
A Combinatorial Formula for Kazhdan–Lusztig

Polynomials of Sparse Paving Matroids

Kyungyong Lee∗

Department of Mathematics
University of Alabama

Alabama, U.S.A.

klee94@ua.edu; klee1@kias.re.kr

George D. Nasr †

Department of Mathematics
University of Oregon

Eugene, U.S.A.

gdnasr@uoregon.edu

Jamie Radcliffe‡

Department of Mathematics
University of Nebraska–Lincoln

Nebraska, U.S.A

jamie.radcliffe@unl.edu

Submitted: Jul 27, 2021; Accepted: Nov 29, 2021; Published: Dec 17, 2021

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We present a combinatorial formula using skew Young tableaux for the coeffi-
cients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids
are known to be logarithmically almost all matroids, but are conjectured to be
almost all matroids. We also show the positivity of these coefficients using our
formula. In special cases, such as uniform matroids, our formula has a nice combi-
natorial interpretation.

Mathematics Subject Classifications: 05B35

1 Introduction

In 1979, Kazhdan and Lusztig found a polynomial that corresponds to a pair of elements
in a Coxeter group [20]. The definition of this polynomial is recursive and uses the
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Bruhat order to induce a poset structure on the elements of a given Coxeter group.
This polynomial, later gets called the Kazhdan-Lusztig polynomial (which we sometimes
abbreviate as “KL polynomials”). Since then, the definition of this polynomial have been
generalized—for instance, see Stanley’s work in [31] and Brenti’s continuation of Stanley’s
work in [7, 8]—so that one may define these polynomials using different combinatorial
structures.1 In 2016, Elias, Proudfoot, and Wakefield did this for matroids [10], which we
define here.

Throughout, let M be a matroid, F be a flat of the matroid M , rk be the rank function
on M , and χM be the characteristic polynomial for M . We denote MF (respectively MF )
for the localization (respectively contraction) for M at F . These flats form a poset
under inclusion called the lattice of flats, which we denote L(M). The Kazhdan-Lusztig
polynomial for M , denoted PM(t), is given by the following conditions:

1. If rkM = 0, then PM(t) = 1.

2. If rkM > 0, then degPM(t) < 1
2

rkM .

3. trkMPM(t−1) =
∑

F∈L(M)

χMF (t)PMF
(t).

One familiar with the definition for the KL polynomial of Coxeter groups will notice
similarities between it and the definition for KL polynomials of matroids. The primary
difference between them is that while the KL polynomial for Coxeter groups is specifically
defined for a pair of elements in a Coxeter group, the KL polynomial for matroids is just
defined for a matroid. Briefly, this is because any interval in the lattice of flats for a
matroid is isomorphic to the lattice of flats of another matroid, but a similar notion is not
true for Coxeter groups under the Bruhat order. Hence, one may view KL polynomials
for matroids as nicer to work with than those for Coxeter groups.

After their introduction, these polynomials quickly drew active research interest due to
their conjectured properties such as the non-negativity of coefficients, and real-rootedness
(see [10, 14, 15, 33]). These are natural properties to be curious about in light of what we
know for the original Kazhdan-Lusztig polynomials. For instance, Elias and Williamson
in 2014 [11] proved the non-negativity for all Kazhdan-Lustig polynomials. However, they
are not real-rooted, as Polo proved that any polynomial with constant term 1 and non-
negative integer coefficients can be realized as the Kazhdan-Lusztig polynomial for some
pair of elements in some Coxeter group [28].

Recently, using algebro-geometric methods, Braden, Huh, Matherne, Proudfoot, and
Wang [5] proved the non-negativity of the coefficients for these polynomials. There has
also been much effort put into finding relations between these polynomials or general-
izations thereof (see [6, 26, 32]). These polynomials have been explicitly calculated only
for very special classes of matroids (for instance, see [19, 15, 18, 22, 25]), and yet many
of the known formulas have left much room for improvement. In particular, as of now,
there is no enlightening interpretation for such coefficients. This is also a relevant part

1The generalized theory is sometimes referred to as the Kazhdan-Lusztig-Stanley theory.
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of the history for the original Kahzdan-Lusztig polynomials. For instance, in [2], the
authors discuss some combinatorics that led to a non-recursive definition for the original
Kazhdan-Lusztig polynomials.

In this paper, we provide a combinatorial formula for the Kazhdan-Lusztig polynomials
of sparse paving matroids. We will also provide a proof for the positivity of our formula.
While this may not seem necessary in light of [5], we still share our proof as it only utilizes
elementary methods.

The class of sparse paving matroids is known to enjoy properties such as being dual-
closed and minor-closed. However, what draws research interest to these matroids is
a conjecture given by Mayhew, Newman, Welsh, and Whittle [23]. Based on Crapo’s
and Rota’s prediction [9], they conjectured that sparse paving matroids will eventually
predominate in any asymptotic enumeration of matroids. That is,

lim
n→∞

sn
mn

= 1,

where sn is the number of sparse paving matroids on n elements and mn is the number of
matroids on n elements. In pursuit of this conjecture, Pendavingh and van der Pol [24]
have shown that

lim
n→∞

log sn
logmn

= 1.

That is, so far, what we know is that logarithmically almost all matroids are sparse paving
matroids.

There are several known characterizations of sparse paving matroids. Let M be a
matroid of rank d so that the ground set has m + d elements. Let B be the set of bases
for M , so in particular B ⊆

(
[m+d]
d

)
. Set CH :=

(
[m+d]
d

)
\ B. Then M is sparse paving if

any (and hence all) of the following hold.

1. CH is the set of circuit-hyperplanes for M .

2. For distinct C,C ′ ∈ CH, we have |C4C ′| > 4, where C4C ′ := (C \ C ′) ∪ (C ′ \ C)
is the symmetric difference.

3. Every nonspanning circuit is a hyperplane.

4. M and its dual M∗ are both paving; that is, their circuits have cardinality at least
d.

To this end, we let Sm,d(CH) be the sparse paving matroid of rank d with ground set
[m+ d] so that CH is the set of circuit-hyperplanes.

The last thing we need to define before stating our main result is the object that
will allow us to write our combinatorial formula for the coefficients of the polynomials.
Define Skyt(a, i, b) to be the set of fillings of the shape in the figure below so that the
rows strictly increase left to right and the columns strictly increase top to bottom with
entries in [a+b+2i−2]. We define a related object which we denote Skyt(i, b), the subset
of Skyt(2, i, b) where the value 1 appears at the top of the left-most column. We set
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a
i

b

Figure 1: The left-most column has height a, followed by i − 1 columns of height 2,
followed by the right-most column of height b.

skyt(a, i, b) := # Skyt(a, i, b) and skyt(i, b) := # Skyt(i, b). There are some conventions
for special values of a, i and b, but we leave these for Section 2.

We are now ready to state our main result.

Theorem 1. Let cim,d(CH) be the i-th coefficient for the Kazhdan-Lusztig polynomial for
the sparse paving matroid Sm,d(CH). Then

cim,d(CH) = skyt(m+ 1, i, d− 2i+ 1)− |CH| · skyt(i, d− 2i+ 1).

Moreover, this formula is always non-negative.

What is truly remarkable about this formula is that it is not effected by how the
elements of CH relate to one-another2. Keep in mind that CH could be any set of
elements so that their pairwise symmetric difference is at least 4. Given a fixed m, d, and
i, the value of the coefficient is invariant of selection of CH so long as |CH| remains the
same. This formula has already inspired other mathematical results since the posting of
this paper [12, 13].

When CH is a disjoint collection, we have already shown in [21, Proposition 13] that
the formula in Theorem 1 has a manifestly positive interpretation. Consider the subset
of Skyt(m+ 1, i, d− 2i+ 1) satisfying at least one of the following three conditions.

• the top entry of the right-most column is 1; or

• the bottom entry of the right-most column is greater than d+ |CH|; or

• the third entry (from the top) of the left-most column is less than d+ 1.

Then the size of this subset agrees with the formula we give in Theorem 1, by [21, Propo-
sition 13]. In the special case where CH = ∅, the second condition becomes tautological
as the bottom of the right-most column is guaranteed to be at least d+1 for any tableaux.
So when CH = ∅, we get the entire size of Skyt(m+ 1, i, d− 2i+ 1) as our coefficient, as

2One may not find this so surprising once they find out the same is true for the characteristic polyno-
mial of sparse paving matroids, as we prove in Corollary 10, but given the definition of Kazhdan-Lusztig
polynomials, this fact is not clearly true without Theorem 1.
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Theorem 1 indicates. Also in this case we have Sm,d(CH) = Um,d, the uniform matroid of
rank d on m+ d elements. 3 4

In light of this, we have proven the following conjecture in the case of sparse paving
matroids.

Conjecture 2. Let M be a matroid of rank d on m + d elements, and let ci be the i-th
coefficient for PM(t). Then

ci 6 cim,d(∅).

That is, among all matroids with rank d and ground set size m+ d, the Kazhdan-Lusztig
polynomial for Um,d has the largest coefficients.

This conjecture was posed by Katie Gedeon. It has no written source, but was communi-
cated to us by Nicholas Proudfoot.

It is also interesting to note that when CH is a disjoint collection, Sm,d(CH) can be
seen to be representable. This in turn gives a combinatorial formula for the intersection
cohomology Poincaré polynomial of the corresponding reciprocal plane over a finite field,
thanks to [10]. In general, though, almost all sparse paving matroids are not representable.
This is due in large part to Nelson [29] who showed that asymptotically almost all matroids
are not representable. In particular, his work implies that the logarithmic growth of
representable matroids is bounded by a polynomial. Meanwhile, the logarithmic growth
of matroids in general are known to have at least exponential growth, and so the same
must be true for sparse paving matroids.

One final thing to note that is interesting about our formula is that if m + 1 = 2 or
d − 2i + 1 = 2, then skyt(m + 1, i, d − 2i + 1) becomes equal to a well-known number,
namely the number of polygon dissections [30]. Hence, when m + 1 = d − 2i + 1 = 2, it
becomes a Catalan number.5

This paper proceeds as follows. In section 2, we further discuss the elements of
Skyt(a, i, b) and Skyt(i, b). We also bring up some important conventions and useful
identities for skyt(a, i, b) and skyt(a, i, b). In section 3, we discuss flats, localizations, con-
tractions, and characteristic polynomial for Sm,d(CH). In section 4, we verify the formula
for the Kazhdan-Lusztig polynomial of Sm,d(CH) given in Theorem 1. We then give some
useful upper bounds on |CH| in section 5. We use these bounds to prove the non-negative
part of Theorem 1, which we do in section 6. We end the paper with some integral
identities we use throughout the paper in section 7.

3The first (and only known) manifestly positive integral interpretation for uniform matroids was given
in [17, Remark 3.4], which requires possibly many Young diagrams.

4Those familiar with matroid theory may be more used to the notation Ud,n to the uniform matroid
of rank d on n elements. We chose our notation to be consistent with other authors publishing results
for Kazhdan-Lusztig polynomials for uniform matroids.

5This connection to polygon dissections was already mentioned in several places, namely in Remark
1.3 in [27] and Remark 5.3 of [18], but with the discovery of our combinatorial object, this fact follows
directly from [30].
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2 Skew Young Tableaux

Consider the following shape. A legal filling of the above shape involves placing each

a i

b

Figure 2: The left-most column has height a, followed by i − 1 columns of height 2,
followed by the right-most column of height b.

number from {1, 2, . . . , a+2i+ b−2} into the squares such that the values in the columns
and rows strictly increase going down and right, respectively. Note that this is the same
restriction on the entries of a standard Young tableau, but the above shape does not fit
the description of the typical Young tableau. We refer to a legal filling of the above shape
as a skew young tableau, and denote Skyt(a, i, b) as the set of such legal fillings, and denote
skyt(a, i, b) := # Skyt(a, i, b).

For our tableaux to be defined, we need a, b > 2 and i > 1, but our formula in
Theorem 1 may be used for other non-negative values of a, b, and i. Hence, there are
some conventions we have set for the few exceptional values that can occur so that our
formula still works.

• If i = 0, then skyt(a, i, b) = 1.

• If i > 0 and at least one of a or b is less than 2, then skyt(a, i, b) = 0.

We also define a related collection of objects, which we denote Skyt(i, b). This set is
the subset of Skyt(2, i, b) so that 1 is always the entry at the top of the left-most column.
The size of Skyt(i, b) is denoted skyt(i, b). By convention, skyt(i, b) = 0 if i = 0.

In [21, Lemma 4], we proved the following result.

Lemma 3. For a, b > 2 and i > 1, we have

skyt(a, i, b) =
1

i!(a− 2)!(a+ i− 1)

b−2∑
k=0

(−1)k
(
a+ b+ 2i− 2

b− 2− k

)
(a+ 2i+ k)!(k + 1)

(a+ i+ k)(i+ k + 1)!
.

This formula for skyt(a, i, b) is useful in proving the following.

Lemma 4. For b > 2 and i > 1, we have

skyt(i, b) =
1

(i+ 1)!

b−2∑
k=0

(−1)k
(
b+ 2i− 1

b− 2− k

)
(2i+ k + 2)!(k + 1)

(i+ k + 2)!
.
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Proof. Observe that Skyt(i, b) ⊆ Skyt(2, i, b). In particular, note that the tableaux in
T := Skyt(2, i, b)\Skyt(i, b) are those where the value 1 appears at the top of the rightmost
column. One can achieve a bijection between Skyt(2, i, b− 1) and T : For any tableaux α
in Skyt(2, i, b−1), increase each numerical value in α by 1, and then extend the rightmost
column by adding one cell at the top of the column, placing the number 1 in this position.
Hence,

skyt(i, b) = skyt(2, i, b)− skyt(2, i, b− 1)

=
1

(i+ 1)!

b−2∑
k=0

(−1)k
((

b+ 2i

b− 2− k

)
−
(
b− 1 + 2i

b− 3− k

))
(2i+ k + 2)!(k + 1)

(i+ k + 2)!

=
1

(i+ 1)!

b−2∑
k=0

(−1)k
(
b+ 2i− 1

b− 2− k

)
(2i+ k + 2)!(k + 1)

(i+ k + 2)!
,

by Pascal’s identity.

One can achieve two formulas for skyt(a, i, b) and skyt(i, b) that avoid alternating
sums. We will need a few integral identities to produce these formulas. These identities
can be found in section 7, but are referenced as they are needed in the proofs that follow.
Throughout, (x)(n) is the rising factorial (x)(x+ 1) · · · (x+ n− 1) for integers x and n.

We start with the formula for skyt(a, i, b).

Lemma 5. For a, b > 2 and i > 1, we have

skyt(a, i, b) =

(
a+ i− 2

i

)(
a+ b+ 2i− 2

b+ i− 1

) b−2∑
k=0

(
b+i−k−3
i−1

)(
a+i+k
k+1

) .
Proof. One can rewrite Lemma 3 as

skyt(a, i, b) =
(a+ b+ 2i− 2)!

i!(a− 2)!(a+ i− 1)(b− 2)!

b−2∑
k=0

(−1)k
(
b− 2

k

)
1

(a+ i+ k)(k + 2)(i)
. (1)

We can recover this sum for skyt(a, i, b) by applications of integrals to a polynomial.
Let

f(x, y) =
(a+ b+ 2i− 2)!xya+i−1(1− xy)b−2

i!(a− 2)!(a+ i− 1)(b− 2)!
.

Our integrals are broken up into three parts.

(a) First find g(x), where g(x) :=

∫ 1

0

f(x, y) dy; then

(b) find hi−1(xi−1) :=

∫ xi−1

0

hi−2(xi−2) dxi−2, where h1(x1) :=

∫ x1

0

g(x0) dx0 and

x0, x1, . . . , xi−1 are i variables; then

the electronic journal of combinatorics 28(4) (2021), #P4.44 7



(c) solve

∫ 1

0

hi−1(xi−1) dxi−1.

It is not difficult to show that, if (1− xy)b−2 is written using the binomial expansion,
part (c) will give the equation for skyt(a, i, b) found in equation (1) above. To get the
statement of Lemma 5, we apply these three steps to f(x, y) directly as written.

First, we use Corollary 27 to do part (a).

g(x) :=

∫ 1

0

f(x, y) dy =
(a+ b+ 2i− 2)!(a+ i− 1)!

i!(a− 2)!(a+ i− 1)

b−2∑
k=0

(1− x)b−k−2xk+1

(a+ i+ k)!(b− k − 2)!
.

To complete parts (b) and (c) we apply Proposition 29 to get

∫ 1

0

hi−1(xi−1) dxi−1 =
(a+ b+ 2i− 2)!(a+ i− 1)!

i!(a− 2)!(a+ i− 1)(i− 1)!(b+ i− 1)!

b−2∑
k=0

(b+ i− k − 3)!(k + 1)!

(a+ i+ k)!(b− k − 2)!

This gets us a manifestly positive sum, and all that is left to get our desired result is
to perform some algebraic manipulations. One can combine the terms (b + i − k − 3)!,

(b− k− 2)!, and (i− 1)! to give

(
b+ i− k − 3

i− 1

)
. Then combine (a+ i− 1)!, (k+ 1)!, and

(a+ i+ k)! to get

(
a+ i+ k

k + 1

)
. Then scaling by (a+i−2)!

(a+i−2)!
allows us to group the remaining

factors into binomial coefficients giving(
a+ i− 2

i

)(
a+ b+ 2i− 2

b+ i− 1

) b−2∑
k=0

(
b+i−k−3
i−1

)(
a+i+k
k+1

) .
Remark 6.

1. While having a manifestly positive formula for skyt(a, i, b) is nice, it is unfortunate
that, in general, the terms of the sum in Lemma 5 are not necessarily integers, even
if you scale them by

(
a+i−2
i

)
and

(
a+b+2i−2
b+i−1

)
.

2. It will be useful to rewrite Lemma 5 using a common denominator. We can do this
by rewriting the binomials in the sum using the falling factorial (x)(n) := x(x −
1) · · · (x− n+ 1). Rewriting the sum gives

b−2∑
k=0

(
b+i−k−3
i−1

)(
a+i+k
k+1

)
=

b−2∑
k=0

(b+ i− k − 3)b−k−2(k + 1)!

(b− k − 2)!(a+ i+ k)(k+1)

=

b−2∑
k=0

(b+ i− k − 3)b−k−2(k + 1)!(b− 2)(k)(a+ i+ b− 2)(b−k−2)

(b− 2)!(a+ i+ b− 2)(b−1)
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We will find this version useful later, though it is not as concise as the original
formula.

Using similar methods, we can find a formula for skyt(i, b) which not only avoids an
alternating sum, but is in fact a single term.

Lemma 7. For a, b > 2 and i > 1, we have

skyt(i, b) =
2(b+ 2i− 1)!

(i+ 1)!(i− 1)!(b− 2)!(b+ i)(b+ i− 2)
.

Proof. One can rewrite Lemma 7 as

skyt(i, b) =
(b+ 2i− 1)!

(i+ 1)!(b− 2)!

b−2∑
k=0

(−1)k
(
b− 2

k

)
(2i+ k + 2)

(k + 2)(i+1)
. (2)

We can recover this sum for skyt(a, i, b) by applications of a derivative and integrals to a
polynomial. Let

f(x, y) =
(b+ 2i− 1)!xy2i+2(1− xy)b−2

(i+ 1)!(b− 2)!
.

We break up our plan for applications of a derivative and integrals into three parts.

(a) First solve g(x) :=
d

dy
f(x, y)

∣∣∣∣
y=1

; then

(b) find hi(xi) :=

∫ xi

0

hi−1(xi−1) dxi−1, where h1(x1) :=

∫ x1

0

g(x0) dx0 and x0, x1, . . . , xi

are i+ 1 variables; then finally

(c) find

∫ 1

0

hi(xi) dxi.

If one writes (1 − xy)b−2 using the binomial expansion, part (c) outputs the equation
for skyt found in equation (2) above. We claim that leaving f(x, y) as written and then
applying these three steps lead to the statement of Lemma 7.

First, for part (a), we observe that

g(x) =
d

dy
f(x, y)

∣∣∣∣
y=1

=
2(i+ 1)(b+ 2i− 1)!

(i+ 1)!(b− 2)!
x(1−x)b−2− (b− 2)(b+ 2i− 1)!

(i+ 1)!(b− 2)!
x2(1−x)b−3.

We do parts (b) and (c) simultaneously due to Proposition 29. This gives∫ 1

0

hi(xi) dxi =
2(i+ 1)(b+ 2i− 1)!

(i+ 1)!(b− 2)!

(b− 2 + i)!

i!(b+ i)!
− (b− 2)(b+ 2i− 1)!

(i+ 1)!(b− 2)!

2(b− 3 + i)!

i!(b+ i)!

=
2(b+ 2i− 1)!

(i+ 1)!(i− 1)!(b− 2)!(b+ i)(b+ i− 2)
.
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3 Flats, Contractions, Localizations, and Characteristic Poly-
nomials for Sm,d(CH)

Throughout, let F be a flat, that is, a set which is maximal with respect to its rank.
For a matroid M , recall that MF (respectively, MF ) denotes the localization (respectively,
contraction) of M at F . By MF , we mean the matroid with ground set F , whose inde-
pendent sets are those subsets of F that are also independent in M . By MF , we mean the
matroid with ground set M \ F , whose independent sets are those subsets whose union
with a basis for F is independent in M .

First, we discuss the flats of Sm,d(CH). It is an elementary exercise to verify the
following.

Proposition 8. The flats of Sm,d(CH) are composed of

1. the sets of cardinality at most d− 2;

2. the sets of cardinality d− 1 not contained in any element of CH;

3. the elements of CH;

4. [m+ d].

With this, we can now discuss the localizations and contractions of Sm,d(CH). First,
recall the localizations and contractions of Um,d, the uniform matroid of rank d with
ground set [m+ d], which are given by

(Um,d)
F =

{
Um,d F = [m+ d]

U0,|F | F 6= [m+ d]

and

(Um,d)F =

{
U0,0 F = [m+ d]

Um,d−|F | F 6= [m+ d]
.

The corresponding equations for Sm,d(CH) can also be described in a similar manner.
In what follows, if F is a flat, then we define CH(F ) := {C \ F : C ∈ CH such that F ⊆
C}. It is worth noting that if CH is the set of circuit-hyperplanes for a sparse paving
matroid, then so is CH(F ), so long as F is strictly contained in some circuit-hyperplane.
One way to check this is by verifying CH(F ) satisfies the condition that any pair has
symmetric difference at least 4.

Proposition 9.

Sm,d(CH)F =


Sm,d(CH) F = [m+ d]

U1,d−1 F ∈ CH
U0,|F | otherwise

the electronic journal of combinatorics 28(4) (2021), #P4.44 10



and

Sm,d(CH)F =


Sm,d(CH) F = ∅
Um−1,1 F ∈ CH
Sm,d−|F |(CH(F )) ∅ ( F ( C, for some C ∈ CH
(Um,d)F otherwise

.

Proof. For the localization, the only new case necessary to mention in comparison to the
uniform case is for F ∈ CH; the other cases follow from the uniform case. The localization
of this matroid at F treats F as the ground set, with independent sets being those that
are independent in Sm,d(CH). We know every proper subset of F is independent, giving
U1,d−1.

Now for the contraction. If we have F * C for all C ∈ CH, then the structure of
Sm,d(CH)F is exactly that of (Um,d)F . For the case where F ∈ CH, we want the subsets
of S := [m+ d] \ F such that their union with a basis for F is independent in Sm,d(CH).

The bases for F are the elements of
(
F
d−1

)
. Note if B ∈

(
[m+d]
d

)
satisfies |B4F | = 2,

then B is independent in Sm,d(CH). This means the desired subsets of S are the empty
set and every singleton of S. This gives a matroid isomorphic to Um−1,1. Finally, when
∅ ( F ( C, for some C ∈ CH, note that F is independent, and hence a basis for itself.
Thus, the independent sets for Sm,d(CH)F are the subsets X of [m+ d] \F so that X ∪F
is independent in Sm,d(CH). That is, |X| 6 d − |F |. When |X| < d − |F |, |X ∪ F | < d
and every subset of [m + d] of size smaller than d is independent. When |X| = d − |F |,
X ∪ F is a basis for Sm,d(CH) if and only if X ∪ F 6= C, for any C ∈ CH, which is true if
and only if X /∈ CH(F ). That is, we get a matroid isomorphic to Sm,d−|F |(CH(F )).

With these in mind, we can now compute the characteristic equation for all local-
izations for Sm,d(CH). However, by Proposition 9, we equivalently just need to find the
characteristic polynomial for Um,d and Sm,d(CH).

First, recall that for a (loopless) matroid M , the characteristic polynomial is given by

χM(t) =
∑

F∈L(M)

µL(M)(0̂, F )trkM−rkF ,

where L(M) is the lattice of flats for matroid M . For uniform matroids, we have

χUm,d
(t) = (−1)d

(
m+ d− 1

d− 1

)
+

d−1∑
i=0

(−1)i
(
m+ d

i

)
td−i.

Knowing this simplifies our computation of χSm,d(CH).

Corollary 10. Let c = |CH|. Then

χSm,d(CH)(t) = (−1)d
(
m+ d− 1

d− 1

)
− (−1)dc

+ t(−1)d−1

((
m+ d

d− 1

)
− c
)

+
d−2∑
i=0

(−1)i
(
m+ d

i

)
td−i.
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It is noteworthy that this characteristic polynomial is the same for all choices of CH that
have the same size.

Proof of Corollary 10. One can see this by combining Proposition 8 with the fact that
the characteristic function of a matroid M may be rewritten as

χM(t) =
∑
S⊆E

(−1)|S|trk(M)−rk(S),

where E is the groundset of M .

It will be helpful to restate this proposition in the following way for when we prove
Theorem 1.

Corollary 11. (Corollary 10 restated.)

[ti]χSm,d(CH) =


(−1)d

(
m+d−1
d−1

)
− c(−1)d i = 0

(−1)d−1
(
m+d
d−1

)
− c(−1)d−1 i = 1

(−1)d−i
(
m+d
d−i

)
2 6 i 6 d

.

4 Kazhdan-Lusztig Polynomials for Sparse Paving Matroids

This section is dedicated to justifying the combinatorial formula given in Theorem 1. We
restate this part here for convenience, as its own Theorem.

Theorem 12. Let cim,d(CH) be the i-th coefficient for the Kazhdan-Lusztig polynomial for
the sparse paving matroid Sm,d(CH). Then

cim,d(CH) = skyt(m+ 1, i, d− 2i+ 1)− |CH| · skyt(i, d− 2i+ 1).

Remark 13. For some values of m, d, and i, we need to use our conventions set in place
for skyt(a, i, b) and skyt(i, b) in section 2 for our formula to truly work.

• [10, Proposition 2.11] shows that the degree 0 term always has coefficient 1. That
is, when i = 0, our formula must always return 1.

• When d = 0 we are forced to have PSm,d(CH)(t) = 1.

• When 0 < d < 3, the degree requirement on Kazhdan-Lusztig polynomials forces
PSm,d(CH)(t) to have degree 0. Namely, in this case, we have PSm,d(CH)(t) = 1, again
by [10, Proposition 2.11].

• When m = 0, note that CH is forced to be empty and Sm,d(CH) becomes U0,d. It is
shown in [10, Proposition 2.7] that PM1⊕M2(t) = PM1(t)PM2(t) for matroids M1 and
M2. With this, one can verify that PU0,d

(t) = 1 by seeing that PU0,1(t) = 1 based on
the d < 3 discussion above.
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In all cases, our conventions guarantee we get the right values. Besides these cases, our
conventions are not needed for our formula, and we are guaranteed that Sm,d(CH) has
more interesting structure than that of the boolean lattice.

The following technical result will be crucial in demonstrating why the formula given
in Theorem 12 only depends on |CH|, and not the relationship between the elements of
CH.

Lemma 14. Let c, i ∈ N ∪ {0}. For I ⊆ [c], let xI be a variable. Let g(k) and h(k) are
functions varying in k. Then

−
∑
J⊆[c]
|J |>2

(−1)|J |xJ

i∑
k=0

g(k) =
∑

∅(I⊆[c]

∑
I⊆J⊆[c]
|J |>2

(−1)|J |−|I|xJ

i∑
k=0

( g(k)− |I|h(k) ).

Proof. We show that the term with xJ on both sides of the statement of the lemma is the
same for every J ⊆ [c], where |J | > 2. We start with the coefficient of xJ on the right
side. We note that the terms with xJ appear for each I that is contained in J , where
|I| > 1. Hence, the term with xJ on the right hand side of the statement of the Lemma is

|J |∑
`=1

(−1)|J |−`xJ

(
|J |
`

) i∑
k=0

( g(k)− `h(k) )

= xJ(−1)|J |
|J |∑
`=1

(
|J |
`

)
(−1)`

i∑
k=0

( g(k)− `h(k) )

= xJ(−1)|J |

 i∑
k=0

g(k)

|J |∑
`=1

(−1)`
(
|J |
`

)
−

i∑
k=0

h(k)

|J |∑
`=1

(−1)``

(
|J |
`

)
= xJ(−1)|J |

(
−

i∑
k=0

g(k)

)
,

since we know in general we have the identities
n∑
`=0

(−1)`
(
n

`

)
= 0 for n > 1 and

n∑
`=0

(−1)`
(
n

`

)
` = 0 for n > 2. Note that there is exactly one time where xJ appears

exactly once, and the corresponding term is −xJ(−1)|J |
i∑

k=0

g(k).

We now prove the desired formula for cim,d(CH).

Proof of Theorem 12. Let M := Sm,d(CH), and set c := |CH|. Recall that the definition
for the Kazhdan-Lusztig polynomial is that it satisfies the following recurrence,

trkMPM(t−1) =
∑

F a flat

χMF (t)PMF
(t),
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which may be rewritten as

trkMPM(t−1)− PM(t) =
∑

F a non-empty flat

χMF (t)PMF
(t).

Recall that degPM(t) < 1
2
d, and so the power of each monomial in tdPM(t−1) is strictly

larger than 1
2
d. Hence, our goal is to show that for 0 6 i < 1

2
d we have

− skyt(m+ 1, i, d− 2i+ 1) + c · skyt(i, d− 2i+ 1) = [ti]
∑

F a non-empty flat

χMF (t)PMF
(t).

(3)

Using our work from Proposition 9, and consolidating common factors involving the
various flats in CH, we can rewrite the right of equation (3) to be

[ti]χSm,d(CH) + c[ti]χU1,d−1
PUm−1,1

+
∑

∅(F(C
For some C ∈ CH

[ti]χU0,|F |PSm,d−|F |(CH(F )) +
∑

∅(F([m+d]
F*C ∀C∈CH

[ti]χU0,|F |PUm,d−|F | , (4)

where the first term corresponds to the case where F = [m + d], and the second where
F ∈ CH.

By Proposition 11, we are required to break this up into three case: i = 0, i = 1, and
2 6 i < d/2 if we are to write this out explicitly. Note we can write everything explicitly
except PSm,d−|F |(CH(F )). Hence, we proceed by induction on the matroid rank d, noting
that d > d− |F | since for the corresponding summand F is never empty.

We now define some notation in order to rewrite the summations appearing in (4).

Let I ⊆ [c] and Ci ∈ CH. We define CI :=
⋂
i∈I

Ci and denote cI := |CI |. By convention,

C∅ = [m + d]. Recall that CH(F ) := {C \ F : C ∈ CH such that F ⊆ C}. Let j be an
integer and define the following sum indexed by J :

Φj(I) :=
∑

I⊆J⊆[c]

(−1)|J |−|I|
(
cJ
j

)
.

If j is selected appropriately, Φj(I) counts the number of flats of rank j contained in CI ,
but not in any CJ so that CJ ⊆ CI . Hence, F is a flat counted by Φj(I) if and only if
CH(F ) = {Ci \ F : i ∈ I}. What we will infer from this is that |CH(F )| = |I|.

We can now rewrite equation (4). We use the Kronecker delta function

δ(i, j) =

{
1 i = j

0 i 6= j
to combine the cases for i = 1 and 2 6 i < d/2.
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i = 0:

(−1)d
(
m+ d− 1

d− 1

)
− c(−1)d + c(−1)d−1

(
d− 1

d− 2

)
+

d−2∑
j=1

∑
∅(I⊆[c]

Φj(I)(−1)j(skyt(m+ 1, 0, d− j + 1)− |I| · skyt(0, d− j + 1))

+
d−1∑
j=1

Φj(∅)(−1)j skyt(m+ 1, 0, d− j + 1).

i > 0:

(−1)d−i
(
m+ d− 1

d− i

)
− c(−1)d−1δ(i, 1) + c(−1)d−1−i

(
d

d− 1− i

)
+

d−2∑
j=1

∑
∅(I⊆[c]

Φj(I)
i∑

k=0

(−1)j−i+k
(

j

j − i+ k

)
(skyt(m+ 1, k, d− j − 2k + 1)

− |I| skyt(k, d− j − 2k + 1))

+
d−1∑
j=1

Φj(∅)
i∑

k=0

(−1)j−i+k
(

j

j − i+ k

)
skyt(m+ 1, k, d− j − 2k + 1).

In both cases, the sum running from j = 1 to j = d − 2 is the summand in equation
(4) over ∅ ( F ( C for C ∈ CH, since the flats contained in C have size at most d− 2.
The other sum running from j = 1 to j = d− 1 corresponds to the summand in equation
(4) over ∅ ( F ( [m+ d] such that F * C for all C ∈ CH.

To simplify things further, first, note that

Φd−1(∅) =

(
m+ d

d− 1

)
− c
(

d

d− 1

)
.

By construction, Φd−1(∅) counts the rank d − 1 flats contained in no element of CH.
Recall that the only rank d− 1 flats are those not contained in any circuit-hyperplane.

Next, note that many terms from the two sums running over j in both the i = 0 and
i > 0 case will cancel as a result of Lemma 14. Fix j 6 d− 2 and suppose J ⊆ [c]. Set

• xJ :=

(
cJ
j

)
,

• g(k) := (−1)j−i+k
(

j

j − i+ k

)
skyt(m+ 1, k, d− j − 2k + 1), and

• h(k) := (−1)j−i+k
(

j

j − i+ k

)
skyt(k, d− j − 2k + 1).

This allows us to rewrite our two cases in the following way.
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i = 0:

(−1)d
(
m+ d− 1

d− 1

)
− c(−1)d + c(−1)d−1

(
d− 1

d− 2

)
+

d−2∑
j=1

∑
∅(I⊆[c]

∑
I⊆J⊆[c]

(−1)|J |−|I|xJ( g(0)− |I|h(0) )

+
d−1∑
j=1

∑
∅⊆J⊆[c]

(−1)|J |xJg(0).

i > 0:

(−1)d−i
(
m+ d

d− i

)
− c(−1)d−1δ(i, 1) + c(−1)d−1−i

(
d

d− 1− i

)
+

d−2∑
j=1

∑
∅(I⊆[c]

∑
I⊆J⊆[c]

(−1)|J |−|I|xJ

i∑
k=0

g(k)− |I|h(k)

+
d−1∑
j=1

∑
∅⊆J⊆[c]

(−1)|J |xJ

i∑
k=0

g(k).

The following argument works for both the i = 0 and i > 0 case, so we speak of both
simultaneously as if they were one. Let A correspond to the sum indexed by j where j is
at most d− 2. Likewise define B to be the sum indexed by j where j is at most d− 1. By
Lemma 14, the terms where |J | > 2 in A will cancel all terms where |J | > 2 in B. What
remains in A are the terms where |J | = 1, that is, the terms where J = I and |I| = 1.
There are c such terms, each contributing

(
d
j

)
, as the members of CH have cardinality d.

For B, when j 6 d−2, the only terms that remain are those where |J | equals 0 or 1. This
gives c+1 terms: one contributing

(
m+d
j

)
, and c terms contributing −

(
d
j

)
. Combining this

with our identity for Φd−1(∅) given above, we get the following simplification.

i = 0:

(−1)d
(
m+ d− 1

d− 1

)
− c(−1)d + c(−1)d−1

(
d− 1

d− 2

)
+ c

d−2∑
j=1

(
d

j

)
(−1)j(skyt(m+ 1, 0, d− j + 1)− skyt(0, d− j + 1))

+
d−1∑
j=1

((
m+ d

j

)
− c
(
d

j

))
(−1)j skyt(m+ 1, 0, d− j + 1).
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i > 0:

(−1)d−i
(
m+ d

d− i

)
− c(−1)d−1δ(i, 1) + c(−1)d−1−i

(
d

d− 1− i

)
+ c

d−2∑
j=1

(
d

j

) i∑
k=0

(−1)j−i+k
(

j

j − i+ k

)
(skyt(m+ 1, k, d− j − 2k + 1)

− skyt(k, d− j − 2k + 1))

+
d−1∑
j=1

(
m+ d

j

) i∑
k=0

(−1)j−i+k
(

j

j − i+ k

)
skyt(m+ 1, k, d− j − 2k + 1)

−
d−1∑
j=1

c

(
d

j

) i∑
k=0

(−1)j−i+k
(

j

j − i+ k

)
skyt(m+ 1, k, d− j − 2k + 1).

We now point out that remarkably, this formula no longer depends on the structure
of CH, only the cardinality. Hence, the proof proceeds as in the case of Theorem 11 in
[21].

5 Bounds on |CH|

Our proof for the non-negativity of Theorem 1 will be purely computational. Hence, since
|CH| is a part of our formula, having bounds on this value will be useful. We will give
two particularly important bounds.

The first bound is given as follows.

Theorem 15. We have

|CH| 6 1

m+ 1

(
m+ d

d

)
.

This can be recovered in multiple settings. One can find an outline of a matroid
theory argument in [3, Lemma 2.7]. However, this bound also happens to be a standard
coding theory result. Recall that for Sm,d(CH), the circuit-hyperplanes CH is a subset

of elements in
(

[m+d]
d

)
so that any pair has symmetric difference at least 4. One could

equivalently describe such a set as a binary constant-weight code with hamming distance
4. In this context, the bound in Theorem 15 gives a bound on the size of a code with
these conditions, as shown in [1, Theorem 12]. In fact, [1] proves a more arbitrary bound
accounting for any lower bound on symmetric difference, not just 4. It is also worth noting
that the proofs for this bound given in both [1] and [3] are in fact different, even when
both are in the language of matroid theory. It is also worth noting one can strengthen
this bound further as in the following Corollary, though it will not be used in this paper.

Corollary 16. We have

|CH| 6 min

{
1

m+ 1
,

1

d+ 1

}(
m+ d

d

)
.
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Proof. Recall that if M is sparse paving, then so is its dual M∗. The circuit-hyperplanes
of a sparse paving matroid M are in bijection with the circuit-hyperplanes of M∗ (by
simply taking the complement of each circuit-hyperplane with respect to the ground set).
Also note that M∗ is a matroid of rank m on m + d elements, so the number of circuit-
hyperplanes in M∗ (and hence also in M) is bounded by

1

d+ 1

(
m+ d

d

)
.

While the bound in Theorem 15 will serve useful, there will be times where it is too
restrictive for our purposes. Hence, we give the following alternative bound.

Theorem 17. We have

|CH| 6 2

m+ d+ 2

(
m+ d

d

)
.

Proof. Note that we have the following two chains of equivalent statements:

• 1
m+1
6 1

d+1
if and only if d 6 m if and only if 1

m+1
6 2

m+d+2
; and

• 1
d+1
6 1

m+1
if and only if m 6 d if and only if 1

d+1
6 2

m+d+2
.

Combining both of these with Corollary 16, we get

|CH| 6 min

{
1

m+ 1
,

1

d+ 1

}(
m+ d

d

)
6

2

m+ d+ 2

(
m+ d

d

)
,

as desired. �

Remark 18. Excitingly, when m = d, not only do the two bounds given for |CH| agree,
but they equal the mth Catalan number Cm, where

Cm =
1

m+ 1

(
2m

m

)
.

6 Non-Negativity for Sparse Paving Matroids

With the formula for Theorem 1 proven, we now move to showing that this formula is
always non-negative. When CH is a disjoint family, this formula has a manifestly positive
interpretation, as stated in the introduction of this paper. More details can be found
in [21]. Otherwise, for more general cases of sparse paving matroids, there still is no
manifestly non-negative expression in terms of tableaux. Instead, we show directly that
our formula from Theorem 1 is non-negative by relying on the bounds given in section 5
for |CH|, our formulas for skyt(a, i, b) and skyt(i, b) given in section 2, and some standard
algebra and calculus tools. The details for this proof will be rather technical, and our
proof will need a few cases, so the proof serves more as an outline, leaving most of the
work to separate Lemmas and Propositions. Throughout the proofs of this section, we
use the falling factorial (x)(n) := x(x − 1) · · · (x − n + 1). We will also regularly use the
fact degPM(t) < 1

2
rkM . That is, if d is the rank of a matroid M , and i is the power of

some term in the Kazhdan-Lusztig polynomial PM(t), then we must have i < d/2.
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Theorem 19. Let Sm,d(CH) be a sparse paving matroid. Then

skyt(m+ 1, i, d− 2i+ 1)− |CH| · skyt(i, d− 2i+ 1) > 0.

Proof. We are able to take care of most of the cases simultaneously. For convenience,
using our notation from Theorem 12, let

cim,d(CH) = skyt(m+ 1, i, d− 2i+ 1)− |CH| · skyt(i, d− 2i+ 1).

Recall that |CH| 6 2
m+d+2

(
m+d
d

)
by Theorem 17. Hence,

cim,d(CH) > skyt(m+ 1, i, d− 2i+ 1)− 2

m+ d+ 2

(
m+ d

d

)
· skyt(i, d− 2i+ 1).

Then by Lemma 21, this expression is non-negative for i > 3, m > 3, and for all possible
d, and hence for d > 2i.

We now have a small number of specific cases to address. We first note that the cases
for m = 0 and i = 0 are taken care of by Remark 13.

When m = 1, notice that any pair of basis elements have symmetric difference 2, and
so |CH| 6 1. In this case our desired result is immediate since by definition, we may view
Skyt(i, d− 2i+ 1) as a subset of Skyt(2, i, d− 2i+ 1).

When m = 2, it is necessary to find a better bound on the size of CH. It is not too
much work to show that |CH| 6 d+2

2
by using the symmetric difference condition on CH.

It is easier to work with the complements of the elements in CH, which are elements of(
[d+2]

2

)
. Then it is equivalent in this case to count the size of the largest disjoint family in(

[d+2]
2

)
. So in the case of m = 2 we have

cim,d(CH) > skyt(m+ 1, i, d− 2i+ 1)− d+ 2

2
· skyt(i, d− 2i+ 1),

and so to prove our desired result in this case we need only to prove

skyt(m+ 1, i, d− 2i+ 1)− d+ 2

2
· skyt(i, d− 2i+ 1) > 0.

We do this for i > 1, leaving the details to Lemma 22.
Now we move on to the remaining values of i, noting we need only to show them for

m > 3. When i = 1, one can get the following closed formula for skyt(m+ 1, i, d−2i+ 1).
We get

skyt(m+ 1, 1, d− 1) =

(
m+ d

d− 1

)
−m− d

by Proposition 23. Also, note that skyt(1, d − 1) = d − 1, which can be seen by using
Lemma 7, or by simply observing that only numbers in {2, 3, 4, . . . , d} may appear below
the position containing 1 in skyt(1, d− 1). It is also important to note that when i = 1,
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d > 3. Then to get our desired result in this case, we can combine Theorem 12 and
Theorem 15 and instead show that(

m+ d

d− 1

)
−m− d− 1

m+ 1

(
m+ d

d

)
(d− 1) > 0.

Lemma 24 is able to show this for d > 3 when m > 4, but only for d > 4 when m = 3.
This leaves the case when m = 3 and d = 3 to be done explicitly. Note that

skyt(4, 1, 2) = 9

and
skyt(1, 2) = 2,

which can be easily verified by any of our formulas from section 2, or by hand. Then non-
negativity follows from the fact that in the special case of m = d = 3, we can guarantee
|CH| 6 4, which one verify via a constructive argument.

When i = 2, we can use a similar strategy that we used for the i > 3 and m > 3 case
described in Lemma 21. However, there will be a bit more involved here, and so we leave
the details of this final case to Lemma 25.

Remark 20. In the case of m = d = 3, it is worth noting that finding the bound |CH| 6 4
is necessary. Both bounds for |CH| given by Theorem 15 or Theorem 17 give |CH| 6 5,
and 9 − 5 · 2 = −1. So in this special case, we need to get a better bound on |CH| than
what either of our two bounds could provide.

Lemma 21. Let i and m both be at least 3. Then

skyt(m+ 1, i, d− 2i+ 1)− 2

m+ d+ 2

(
m+ d

d

)
skyt(i, d− 2i+ 1) > 0.

Proof. One can rewrite the sum in Lemma 5 using Remark 6. After doing this, letting
a = m+ 1 and b = d− 2i+ 1, the k = 0 term in the formula for skyt(m+ 1, i, d− 2i+ 1)
is

A : =

(
m+ i− 1

i

)(
m+ d

d− i

)
(d− i− 2)(d−2i−1)(m+ d− i)(d−2i−1)

(d− 2i− 1)!(m+ d− i)(d−2i)

=
(m+ d)!(d− i− 2)(d−2i−1)

i!(m− 1)!(d− i)!(m+ i)(d− 2i− 1)!(m+ i+ 1)
.

Utilizing Lemma 7, we have

B : =
2

m+ d+ 2

(
m+ d

d

)
skyt(i, d− 2i+ 1)

=
4(m+ d)!

m!(m+ d+ 2)(i+ 1)!(i− 1)!(d− 2i− 1)!(d− i+ 1)(d− i− 1)
.
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Note that

skyt(m+ 1, i, d− 2i+ 1)− 2

m+ d+ 2

(
m+ d

d

)
skyt(i, d− 2i+ 1) > A− B,

so it suffices to show A − B > 0. Recall that i < d/2. Put another way, this says that
d− i > i > i− 1. Hence, we may combine A− B in the following way.

A− B =
(m+ d)!(m+ i− 1)!p(m, i, d)

m!(m+ d+ 2)(i+ 1)!(d− i)!(m+ i+ 1)!(d− i+ 1)(d− i− 1)(d− 2i− 1)!

where

p(m, i, d) = (d− i− 2)(d−2i−1)m(i+ 1)(m+ d+ 2)(d− i+ 1)(d− i− 1)

− 4(d− i)(d−2i+1)(m+ i)(m+ i+ 1).

Hence, it suffices to show that p(m, i, d) > 0. We can, in fact, reduce the problem further
by simplifying p(m, i, d). Observe that

p(m, i, d) = (d− i− 1)d−2i[m(i+ 1)(m+ d+ 2)(d− i+ 1)− 4(m+ i)(m+ i+ 1)(d− i)],

so it now suffices to show

q(m, i, d) := m(i+ 1)(m+ d+ 2)(d− i+ 1)− 4(m+ i)(m+ i+ 1)(d− i) > 0.

We show this for m, i > 3 by viewing q as a function of m. The desired result follows
from the following three claims for q as a function of m.

1. q is quadratic and concave up;

2. the critical point of q is negative; and

3. q(m, i, d) > 0 for m = 3.

Showing these are elementary exercises in algebra and calculus, so we just highlight
the important parts.

For claim (1), note that the coefficient of m2 in q(m, i, d) is (i+1)(d− i+1)−4(d− i),
and that we assume d > 2i and i > 3. Hence this coefficient is non-negative.

For claim (2), it suffices to show the coefficient of m in q(m, i, d) is positive. This
coefficient is

(i+ 1)(d+ 2)(d− i+ 1)− 4(i+ 1)(d− i)− 4i(d− i).

Using the fact that d > 2i, one can show this is an increasing function in d and is non-
negative when d = 2i.

For claim (3), it suffices to show q(3, i, d) is an increasing function in d and that
q(3, i, 2i) is non-negative. This works out similarly to claim (2).
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Lemma 22. Let i > 1 and m = 2. Then

skyt(m+ 1, i, d− 2i+ 1)− d+ 2

2
skyt(i, d− 2i+ 1) > 0.

Proof. As in Lemma 21, keeping in mind that m = 2, set

A :=
(d+ 2)!(d− i− 2)(d−2i−1)

i!(d− i)!(i+ 2)(d− 2i− 1)!(i+ 3)

and

B : =
d+ 2

2
skyt(i, d− 2i+ 1)

=
d!(d+ 2)

(i+ 1)!(i− 1)!(d− 2i− 1)!(d− i+ 1)(d− i− 1)
.

It follows from the proof of Lemma 21 that skyt(m+ 1, i, d− 2i+ 1) > A for m = 2, and
so the desired result follows if we show A− B > 0. Observe that

A− B =
d!(d+ 2)p(i, d)

(i+ 3)!(d− i)!(d− 2i− 1)!(d− i+ 1)(d− i− 1)
,

where

p(i, d) := (d− i− 2)(d−2i−1)(d+ 1)(i+ 1)(d− i+ 1)(d− i− 1)− (i+ 2)(i+ 3)(d− i)(d−2i+1).

Hence, it suffices to show that p(i, d) is non-negative. One can factor p(i, d) to reduce the
problem further:

p(i, d) = (d− i− 1)(d−2i)[(d+ 1)(i+ 1)(d− i+ 1)− (i+ 2)(i+ 3)(d− i)],

and so it suffices to show that

q(i, d) := (d+ 1)(i+ 1)(d− i+ 1)− (i+ 2)(i+ 3)(d− i)

is non-negative. Since in the context of Kazhdan-Lusztig polynomials we have d > 2i, we
may set d = 2i+ j for j > 1. Then q(i, 2i+ j) is quadratic in j and we have the following
values of [j`]q(i, 2i+ j):

[j2]q(i, 2i+ j) = i+ 1,

[j1]q(i, 2i+ j) = 2i2 − 4,

Remaining terms: i3 − 2i+ 1.

When i > 2, all three values are individually positive. If i = 1, then

q(1, j + 2) = 2j2 − 2j

which is non-negative for all j > 1, giving our desired result.
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Proposition 23.

skyt(m+ 1, 1, d− 1) =

(
m+ d

d− 1

)
−m− d.

Proof. Note that if α ∈ Skyt(m + 1, 1, d− 1), it is made up of two “tails”, one of length
m+ 1 extending down, and the other of length d− 1 extending up, so that the two tails
overlap in exactly two positions. See the below figure for a schematic of α, with some
entries labeled.

m+ 1

d− 1
w
x
y
z

Note that there are m + d positions in this tableau, and we require that w < y and

x < z. Now, pick an element S ∈
(

[m+ d]

d− 1

)
. The number of elements of Skyt(m +

1, 1, d − 1) is equivalent to the number of S that appear as the right tail in an element
in Skyt(m+ 1, 1, d− 1), as the entries of one tail determine the entries of the other. It is
easiest to count the complement, that is, the S that will not appear as the the right tail
in an element of Skyt(m+ 1, 1, d− 1). These are the S that force w > y, x > z, or both.
We leave it to the reader to verify that the complement has size m+ d.

Lemma 24. We have(
m+ d

d− 1

)
−m− d− 1

m+ 1

(
m+ d

d

)
(d− 1) > 0

for d > 3 when m > 4, and d > 4 when m = 3.

Proof. We start by rewriting of our expression of interest.:(
m+ d

d− 1

)
−m− d− 1

m+ 1

(
m+ d

d

)
(d− 1) = (m+ d)

(
(m+ d− 1)(d−2)

d!
− 1

)
.

Hence, if

f(m, d) :=
(m+ d− 1)(d−2)

d!

it suffices to show f(m, d) > 1. As a function in m, f(m, d) is increasing. Also,

f(4, d) =
(d+ 3)(d−2)

d!
=

(d+ 3)!

5!d!
=

1

20

(
d+ 3

3

)
.
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See that f(4, d) is increasing in d and also f(4, 3) = 1. So when m > 4, we have our
desired result for d > 3. When m = 3, we observe that

f(3, d) =
(d+ 2)(d−2)

d!
=

(d+ 2)!

4!d!
=

1

12

(
d+ 2

2

)
.

Note that f(3, d) is increasing in d, and f(3, 4) = 15
12

.

Lemma 25. If m > 3, we have
c2
m,d(CH) > 0.

Proof. It will be important to remember that since i = 2, we have d > 5 by the degree
requirement on Kazhdan-Lusztig polynomials.

To show our desired result, we will need two separate cases. First suppose m > d.
Note then we already have m > 3 since d > 5. As in Lemma 21, accounting for the fact
that in this case i = 2, let

A : =
(m+ d)!(d− 4)(d−5)

2(m− 1)!(d− 2)!(m+ 2)(d− 5)!(m+ 3)

=
(m+ d)!(d− 4)m(m+ 1)

2(m+ 3)!(d− 2)!
.

Also similarly to Lemma 21, but using the bound from Theorem 15 for |CH|, let

B : =
1

m+ 1

(
m+ d

d

)
2 · d!

6(d− 5)!(d− 1)(d− 3)

=
(m+ d)!(d− 2)(d− 4)

3(m+ 1)!(d− 1)!
.

A combination of Theorem 12, Theorem 15, and the proof of Lemma 21 implies that

c2
m,d(CH) > A− B,

and so it remains to show that A− B > 0 when m > d. Notice that

A− B =
(m+ d)!(d− 4)f(m, d)

6(m+ 3)!(d− 1)!
,

where
f(m, d) := 3m(m+ 1)(d− 1)− 2(d− 2)(m+ 2)(m+ 3).

Hence, it suffices to show that f(m, d) > 0. Since m > d, we set m = d + j, for j > 0.
Then f(d+ j, d) is quadratic in j and we have

[j2]f(d+ j, d) = d+ 1,

[j]f(d+ j, d) = 2d2 − 5d+ 17, and

Remaining terms of f(d+ j, d) : d3 − 6d2 + 5d+ 24.
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One can verify each of these are positive when d = 5, and that each is increasing in d
when d > 5. Hence, this shows that c2

m,d(CH) > 0 so long as m > d.
Now we show the same result holds when d > m. To do this, we reuse A as above,

and redefine B using our bound from Theorem 17:

B : =
2

m+ d+ 2

(
m+ d

d

)
2 · d!

6(d− 5)!(d− 1)(d− 3)

=
2(m+ d)!(d− 2)(d− 4)

3(m+ d+ 2)m!(d− 1)!
.

For similar reasons as before, c2
m,d(CH) > 0 if A− B > 0. Note that

A− B =
(m+ d)!(d− 4)(m+ 1)g(m, d)

6(m+ 3)!(d− 1)!
,

where
g(m, d) := 3m(m+ d+ 2)(d− 1)− 4(d− 2)(m+ 2)(m+ 3).

Observe that g is a concave up quadratic function in d. If one expands the function, its
vertex can be seen to occur at

d =
m2 + 17m+ 24

6m
.

However, note that this value is less than m so long as m > 5 since

m2 + 17m+ 24

6m
6 m if and only if − 5m2 + 17m+ 24 6 0.

Hence, this says that g(m, d) is increasing in d when d > m > 5. Also, when m = 3 the
vertex for g is at approximately d = 4.67 and when m = 4 the vertex for g is at d = 4.5.
We know that d > 5 regardless of its relation to m, so we have in fact shown that g is
increasing in d for any m > 3 when d > m. Moreover, one can verify

g(m,m) = 2(m3 − 6m2 + 5m+ 24) > 0

so long as m > 5. Also, note that g(3, 5) = 0 and g(4, 5) = 24. Hence g(m, d) is always
non-negative for d > m when m > 3.

7 Integral Identities

The following proposition is due to [16, Identity 2.110.8], though it is not immediately
obvious until one makes the appropriate substitutions and simplifications.

Proposition 26. Let a, b be positive integers. Then∫
ya(1− xy)b dy = a!b!

b∑
k=0

(1− xy)b−kya+k+1xk

(a+ k + 1)!(b− k)!
.
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Corollary 27. Let a, b be positive integers. Then∫ 1

0

ya(1− xy)b dy = a!b!
b∑

k=0

(1− x)b−kxk

(a+ k + 1)!(b− k)!
.

Corollary 28. Let a, b be positive integers. Then∫ y

0

xa(1− x)b dx = a!b!
b∑

k=0

(1− y)b−kya+k+1

(a+ k + 1)!(b− k)!
.

Proposition 29. Let x0, x1, . . . , xi be a list of i+ 1 variables. Set h1(x1) =

∫ x1

0

xa0(1−

x0)b dx0, and for i > 1 define hi(xi) =

∫ xi

0

hi−1(xi−1) dxi−1. Then

∫ 1

0

hi(xi) dxi =
a!(b+ i)!

i!(a+ b+ i+ 1)!
.

Proof. Using Corollary 28 i times, we get the following expression for hi(xi).

hi(xi) = a!b!
b∑

k1=0

b−k1∑
k2=0

b−k1−k2∑
k3=0

· · ·
b−σ∑
ki=0

xa+σ+ki+i
i (1− xi)b−σ−ki

(a+ σ + ki + i)!(b− σ − ki)!
, (5)

where σ = k1 + k2 + · · ·+ ki−1. Noting that∫ 1

0

xa+σ+ki+i
i (1− xi)b−σ−ki dxi =

(a+ σ + ki + i)!(b− σ − ki)!
(a+ b+ i+ 1)!

,

we may use (5) to write∫ 1

0

hi(xi) dxi

= a!b!
b∑

k1=0

b−k1∑
k2=0

b−k1−k2∑
k3=0

· · ·
b−σ∑
ki=0

(a+ σ + ki + i)!(b− σ − ki)!
(a+ σ + ki + i)!(b− σ − ki)!(a+ b+ i+ 1)!

=
a!b!

(a+ b+ i+ 1)!

b∑
k1=0

b−k1∑
k2=0

b−k1−k2∑
k3=0

· · ·
b−σ∑
ki=0

1,

which simplifies using Proposition 30 to

a!b!

(a+ b+ i+ 1)!

(
b+ i

i

)
=

a!(b+ i)!

i!(a+ b+ i+ 1)!
.
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Proposition 30.
b∑

k1=0

b−k1∑
k2=0

b−k1−k2∑
k3=0

· · ·
b−σ∑
ki=0

1 =

(
b+ i

i

)
,

where σ = k1 + k2 + · · ·+ ki−1.

Proof. It is helpful to first reindex the summations so that they start at 1 instead of 0.
Then the identity holds from counting the below set in two ways.⋃

x1∈[b+1]

⋃
x2∈[b+2]\[x1]

⋃
x3∈[b+3]\[x2]

· · ·
⋃

xi∈[b+i]\[xi−1]

{x1, x2, . . . , xi}.
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