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ABSTRACT: Approximation of a tensor network by approximating (e.g.,
factorizing) one or more of its constituent tensors can be improved by canceling
the leading-order error due to the constituents’ approximation. The utility of such
robust approximation is demonstrated for robust canonical polyadic (CP)
approximation of a (density-fitting) factorized two-particle Coulomb interaction
tensor. The resulting algebraic (grid-free) approximation for the Coulomb tensor,
closely related to the factorization appearing in pseudospectral and tensor
hypercontraction approaches, is efficient and accurate, with significantly reduced
rank compared to the naive (nonrobust) approximation. Application of the robust
approximation to the particle—particle ladder term in the coupled-cluster singles and
doubles reduces the size complexity from O (N°) to O (N°) with robustness
ensuring negligible errors in chemically relevant energy differences using CP ranks

PPL-DF-CCSD error
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approximately equal to the size of the density-fitting basis.

1. INTRODUCTION

Numerical approximation of the (matrix elements of the)
Hamiltonian is a ubiquitous strategy for decreasing the cost and
complexity of quantum simulation of, e.g,, electronic structure in
both real space and spectral representations. Examples in
spectral representations include density fitting (DF: also
referred to in quantum chemistry as the resolution-of-the-
identity (RI), in global"* and local’~®), the pseudospectral®™"?
(PS) approach, Cholesky decomposition (CD),"*™" the fast
multipole method (FMM),”*** tensor hypercontraction
(THC),”™*" the canonical polyadic (CP) decomposition
(also known as CANDECOMP/PARAFAC*>*?)**~* and
many others.*' ° These approaches can be coarsely classified
as (a) abstract (algebraic) approximations of the Hamiltonian
tensor (e.g, CD, CP, global DF, algebraic EMM>"*?) and (b)
approximations that utilize physical context (e.g., use of grids in
pseudospectral and THC, domain decomposition in FMM and
local DF).

It is common to wish to approximate tensors in a tensor
network. In such a case, it may be possible to construct a better
network approximation to the original tensor network than
obtained by approximating the individual tensors in the
network. Inspired by these basic observations, we consider the
robust” approximation of tensor networks, in which the leading-
order error due to the approximation of the network
constituents is canceled. Here, we demonstrate the utility of
the idea by constructing a robust CP (rCP) approximation for a
simple network of 2 order-3 tensors obtained by the DE-
factorization of the two-particle Coulomb interaction tensor.
Unlike DF-factorization alone, the rCP-DF decomposition
reduces the complexity of the ladder-type diagrams in many-
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body electronic structure methods. The robustness of the
approximation ensures a favorable prefactor; in this work, cost
savings are observed for systems with as few as three atoms, as
demonstrated for the particle—particle ladder (PPL) diagram in
the coupled-cluster method with single and double excitations
(CCSD).

The rest of the paper is organized as follows. In Section 2 of
this paper, we introduce the idea of robust approximation of
tensor networks, use it to construct an eflicient algebraic
approximation to a two-particle interaction tensor, and discuss
how to utilize the proposed factorization to evaluate the
particle—particle ladder (PPL) diagram with reduced complex-
ity. Section 3 describes the details of the computational
experiments. Section 4 compares the performances of nonrobust
and robust approximations applied to the CCSD PPL diagram
using standard benchmark sets of noncovalent interaction
energies and reaction energies. Section 5 summarizes our
findings and discusses other possible applications of the idea.

2. FORMALISM

2.1. Robust Approximation of Tensor Networks.
Consider a tensor network composed of a sequence of tensors,
{7y w0 TR} =17}, i=1, ., k. For our purposes the
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(&) gab.cd (b) Factorization of gap, cq (¢) CP factorization of
via Bq. (5) Bpg,x via Eq. (10)

(d) CP-PS factorization of gap,cq via Eq. (17)

(e) CP-DF factorization of gup cq via Eq. (19)

Figure 1. Graphical representation of the two-particle interaction tensor (eq 4) and factorizations thereof considered in this work.

network can have arbitrary topology, it does not even need to be
connected. Our objective is to minimize the error in the network
due to replacing tensors 7; by their approximants ‘7A', Assuming
that the approximation error in each tensor

1

=T, -7, (1)

is “small”, ie, || 5, || = O(e), the tensor network can be
accurately represented in terms of tensor approximants by
including terms linear in the error

(T o Ty =Ty o T3
+ 2 ATy o Tiop 6, Tipn o Ti) + O()
j

)
Note that the naive approximation of the network, given by the
first term on the right-hand side, is only accurate to O(€). A

robust approximation, accurate to O(€?), is obtained by plugging
eq 1l into eq 2

(Ty o T = =Ty o T3)
+ 24Ty o T Ty Ty o Tid + O()
j

()

Clearly, the robust approximation is only applicable to tensor
networks, not individual tensors.

In the context of numerical tensor approximations, the robust
approximation has enjoyed a long use by the electronic structure
community.*>***%%¢ Despite its simplicity and/or apparent lack
of novelty, in the context of tensor computation, the idea has
potentially significant unexplored utility. Its utility came as a real
surprise to us when we stumbled on its novel application,
described below.

2.2. Robust Approximation of a Factorized Two-
Particle Interaction Tensor. Consider tensor representation
of a two-particle interaction” in a generic basis of size n

8ibed = ﬂ @*(1’1)%(1‘1)8(1&; rz)(pc*(fz)qﬁd(fz) dr dr, (4)

The comma separator between indices defines the default
matricization; namely, matrix O will refer to the matricized form

of tensor O, with element O, , .. located in row p,p,... and

column ¢,q,... of the matrix. It is also useful to convey tensor

expressions diagrammatically; in Penrose notation tensor, g is
represented as a single node (Figure 1).

To efficiently approximate g, it is important to retain the
analytic properties, such as symmetries and positivity. In this
work, specifically, we must consider the properties of the
Poisson kernel, g(ry, r,) = Ir; — 1,7, which is “positive” in both
two-particle and one-particle senses, i.e., both g,f(r}, r,) = g(r},
;) X f(ry, r,) and g, f(r;) = /g(rl, r,)f(r,) dr,, respectively, are
positive-definite operators.

For positive-definite kernels, the tensor g can be factorized
into a symmetric form

gab,cd ~ Z Bub,XBcd,X
X (5

which, in its matrix form, is recognized as the ubiquitous,
symmetric particle-wise factorization

g ~ BB' (6)

Such “generalized square-root” factorization is not unique. One
way to compute the factorization efficiently is by a (rank-
revealing) Cholesky decomposition (CD);"’ for any finite
precision, the CD rank (i.e., the number of columns of B) is
O(n). Another way to compute this symmetric factorization is
via DF, where

Byx = Cab,Y(Gl/Z)Y,X (7)

the fitting coefficients C,,y are determined by weighted least-
squares fitting,' " typically, using the Coulomb “metric”

(G)yy = /frﬁx(l)g(l, 2)¢,(2) d1 d2 )

and the square root of G is defined by eq 6, rather than the
conventional, principal square root. The size of the fitting basis
{¢x}, denoted here by X, is in practice proportional to .

For large systems, CD and DF approaches lead to sparse B;
however, on large basis sets, the onset of sparsity can be slow and
thus difficult to exploit. Hence, it may be worthwhile to seek
more general data sparsity in B by further factorization. For
example, consider the approximate CP factorization of B

R

By x & Zﬁa,r’%,ﬂ’x, ©)
- 9
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For real basis functions, g,,.; and, hence, B,y are symmetric
with respect to the a <> b permutation; this symmetry is ensured
automatically if k,, = f3,, or

R
Bah,X ~ Bah,X = Z ﬂu’,ﬁb,,yxﬂ
p (10)
57,58

It is well known that (aside from trivial examples) finding
the exact CP rank R is hard, but there are efficient ways to
construct such approximations for a fixed CP rank, R.**~°"

Tensor factorization of Coulomb interaction eq 4 that utilizes
CP topology has been long employed in electronic structure.
This is due to the natural connection between CP factorization
and quadrature approximation for an integral over a product of
three or more factors. Most relevant for our purposes is
Friesner’s pioneering use of a pseudospectral (PS) method (PS
methods are also known as discrete variable representation
[DVR] methods) to solve the Hartree—Fock equations for
electrons.” His work led to the pseudospectral family of
methods,” "' ~"* which approximate Coulomb integrals using
a numerical quadrature over one electron. This quadrature
approximation is also employed in the COSX meth-
od™™*64875062 4nd in the approximation of many-electron
integrals in explicitly correlated F12 methods.*®

Computing g, s using numerical quadrature involves
replacing the integration over a single electron, for example
electron 1, with a sum over a set of quadrature points

St © 2l )00 [elry ) ()b () dr
' (11)

Introducing

X,o = [ h(x) (12)

Vo= [ty )75 dr (13)

leads to the algebraic form of the PS approximation

PS
~ %
gah,cd ~ ZX“rgXb’ng’Cd
g (14)

which makes the connection to CP factorization obvious; note
that the summation over grid points g corresponds to the three-
way hyperedge in the diagrammatic representation of eq 14 in
Figure 1d. In practice, accurate implementation of the PS
approximation is sensitive to the choice of the grid and requires
various measures to reduce the error.?***¥3%%% However, the
algebraic form of the PS approximation can be viewed as an
abstract tensor network approximation of g, ., with factors X
and Y defined not by the particular choice of real-space
quadrature in eq 11, but by arbitrary fitness conditions.
Inserting a quadrature once for every particle leads to, what
Martinez and co-workers termed, the tensor hypercontraction®

(THC) approximation™* %1% of Labed
THC " N
St R 20 e () (g, 1 ) ()b (x,)
818,
(15)
and its algebraic form
THC % "
8abyed 2 2Xa,gIXb,gIYgl,ngc,gZXd,gz
& & (16)

The diagrammatic representation of eq 16, shown in Figure le,
includes two three-way hyperedges. Clearly, the same idea can
be applied to a matrix element of any (local) n-body operator.®®
THC approximation was originally exploited in the algebraic
form, using algebraic CP decomposition of three-center overlap
integrals in the context of (nonrobust) overlap-metric DF to
define factors X and Y in eq 16 (“PE-THC”).”® It was
subsequently formulated using real-space quadrature to define
factors X and least-squares fitting to determine factor Yin eq 16
(“LS-THC”).***”*" What these approaches have in common
with each other and with other related factorizations®” is the use
of the tensor network topology of eq 16; how the factors are
determined can differ widely between the methods.

Although our focus in this paper is on the three-way CP
factorization (CP3) we should also note that the direct four-way
algebraic CP factorization of Coulomb integrals (CP4) has been
employed by Benedikt and co-workers.** ™ Related four-way
factorizations of Coulomb integrals have been considered by
Peng and Kowalski, who proposed to compress the Cholesky
factors of the Coulomb tensor by the singular vector
decomposition (SVD); the use of factorized integrals has been
explored in the CC method.®® More recently, Motta and co-
workers employed a similar multistep factorization to reduce the
cost of auxiliary-field quantum Monte Carlo methods.”” The
similarity of these factorizations to the four-way CP decom-
position is due to the appearance of the four-way hyperedge,
whereas all of the factorizations considered in this work are
limited to three-way hyperedges only.

To introduce the main result of our work, consider how to
best introduce the CP3 approximation (eq 10) for the
symmetric (CD/DF-like) factorization in eq S. Using CP3
once produces a PS-like factorization, to which we will refer as
CP-PS

R R

CP-PS
gah,cd ~ Z Z 'Ba,rﬂb,ryx,yBcd,X = Z :Ba’,ﬂb,r(yB)cd,y
X r r
(17)
where we introduced
(yB)cd,r = Z yx,rB:d,X
X (18)

compare eq 17 to eq 14 to recognize the connection to the
algebraic PS factorization. Using CP3 twice produces a THC-
like factorization, to which we will refer as CP-DF

R

CP-DF S
gab,cd ~ z z ﬂa,rﬂb,r}/X,r z 'Bc,r’ﬁd,r’}/X,r’
X

/
r r

R

R
=2 BB 28,0,

r' (19)

where we introduced (}’}’T)r,r’ = ) xx,Yx,; compare eq 19 to eq
16 to recognize the connection to the algebraic THC
factorization.

Clearly, both CP-PS and CP-DF approximations are linear in
the error introduced by the CP3 approximation (eq 10). As
discussed in Section 2.1, it is possible to eliminate the linear error
using the robust form of CP-DF, to which we will refer as rCP-
DF

https://doi.org/10.1021/acs.jctc.0c01310
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rCP—-DF

~
~

CP-PS _ CP-DF
gab,cd gab,cd ab,cd
R

R
= 2 8.8, |20B)iy = 28,8, ("),

p

(20)

Although the rCP-DF approximant has a higher computational
cost, than either CP-PS or CP-DF, computing the PPL diagram
with the rCP-DF approximation has the same complexity (

O(N®)) as the aforementioned approaches. However, the
systematic error cancellation unique to rCP-DF should, at
equal CP rank, result in significantly smaller errors than either
CP-PS or CP-DF and thus should be computationally superior
to these simpler alternatives.

2.3. Application to the Particle—Particle Ladder
Diagram. Our primary objective is to reduce the computational
cost of the particle—particle ladder (PPL) diagram in CC and
other many-body methods. It is well known that both PS'"'®
and THC factorizations’””” can reduce the computational
complexity of the PPL term in the canonical molecular orbital

(MO) basis from O(N®) to O(N°); hence, the same should be
possible for the PPL term in the rCP-DF approximation. Indeed,
plugging in eq 17 into the spin-free PPL expression (permuta-
tional symmetry is ignored for simplicity) yields

CP—PS
- CP-PS

Zguh,cdtbdi/ ~ PPL

bd

R
=242 <rB>cd,r[Z ﬂt]
r d b

(21)

The order of evaluation that minimizes the operation count is
shown by parentheses, with the result of each binary tensor
product stored in an intermediate tensor. The inner-most
product, Zhﬂb,rtbdij - (I l)rdij) is covariant (i.e., it is a pure tensor
contraction) and has an operation cost of 20*4*R, where 0 and u
are the numbers of occupied and unoccupied MOs, respectively,
and Ris the CP rank. The second product is of general type (i.e.,
it cannot be mapped to a single matrix multiplication) and has
the same cost as the first product. The last product is a pure
contraction and has the same cost as the other two contractions.
The total operation count of the CP-PS approximated PPL is
thus 60*u’R vs the 20%u* cost of the naive approach; note that
precomputing the (yB) intermediate (eq 18) is done once,
outside of the CCSD solver loop, and has the negligible cost
(2u*XR, where X is the size of the DF fitting basis). We can
expect computational savings from the use of CP-PS when R <
/3.9

The PPL term can be similarly reformulated with the O(N°)
cost using the CP-DF approximation. One approach, utilized by
Parrish et al.”” and Hummel et al.,”” uses the CP-PS route (eq
21) by recomputing the appropriate intermediates

CP-DF
- CP-DF
Z gab,cdtbdij ~ PPL
bd

R
= Z B, Z (}’é)cd,r[z ﬂb,rthdif]
r d b

(22)

where (y]AS)C,,,’, is the CP-factorized intermediate (yB).,,
obtained by inserting eq 10 into eq 18°

’

r

R
(yB)Cd;f = Z yX,r[ 2 /)Zz,r’ﬁh,r’yX,r’]
X

(23)

The operation count of this route is 60*2R; hence, the crossover
relative to the naive PPL evaluation occurs at the same CP rank
as in the CP-PS route.

Another CP-DF route, utilized by Hummel et al.”’ and
Mardirossian et al,®® introduces order-4 tensors with two CP
indices

CP-DF

" CP-DF
D Gopudtii ~  PPL
bd

1.37

R

B[ (rr D, Z ﬂl,,{z ﬂd,,/tbdij]
' b d

R
28,

(24)

Compared to three tensor products in the CP-PS approach, the
CP-DF route has five products, with all but the third product of
(rr") being pure contractions. The operation count is 40*u’R +
40*uR* + 0°R?; since in practice R >>u, the cost is expected to be
dominated by the 40’uR* contribution.

To reduce the operation count, relative to the conventional

PPL, the route outlined above requires R < y/u’/2 = w22
(compared to R < u*/3 requirement of the CP-PS-based route).
Clearly, the cost crossover occurs earlier in the CP-PS-based
route. Furthermore, the low arithmetic intensity of the element-
wise (Hadamard-like) third product in eq 24 lowers the
computational efficiency of this approach. For these reasons,
throughout our work we used the CP-PS-based approach, eq 22,
to implement CP-DF PPL.

Clearly, the PPL term can be therefore approximated via rCP-
DF with the O(N°) cost by naively combining the CP-PS and
CP-DF approximations

CP—-DF
> g, i~ 2% PPLTTS — pprtrF
bd (25)

Plugging eqs 21 and 22 into eq 25 and refactoring leads to the
following evaluation scheme with optimal operation count

rCP—-DF

2 tCP—DF
D Guodtiiy ~ PPL
bd

=28, (yﬁ)cd,,[z ﬁb,,tbdi,.]>
r d b

in which we introduced
(yg)cd,r = Z(yB)cd,r -

The total operation count of the rCP-DF PPL approximation is
60%”R, which is identical to that of the CP-PS and CP-DF PPL
approximations. Thus, rCP-DF is the preferred three-way CP
approach in the context of the PPL evaluation.

(26)

(vB).a, 27)

3. COMPUTATIONAL DETAILS

CP approximations for order-3 tensors were computed using the
standard alternating least squares (ALS) method.*””° Although
ALS can be slow to converge and the quality of the solution can
strongly depend on the initial guess,”" we found that our solver
converged robustly with an initial guess of vectors generated
using quasi-random numbers taken from the uniform distribu-
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Figure 2. Absolute errors in matrix elements of g, ,; for a water dimer with S66 configuration approximated by the CP-PS, CP-DF, and rCP-DF
factorizations obtained with ALS precision of € = 1073, The error bars denote the max/min unsigned errors.

tion on [—1,1]. No consistent benefit was found from an initial
guess scheme that generated factor matrices using the higher-
order SVD (HOSVD)”? padded with random vectors (where
random vectors were generated as just described). Furthermore,
no discernible benefit was found from the use of a regularized
ALS (RALS) solver.”* The use of nonlinear and gradient-based
solvers™” as an alternative to ALS will be investigated in future
work.

Assessment of the CP-based Coulomb tensor factorizations
utilized the full S66 benchmark set of weakly bound complexes”*
as well as a 12-system representative set of 12 complexes (S66/
12); some computations utilized a smaller seven-system subset
of S66/12 (systems 1—4 and 10—12; dubbed S66/7). The S66
geometries were taken from the Benchmark Energy and
Geometry Database (BEGDB).”> Additional assessments
utilized the HJO12 set of isogyric reaction energies,”””” the
eight low-lying conformers of (H,0);,”*”® and a conformer of
(H,0)5.”"%° All of the above computations utilized the cc-
pVDZ-F12 (abbreviated as DZ-F12) orbital basis set (OBS).*"
The two-electron interaction tensors were approximated using
standard Coulomb-metric density fitting using the aug-cc-
pVDZ-RI (abbreviated as aVDZ-RI) density-fitting basis set
(DFBS).®” Assessment of the basis set variation in the
performance of rCP-DF used the following additional OBS/
DFBS pairs: the aug-cc-pVDZ*>** (aVDZ) OBS paired with the
aVDZ-RI DFBS, the aug-cc-pVTZ (aVTZ) OBS™** paired with
the aug-cc-pVTZ-RI** (aVTZ-RI) DFBS, and the cc-pVTZ-
F12°*' (TZ-F12) OBS paired with the aVTZ-RI DFBS. The CP
approximations of Coulomb integral tensors were utilized in
only the PPL diagram of CCSD. Only valence electrons were
correlated in all CCSD computations.

All computations were run on the Virginia Tech Advanced
Research Computing’s Cascades cluster which utilizes standard
nodes that contain two Intel Xeon ES-2683 v4 CPUs, and high-
memory nodes, each with four Intel Xeon E7-8867 v4 CPUs.
Only the (H,0),, computations utilized Cascades’ high-
memory nodes. In the following section, speedup is determined
as

tpE—ccsp

speedup =
tep—ppr—DE-ccsp T fcp—aLs (28)

where thp ccsp and tep.pprpe.cosp are the total time it takes to
compute the CCSD correlation energy with either the DF or CP
approximation applied to the PPL diagram and tcp_y; g is the time
it takes to compute the CP decomposition using the ALS
method.

The CP-ALS decomposition was implemented in C++ in the
open-source Basic Tensor Algebra Subroutine (BTAS) library.*®
The CP-DF, CP-PS, and rCP-DF approximations are
implemented in a developmental version of the Massively
Parallel Quantum Chemistry (MPQC) package.*®

4. RESULTS

The discussion of computational experiments is organized as
follows. In Section 4.1, we examine how the errors in the matrix
elements of the Coulomb operator converge with respect to the
CP rank. It turns out that the use of CP in the CP-PS and CP-DF
approximations results in two types of errors: due to suboptimal
factors in the tensor network and due to the deficient CP rank;
the use of the robust approximation greatly reduces both types of
errors. In Sections 4.2 and 4.3, we discuss the error in the CCSD
energies introduced by and the cost reduction of the CP
approximation of the PPL diagram, respectively. Note, to
standardize CP rank across systems, we report the CP rank in the
units of X (the size of the density-fitting basis), which grows
proportionally to .

4.1. Errors in Coulomb Matrix Elements: Effects of CP
Factor Optimality, CP Rank, and Robustness. The most
direct way to assess a particular factorization of the Coulomb
interaction tensor is to examine the matrix elements themselves.
Since the data varies little between systems, Figure 2 shows the
absolute errors of the matrix elements of g, 4 for a particular
system, namely, the water dimer at the S66 geometry. The first
observation is that both the average (solid circles) and the
maximum (horizontal line) errors decrease in the CP-DF > CP-
PS > rCP-DF series, with the CP-DF and CP-PS errors decaying
with the CP rank at a similar rate, and much slower than the rCP-
DF errors. This observation is easy to explain. Using the matrix

https://doi.org/10.1021/acs.jctc.0c01310
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Figure 3. Mean unsigned errors in the per-electron CCSD correlation energies (kcal/mol) of molecules in the S66/12 data set, relative to canonical
CCSD, induced by the (a) CP-DF, (b) CP-PS, or (c) rCP-DF approximations to PPL vs the ALS precision (¢). The error bars denote the max/min

unsigned errors.

notation introduced in eq 6, it is clear that the leading-order
error of the CP-DF-factorization should be roughly twice the
error of CP-PS

- 1,4 A
gDF _ gCP PS _ ! — z(BBT + BBT)

_l T T
—-2(6B +B6) (29)

g™ — g PP = BB — BB" = 68" + B8 + 66"

— Z(gDF _ gCP—PS) + 66T (30)

where B is the matricized form of the CP approximant in eq 10,
and

6=B-B (1)

is the CP error tensor. Clearly, as the CP rank increases, the CP
error § decreases but the CP-PS/CP-DF ratio of errors stays
approximately 2. Since the rCP-DF is quadratic in 8, the rCP-DF
error should decay with the CP rank faster than either that of
CP-PS or CP-DF. The improvement of rCP-DF over CP-DF is
approximately 1 order of magnitude for R = 1.5X and approaches
2 orders of magnitude for R = 5X.

It is instructive to wonder whether it is possible to improve
CP-PS and CP-DF approximations solely by relaxing the factors
in the respective tensor networks approximating g, ... Indeed, it
is important to recognize that CP-PS and CP-DF approx-
imations utilize CP factorization of B that is optimal (in the

least-squares sense) for representing B, not g. It is therefore
possible to optimize the factors in the tensor networks
approximation of g directly. Partial relaxation of the factors in
the CP-PS and CP-DF networks to minimize the error in g was
already employed in some real-space-based THC developments
by Parrish et al,,”**” and full relaxation of the CP-DF network
cost was implemented by Schutski et al*’ (e.g, see the
discussion of their THC-ALS-RI solver). To investigate whether
the suboptimality of the CP-DF network using the B-optimized
factors is significant, we implemented an ALS solver that
minimizes the CP-DF error in g°¥;¥ the operation complexity of

such solver is identical to the O(N*) complexity of the ALS
solver for the CP decomposition of B, albeit the prefactor is
somewhat larger. Only few iterations are needed to relax the CP-
DF network fully with respect to g if we use, as the initial guess,
the factors obtained by CP3 decomposing B.

As the data in Sections 4.2 and 4.3 indicates, the tensor
element errors obtained with the g-optimized CP-DF network
are moderately smaller than the errors of the reference CP-DF
network, but still exceed the CP-PS errors and they are not
competitive with the errors in the zero-cost robust CP-DF
approximant. This observation suggests that the dominant
source of error in the CP-DF (and CP-PS) approximants is the
deficiency of the CP rank. The robust approximation is clearly
able to greatly reduce both sources of error, due to the
suboptimality (with respect to g°F) of the factors in the CP-DF
network and due to the deficient CP rank.

https://doi.org/10.1021/acs.jctc.0c01310
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.jctc.0c01310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01310?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01310?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.0c01310?rel=cite-as&ref=PDF&jav=VoR

Journal of Chemical Theory and Computation

S66/12, DZ-F12/aVDZ-RI

1071 4
\\\
10—2 4

© N~ T T ——e
g
© ~ - 4 | -7
o ~o
~ 1034 f ‘\f_ -
o I
o
=
O]
@ 1074
£
°
£
Q
uJ
1073
- rCP-DF @ CP-DF
—&— CP-PS
1076 L — : . : . . . ! .
1X 15X 2X 25X 3X 35X  4X 45X 5X
CP Rank
(a)

pubs.acs.org/JCTC
S66/12, DZ-F12/aVDZ-RI
0.04 1
® 4
\
— \
o \\
£ 0.021 N
© \
|9} \
~ \
5 0.00
5
2
2 -0.02
Q
3 ,
| -& rCP-DF & CP-DF
0.04 ; & CP-PS
- I
1X 15X 2X 25X 3X 35X 4X 45X 5X
CP Rank
(b)

Figure 4. Mean unsigned (a) and signed (b) errors, respectively, in the CCSD binding energies (kcal/mol) of the S66/12 data set, relative to canonical
CCSD, induced by the CP-DF, CP-PS, or rCP-DF approximations to PPL vs CP rank R (in units of the fitting basis, X). ALS precision fixed at € = 107>,

The error bars denote the max/min errors.
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4.2, Errors in the CCSD Energies vs the CP Approx-
imation Parameters. The error of the CP approximation is
determined by the CP rank, R, and by the precision, €, of the
inexact CP solver (in our case, ALS); as already mentioned, we
found negligible dependence of the ALS solution on the initial
random guess. The ALS precision in this work is estimated by
the difference between the current and previous iteration’s
decomposition “fit” A defined for eq 10 as

R
Bﬂb;X - Zr ‘Ba,rﬂb,ryX,r
A=10- =1.0 —
1By, xl

161l

1By x I
(32)

where 6 is the CP error tensor as defined in eq 31. Clearly,
because € depends on the change in the loss function, smaller
values for € do not necessarily lead to a smaller CP error. Thus,
we first assessed how the error in Eccgp due to the CP
approximation depends on € for a range of fixed CP ranks, R.
4.2.1. Variation of the CP Error with the ALS Solver
Precision. Figure 3 reports the relationship between € and the
CP error in the valence CCSD correlation energy per electron
for the S66/7 test set for CP ranks in the X < R < 5X range. For

low CP ranks (R < 2X), the error varies little with . As CP rank
increases, progressively smaller values of € are required to obtain
sufficiently converged ALS solutions. However, the effect of € on
the CCSD energy is significantly weaker than that of the CP rank
R

4.2.2. Variation of the CP Error with the CP Rank. Figure 3
indicates that increasing the CP rank R reduced the error in the
CCSD energy monotonically. It also gives the first evidence of
the performance advantage of rCP-DF over CP-DF and CP-PS.
At R = 1.5X (the red line in Figure 3c), rCP-DF is more accurate
than both CP-DF and CP-PS with R = 2X (the orange line in
Figure 3a,3b). Furthermore, the error in CCSD energy is
reduced at a fast rate, with respect to CP rank, for rCP-DF, which
corroborates our discussion in Section 4.1. For each R and at
converged ¢, the rCP-DF approximation introduces an error
which is at least an order of magnitude smaller than the error
introduced by either CP-DF or CP-PS.

Then, we examined the influence of the CP rank on the errors
in chemical energy differences, rather than in absolute
correlation energies. The unsigned and signed errors in the
weak noncovalent binding energies of the S66/12 test set and in
the HJO12 isogyric reaction energies are reported in Figures 4
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Figure 6. Mean unsigned (a) and signed (b) errors, respectively, in the CCSD binding energies (kcal/mol) for the S66/7 data set, relative to canonical
CCSD, induced by the rCP-DF approximation to PPL vs CP rank R (in units of the fitting basis, X) using three different basis sets, aVDZ/aVDZ-R],
aVTZ/aVTZ-R], and TZ-F12/aVTZ-RI. ALS precision fixed at € = 1073, The error bars denote the max/min errors.

and S, respectively. Because, compared to R, € has a relatively
small influence on Eccgp, we have limited this assessment to
using relatively loose ALS tolerances of € = 107" The target
level of performance, defined here stringently as the maximum
error of less than 0.1 kcal/mol, is achieved with CP-DF and CP-
PS when R > 2X. However, the use of rCP-DF allows us to attain
the target accuracy with a much smaller CP rank, R > X. For all
relevant CP ranks, rCP-DF is at least an order of magnitude
more accurate than CP-DF and CP-PS. As expected, the CP-PS
errors are roughly a factor of 2 smaller than those due to CP-DF.

The performance of the rCP-DF approximation to PPL is
relatively insensitive to the basis set. Using the larger TZ-F12
OBS as well as the standard correlation-consistent aVD,TZ OBS
does not appear to radically change the convergence trends, as
illustrated in Figure 6." The errors in binding energies are small
(<0.1 kcal/mol even with R = X) and rapidly decrease when R is
increased. The protracted convergence with the CP rank when
using the aVDZ basis is somewhat puzzling, but is likely due to
the need for tighter CP solver convergence for the smaller basis
sets.

It is instructive to compare the rCP-DF approximation for the
PPL diagram with the best THC-based approach for the same,
namely the least-squares THC(DF) method [LS-THC(DF)]
and its orbital-weighted extension [W-LS-THC(DF)] devel-
oped by Parrish et al.”’ Table 1 juxtaposes the maximum

Table 1. Maximum Absolute and Relative Errors in Valence
TZ/TZ-RI DF-CCSD Correlation Energies (mE,) of Eight
Low-Lying (H,0)4 Clusters’®*

maximum absolute error ~ maximum relative error

rCP-DF 0.45 0.036
LS-THC(DF)*’ 2.13 0.18
W-LS-THC(DF)*’ 0.29 0.03

“For the rCP-DF approximation, CP rank and ALS precision were
fixed at R = 1.3X and € = 1073, respectively.

absolute and relative CCSD energy errors due to the rCP-DF
and the THC PPL approximations for the eight low-lying
(H,0)4 conformers. The same OBS/DFBS basis set pair, TZ/
TZ-RI, was utilized for all computations. The rCP-DF approach
used R = 1.3X, whereas the corresponding LS-THC grid size
corresponds to R & 4X, i.e., roughly three times larger than used

by our method. Although the absolute energies are most
accurate with the W-LS-THC(DF) method of Parrish et al., the
relative energies of the clusters are nearly as accurate with our
method, despite its much smaller CP rank. Most importantly,
the rCP-DF approach greatly outperforms its true THC
counterpart, LS-THC(DF), again despite the much smaller
CP rank. It is clear that the errors of the rCP-DF approach can be
reduced further in the context of the CC methods by combining
it with the orbital-weighting idea of Parrish et al.”’

4.3. Cost Reduction vs DF-CCSD. Then, we examined
whether the stringent target errors in CCSD energies due to the
rCP-DF PPL formulation can be attained along with
demonstrated computational cost savings.

The observed speedups in the DF-CCSD computations due
to the CP-based PPL reformulations are illustrated for the
clusters in the S66/12 test set in Figure 7a. Just as in Section
4.2.2, only € = 1072 are reported in the paper, with the ¢ = 107
results available in the Supporting Information. Significantly
smaller average speedups were observed with € = 10™* compared
to € = 1073, for the same CP rank. This suggests that the cost of
ALS CP solver can increase dramatically with €, due to the
increasing number of ALS iterations. To further illustrate this
point, Figure 7b demonstrates the speedups obtained by
excluding the cost of ALS. We see that ALS has the most
dramatic effect on the cost when ¢ is tighter and R is larger.

Unsurprisingly, ALS optimization had the greatest impact on
the smallest molecules. Figure 7c demonstrates that the speedup
for the seven largest clusters in the S66/12 set is significantly
greater than the average speedup over the entire set and for all
values of R. Since we found the energies relatively insensitive to
the choice of €, we recommend the use of € ~ 1072 for all
practical computations, unless extremely high target accuracy is
sought.

We further assessed the performance of the rCP-DF PPL
approximation for the S66/7 data set with three additional basis
set pairs (Figure 8). As one might expect, for larger basis sets, like
TZ-F12 or aVTZ, the PPL diagram contributes significantly
more to the cost of CCSD; hence, even greater cost savings from
rCP-DF are observed.

To further assess the performance of the rCP-DF PPL
approximation, we computed the errors in CCSD binding
energies for the entire S66 test set, using R=1.3Xand € = 1075
the results are reported in Figures 9 and 10. For all systems, the
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Figure 7. (a) Average speedup (eq 28) of CCSD with rCP-DF-approximated PPL vs CP rank R (in units of the fitting basis, X) for the $66/12 data set.
ALS precision fixed at € = 107>, The error bars denote the max/min speedup. (b) Average speedup (eq 28, excluding the cost of CP-ALS) of CCSD
with rCP-DF-approximated PPL vs CP rank R (in units of the fitting basis, X) for the S66/12 data set. The error bars denote the max/min speedup. (c)
Average speedup (eq 28) of CCSD with rCP-DF-approximated PPL vs CP rank R (in units of the fitting basis, X) for the seven largest clusters in the

S66/12 data set. The error bars denote the max/min speedup.
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the S66/7 data set. ALS precision fixed at € = 1073, The error bars
denote the max/min speedup.

errors introduced by rCP-DF are significantly less than 0.1 kcal/
mol, and the computational savings are realized for all systems,
with the average speedups of 4. This figure shows a clear trend:

larger molecules benefit more from rCP-DF than smaller
molecules. This trend is an artifact of the ALS optimization: as
we increase the system size, the cost of CCSD increases faster
than the cost of the ALS and, thus, computing the ALS takes up a
smaller percentage of the total CCSD time, as illustrated in
Figure 11. To note, although we only show speedup for the S66
cluster molecules, all of the dissociated cluster molecules also
experienced a reduced cost over canonical DF-CCSD. The
smallest dissociated molecule, a single water molecule, saw a cost
reduction of a factor of 2. To demonstrate the performance of
the DF-CCSD method with the rCP-DF-approximated PPL
term for a larger system, we used it to compute the binding
energy of (H,0),, with results reported in Table 2. With the
recommended values of R and ¢, the cost of CCSD can be
reduced by a factor of 3.8, with only a ~0.03 kcal/mol impact on
the binding energy.

5. SUMMARY AND PERSPECTIVE

In this work, we considered how robust (in the Dunlap sense™)
approximation of tensor networks, in which the leading-order
error due to the approximation of the network constituents is
explicitly canceled, can be used profitably to construct efficient
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factorizations of the two-particle Coulomb interaction tensor.
We specifically considered tensor networks utilizing CP
decomposition of order-3 tensors that arise from generalized
square-root factorizations of the Coulomb tensor, namely
Cholesky and density fitting. The single use of the CP

decomposition leads to a tensor network resembling the
factorization in the well-known pseudospectral (PS) method,
whereas double CP insertion leads to the tensor network
topology of the tensor hypercontraction (THC) factorizations.
Robust factorization combines these two base factorizations,
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Table 2. Valence CCSD Correlation (Eccgp, Ep,) and
Dissociation Energies (D,, kcal/mol), the Average Per-
Iteration Time Spent in CCSD (tccgp, §), and Its PPL
Contribution (tppy, s) for the (H,0),, Cluster”

Eccsp D, tcesp tppr, tep.aLs
DF  —5.02009 18247 136 x10*  1.11 x 10*
CP  -5.02233 18244  347x10° 117x10° 232x10°
error speedup
—141x 1073 2.81 x 1072 3.92 9.46

“The total time of the CP-ALS optimization is also reported (tcp.ars,
s). CP rank and ALS precision are fixed at R = 1.3X and € = 1073,
respectively.

resulting in a 1—2 order reduction of the error over either naive
substitution scheme. A deeper analysis of the errors in the
Coulomb interaction tensor reveals that the novel factorization,
dubbed rCP-DF, corrects both errors resulting from the
suboptimality of the CP factors as well as the errors due to
deficient CP rank.

As is also possible with the PS and THC factorizations, the
rCP-DF-factorization lowers the operation complexity of the

cost-dominant PPL diagram in pair theories from O(N 6) to

O(N®). Here, we demonstrated in practice that the rCP-DF-
approximated PPL can lower the practical cost of DE-CCSD
even for systems with as few as three atoms. We make this claim
because sufficiently small (on the thermal energy scale) errors
can be achieved with a CP rank approximately equal to the rank
of the density-fitting basis itself; this hyperedge size requirement
is substantially smaller than the requirements in previous PS and
THC studies. For example, for the standard S66 and HJO12
benchmark sets of noncovalent interaction energetics and
reaction energies, respectively, the use of such a low CP rank
induces maximum errors of only ~0.1 kcal/mol. For the larger

example of a 20-water cluster, the rCP-DF error in the
dissociation energy was found to be only 0.03 kcal/mol.

Although the complexity reduction due to the use of rCP-DF
is very modest, the use of rCP-DF-PPL in the context of divide-
and-conquer reduced-scaling CC approaches like FMO,*’
CIM,*® DEC,**° and others’’ might be beneficial to reduce
the cost of the fragment computation.

The proposed robust tensor factorization of the Coulomb
interaction, clearly, can be improved further, as well as applied in
other contexts. Some of the promising ideas are listed here:

e This particular robust CP-based factorization, which we
consider here, utilized the density-fitting-based general-
ized square-root factorization of the Coulomb tensor,
though it should be trivial to apply the factorization to
other square-root factorizations, such as the (pivoted)
Cholesky.

e Although we only considered algebraic CP decomposi-
tion of the square root factor, it should be possible to use
the idea in the context of quadrature-based factorization,
such as PS, COSX, and least-squares THC. For example,
robust LS-THC should allow for the use of smaller grids
than currently possible (the juxtaposition of the rCP-DF
and LS-THC(DF) performance in Section 4.2.2, albeit
limited, suggests that grid size reductions of a factor of 3 or
more are realistic). Robust factorization should also
simplify the formulation of analytic gradients.

e A combination with other ideas such as the use of orbital-
biasing explored in LS-THC-based coupled-cluster”” and
the use of frozen natural orbitals should be beneficial.

e The efficiency of the CP solver can be greatly improved
via the use of gradient-based techniques.

Work along some of these directions is underway.
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Bl ADDITIONAL NOTES

“In this work, the term “robust” mirrors its use in the discussion
of fitting in quantum chemistry>® rather than referring to the
robust approximation of individual tensors.”*

®In this work, we only consider Coulomb interactions using the
Poisson kernel: g(r;, r,) = Ir; — r,|7'; extension to other
multiplicative and nonmultiplicative kernels is straightforward.
“The term “hypercontraction” presumably refers to the
appearance of hyperedges in the diagrammatic representation
of CP-like tensor networks, e.g., Figure 4.

“Note that the CP-PS approximation breaks particle equiv-
alence symmetry and therefore, in practice, the result must be
symmetrized with respect to the transpose of ia and jc index
pairs. R

°N.B. if 5X > 3R, eq >’ can be reordered to compute (yB) more
efficiently.

f(l) Water---water, (2) water---MeOH, (3) water---MeNH,, (4)
MeNH,---MeOH, (5) benzene--benzene (z—x), (6) pyridine---
pyridine (z—x), (7) uracil---uracil (z—x), (8) pentane-
pentane, (9) benzene--benzene (TS), (10) benzene--ethyne
(CH-x), (11) ethyne--water (CH—O), and (12) MeNH,--
pyridine.

£See the Supporting Information for the detailed algorithm
description.

"The corresponding results for a tighter ALS tolerance, € = 1074
are reported in the Supporting Information.

‘A note of caution to the readers not familiar with the D, TZ-F12
basis sets: they are actually quite a bit larger than their

conventional counterparts and include even more diffuse
Gaussians than the augmented correlation-consistent basis sets.
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