term.
For the optimal implementation of closed-shell CCSD, the cost
of the PPL term is o2v4/2, but some implementations above,
such as the TCE-based CCSD, use spin−orbital formalism
(where its cost is 5o2v4/2, i.e., 5 times higher) or do not use the

permutational symmetry of the tensors (then the PPL cost is
2o2v4). The integral-direct implementations also need to
account for the cost of AO integral evaluation, for which
there is no simple performance model, but the higher-order
complexity of the tensor algebra in CCSD means that most of
the time, the cost of the integral evaluation is relatively small.
Thus, using the 2o2v4 FLOP count divided by the peak
hardware performance is a reasonable a rough performance
model for a single iteration of closed-shell CCSD. Interested
readers are invited to use this performance model to gauge the
absolute efficiency of the above implementations for
themselves.
To develop a development platform for many-body

quantum chemistry that is strongly scalable on the highest-
end HPC systems and has competitive absolute performance
on small clusters and even one node, we re-engineered the
Massively Parallel Quantum Chemistry program (MPQC),301

originally developed by Curtis Janssen et al., to use of the high-
performance block-sparse tensor algebra framework TiledAr-
ray. An efficient implementation of closed-shell conventional
and explicitly correlated CCSD was developed by Peng et al.98

in MPQC (version 4) in 2016.
To support both memory-limited platforms as well as high-

end platforms, several closed-shell CCSD formulations were
implemented: conventional, where all integrals in MO basis are
held in memory, with per-node memory requirement of

−v p( )4 16 , density fitting, where all integrals are approximated
by the density fitting, with per-node memory requirement of

−v p( )4 16 , DF-AO-hybrid (where contributions from the
integrals with 3 and 4 unoccupied indices are evaluated in
AO basis in direct fashion, just like in Rendell et al.,271 whereas
the rest of the terms are handled via DF, with per-node
memory requirement of −o v p( ))2 2 16 , and DF-direct, added
later,279 in which the DF reconstruction of integrals with 3 and
4 unoccupied indices was done lazily, on a tile-by-tile basis,
with the rest of the terms evaluated as in the DF approach; this
variant is numerically equivalent to DF-CCSD but has a
reduced per-node memory requirement of −o v p( )2 2 16 , the
same as DF-AO-hybrid.
The use of DF does not change the asymptotic complexity

of CCSD and only slightly reduces the N( )66 cost prefactor,98

but it is absolutely essential to reduce the costs of the explicitly
correlated (F12) variant of CCSD. The F12 terms are minor
contributors to the overall cost due to their noniterative
evaluation and have the same complexity as the CCSD itself.
The implementation used the factorization of Scuseria et

al.27 However, the permutational symmetry was not taken into
account; thus, the PPL term has the suboptimal 2o2v4 cost.
Despite this drawback, the high efficiency and strong scalability
makes the implementation competitive to existing optimized
implementations. On a single node the conventional and DF
implementations of CCSD scaled nearly perfectly with the
number of threads and matched the efficiency of the popular
implementations in Orca9,302 and Psi4,303 respectively, despite
the suboptimal use of permutational symmetry in MPQC.
Similar favorable comparison was found for the explicitly
correlated CCSD method in MPQC when compared to Orca.
On the BlueRidge commodity cluster304 the DF-AO-hybrid

CCSD implementations demonstrated good strong scaling for
a water 10-mer in a realistic basis (o = 40, v = 430): 10.4×
speedup is achieved on 16 nodes, relative to 1 node, and 16.4×
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on 32 nodes (≈ 65% and ≈51% parallel efficiency,
respectively). Because the noniterative F12 energy contribu-
tion does not scale as well but due to its low cost, it lowers the
overall efficiency only slightly. The absolute efficiency was
high: the calculation of the PPL term utilized 85% of the
machine peak on 1 node and 70% of the machine peak on 32
nodes. Later, benchmarks of the DF-direct CCSD implemen-
tation on uracil trimer produced similar parallel efficiencies.279

Similar performance was observed on the high-end Mira
system at ALCF:249 for the (H2O)12 cluster, the DF-AO-hybrid
explicitly correlated CCSD method reached E128→1024 ≈ 50%,
where the processor counts refer to nodes (each node of Mira
has 16 cores). Computations on much larger systems, e.g., a
nanotube fragment C84 (o = 168 and v = 924), were performed
on 1024 nodes of Mira.
High efficiency of the implementation allowed Peng et al.98

to compute the CCSD binding energy of the uracil dimer with
high precision and reveal substantial errors in the previous
benchmark values. The excellent precision of the CCSD
binding energies were later confirmed by the data from Brauer
et al.305

The DF-direct CCSD implementation was compared279 to
the improved Kobayashi-Rendell CCSD implementation in
NWChem using the reference GC-dDMP-B benchmark (o =
103, n = 1042) of Anisimov et al.278 The MPQC
implementation of DF-CCSD was conservatively estimated
to be more efficient by a factor of ≈25.
5.2.10. FHI-aims. An efficient massively parallel imple-

mentation of DF-CCSD was reported by Shen et al.306 in the
FHI-aims package.307 The implementation has an improved
handling of the permutational symmetry, e.g., with the PPL
term costing o2v4, i.e. half of that in MPQC. Thus, the overall
efficiency was roughly twice that of MPQC. The communi-
cation minimization was achieved by the replication of data
along one dimension of a 2D grid, roughly corresponding to
SUMMA-like replication strategy. The t1-based factorization of
DF-CCSD was utilized.308 Excellent intranode and strong
internode scalings were observed, e.g., for the beta-carotene in
a triple-ζ basis (o = 108, u = 884) E32→512 = 66% was observed.
5.2.11. MRCC. An efficient parallel implementation of DF-

CCSD was reported by Gyevi-Nagy et al.309 in the MRCC
package. The implementation has optimal handling of the
permutational symmetry, i.e. the PPL term costs o2v4/2, or
quarter of the cost in MPQC and half the cost in FHI-aims,
with the rest of the N( )66 terms carefully optimized. The
implementation also uses factorization of DF-CCSD due to
DePrince and Sherrill.308 Excellent intranode scaling is
observed along with an excellent strong scaling up to 8
nodes, E1→8 = 66%. The authors noted that the strong-scaling
of N( )66 terms to more nodes is possible, but the lower-
scaling terms do not scale well. Also, it appears that amplitudes
and the three-index integrals were replicated, thus contributing
to the excellent strong scaling.
5.3. CCSD(T)

The (T) correction in canonical form is an ideal candidate for
parallelization due to its time-determining role in the popular
CCSD(T) method and relative ease of parallelization. Early
efforts to deploy conventional (T) to distributed-memory
parallel machines were reviewed by Watts.270 A more recent
overview was presented by Peng et al.279

5.3.1. Pioneering Work. First distributed-memory im-
plementation of a CCSD(T)-like method was reported by

Rendell et al.310 Namely, their work included only the fourth-
order (in the closed-shell Møller−Plesset sense) contributions
to the (T) energy correction. However, their parallelization
strategy and implementation can both be directly applied to
the evaluation of complete (T) correction.
Evaluation of the (T) correction to CCSD energy involves a

set of reductions of pairs of order-6 tensors, each with three
active occupied indices and three unoccupied indices. To keep
the storage requirements manageable these tensors are
evaluated in blockwise fashion as needed, utilized in binary
reductions, and discarded. Rendell et al.’s considered two
evaluation strategies: abcijk and aijkbc, in which reductions
over three unoccupied (abc) indices and an unoccupied-
occupied index pair (ai) was task-parallelized, respectively. The
abcijk algorithm was nearly perfectly scalable when all integrals
were replicated. However, because the largest set of integrals
has ov3 elements, this mandated for all but the smallest
computations storing integrals on a parallel file system and
reading them in batches. The disk-based abcijk algorithm was
found to be nonscalable due to the ov( )46 complexity of file I/
O. Due to the lower complexity of file I/O ( o v( )2 36 ) the aijkbc
algorithm demonstrated excellent strong scaling, albeit having
an operation count greater than the optimal by a factor of four
(due to the suboptimal use of symmetry). Another notable
feature of the aijkbc algorithm is its modest per-node memory
requirement of ov( )26 .

5.3.2. NWChem. Kobayashi and Rendell274 presented first
complete implementation of distributed-memory CCSD(T) in
NWChem. Their implementation followed the aijkbc algorithm
of Rendell et al.,310 but instead of disk-based storage310

integrals and amplitudes were stored in memory, with one-
sided data operations provided by the Global Arrays (GA)
library. Linear scaling was demonstrated for glycine
(C2O2NH5; o = 20, v = 80) on Cray T3E when the number
of processors increased from 8 to 64. Apra ̀ et al.235 further
improved the (T) code by reducing the communication
volume and the memory footprint. The improved code was
used to benchmark the CCSD(T) binding energies of water
clusters. The total CCSD(T) evaluation (including CCSD) for
water 18-mer in a triple-ζ basis set (918 basis functions)
demonstrated speed-up of ≈2.2 from 30 000 to 90 000
processors on ORNL’s Cray XT5 “Jaguar” supercomputer.
Evaluation of the (T) energy for the 20-mer (1020 basis
functions) took ≈2 h and used 100TB memory and 96 000
cores of XT5, reaching 487 TFLOPS (55% of theoretical
peak).235

Another implementation of CCSD(T) in NWChem uses the
Tensor Contraction Engine (TCE).232 TCE fully distributes all
of its tensors in GA-managed memory. Tensor algebra is
implemented in TCE as a statically scheduled sequence of
tasks on the tensor tiles; each task pulls its data from
distributed memory using one-sided (blocking) reads managed
by the GA toolkit. The TCE implementation differs from most
other (T) implementations in that the reduction over all six
indices, rather than two or three, is parallelized. Such fine-
grained parallelization strategy increases the amount of
exploitable parallelism at the cost of increased communication
requirements. The TCE implementation of the (T) correction
in the CR-EOMCCSD(T) method (closely related to the
traditional (T) correction of the ground-state CCSD(T)
method) was applied to the FBP-f-coronene molecule in a
triple-ζ basis (780 basis functions), with the triples correction
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reaching 84% parallel efficiency upon increasing the number of
cores from 60 000 to 210 000.281 The TCE-based implemen-
tation of the (T) corrections was extended to exploit
heterogeneous systems with NVIDIA’s GPGPUs311,312 and
the Intel Xeon Phi coprocessors313 (see below).
5.3.3. GAMESS. The first parallel implementation of

CCSD(T) in GAMESS was developed by Bentz and Ryan et
al.288,314 The Distributed Data Interface(DDI) library was used
to manage the data distribution and (one-sided) transport. The
(T) implementation uses the ijkabc algorithm (first described
by Rendell et al.315) in which the reduction over i ≥ j ≥ k is
task-parallelized. The integrals were fully distributed and
transported to workers as needed, however the doubles
amplitudes were not distributed. The implementation demon-
strated ≈72% parallel efficiency on 24 processors of an IBM
SMP cluster for the T-shaped benzophenol-benzene dimer
benchmark (o = 33, v = 313).314

Asadchev and Gordon290 developed another CCSD(T)
implementation within the libcchem library embedded in
GAMESS. Their (T) implementation used the abcijk
algorithm, with the abc reduction task-parallelized over nodes
(the same algorithm was earlier utilized by Janowski and
Pulay284 in their (T) program; see below). This choice was
motivated by the desire to minimize the per-node memory
requirements and maximize the degree of exploitable
parallelism (i.e., the number of tasks). Linear scaling was
demonstrated for the C8H10N4O2 molecule in a triple-ζ basis
on a commodity cluster with the number of nodes varied
between 4 and 16. Speedup of 3.7 was obtained for the
SiH4B2H6 molecule in a quadruple-ζ basis on a Cray XE6
system when the number of cores increased from 256 to 1024.
5.3.4. ACES. The ACES III package292 supports evaluation

of spin-restricted and spin-unrestricted CCSD(T) energy and
forces on distributed memory machines. As discussed in
section 5.2.7, all electronic structure methods in ACES III are
implemented using a domain-specific language. The (T)
implementation in ACES III thus appears to completely
distribute all tile level tasks, thus it is most similar to the
NWChem TCE (T) implementation. Parallel scaling of the
UHF (T) implementation was examined for the Ar6 bench-
mark in a triple-ζ basis. The execution time reduced from 784
to 131 min when the processor count increased from 32 to
256; this corresponds to ≈75% parallel efficiency.
5.3.5. PQS. The PQS package provides a (T) energy

implementation utilizing disk-resident data managed by the
Array Files library.284 The implementation is thus intended for
the use on clusters with local disk storage. The use of the abcijk
algorithm ensures minimal the per-node memory footprint, of
only o( )36 , that does not depend on the number of
unoccupied orbitals and thus is suited for the (T)
computations with very large basis sets. Excellent strong
scaling was demonstrated for the aspirin molecule in a triple-ζ
basis: speedup of 27.8 was obtained when the number of
processors increased from 1 to 32. By taking advantage of the
point group symmetry it was possible to perform among the
largest canonical (T) energy computations ever, using modest
computational resources. For example, the (T) energy of
benzene dimer (C2h symmetry) in a quadruple-ζ basis (1512
basis functions) was performed in 57 h using 32 nodes of a
commodity cluster.
5.3.6. MPQC. An efficient closed-shell (T) implementation

in the latest version of MPQC was recently developed by Peng
et al.279 To be able to deploy the (T) method on high-end

machines and on compute devices with limited memory (such
as accelerators), the abcijk strategy was chosen as it minimizes
per-task size of N( )66 intermediates and maximizes the
number of tasks; the trade-off is the smaller amount of work
available per each task. Thus, similarly to the blocked
algorithm of ref 290, this algorithm’s formal maximum storage
requirement per MPI process is 3 × O3bv3, where bv is the tile
size for the unoccupied orbital range (this can be controlled by
the user). All integrals and amplitudes are distributed, but the
integrals with 1 unoccupied index can be optionally replicated.
Because the blocking of the unoccupied range optimal for (T)
is different from that for CCSD, the doubles amplitudes and
integrals are partially reblocked before (T).
The implementation demonstrated perfect intranode linear

scaling with respect to the number threads on a single 16-core
node of the BlueRidge commodity cluster.304 Excellent strong
scaling with respect to the number of nodes was demonstrated
on BlueRidge: E1→32 ≈ 80% was measured for the cc-pVDZ
(T) computation on (H2O)14. This made very large
calculations accessible on a commodity cluster, such as
pentacene dimer in cc-pVDZ basis, with 72 atoms and 756
basis functions; the (T) correction took ≈25 h using 32 nodes
(512 cores, with only ≈10 TFLOPS total peak performance).
The absolute CCSD(T) efficiency of MPQC was compared

against NWChem’s (T) code for the GC-dDMP-B benchmark
reported by Anisimov et al.278 (at the time, it was the largest
conventional CCSD(T) calculation reported). The MPQC
time to solution for the (T) correction was 47.4 h on 64 nodes
of the BlueRidge cluster vs 1.4 h on 20 000 essentially identical
nodes used by Anisimov et al.278 The absolute efficiency of
MPQC in this calculation is estimated to be ≈44%. Further
improvement is possible by the optimization of the tensor
contraction and permutation kernels.

5.3.7. FHI-aims. An efficient massively parallel implemen-
tation of DF-CCSD(T) was reported by Shen et al.306 in the
FHI-aims package.307 Technical details of the (T) implemen-
tation were not discussed, but some parallel performance data
was given. For the (H2O)10 cc-pVDZ benchmark, E1→8 ≈ 95%
was observed on a commodity cluster.

5.3.8. MRCC. An efficient parallel implementation of DF-
based (T) was reported by Gyevi-Nagy et al.309 in the MRCC
package. This implementation uses the ijkabc loop nest, with 1
occupied index (k) distributed across MPI processors and the
remainder partitioned among threads using OpenMP parallel
constructs; the use of 1 loop for the MPI parallelization is
likely due to the focus on smaller HPC setups like a typical
small commodity cluster. Near-perfect scaling with the number
of threads and absolute efficiency of ≈65% was observed on 1
node. Effects of NUMA on the performance were evaluated,
with 1 MPI rank per NUMA region (i.e., socket)
recommended to gain more than 10% efficiency. Excellent
strong scaling was observed up to 8 nodes, with E1→8 = 88% for
the (H2O)14 cc-pVDZ benchmark, also used to evaluate
MPQC. A number of CCSD(T) energies were computed for
systems with up to 43 atoms and 1569 basis functions on up to
224 cores.
5.4. CC Excited States and Properties

5.4.1. NWChem. The distributed-memory EOM-CC
implementation based on TCE has been applied to several
large systems with hundreds of electrons and basis
functions.281,282,316 Fan et al. studied the excitation energies
of zinc-porphyrin using the parallel EOM-CCSD code in
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NWChem. They improved the performance of Davidson
eigensolver used in EOM-CCSD for both single-root and
multiroot version. Parallel performance is demonstrated using
zinc-porphyrin in the 6-31G* basis with around 3.4× speedup
from 256 to 1024 processors.317 Kowalski et al. has developed
the completely renormalized EOM-CC method CR-EOM-
CCSD(T) using TCE, the TCE generated codes have been
further optimized manually.281 The performance of CR-EOM-
CCSD(T) has been reported on the green fluorescent protein
(GFP), free-base porphyrin (FBP), oligoporphyrin dimer
(P2TA) and FBP-f-coronene system using over 1000
cores.316,318 The strong scaling of EOM-CCSD is tested on
Bacteriochlorophyll a molecule using the 6-311G basis, with
80−90% parallel efficiency from 2048 cores to 4096
cores.281,319 Later on, Hu et al. extended the EOM-CCSD
program in NWChem to the open-shell system.282

5.4.2. ACES. The massively parallel ACES III program also
has implementations of CC methods for excited states. Similar
to its ground-state CC methods, the implementations are
based on the super instruction assembly language (SIAL). Kus ́
et al. reported two variants of open-shell EOM-CCSD
implementation in ACES III: (1) storing the entire H̅ matrix
in memory and (2) evaluating the H̅ with four-virtual indices
on the fly.293 The latter approach was found to be more
efficient, which showed 7 times speed up from 32 to 256
processors on OH cytosine adduct with 25 occupied and 245
virtual orbitals. Verma et al. introduced a new massively
parallel linear response CC module within ACES III, with
applications to static polarizabilities of closed-shell molecules
and open-shell radicals.320

5.4.3. MPQC. The MPQC4 program has distributed
parallel code for excited-states, which includes a series of
implementations of equation-of-motion coupled-cluster meth-
ods (EOM-IP/EA/EE-CCSD) for closed-shell systems. The
implementation follows the same approach to its ground state
CCSD code (see section 5.2.9 for detail), which is based on
top of the TiledArray framework, with all amplitudes and
intermediates distributed in memory. It also contains several
variants including approaches with and without density-fitting,
and with stored integrals or lazily evaluated integrals. The
performance was demonstrated by Peng et al. on methylated
uracil dimer with water (39 atoms, 882 basis functions) and
11-cis-retinal protonated Schiff base (51 atoms, 1050 basis
functions) using up to 128 nodes (2048 cores).321 A parallel
efficiency between 60 to 70% is observed from 16 nodes to 128
nodes. The EOM-IP/EA-CCSD implementation has not been
reported, but the IP implementation was used to benchmark
the OAM24 data set CBS limit by Teke et al.322

5.5. Higher-Order CC

There are significantly fewer high-performance implementa-
tions of many-body methods that include explicitly three- and
higher-body correlations, due to their extreme cost. Simple
parallelization strategies where the data is (partially) replicated
and only work is distributed are not feasible due to the high-
order storage complexity of such methods (e.g., N( )66 for
CCSDT). Thus, all data, such as amplitudes and other tensors,
and all work must be distributed.
Parallel implementation of a number of high-order coupled-

cluster methods were developed as part of the TCE effort in
NWChem.232 As with other TCE methods, spin−orbital
formalism is used, with full exploitation of permutational
symmetry at the level of tiles, but zero contributions due to

spin are skipped. Unfortunately, no performance benchmarks
were presented. An analysis of FLOP counts for the CCSDT
code in NWChem vs automatically generated equations was
presented by Lai et al.234

Efficient distributed-memory parallel implementation of
ground- and excited-state higher-order CC methods
(CCSDT and CCSDTQ) were developed by Matthews in
the Aquarius package using the Cyclops Tensor Framework of
Solomonik et al.225 The performance of the CCSDT code was
analyzed for small water clusters [(H2O)n, n = 2, ..., 4] in cc-
pVDZ basis and compared with the NWChem’s CCSDT
module on the Edison system at NERSC (now retired; see ref
225 for the hardware details). The absolute performance of the
CCSDT code in Aquarius and NWChem on 1 node of Edison
(460.8 GFLOPS peak) for (H2O)2 and (H2O)3 were nearly
identical, but the NWChem code was not scalable; speedup of
only ≈2 was achieved no matter how many nodes were used.
The poor scalability of the TCE code is likely due to the lack of
any kind of communication optimization: in a tensor
contraction each argument tile is fetched to the location of a
result tile and discarded immediately. In contrast, the CCSDT
in Aquarius attained speedup of ≈8 on 256 nodes for the water
dimer and of ≈32 on 256 nodes for the water trimer. The
absolute performance of the CCSDT code in Aquarius was
lower than that of CCSD, largely due to the significantly higher
cost of transpositions involved in tensor (un)matricization
(“folding”, in the language of Solomonik et al.225) performed in
tensor contractions in CTF. For example, a larger calculation
on (H2O)8 spent only 16% of time in matrix multiplication on
256 nodes of Edison.
Implementation of the ground-state closed-shell CCSDT

and its iterative approximations was developed recently by
Rishi et al. in the MPQC package.323 Because the parallel
performance of this implementation has not been documented,
we are reporting a preliminary representative benchmark here
to be able to assess performance to that of the CTF-based
CCSDT. Intra- and internode strong scaling of the CCSDT
energy implementation in MPQC was assessed for the all-
electron CCSDT energy computation on (H2O)4 in the cc-
pVDZ basis on the NewRiver cluster.242 Reasonable strong
scaling was obtained with respect to the number of threads
(not shown) and the number of nodes (Figure 1). On a single
node, scaling from 1 to 24 threads resulted in an ≈12 speedup,

Figure 1. Internode strong scaling of the CCSDT energy
implementation in MPQC (see text for details).
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for ≈50% efficiency. Increasing the number of nodes from 1 to
32 resulted in a ≈12 speedup, or ≈38% parallel efficiency. The
absolute performance of the CCSDT implementation in
MPQC is comparable to that of Aquarius, even though there
is no use of permutational symmetry at the moment in this
code in MPQC: each CCSDT iteration using Aquarius took
≈60 s on 64 nodes of Edison Solomonik et al.,225 which is in
line with the ≈70 s per iteration using MPQC on 32 nodes of
NewRiver (with identical peak performance to that 64 nodes
of Edison).
5.6. Reduced-Scaling CC

Due to the complete decoupling of the fragment computations
in the divide-and-conquer schemes, as we discussed in section
3.2, robust strong scaling can be achieved to hundreds of
thousands of cores, if needed, with the main limitation being
the load imbalance of the fragment computations.176 Efficient
parallelization (at least, intranode) of the monomer
computations is also needed in general.
A more interesting challenge for high-performance imple-

mentation are fast reduced-scaling methods in which
redundancies associated with fragment overlap are avoided.
Only one strongly scalable implementation has appeared, due
to the relative novelty of these methods. Efficient implementa-
tion of PNO-based MP2, CCSD, and CCSD(T) were reported
by the Werner group in the Molpro package.106,199−201,324

Global Arrays toolkit276,277 is used to represent the data in
distributed memory and provide one-sided operations. Each
process also maintains its own local memory pool to keep (and
cache, as needed) tensors. Partial replication of the data by
caching it allows to save on communication costs. It appears
that threads are not used for parallelization, i.e., one thread per
MPI rank is used.
In all PNO methods, the two major steps are (1) generation

and transformation of three-index integrals into localized
occupied MO and/or the PAO bases and (2) local DF
reconstruction of four-index integrals in PNO basis and
evaluation of equation residuals. The first step is parallelized
most efficiently over the batches of density fitting functions (in
fact even serial codes decompose this step into task by density
fitting batches104), whereas the latter is parallelized over pairs,
with the redistribution of the three-index integrals in between
the steps. Key to minimizing communication in the second
step is caching and reuse of three-index integrals partially
transformed to PNO basis;200 this requires the use of static
distribution of pairs among workers. To try to minimize the
load imbalance bandwidth minimization by graph partitioning
is used.
The PNO methods demonstrated nearly perfect strong

intranode scaling. The internode scaling was tested on
commodity small clusters with up to 16 nodes. The
perturbative methods, namely MP2 and (T) (in localized
orbital basis, even perturbative methods like MP2 and (T)
requires iteration unless additional approximations are used),
showed excellent strong scaling: PNO-MP2 attained speedup
of ≈7 on 9 nodes,106 and (T) scaled essentially perfectly from
3 to 16 nodes.201 PNO−CCSD, however, did not scale as well:
speedup of ≈4 was attained when number of nodes was
increased from 2 to 12 (i.e., ≈67% parallel efficiency).199 The
worse scaling of PNO−CCSD is due to the significant
communication overhead of the integral transformation and
the load imbalance due to static pair distribution.

5.7. Heterogeneous Platforms

Recent emergence of heterogeneous architectures as cost-
efficient compute platforms has spurred efforts to utilize such
platforms in the context of electronic structure.325 Due to the
complexity of programming heterogeneous computers and the
large memory footprint of many-body methods (which
prevents fitting all data to accelerator memory) the deploy-
ment of many-body methods onto heterogeneous platforms
has been slow and usually did not target heterogeneous
distributed memory platforms. The pioneering efforts in this
area utilized accelerators only for tensor contractions,
implemented by matricizing the argument tensors followed
by dense matrix multiplication on the device using the vendor-
provided BLAS library. Dispatching the work into the
accelerators can be implemented (1) by explicit management
of the data and computation traffic to/from the accelerator(s),
and (2) by offloading matrix multiplications to the accelerator,
with the movement of the data to/from the accelerator
memory performed automatically for every matrix multi-
plication task. The offloading approach makes the program-
ming accelerators significantly simpler, but offers less control of
data reuse and resource utilization.
DePrince et al. pioneered the use of accelerators in the

context of iterative coupled-cluster methods (CCD/
CCSD).121,326 Their implementation manually managed the
computation and data movement to the accelerator. Asadchev
et al. also demonstrated a GPU-capable implementation of
CCSD in GAMESS with explicit management of the data
movement to/from the accelerator.290 Eriksen327 implemented
MP2 and (T) methods for hybrid execution (on CPUs and on
one or more accelerators) by offloading work via the
OpenACC language extensions. Kaliman et al. extended the
CCSD and EOM-CCSD implementations in the Q-Chem
package by offloading the matrix multiplications to NVIDIA
GPUs using the CUBLASXT API of cuBLAS library.328 All of
these developments were capable of executing on a single node
with one or more NVIDIA GPU accelerators and utilized
standard matrix multiplication kernels in the cuBLAS library.
Several groups have also developed more general kernels for

tensor operations (contractions and permutations) arising in
the context of post-CCSD methods. Ma et al.311 improved the
efficiency of tensor contractions on NVIDIA GPUs by
generating optimized CUDA kernels via the use of index
combining and dimension flattening. They also improved
overlap of data movement to/from the GPU and the
computation on the device by pipelining data motion. Lyakh
introduced a standalone general-purpose library (TAL_SH)
for performing basic tensor algebra on multicore CPUs and
NVIDIA GPU-containing shared-memory computers.329

TAL_SH implements tensor contractions by utilizing matriciz-
ing tensors via permutations implemented in the cuTT
library330 followed by matrix multiplication using the cuBLAS
library. NVIDIA also recently provided the cuTensor library
for tensor algebra primitives.331 Another effort by Kim et al.
introduced optimized device kernels for tensor contractions for
the (T) method.332 Their autogenerated CUDA kernels
reached >60% of peak on NVIDIA’s P100 and V100 GPUs
by using loop fusion, register tiling and transposing, and
shared-memory buffering. This effort culminated in the
COGENT generator for high-performance tensor contraction
kernels.333 The distinguishing feature of COGENT from
TAL_SH is that the latter permutes the argument tensors
before their contraction [the so-called Transpose-Transpose-
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GEMM-Transpose, (TTGT) strategy], thus consuming extra
memory bandwidth; direct (permutation-free) tensor contrac-
tion in COGENT (similar approaches are also used in CPU
kernels227,334,335) leads to the higher observed performance for
the vast majority of the performance benchmarks considered
by Kim et al.333

High-performance implementations of many-body methods
for heterogeneous distributed-memory machines are reviewed
next.
5.7.1. NWChem. The pioneering distributed-memory

implementation of any many-body method for CUDA-enabled
GPU platforms was the CUDA-enabled (T) code in NWChem
demonstrated by Ma et al.311,336 Speedup of ≈2.7 was
demonstrated via hybrid execution on 7 CPU cores (Intel
Xeon X5560) and 2 GPUs (NVIDIA Tesla T10) on each
node, relative to using the 7 CPU cores only. Because the
custom CUDA kernels written for this implementation
implement tensor contraction directly (i.e., do not use the
TTGT strategy), avoidance of the permutation on the CPU
can be a contributor to the observed speedup, i.e., the use of
non-TTGT kernels for the contraction on the CPU as well
could make the CPU-only code faster as well and thus reduce
the benefit from the GPU use. The data also illustrated the
importance of pipelining, i.e. the data has to flow into and out
of GPU in parallel with computation to maximally utilize the
GPU resources. Excellent parallel efficiency was attained for
both the CPU-only and hybrid code, E16→64 ≈ 98% and E16→64
≈ 89%, respectively. These developments were later used to
evaluate the N( )76 terms in renormalized337 and multi-
reference338 CCSD(T) methods.
A large scale application of the NWChem GPU-enabled

code on a leadership platform was reported by Ma et al.:339 the
all-electron (T) energy of a single pentacene molecule (cc-
pVDZ basis) was evaluated on 96 nodes of the Titan
supercomputer at OLCF,300 each node of which has one
AMD Opteron 6274 CPU (281.6 GFLOPS peak) and one
NVIDIA K20X GPU (1.3 TLOPS peak). The CPU-only
computation utilizing all 16 cores (2 cores in the Opteron
processor correspond to 1 floating-point unit) of the Opteron
chip took 9240 s, while the hybrid execution took 1631 s, for
an ≈5.7 speedup, which is slightly more than the theoretical
speedup. The absolute efficiency of this computation seems in
line with what we found in comparing the performance of the
(T) CPU codes in MPQC and NWChem (e.g., see the valence
computation on pentacene in Peng et al.,279 which performs at
most 4 times less work than the all-electron computation).
5.7.2. CTF. CTF can use GPU-capable BLAS library to

perform tensor algebra on the GPUs. Ibrahim et al. assessed
the parallel performance of CCSD implemented using GPU-
capable CTF on the Titan system.296 Unfortunately all tests on
Titan were performed at such scale that the execution time was
dominated purely by internode communication, thus little
benefit from execution on the accelerator would be expected.
5.7.3. MPQC. Evaluation of the closed-shell (T) energy on

CUDA-compatible GPUs was recently implemented in the
MPQC package by Peng et al.279 This development was
powered by the CUDA extension of the TiledArray framework,
to be available as a part of its first stable release. The final
algorithm of the GPU implementation is the same as the CPU
version; the only difference is the use of CUDA-specific tile
type to parametrize the C++ type for the relevant tensors.
Tensor contractions are implemented on the GPU using the
TTGT approach, with permutations (“transposes”, in the

language of CS community) performed by a custom fork340 of
the open-source cuTT library330 and GEMM performed by the
NVIDIA cuBLAS library.341 Management of the device
memory pool is provided by the open-source Umpire
library.342

It is instructive to examine the performance of several
incremental variants of the final (T) algorithm that differed in
the amount of work performed by the GPU. These variants
were compared on a single node of the NewRiver cluster242

equipped with two 14-core Intel Xeon E5-2680v4 CPUs (1075
GFLOPS total peak) and two NVIDIA P100 GPUs (≈9.4
TFLOPS total peak). Table 1). Variant v1 only performed

matrix multiplication (the “G” in “TTGT”) part of the tensor
contraction (nominally, this is the only step that costs N( )76 ),
with the integrals and amplitudes transferred to the device
memory and the resulting three-body intermediate copied back
to the host. The initial variant was slower than the CPU-only
implementation with both one and two GPUs utilized per
node. Variant v2 also performed tensor permutations (the “T”s
in “TTGT”) on the GPU, which provided substantial
improvement. Variant v3 used a memory pool to allocate the
memory on the device, to minimize explicit allocation and
deallocation of CUDA memory (the latter of which
synchronizes the device and thus interrupts concurrent
execution). This variant was the first in which even the use
of 1 GPU provided a boost over the CPU-only code. The final
algorithm contains all improvements of v3 plus implements
evaluation of outer products and the (T) energy evaluation on
the GPU; this completely eliminates the need to copy any data
other than the (T) energy contribution back to the host. The
final implementation exhibits speedups relative to the CPU-
only execution of {3.5, 5.8} with {one, two} P100 GPUs. This
is encouraging performance compared to the {4.4, 8.7} ideal
speedups estimated from the peak FLOPS rates of the
hardware.
The GPU-capable (T) code exhibited excellent strong

scaling, with speedup of 13.5 on 16 dual-P100 nodes of
NewRiver for a (H2O)20 cluster (cc-pVDZ basis set). Further
improvement is possible by the use of improved tensor
contraction kernels and optimizing the data movement to/
from GPU. The latter was recently implemented and the
updated performance will be evaluated elsewhere.

6. OUTLOOK
Over the past 40 years, the many-body quantum chemistry
methods have evolved into a viable alternative to more
approximate methods like DFT for large molecules and
materials. Critical to these developments were the many
robust numerical approximations that lead to (near-optimally)
reduced storage and computational complexities. Before these

Table 1. Multi-GPU Performance (in Minutes) of Different
Versions of (T) Implementation of (H2O)14/cc-pVDZ on
NewRiver

variant v1a v2b v3c finald

CPU 228
CPU + 1×NVIDIA P100 468 336 138 67
CPU + 2× NVIDIA P100 270 186 72 39

av1 = GEMMs on GPU. bv2 = v1 + permutation on GPU. cv3 = v2 +
use of CUDA UM memory pool. dfinal = entire (T) energy evaluation
on GPU.
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advances occurred, the conventional variants of many-body
methods, with high-order (sixth and higher) polynomial
computational complexity, were only applicable to small
systems; the deployment of conventional methods onto
parallel computers was critical for their application to larger
systems. The exponential rate of hardware advancement
(Moore’s law) was instrumental in making many of the
reduced-scaling developments viable, e.g., by helping reach the
crossover point from the naıv̈e to reduced complexity with
practical resources.
The emergence of the reduced-scaling formalisms does not

mean that parallel implementation of many-body methods is
no longer important. It is important to reduce the time to
solution for shortening the feedback loop in computation
exploration and design, for enabling the simulation of first-
principles dynamics, and even for increasing the power
efficiency by leveraging increased aggregate storage to reduce
the amount of recomputation. For some methods, the reduced-
scaling formalisms may not be viable, and thus, the
conventional full-scaling approaches are preferred. Lastly, the
full-scaling approaches are needed as the benchmark for
assessing their reduced-scaling counterparts.
The biggest challenge going forward is the continuing

slowdown of the exponential evolution of the classical
hardware. It is causing a disruptive increase in the complexity
of typical and high-end computational platforms. Massive
increase in the number of independent compute units in a
“single” computer, deep hierarchical and/or disjoint storage
spaces, emergence of accelerators and other types of
specialized hardware, focus on power efficiency and variable
precision, all make the deployment of compute-intensive
methods more difficult. How do we tackle these challenges
while dealing with ever more technically complex formalisms?
Increasing the level of composition and abstraction by domain-
specific abstractions/languages and code generation can help
isolate our science from the hardware. Another part of the
answer is to design our methods for the hardware. Examples of
such hardware-oriented algorithm design can be seen
throughout this review, e.g., trading off computation to reduce
communication via integral-direct algorithms, stochastic
evaluation, and other forms of recomputation. Similar
opportunities can be found in favoring methods suitable for
implementation in lower precision. Lastly, perhaps the
emergence of practical programmable hardware will allow for
exciting new opportunities to codesign hardware for software.
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(108) Weigend, F.; Köhn, A.; Haẗtig, C. Efficient use of the
correlation consistent basis sets in resolution of the identity MP2
calculations. J. Chem. Phys. 2002, 116, 3175−3183.
(109) Beebe, N. H. F.; Linderberg, J. Simplifications in the
generation and transformation of two-electron integrals in molecular
calculations. Int. J. Quantum Chem. 1977, 12, 683−705.
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near-linear scaling equation of motion coupled cluster method for
ionized states. J. Chem. Phys. 2018, 148, 244101.
(214) Dutta, A. K.; Saitow, M.; Demoulin, B.; Neese, F.; Izsaḱ, R. A
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