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ABSTRACT: We describe a robust method for determining
Pipek−Mezey (PM) Wannier functions (WF), recently introduced
by Jońsson et al. (J. Chem. Theor. Chem. 2017, 13, 460), which
provide some formal advantages over the more common Boys
(also known as maximally-localized) Wannier functions. The
Broyden−Fletcher−Goldfarb−Shanno-based PMWF solver is
demonstrated to yield dramatically faster convergence compared
to the alternatives (steepest ascent and conjugate gradient) in a
variety of one-, two-, and three-dimensional solids (including some
with vanishing gaps) and can be used to obtain Wannier functions
robustly in supercells with thousands of atoms. Evaluation of the
PM functional and its gradient in periodic linear combination of
atomic orbital representation used a particularly simple definition of atomic charges obtained by Moore−Penrose pseudoinverse
projection onto the minimal atomic orbital basis. An automated “canonicalize phase then randomize” method for generating the
initial guess for WFs contributes significantly to the robustness of the solver.

1. INTRODUCTION
Localized orbitals, by eliminating the artifacts of symmetry and
accidental degeneracy, are valuable for qualitative interpretation
of electronic states in terms of traditional concepts of chemical
bonding and as a computational basis underpinning many
reduced complexity algorithms in electronic structure. Localized
orbitals are particularly relevant for periodic solids, where due to
the lattice symmetry, the eigenstates of observables are
delocalized over the entire lattice; such delocalization becomes
counterproductive when the unit cell size significantly exceeds
the lengthscale of the decay of the 1-particle-reduced density
matrix or when the focus is on localized features of the electronic
structure (e.g., impurities and surface adsorbates).
For molecules, the most commonly used black-box local-

ization methods are those due to Foster and Boys (FB)1,2 and
Pipek andMezey (PM);3 several historically important methods
like Edmiston−Ruedenberg (ER)4 and von Niessen (vN)5 are
rarely used nowadays. All of these orbitals are defined as the
stationary points of the corresponding functional. For example,
the FB orbitals minimize the sum of squared position
uncertainties of the orbitals. PM orbitals maximize the sum of
squares of atomic charges of each orbital; the original PM
definition utilized Mulliken charges, which are meaningless for
non-minimal basis sets, and other definitions of atomic charges
are far more robust.6−10 An often cited advantage of the PM
orbitals is that, unlike the FB, ER, and vN orbitals, they usually
“separate” the σ and π orbitals,awhich is an important advantage
when interpreting the electronic structureb. Further enhance-
ments of these functionals include the use of higher-than-second
power analogues of the FB11 and PM8,9 functionals.

In periodic solids, the analogues of molecular localized
orbitals are referred to as generalizedWannier functions (WF),12

which, in contrast to conventionalWannier functions13 obtained
from a single band, mix Bloch orbitals from several bands.14

Marzari and Vanderbilt championed the use of the FB functional
to determine the generalized Wannier functions, which they
dubbed as maximally localized (generalized) Wannier functions
(MLWF).12 Since the implementation of anMLWF solver in the
Wannier90 package,15 the use of MLWF has become popular14

for interpreting the electronic states and as a basis in a number of
reduced-scaling many-body electronic structure methods.16,17

Note that the MLWF formalism is not unique; for example, the
FB localization of periodic orbitals by Zicovich-Wilson et al.,18

as implemented in the Crystal package,19 in contrast to the
approach of Marzari and Vanderbilt, uses a purely real-space
formulation. Furthermore, the choice of localization functional
itself is not unique; MLWFs are just one of many plausible types
of MLWF.
Recently, Jońsson et al. introduced the use of Pipek−Mezey

Wannier functions (PMWF),20 which, in contrast to the FB-
based WFs of refs 12 and 18 and analogously to the molecular
PM counterparts, do not mix the σ and π orbitals. Jońsson and
Lehtola evaluated PMWFs using charges defined via real-space
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partitioning; the atomic charges and PMWFs were found to be
insensitive to the specifics of the atomic partitioning, just as
molecular PM orbitals9 were found to depend weakly on the
choice of atomic charges used in the PM functional. The
maximum of the PM functional was located by the conjugate
gradient (CG)method, which for PM optimization in molecules
was found to be superior to the steepest ascent (SA) method.21

Unfortunately, the convergence of the CG solver for PMWFs, as
documented by Jońsson et al. as well as revealed in our own
experiments, can be fairly poor, requiring hundreds or even
thousands of iterations. Also note that the CG is used to
construct MLWFs in Wannier90.
As we discovered in our work, the performance of the SA and

(nonlinear) CG solvers for PMWFs can be greatly improved by
the Broyden−Fletcher−Goldfarb−Shanno (BFGS) solver.22−25
While BFGS26 as well as other quasi-Newton methods27,28 have
been used to solve for localized orbitals in molecules, to the best
of our knowledge, its use for Wannier function optimization has
not been considered. Thus, the main purpose of this manuscript
is to document the implementation of the BFGS PMWF solver
and compare its performance to that of SA and CG. Here, we
also document the particularly simple definition of atomic
charges that we devised via pseudoinverse projection on the
minimal basis, which is very convenient when employing the
linear combination of atomic orbitals (LCAO) representation of
the periodic solid’s orbitals. The result of this work is a robust
periodic localizer that has been successfully applied to one-,
two-, and three-dimensional systems with large Born−von-
Kaŕmań (BvK) unit cells, including some with vanishingly small
band gaps.

2. FORMALISM
2.1. Basic Definitions. The objective of PM localization is

to convert an input set of periodic (Bloch) orbitals (usually,
Hartree−Fock or Kohn−Sham orbitals) to a set of localized
orbitals. In our work, the orbitals are expressed in the LCAO
representation, expanded in (contracted) Gaussian AOs, and
obtained by the reduced-scaling Hartree−Fock method recently
reported by some of us.29 The jth Bloch orbital |ψj,k⟩with crystal
momentum wave vector k is a linear combination of Bloch AOs
{ϕν,k}

∑ψ ϕ| ⟩ = | ⟩
ν

ν νCj
j

k k k, , ,
(1)

Bloch AOs in turn are translation-symmetry-adapted linear
combinations of AOs {ϕν,R}

∑ϕ ϕ| ⟩ = | ⟩ν ν
·

N
e1 ik R

k
R

R, ,
(2)

with R denoting the origin of each primitive unit cell in the BvK
unit cell (“supercell”) composed of N primitive cells; by
convention, R = 0 corresponds to the reference unit cell. Please
note the different normalizations of Bloch AOs in eq 2 than is
traditional in the periodic LCAO literature.29−31

A generalized Wannier function centered in the unit cell at R
will be expressed as a linear combination of Bloch orbitals

∑ψ ψ| ̃ ⟩ = | ⟩− ·
N

e U1
i

k j

ik
j j

i
R

k

R
k k,

,
, ,

(3)

where i indexes the Wannier functions (localizing o Bloch
orbitals will produce oWFs) andNk is the number of k points in
the uniform (Monkhorst−Pack)32 quadrature used to integrate

the first Brillouin zone corresponding to the supercell in eq 2 (in
this work, we imposeNk =N).Matrices {Uk}, defined as (Uk)ji≡
Uj,k

i,c are unitary to ensure mutual orthonormality of WFs, both
associated with the same unit cell and between WFs associated
with different unit cells; this also ensures thatWFs span the same
space as the Bloch orbitals. No additional constraints, such as
realness of the WFs, are imposed.

2.2. PM Functional with Pseudoinverse Minimal Basis
Atomic Charges.The PMWFs are stationary points of the PM
functional

∑ ∑ ∑≡ | |P Q
A i

i
A p

R

R

(4)

where A indexes the atoms in the primitive unit cell, and i
indexes the Wannier functions. The atomic charge contribution
Qi

AR is the charge associated with orbital i on atom A in unit cell
R, and the charge exponent, p, is equal to 2 (conventional PM
functional) or 4 (fourth-order PM functional8,9).
The original work by PM used standard Mulliken charges3

ψ ψ= ⟨ ̃ | ̂ | ̃ ⟩Q Pi
A

i A i,0 ,0
R

R (5)

where

∑ ϕ ϕ̂ ≡ | ⟩⟨ ̂ |
μ

μ μ
∈

PA
A

R R, ,R
(6)

is the projector onto the AOs centered on atom AR defined via
the biorthogonal AO basis as

∑ϕ ϕ⟨ ̂ | ≡ ⟨ |μ
ν

μ
ν

ν
′

− ′
′S( )R

R
R

R
R,

,

1
,

,
,

(7)

or its Bloch-AO equivalent

∑ϕ ϕ⟨ ̂ | ≡ ⟨ |μ
ν

μ
ν

ν
−S( )R

k
R

k
k,

,

1
,

,
,

(8)

and S−1 denotes the inverse overlap matrix.
The key issue with the Mulliken charges as defined by eq 5 is

their ill-defined nature for non-minimal basis sets. This impacts
the robustness of the PM localization method bymaking the PM
orbitals sensitive to variations in the orbital basis set (OBS) and
geometry. Luckily, as noted by Knizia,8 Lehtola,9 and others,6

alternative charge definitions make the PM functional more
robust (the interpretation of the approach in ref 6 as PM with
non-Mulliken charge definitions was pointed out in ref 9). To
this end, Jońsson et al. utilized real-space partitioning of orbital
charge densities to obtain robust atomic charges for use in the
PM functional for periodic solids.20

In this work, we defined the PM functional using atomic
charges evaluated with the help of a pre-defined minimal basis
set (MBS) of atomic orbitals. Such projection onto an MBS has
been long employed to define OBS-independent atomic
partitioning of densities and thus, due to its basis independent
(intrinsic) nature, eliminates the undue sensitivity of charges to
the orbital basis. The use of such MBS-projected charges, in the
context of PM localization, has been frequently employed
recently.8−10,33d

There is no unique method to use an MBS to define atomic
charges, due to the arbitrariness of how to partition orbitals and/
or their charge densities into atomic components. It is also far
too easy to break desired invariants, such as the equality of the
sum of atomic populations and the number of electrons. For
example, replacing OBS AO ϕμ,R by MBS AO ϕ̅μ,R in eq 6 (such
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replacement is only meaningful if the overlap inverse is defined,
i.e., if the MBS is a subset of the OBS) violates such an invariant.
Thus, existing approaches8,10,33,35,36 utilize the MBS indirectly,
as a way to define an MBS-like subspace of the OBS. Here, we
use a simpler approach. Please note that, throughout the
following discussion, quantities with an overbar are expressed in
the MBS AO representation.
Consider the OBS AO representation of the Bloch orbitals,

obtained by plugging eqs 2 into 1

∑ψ ϕ| ⟩ = | ⟩
μ

μ μCi
i

k
R

R
k

R,
,

,
,

,
(9)

with Cμ,R
i,k defined as

≡μ μ
·C

N
C e1i i ik

R
k

k
R

,
,

, (10)

clearly, Cν,R
j,k = Cν,0

j,keik·R. Biorthogonal mapping of Bloch
functions on the MBS

∑ψ ϕ| ⟩ = ̅ | ̅ ⟩
μ

μ μCi
i

k
R

R
k

R,
,

,
,

,
(11)

is trivially obtained by solving

∑δ ψ ψ ψ ϕ= ⟨ | ⟩ = ⟨ | ̅ ⟩ ̅
μ

μ μCij i j j
j

k k
R

k R R
k

, ,
,

, , ,
,

(12)

for coefficients C̅μ,R
j,k. A least-squares solution is produced by

the Moore−Penrose pseudoinverse of the overlap matrix
between the target set of Bloch orbitals for the given k with
the MBS AOs in the reference cell, ϕ̅μ,0

∑ψ ϕ ϕ ϕ≡ ⟨ | ̅ ⟩ = *⟨ | ̅ ⟩μ
μ

ν
ν ν μCS( ) ( )i i

i
k k

R
R

k
R, , ,0

,
,

,
, ,0

(13)

Only simple Gaussian AO overlaps are needed to evaluate eq
13, with the lattice sum in eq 13 geometrically convergent.
Evaluation in other numerical representations, such as plane
waves (PWs), should be also straightforward. Extension of such
pseudoinverse MBS mapping to the molecular case is obvious,
where such procedure is related to how the corresponding orbitals
are constructed.37 Note also that the pseudoinverse-mapped
orbitals are not orthonormal; hence, the pseudoinverse charges
differ from the existing definitions for minimal-basis-derived
charges;8,10,33,35,36 however, the relationship between the
pseudoinverse MBS charges and other MBS-based charges is
outside of the scope of this article and will be discussed
elsewhere.
The OBS AO coefficients of the WF

∑≡μ μW
N

C U1i

k j

j
j

i
R

k
R

k
k,

,
,

,
,

(14)

are mapped straightforwardly to the MBS AO coefficients

∑̅ ≡ ̅μ μW
N

C U1i

k j

j
j

i
R

k
R

k
k,

,
,

,
,

(15)

The minimal-basis pseudoinverse charges are thus obtained
by replacing the OBS with the MBS in eq 5 and replacing the
corresponding OBS AO coefficient of the WF, ⟨ϕ̅μ,R||ψ̃i,0⟩ ≡
Wμ,R

i, with the corresponding MBS WF AO coefficient

∑ ψ ϕ̅ = ⟨ ̃ || ̅ ⟩ ̅ +
μ

μ μ
∈

c
e
dddddddddddd

f
h
ggggggggggggQ W1

2
h. c.i

A
i

i

A
R R,0 , ,

R

(16)

where “h.c.” denotes the Hermitian conjugate. Evaluation of
these charges in the LCAO representation leverages the Bloch-
MBS overlaps (eq 13) and is therefore completely straightfor-
ward. For a fixed MBS, these charges are expected to depend
weakly on the OBS and have a well-defined basis set limit.
To avoid introducing a new symbol, P will henceforth denote

the PM functional (eq 4) defined with the MBS pseudoinverse
charges.

2.3. PM Functional Maximization. 2.3.1. Initial WF
Guess. It is easy to see that the WFs, defined by the unitary
matrices {Uk} in eq 3, are in general not uniquely defined by the
corresponding functional. The nonuniqueness stems from
several factors. First, PM and other functionals defining WFs
are invariant with respect to arbitrary permutations of the
sequence of WFs. This may appear trivial, but in general, it
means that comparing sets of WFs produced in two separate
computations is not straightforward (see e.g. ref 20). Second, the
WF functional is invariant with respect to all or some of the
geometric transformations of the space group of the crystal
(such as shifting a WF by a lattice vector). Third, the functionals
definingWFs routinely havemultiple maxima for a given system;
hence, finding the global maximum is NP-hard. Thus, WF
computation relies on heuristics to generate initial guesses for
{Uk}; this initial guess and other solver details determine which
functional maximum will be located.
Initial guesses for generalized WFs are typically obtained by

projecting Bloch orbitals onto some trial functions. For example,
Marzari and Vanderbilt utilized Gaussians located at expected
centers of charge of Wannier functions, such as midbond
centers;12 such user-controlled guess construction is also
utilized by Wannier90.15 A more automated approach was
used by Zicovich-Wilson et al.,18 who approximately projected
Bloch orbitals onto the reference cell’s AO basis (since they
expanded the Bloch orbitals in an AO basis already, such
projection was trivial); unfortunately, such a choice is not
appropriate when covalent bonds cross boundaries of the unit
cell. A similar approach was used by Mustafa et al.,38 who
projected Bloch orbitals (expanded in PW basis) onto an
appropriate set of AOs that spanned a space containing the
target Wannier set. To account for the covalent bonds crossing
the unit cell boundaries, the projection AO set must include AOs
not only in the reference cell but also in its nearest periodic
images.
Note that these projection-based approaches are still not

robust enough to deal with multiple minima, since it is necessary
to generate multiple initial guesses to probe the global optimality
of the resulting WFs. Thus, Jońsson et al.20 simply generated
guess WFs using randomly-generated {Uk} and ran multiple
computations.
Here, we have devised a novel automated “canonicalize phase

then randomize” (CPR) method for generating guess WFs that
can be applied to arbitrary Bloch orbitals expressed in LCAO
and non-LCAO representations. The first step in this method is
motivated by the realization that, to produce localized Wannier
functions even for bands composed of a single atomic orbital
(e.g., core bands), it is helpful to canonicalize the phases of the
AO coefficients at different k points. Such phase canon-
icalization can be viewed as removing the gauge freedom of
the Bloch orbitals; once the arbitrariness of the gauge is
removed, then the original Wannier prescription,13 eq 3 with
{Uk} set to identity, will recover the maximally localized state,
namely, the atomic orbital in the reference cell. Of course, the
generalized Wannier functions can compensate for the gauge
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freedom of the Bloch orbitals via the k-dependence of {Uk};
thus, the generalized Wannier orbital for a single-AO band with
arbitrary gauge transformation will still be a single AO (although
it will not necessarily be the reference cell AO). However, by
including the phase canonicalization of the input Bloch orbitals,
the WF functional maximization becomes more robust by
starting from a good initial guess.
Phase canonicalization in the CPR method proceeds as

follows:
• The set of Bloch orbitals at the Γ point (k = 0) is split into

degenerate subsets (bands). A set of orbitals is considered
degenerate if its eigenenergies are within a prescribed
energy tolerance ϵ.

• For each band α, the phase-def ining subset of AOs, {μα},
includes AOs μ that have the largest occupancies in the
band:

∑ρ ≡ | |μ
α

μ
α

αC
i

i
,0

,0
,0

,0 2

(17)

where iα are the Bloch orbitals in band α. The phase-defining AO
set, {μα}, thus includes the AOs with the greatest contribution to
the band; it can include a single AO (most common) or multiple
AOs (due to geometric symmetry and band degeneracy).

• The phase of every Bloch orbital, i, at the Γ point is
aligned so that the coefficient of the f irst phase-defining
AO, μαi(0), for its band, αi, is positive

→ ×
| |

μ μ
μ

μ

α

α

L
N
MMMMMMMM

\
^
]]]]]]]]C C

C

C
i i

i

i,0 ,0
,0

,0

i

i

(0)

(0)
(18)

This step eliminates possible arbitrary phase factors that were
introduced by the SCF solver and makes all AO coefficients at
the Γ point real.

• Bloch orbitals at every k point are next mapped to the
matching orbital at the Γ point. To perform such
matching, consider orbitals i and j at two neighboring
points k and k′, respectively. Their reference cell MBS
“overlap” is defined as the overlap of the Bloch orbital ψi,k
with the Bloch orbital ψj,k′ pseudoinverse-projected (see
Section 2.2) onto the reference cell’s MBS AO basis:

∑ ψ ϕ̅ ≡ ⟨ || ̅ ⟩ ̅
μ

μ μ′
′S Cj

i
i

j
k

k
k

k
,

,
, ,0 ,0

,

(19)

All matrix elements in this equation were already evaluated
when computing the MBS AO projections of the Bloch orbitals
for the purpose of computing atomic charges. For every i ∈ [0,
o), where o is the number of Bloch orbitals being localized, ψi,k
matches orbital ψj,k′ point if |S̅j,k′i,k| is the largest among all j; if the
match candidate ψj,k′ has been declared a match for a another
orbital i′ < i, the next best candidate is chosen. If orbital ψi,k was
matched to orbital ψj,k′, its phase is canonicalized such that its
reference-cell MBS overlap is real

→ ×
| ̅ |

̅μ μ
′

′

L
N
MMMMMM \

^
]]]]]]C C

S

S
i i j

i

j
ik k

k
k

k
k, ,

,
,

,
,

(20)

Since the goal is to align the phases of bands at all k points to
the bands at the Γ point, the band matching is performed using
sequences of k points originating from the Γ point that span the
entire first Brillouin zone mesh. Assuming that points in a
uniform mesh of k points are indexed by triplets (i, j, k), with i, j,

k = 0, ±1, ±2, ..., ±⌊Nk/2⌋, for one-dimensional structures,
bands at the mesh points (1, 0, 0) and (−1, 0, 0) are matched to
the canonicalized bands at the (0,0,0) (Γ point), and then bands
at mesh points (2, 0, 0) and (−2, 0, 0) are matched to the
canonicalized bands at (1, 0, 0) and (−1, 0, 0), respectively, and
so on. Similarly, for a two-dimensional structure, the bands at (i,
1, 0) and (i,−1, 0) are matched to the canonicalized bands at (i,
0, 0) and so forth.

• To account for band crossings, bands at point k are sorted
to appear in the same order as their matching bands at
point k′.

Despite its relative simplicity, the phase canonicalization is
fairly robust and significantly improves the quality of the trial
Wannier functions (see Supporting Information). However, the
described algorithm is not perfect: (1) it requires a dense
Brillouin zone mesh to track high-dispersion bands across the
Brillouin zone reliably, (2) it relies on an ad hoc way of matching
bands, and (3) it does not account for arbitrary rotations among
the degenerate bands. Work to address these shortcomings is
underway and will be presented elsewhere.
Performing the phase canonicalization ensures that using

identity for {Uk} produces well-localized WFs for many bands.
Note, however, that the “intra-cell” localization is not assisted by
the phase canonicalization; thus, it alone will not be sufficient for
systems with large unit cells. To be able to locate the global
maxima of the PMWF functional by sampling the initial guesses,
by default, we initialize {Uk} with a (quasi)random unitary
matrix generated from a user-supplied seed. Note that the same
unitary matrix is used for every k in order to preserve the benefit
of phase canonicalization.
All computations reported in the manuscript used the CPR

guess generated with the same (default) seed value. In the
Supporting Information, we report additional computations
that, after the phase canonicalization, initialized {Uk} with
identity matrices as well as with random {Uk} generated
nonuniformly across the first Brillouin zone (i.e., a different
quasirandom matrix was used for every k quadrature point,
thereby canceling the benefit of phase canonicalization). The
performance of the default CPR and “identity” CPR was found
to be similar, whereas using the random nonuniform guess
required significantly more iterations to reach convergence;
however, the final PM functional value was found to be the same
for all initial guesses.
Clearly, since the CPRmethod is defined intrinsically without

any reference to the LCAO representation, it can be utilized in
the context of non-LCAO (PW and other) representations as
long as the Bloch orbitals can be projected onto the MBS AOs.
As discussed above, projection on localized states is common in
preparing trialWannier functions;12,18,38 the use of a fullminimal
AO basis for projection makes the CPR guess (1) well defined
even in the limit of a complete OBS (in contrast to the approach
of ref 18) and (2) more black-box by eliminating the need to
guess positions or composition of target Wannier functions (in
contrast to the approaches of refs 12 and 38).

2.3.2. PM Functional Gradient. To find a maximum of the
PM functional, we will use global gradient-based optimization.
The gradient of P with respect to {Uk} is expressed
straightforwardly

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00238
J. Chem. Theory Comput. 2021, 17, 7406−7415

7409

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00238/suppl_file/ct1c00238_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00238/suppl_file/ct1c00238_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


∑ ∑

∑
∑

ψ ϕ

ϕ ψ

ψ ϕ ϕ

ψ

∂
∂ * = | ̅ | [⟨ || ̅ ⟩ ̅

+ ̅ *⟨ ̅ || ̃ ⟩]

= | ̅ |

[⟨ || ̅ ⟩ ̅ + ̅ *⟨ ̅ |

| ̃ ⟩]

μ
μ μ

μ μ

μ
μ μ μ μ

−

∈

− − ·

∈

P
U

p
N

Q W

C

p
N

Q e

W C

( )
( )

( )

j
i

k A
i
A p

A
j

i

j
i

k A
i
A p i

A
j

i j

i

k R
k R R

R
k

R

R

k R

k R R
k

R

, ,

1
, , ,

,
,

, ,0

,

1

, ,0 , ,
,

,

,0

R

R

(21)

eq 21 uses the standard complex-valued form39 of the derivative
of a real-valued function of complex-valued parameters, (∂f/
∂z*)≡ (∂f/∂Rez) + i(∂f/∂Imz), which makes the notation more
compact. The evaluation of the gradient again leverages the
Bloch-MBS overlaps (eq 13) and is straightforward.
It is of course more convenient to express the PMWF

functional in terms of nonredundant variables by introducing
the standard exponential parametrization of a unitary matrix, U
≡ exp(κ − κ†), where κ is a complex triangular matrix. It is
straightforward to convert the “Euclidean” gradient arranged as
a matrix for each k

Γ ≡ ∂
∂ *

P
C

( )
( )j

i

j
ik

k, (22)

to its “curvilinear” counterpart

κ
≡ ∂

∂ *
PG( )

( )j
i

j
ik

k, (23)

as follows40,41

= Γ − Γ† †G U U( ) ( )k k k k k (24)

Note that Gk is antihermitian, just like κk − κk
†. Maximization

of the PMWF functional expressed in terms of κk is a standard
(unconstrained) nonlinear optimization problem; its solution is
described in the following section.
2.3.3. Direction Choice: SA, CG, and BFGS. The main focus

on our work is how to solve for the PMWFs robustly. As the
reference methods for locating the PM functional maxima, we
will use the SA and (nonlinear) CG methods. In particular, we
have chosen three specific varieties of CG for comparison: the
Polak−Ribier̀e formulation (CGPR),42 the Fletcher−Reeves
formulation (CGFR),43 and the Hestenes−Stiefel formulation
(CGHS).44 Due to the well-known nature of SA and nonlinear
CG (see, e.g., any textbook on numerical optimization), we will
not discuss their implementation details here, except to note
that, for each of the three different CG variants considered, we
also varied the number of SA steps taken before beginning CG.
The numbers of initial SA steps considered in this work were 1,
2, 5, 10, and 15, meaning that, for each system, we ran a total of
15 different CG calculations. Also note that the optimization
problem of the real-valued PMWF functional P was recast (as
usual) in terms of real and imaginary components of the
complex-valued parameters Uj,k

i, that is, henceforth the gradient
and other vectors will consist of o(o − 1)Nk real numbers only,
where o is the number of Bloch orbitals being localized;e

complex-valued formulations of the optimization problem45

were not considered here.
The BFGS method, though also well-known, warrants a bit of

discussion. In particular, we have employed the “two-loop
recursion” form of the limited-memory BFGS46 (L-BFGS;

henceforth, we will omit the “L-” prefix unless this algorithmic
detail is relevant) algorithm for updating the estimated inverse
Hessian; the initial estimate of the inverse Hessian was chosen to
be an identity matrix. Because each BFGS iteration depends on
some number of prior iterations (the “history”) to generate an
updated estimate of the inverse Hessian, it is necessary to select
the size of this history (i.e., the number of iterations kept). In
addition, regardless of the history size, the first update must be
necessarily be SA since the history does not yet exist. Of course,
it is also possible to perform any number of SA steps before
beginning the BFGS procedure, and it is these two parameters
(the history size and the number of initial SA steps) that define
the BFGS algorithm as implemented here. For all systems, we
used five different initial SA values and five different history sizes,
for a total of 25 BFGS solver setups. The initial SA values
considered were 1, 2, 5, 10, and 15; the history sizes considered
were also 1, 2, 5, 10, and 15. In future discussion, BFGS
parameters are indicated as ⟨no. of SA steps, history size⟩.

2.3.4. Line Search. Regardless of how the direction was
chosen (SA, CG, and BFGS), the line search was performed in
the same manner, using a low-order polynomial approximation
of the objective function along the trial direction. First, the
proposed direction is checked to point uphill (if not, the trial
direction is reversed). Then, given a fitting range upper bound
Tμ (see below) and the polynomial order n = 4, the PM
functional is evaluated at n + 1 evenly-spaced points, {μ0 ≡ 0, μ1
≡ Tμ/n, μ2 ≡ 2Tμ/n... }, in [0, Tμ]. The {P(μi)} set is then used
to construct a polynomial fit, f(μi), and the bisection method is
used to find a root of f ′(μi). The fitting range and polynomial
orders are determined as follows.

• Iteration 0: Tμ is estimated from the shortest orbital
rotation frequency ωmax along the given direction via eq
15 of ref 41 (the largest ωmax is chosen among all k
points).

• Iteration i: the upper bound from the previous iteration is
used as a trial upper bound. If P(μ1) is less than P(0), then
Tμ is reset to μ1, else P(μk) are evaluated for increasing k
until P(μk) < P(μk−1) is found. If such k is found, values
{P(μi)}, i ∈ [0, k] are fitted to polynomial of order k − 1;
else, Tμ is reset to 5Tμ and the process is repeated.

Finally, if we fail to find an acceptable upper bound along a
chosen direction, we will reset to the SA direction. If the upper
bound is not located in the SA direction or the root finder fails,
then the upper bound is recomputed as done at the start. These
resets are rarely necessary when performing BFGS.
Note that, in addition to resetting the CG direction to the SA

direction whenever an acceptable upper bound cannot be found,
it is also necessary to reset the CG direction every n iterations,
where n is the number of orbitals being localized. This is because
a system with n variables can only have n conjugate directions.

3. COMPUTATIONAL DETAILS
All calculations were carried out in the developmental version of
the Massively Parallel Quantum Chemistry (MPQC) package
(version 4.0.0).47 All computations were performed on the
Cascades commodity cluster at Virginia Tech.48

Hartree−Fock computations were carried out using the
reduced-scaling LCAO formalism described in ref 29. The
Coulomb potential was evaluated using multipole-accelerated
real-space summation and density-fitting approximation, where-
as the exchange potential was evaluated using concentric atomic
density fitting.29 Table 1 lists the test systems as well as the
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corresponding OBS, the Monkhorst−Pack mesh size, and the
PM convergence threshold employed for each. In all cases, the
def2-universal-JFIT basis set49 was used as the density fitting
basis (in ref 29, we showed that the errors due to the use of this
fitting basis and the local fitting approximations were sufficiently
small for all systems considered in this study). The
pseudoinverse atomic charges were evaluated using the
Huzinaga MINI basis set50−52 as the minimal AO basis; a
limited comparison to the results obtained with other MBS is
presented in the Supporting Information. All occupied orbitals
(including core) were localized. The PM functional with p = 4
(see eq 4) was utilized throughout. Complete input files (which
specify unit cell parameters) and geometries can be found in the
Supporting Information.
Note that the convergence thresholds that we use in this work

are significantly tighter than the typical threshold of 10−5 utilized
in the comparable studies.21,28 A slightly looser convergence in

bulk Si was due to the greater range of the lengthscales of the
Wannier functions in this system; localizing core and valence
orbitals separately would alleviate these issues, but was not
pursued in order to keep the solver assessment protocol as
uniform and as stringent as possible.

4. RESULTS
As discussed in Section 2.3.1, the PM functional does not specify
WFs uniquely; thus, to compare computed WFs, we compare
the corresponding values of the PM functional; twoWF sets will
be referred to as equivalent if they correspond to the same value
of the PM functional up to target precision. For every test
system, all PMWF solvers considered in this work (BFGS with
25 parameter settings, CG with 15 parameter settings, and SA;
see Section 2.3), when converged successfully, produced WFs
that were practically equivalent; only for silicon and the carbon
nanotube did the variance of the final P value exceeded 10−8 (see
the Supporting Information for more details). Limited testing
also indicated that the use of the standard (CPR) and
nonstandard guesses produced equivalent sets of Wannier
functions.
Although all solvers produced equivalent sets of PMWFs, the

number of iterations needed to locate the maxima of the PM
functional differed dramatically between the different classes of
solvers. Column “min” in Table 2 lists the minimum number of
iterations needed to arrive at the solution, broken down by the
system and solver class. In all cases except the zero-gap system,
the BFGS solver converged in fewer than 60 iterations in the
best-case scenario, and only two systems requiredmore than 100
iterations in the worst-case scenario. Each of the three CG
variants managed to converge in under 100 iterations for at least
one system, but even CGFR, which saw the most success in
converging in less than 100 iterations, only did so for three

Table 1. Test Systems Used to Assess the Performance of
PMWF Solvers, along with the Relevant Computational
Detailsa

system OBS
Monkhorst−Pack

mesh sizea
PM gradient

norm

trans-(C2H2)∞ 6-31G* 101 10−8

(C2H4)∞ 6-31G* 101 10−8

(4,0) nanotube 6-31G* 51 10−8

graphene 6-31G 21 × 21 10−8

h-BN 6-31G 21 × 21 10−8

LiH CR-cc-pVDZ53 11 × 11 × 11 10−8

diamond 6-31G* 11 × 11 × 11 10−8

silicon 6-31G* 11 × 11 × 11 10−7

aAll systems except h-BN utilized primitive unit cells; an
orthorhombic non-primitive unit cell was used for h-BN.

Table 2. Length Summary

system solver min max mean st. dev. system solver Min max mean st. dev.

C2H2 BFGS 31 47 40.5 3.5 h-BN BFGS 45 57 50.2 3.3
CG 1398 2534 2007.5 389.1 CG 174 808 260.8 160.9
CGPR 1398 1934 1708.6 209.0 CGPRc 174 808 339.3 312.7
CGFR 1752 1832 1801.0 35.5 CGFR 174 250 210.6 35.5
CGHS 2483 2534 2513.0 22.5 CGHS 235 257 248.2 8.3
SA 1745 SA 175

C2H4 BFGS 24 37 29.0 3.2 LiH BFGS 10 22 14.5 4.2
CG 66 729 230.7 209.8 CG 14 1441 783.2 607.2
CGPR 69 425 215.0 133.2 CGPR 786 1062 900.6 122.7
CGFR 109 187 158.6 33.8 CGFR 14 23 17.6 3.8
CGHS 66 729 318.4 344.6 CGHS 1395 1441 1431.4 20.4
SA 52 SA 1457

diamond BFGS 23 28 24.7 1.4 nanotube BFGS 75 101 86.1 8.3
CG 39 212 89.6 65.3 CG 713 2275 1174.5 471.0
CGPR 43 212 133.0 69.6 CGPR 935 2275 1309.0 581.3
CGFR 39 51 46.2 5.1 CGFR 1015 1903 1447.8 334.5
CGHSa CGHS 713 853 766.8 55.4
SAb SA 485

graphene BFGS 53 186 86.0 42.0 silicon BFGS 21 29 24.1 2.0
CG 2657 3666 3296.8 275.8 CG 32 2975 954.9 1240.7
CGPRc 2657 3666 3234.8 439.4 CGPR 113 221 176.4 44.3
CGFR 3321 3376 3346.4 21.6 CGFR 32 83 55.4 19.9
CGHSa CGHS 2243 2975 2633.0 310.8
SAb SA 3171

aAll five calculations failed to converge. bCalculation failed to converge. cOne calculation failed to converge.
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systems. In other cases, the various CG variants could take
thousands of iterations to converge, and CGHS failed to
converge in 4,000 iterations for both diamond and graphene,
regardless of the starting number of SA steps. Depending on the

system, SA could converge in under 50 iterations or take
hundreds or thousands to converge; in two cases, it failed to
converge at all within 4000 iterations. Even in the best-case
scenario (i.e., minimum iterations to convergence), BFGS was

Figure 1. Plots of the difference between the PM functional value P and the converged value P0 vs the iteration count. For each system represented, the
shortest calculation in each category was chosen; P0 was taken to be the greatest final P value across the selected calculations for a given system.
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always superior to CG and SA, though the latter two could
sometimes come close. But even when CG and SA were nearly
comparable to BFGS in terms of number of iterations to
solution, their convergence behavior could not be counted on, as
is evidenced by the much larger calculation length standard
deviations for these solvers compared with the same metric for
BFGS. Overall, the performance of the SA andCG solvers can, at
best, be characterized as unreliable; in contrast, BFGS is reliably
rapid.
Due to the significant variation in the performance of the CG

and SA solvers for different systems, it is difficult to pinpoint the
origin of their struggles. Figure 1 illustrates the convergence
patterns observed for representative 1-d, 2-d, and 3-d test
systems. The superior performance of BFGS compared to CG
and SA is plainly visible. Also note the extended plateau
exhibited by the CG and SA solvers in the 1-d system, which is a
typical CG convergence pattern54 and which suggests a high
condition number of the PM Hessian in this system. The BFGS
solver also exhibits a plateau in this system, but it is much
shorter. Lastly, the quality of the initial guess can vary greatly
from system to system: in the 1-d system, the initial guess is
clearly significantly worse than in the 2-d and 3-d systems, as
indicated by significantly larger initial deviations.
The performance of BFGS is also relatively insensitive to the

choice of its parameters, namely, the number of SA steps at the
start and the history size, as illustrated in Table 2. The small
standard deviation of the BFGS solvers’ performance (<10 for all
systems other than graphene) indicates that approximately the
same number of iterations is needed to locate the maximum
regardless of the BFGS parameter values. In contrast, the CG
solvers’ performance can depend strongly on the number of
starting SA steps. This correlates with the unreliable perform-
ance of the CG solvers that we noted previously.
In addition, the number of iterations needed for the CG solver

also correlates as expected with the findings of Jońsson et al.,20

whose implementation of CG required hundreds of iterations in
periodic systems. Cases where our CG implementation
converged in fewer iterations may be a result of differences in
initial guess (CPR in our work, random guess in their work),
while situations in which our CG implementation took longer
may be due to the tighter convergence thresholds employed
herein. Furthermore, the only 3-d system that Jońsson et al.
reported was a benzene crystal,20 which, like other molecular
crystals, would have low-dispersion band structure and for which
it should be easier to generate a localized initial guess (see our
discussion in Section 2.3.1). We focused on the more
challenging ionic and covalent 3-d systems.
Although the BFGS-based PMWF solver is already highly

robust, some parameter choices are systematically better than
others. Thus, we analyzed the distribution of the number of
iterations needed to locate the solution for a given system with
the given BFGS solver parameter values relative to the smallest
number of iterations needed for that system; the results of this
analysis are listed in Table 3 (see the Supporting Information for
the raw number of iterations for each system). We highlighted
the smallest and largest values in each column to make it easier
to locate the fastest and slowest solvers. The ⟨2, 15⟩ BFGS solver
is overall the fastest, both on average and in the worst-case
scenario, and thus is the recommended default choice.

5. SUMMARY AND PERSPECTIVE
We described a robust BFGS-based solver to obtain
(generalized) PMWF in periodic solids whose use was

pioneered recently by Jońsson et al.20 The PM functional used
in this work utilized atomic charges using a simple
pseudoinverse projection onto a pre-defined minimal AO
basis, thus making its evaluation convenient in a periodic
LCAO representation. An essential contributor to the robust-
ness of the solver is the novel automated CPR method for
generating the initial guess. The limited-memory BFGS solver
converged very tightly in fewer than 60 iterations in one-, two-,
and three-dimensional systems featuring a variety of bonding
patterns (covalent and ionic) and gaps, even in systems with very
large BvK unit cells (thousands of atoms). The sole exception
was one system with a vanishing gap, where ∼80 iterations were
needed. This is a significant improvement on the more
traditional SA-based solver that can require hundreds or
thousands of iterations, or the nonlinear CG solvers that often
converge faster than SA, but can unpredictably converge very
slowly or even fail to converge at all. Although the performance
of the solver was relatively insensitive to the BFGS history size, a
history size of 15 iterations was found to be near optimal.
Clearly, the BFGS-based solver should be robustly useable for

computing other generalized Wannier functions, such as the
Boys (maximally-localized) WFs. Although here we only
explored localization of occupied states, the solver should be
also applicable to the unoccupied states with valence character.
The automated CPR method for generating initial WF guesses
could be used in conjunction with PW-based representations of
Bloch orbitals, potentially improving on the existing ap-
proaches.12,38 Lastly, it is also worthwhile to assess the efficacy

Table 3. Statistical Analyses of the Number of Iterations to
Solution for Each BFGS Solver Parameter Seta,b,c,d

aColored boxes identify the smallest and largest values in each
column as follows: green (smallest), blue (second smallest), red
(largest), orange (second largest). bA “min” value of 1 indicates that
this solver was the fastest (required the fewest iterations) for at least 1
test system. cA “max” value of 1.5 means that, for every test system,
this solver required at most 50% more iterations than the fastest solver
for that system. dA “mean” value of 1.2 means that, for a give test
system, this solver required on average 20% more iterations than the
fastest solver for that system.
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of BFGS-based solvers for other challenging orbital optimization
problems in molecules and solids, such as localization of
unoccupied (virtual) orbitals21,28 and for the orbital optimiza-
tion in the context of Perdew−Zunger self-interaction-corrected
DFT (notably, some limited use of BFGS in this context was
recently reported by Lehtola et al.55).

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00238.

Additional computational data (PDF)
Complete program inputs and molecular geometries
(ZIP)

■ AUTHOR INFORMATION
Corresponding Author
Edward F. Valeev − Department of Chemistry, Virginia Tech,
Blacksburg, Virginia 24061, United States; orcid.org/
0000-0001-9923-6256; Email: efv@vt.edu

Authors
Marjory C. Clement − Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States

Xiao Wang − Department of Chemistry, Virginia Tech,
Blacksburg, Virginia 24061, United States; Center for
Computational Quantum Physics, Flatiron Institute, New
York, New York 10010, United States; orcid.org/0000-
0003-1402-7522

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00238

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the U.S. National Science
Foundation (awards 1550456 and 1800348) and by the Virginia
Tech Institute for Critical Technology and Applied Science
(M.C.). We also acknowledge Advanced Research Computing
at Virginia Tech (www.arc.vt.edu) for providing computational
resources and technical support that have contributed to the
results reported within this paper. The Flatiron Institute is a
division of the Simons Foundation.

■ ADDITIONAL NOTES
aGradient-driven optimization of the four aforementioned
localization functionals starting from unmixed σ and π orbitals,
such as the canonical orbitals, preserves the σ/π separation.
However, the stationary points of the FB, ER, and vN functionals
that mix σ and π orbitals are usually more optimal than the
unmixed solutions; thus to arrive at the optimal solution, the σ/π
symmetry is broken by, for example, randomizing the initial
guess. In contrast, the PM localization will usually separate σ and
π orbitals even if the starting guess involves their linear
combinations. However, the σ/π separation does not always
occur in PM localization (simple counterexamples include
diatomic molecules).
bHowever, unlike the ER and vN orbitals, the PM orbitals lack
the intra-atomic localizaton.
cThe superscript and subscript indices on matrix elements refer
to the columns and rows, respectively.

dCuriously, even Mulliken recognized that the free-atom
orbitals are ideal for defining charges by remarking: “the ideal
LCAO-MO population analysis would perhaps be in terms of
free atom SCF AO’s”.34
eIn practice, the implementation uses pairs of real square
matrices to represent κk, Gk, thus using 2o

2Nk (instead of o(o −
1)Nk) parameters. This is due to the lack of support for the
(anti)symmetric matrix format in the Eigen library used for
numerical manipulations in the PM solver.
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