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Abstract—We present a quality-aware multimodal recognition framework that combines representations from multiple biometric traits
with varying quality and number of samples to achieve increased recognition accuracy by extracting complimentary identification
information based on the quality of the samples. We develop a quality-aware framework for fusing representations of input modalities
by weighting their importance using quality scores estimated in a weakly-supervised fashion. This framework utilizes two fusion blocks,
each represented by a set of quality-aware and aggregation networks. In addition to architecture modifications, we propose two
task-specific loss functions: multimodal separability loss and multimodal compactness loss. The first loss assures that the
representations of modalities for a class have comparable magnitudes to provide a better quality estimation, while the multimodal
representations of different classes are distributed to achieve maximum discrimination in the embedding space. The second loss, which
is considered to regularize the network weights, improves the generalization performance by regularizing the framework. We evaluate
the performance by considering three multimodal datasets consisting of face, iris, and fingerprint modalities. The efficacy of the
framework is demonstrated through comparison with the state-of-the-art algorithms. In particular, our framework outperforms the rank-
and score-level fusion of modalities of BIOMDATA [1] by more than 30% for true acceptance rate at false acceptance rate of 10−4.

Index Terms—Multimodal biometrics, quality-aware multimodal fusion, representation separability, network compactness.
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1 INTRODUCTION

B Iometrics research explores the possibility of automatically
recognizing individuals based on their unique physical or be-

havioral traits such as face, fingerprint, voice, iris, or handwriting,
which are referred to as biometric modalities. The uniqueness of
the biometric features extracted from these traits, have allowed
unimodal biometric systems to be widely used for identification
and verification applications in a wide variety of scenarios [2],
[3], [4], [4], [5]. Beyond unimodal systems, a major merit of
multimodal biometric recognition is its robustness to noisy data,
non-universality, and category-based variations. Indeed, fusing
multiple instances of biometric information lowers recognition
error rates for low-quality and unreliable biometric samples, such
as latent fingerprints, face images captured at a distance, and
low-resolution iris images [6], [7], [8]. Hence, we argue that
the multimodal framework should be able to leverage the quality
information of the input samples to incorporate all identification
information within these samples while discarding the distorted
information in low-quality samples that may negatively affect the
identification.

The most commonly deployed feature fusion methods for
multimodal frameworks presented in the literature are feature con-
catenation [9], [10], bilinear multiplication [11], [12], and compact
bilinear pooling [13], [14], [15]. However, these methods treat all
samples equally, and do not take their reliability and usefulness
into account. A multimodal recognition algorithm requires select-
ing the discriminative and informative features from each sample,
as well as exploring the dependencies between features extracted
from different samples in a multimodal sample set. This frame-
work should also determine the priority of features according to
their usefulness and reliability for the recognition task. In addition,
the information provided by different samples in a multimodal
biometric sample set may or may not be independent. For instance,
consider the case where the multimodal biometric recognition

framework has access to videos captured by a surveillance camera
and fingerprints collected using a sensor. In this situation, face
images captured with pose variations are correlated, while the
face images and fingerprint samples are independent. Therefore,
compared to other recognition frameworks, information fusion for
multimodal biometric systems has remained a challenging task.

A biometric sample is of good quality if it is suitable for
automated matching. This quality can be quantified as a measure
of how properly the biometric sample can be processed within
the matching algorithm, including feature extraction and accurate
recognition with a high confidence score [6]. For a multimodal
sample set consisting of different modalities and a varying number
of samples from each modality, the recognition framework should
investigate both intra-modality and inter-modality information
fusion. The intra-modality and inter-modality usefulness can be
interpreted as the intra-modality quality of the samples and the
inter-modality quality of different modalities, respectively.

Recent multi-sample recognition frameworks [16], [17], [18],
[19] aim to solve this problem when all samples in the multimodal
sample set are of the same modality. However, multimodal multi-
sample recognition requires the consideration of independent
samples in the set, where samples represent different modalities.
Our proposed framework seeks to formalize a learning framework
that automatically identifies the usefulness of the samples in a
multimodal sample set through the loss defined by the underlying
recognition task, where this usefulness is due to the intra-modality
and inter-modality quality of the samples. This quality-aware
framework aims to improve the representation of a multimodal
sample set in the embedding space by estimating the quality of
each of its samples in a weakly-supervised fashion.

As presented in Fig. 1, our framework employs two weakly-
supervised quality-aware fusion blocks. This framework repre-
sents each sample in the multimodal sample set with a feature
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Fig. 1: A multimodal biometric sample set consists of samples from different modalities and varying quality. The quality-aware
multimodal network, which consists of two fusion blocks, represents the sample set as a multimodal representation. The intra-modality
and inter-modality qualities are estimated in a weakly-supervised fashion by minimizing the multimodal separability training loss, while
the multimodal network compactness loss regularizes the network to provide better generalization.

vector and an intra-modality quality score. The feature vectors
and quality scores associated with samples from each modality
are utilized to construct a unimodal feature representation for
each modality, while the inter-modality quality scores are utilized
for credit assignment among the unimodal feature vectors in the
fusion of the modalities. No quality scores are explicitly provided
to the framework, and quality estimation allows different features
from different samples to dynamically come to the forefront
as needed by re-weighting the features when constructing the
multimodal embedding space [20].

Our proposed multimodal recognition model includes two
quality-aware fusion blocks for adaptive feature-level re-
weighting [16], [17]. We jointly train these quality-aware fusion
blocks through minimizing multimodal separability loss and mul-
timodal network compactness losses. The first loss imposes an
equi-distributed multimodal embedding in which the inter-class
distance of multimodal representations is maximized and the intra-
class variance is minimized. In addition, this loss function consid-
ers other constraints on the unimodal embeddings, linking them
to the multimodal embedding. Our trained multimodal network
is utilized during the test phase to incorporate the usefulness of
each sample for the recognition task. Therefore, we propose mul-
timodal network compactness loss to improves the generalization
capability of the network by minimizing the hyperspherical energy
for the layers of the network.

In the experimental setup, we focus on three multimodal
recognition scenarios. In the first scenario, which can represent a
traditional biometric framework, each modality in the multimodal
sample set consists of a single sample. Here, the first quality-aware
fusion block acts as a feature extraction block while the second one
aims to satisfy the recognition task by learning the inter-modality
quality of each modality. This scenario enables us to analyze the
performance of the second fusion block. The second recognition
scenario characterizes a multi-biometric capture system used for
criminal booking. Due to variations in sensor type, training level
of the booking officer, and overall human error, the biometric
samples collected during booking and subsequently entered into
an Electronic Biometric Transmission Specification (EBTS) can
vary wildly in quality. In this scenario, for each subject a set of
low-quality face images and varying number of latent fingerprints
are considered for the identification. This scenario mainly provides
the possibility of studying the performance of the intra-modality
fusion block. The third scenario, which can model an access

control security system, is focused on representing a set of samples
per modality with a single embedding space representation while
the first fusion block considers the quality of each sample. Then,
the second block aggregates the representations corresponding
to different modalities through their inter-modality quality in
the recognition task. This setup allows a more comprehensive
evaluation of the joint performance of the two quality-aware fusion
blocks.

The contributions of this paper in the field of multimodal
biometrics are as follows:

• We propose a quality-aware fusion framework for multi-
modal biometrics applications which is optimized through
learning in a weakly-supervised fashion without direct
supervision of the quality of the samples or modalities.

• We formalize the multi-sample multimodal recognition
problem by learning two consecutive embeddings dedi-
cated to extract discriminative features by exploiting the
intra- and inter-modality information.

• An end-to-end training framework is proposed consisting
of two novel loss functions for training the quality-aware
fusion blocks.

• Three specific multi-sample multimodal person recog-
nition scenarios are designed to carefully evaluate the
performance of the proposed framework. These scenarios
consider two chimeric multimodal and one real-world
multimodal datasets.

2 BACKGROUND

2.1 Feature extraction and fusion

Convolutional neural networks (CNNs) are efficient tools that
can be employed to extract and represent discriminative features
from raw data. Compared to hand-crafted features, the use of
CNNs as domain feature extractors has been demonstrated to
be more promising when facing different biometric modalities
such as face [21], iris [22], and fingerprint [23]. One of the
major challenges in multimodal fusion is managing the large
dimensionality of the fused feature representations, which high-
lights the importance of the fusion algorithm. In comparison to
score- [24], [25], rank- [26], [27], [28], and decision-level [29],
[30], [31] fusion schemes, feature-level fusion results in a better
discriminative classifier [32], [33], [34] due to preservation of raw
information [4]. Feature-level fusion integrates different features
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extracted from different modalities into a more abstract and
compact feature representation, which can be further used for
verification or identification [2], [35]. Several frameworks have
exploited feature-level fusion for multimodal biometric identifi-
cation. Among them, serial feature fusion [36], parallel feature
fusion [37], Canonical Correlation Analysis (CCA)-based feature
fusion [38], Joint Sparse Representation Classifier (JSRC) [4],
Supervised Multimodal Dictionary Learning (SMDL) [3], and
Multiset Discriminant Correlation Analysis (MDCA) [2] are the
most prominent techniques.

The prevalent feature fusion method in the deep learning
literature is feature concatenation, which becomes very inefficient
as the dimensionality of the feature space increases [9], [10], [39],
[40]. Bilinear feature multiplication [11], [12] is effective since all
elements of different modalities interact with each other through
multiplication. The main issue in bilinear operation is the high
dimensionality of its output regarding the cardinality of the inputs.
Recently, to overcome this shortcoming, compact bilinear pooling
has been proposed [13], [14], [15], [21]. This pooling algorithm
mimics results close to bilinear pooling while the dimensionality
of the embedding space is relatively small.

2.2 Multi-sample recognition

Multi-sample recognition has been recently utilized in recognition
frameworks. The authors in [17] have considered a neural aggre-
gation network, in which a set of face images is represented by
a vector in the embedding space. In their proposed framework,
a CNN block maps each face image into a feature vector in
the embedding space. Their aggregation module consists of two
blocks. These blocks adaptively aggregate the feature vectors
and form a single fixed-sized feature vector to represent a set
of face images. Their framework is trained with a classification
loss function without direct supervision. They concluded that
their proposed framework can learn to differentiate between high-
quality and low-quality face images in a set of images by solely
minimizing this loss function. The authors in [16] have considered
the problem where a set of face images are aggregated to be
presented by a vector in the embedding space. Their proposed
network consists of two branches. The first branch constructs a
feature vector in the embedding space for each image sample,
while the second branch computes the quality score for each image
sample. Finally, all of the feature vectors and quality scores in
one set are aggregated through the loss function to construct the
feature vector in the embedding space and represent the set of face
images.

2.3 Quality-aware fusion

The quality of a biometric sample is defined as its suitability for
feature extraction, correct recognition, and automated matching
with a high confidence score [6]. Multimodal quality-based fusion
frameworks give higher weights to the more reliable modalities.
On the other hand, fusion algorithms which do not consider the
quality of modality samples provide a fixed weighting scheme.
Therefore, these frameworks do not present the optimal decision
when sample quality varies. The quality-based fusion frame-
works should receive an effective set of quality measures. These
frameworks should also present an effective fusion mechanism
to consider these quality scores from all samples and make an
optimal decision [41].

One of the very first works considering the quality of the
samples in biometric fusion is presented in [42]. In this work,
the authors have manually deployed quality measures generated
by human experts. The authors in [43] have proposed a frame-
work to minimize cross-device matching performance degradation
by device-specific quality-dependent score normalization. In this
framework, each device score is normalized independently. To fuse
the outputs of different devices, these scores are combined using
a naive Bayes approach. A user-quality-based fusion of biometric
modalities is proposed in [44]. This work quantifies the quality of
biometric data by using user templates to incorporate the quality
of the sensor data in order to generate a more reliable estimate on
the matching scores, while a score-level fusion of the matching
scores in the multimodal setting is considered.

A unified framework for quality-based fusion from a Bayesian
perspective is proposed in [41]. In this work, the authors have
investigated feature-based and cluster-based fusion algorithms for
their quality-based framework. The authors in QFuse [45] present
an adaptive context switching algorithm coupled with online
learning to address uncontrolled noisy conditions and scalability.
A probabilistic logic to explicitly take uncertainty and trust into
consideration is proposed in [46]. The authors in [47] have
proposed a dynamic weighted sum fusion quality metric while
combining unimodal scores. This work proposes a single quality
metric for each gallery-probe comparison, instead of incorporating
the quality of the gallery and probe images separately. The context
weighted majority algorithm presented in [48] introduced score-
level and decision-level context-aware biometric fusion methods
to consider the context in which biometric inputs are acquired.

In contrast to the works mentioned in this section, the frame-
work proposed here provides a multi-sample multimodal frame-
work which benefits from quality-aware fusion. Our framework
provides a unimodal representation for each modality consider-
ing intra-modality quality of the samples in that modality and
aggregates these representations using their inter-modality qual-
ity. The proposed framework is trained in a weakly-supervised
fashion by minimizing the proposed multimodal separability loss
to uniformly spread the centers of class representations in the
embedding space. The proposed multimodal network compact-
ness loss regularizes the multimodal network by minimizing the
hyperspherical energy for different layers of the network. The
performance of the proposed framework is compared with several
state-of-the-art methods mentioned in this section.

3 QUALITY-AWARE MULTIMODAL NETWORK

Here, we describe our methodology to provide a framework
for multi-sample multimodal recognition for inputs consisting of
different modalities with different quality and varying number of
samples per modality. We describe the notations and the proposed
quality-aware fusion in Sections 3.1 and 3.2, respectively. This
fusion framework consists of two quality-aware fusion blocks.
Then, as discussed in Section 3.3, we present our training criteria
consisting of two loss functions. The multimodal separability loss
aims to construct an embedding which provides separability of
the representations by uniformly distributing the multimodal class
centers in the embedding space. Due to over-parametrization,
the multimodal networks suffer from a lack of generalization
on unseen samples. Hence, we propose a second loss function
as multimodal network compactness loss to improve the gen-
eralization of the framework by minimizing the hyperspherical
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Fig. 2: Fusiona
k consists of a multi-task CNN block, qNetak, and

intra-modality aggregation to deliver a unimodal embedding space
representation.

energy for different layers of the network. The two proposed
loss functions are customized for the multimodal multi-sample
settings. In Section 4, we study the effect of these loss functions
on the performance of the proposed framework.

3.1 Notations
The following notations are used throughout this paper:

• Multimodal sample set, X , consists of one or a set of a
varying number of samples from each modality.

• We consider K modalities, N training samples, and M
training classes in the proposed framework.

• Xk represents the set of samples from the kth modality in
multimodal sample set X .

• Xki represents one sample from modality k in multimodal
sample set X .

• L represents the number of layers in the architecture and
Nj represents the number of kernels in the jth layer.

• For simplicity, in this section, we use the notation k, 1 ≤
k ≤ K , for the different modalities. However, in the next
section, we replace them with the actual modality names.

3.2 Quality-aware fusion mechanism
We denote each multimodal sample set by X = {Xk}Kk=1, which
consists of samples from K modalities, and Xk represents sam-
ples from the kth modality. Our quality-aware framework consists
of two fusion blocks. The first quality-aware block converts each
Xk to a unimodal representation, Yk, while considering the quality
of each sample in Xk. This fusion block is applied on the samples
from each modality and extracts the features that are the best rep-
resentation of the corresponding modality: Yk = Fusiona

k(Xk).
The second quality-aware fusion block constructs the multimodal
embedding space representation, Z , from the unimodal represen-
tations of modalities, Yk, k = 1, 2, ...,K , considering the quality
of information across the modalities. This block determines the
relative credit assignment to the feature vectors in the unimodal

constructed embedding spaces: Z = Fusionb(Y1, Y2, ...YK). In
the following, we describe each of these fusion blocks in greater
detail.

Intra-modality fusion (Fusiona
k): When multiple samples

per modality are available, one can consider the average repre-
sentation of samples to combine their identification information
for the corresponding modality. This is equivalent to assigning
equal quality scores to all of these samples. However, a better
choice is to incorporate the quality of the samples to combine
their representation. Fig. 2 presents this fusion block consisting of
feature extraction, intra-modality quality estimation, and feature
aggregation. The inputs to this block are samples from the kth

modality, Xk1, Xk2, ..., Xkpk
, where pk is the number of samples

for this modality in the multimodal sample set, and can vary from
one sample set to the other. To utilize the quality of samples in
Xk and construct a richer unimodal representation, Yk, this block
consists of a quality-aware modality dedicated network, qNetak,
and the intra-modality feature aggregation.

The first fusion block aims to provide a discriminative
unimodal representation for a set of samples Xk. This block
constructs a fixed-size vector representation, Yki, and an intra-
modality quality score, qki, for sample Xki. These representations
construct the embedding space representation for the kth modality
through softmax normalization of the quality scores:

q̃aki =
eq

a
kidki∑

j e
qakjdkj

, (1)

where i = 1, ..., pk, and q̃aki represents the normalized intra-
modality quality score for the ith sample. These quality scores
are utilized to construct the representation of the kth modality
in the embedding space, where qakiYki represents the normalized
quality-aware embedding space vector representation for sample
Xki:

Yk =
∑
i

q̃akiYki. (2)

One of the main concerns for the proposed framework is the
possibility of high-quality samples dominating the other samples
during the training, in which the quality scores corresponding to
these samples tend to be significantly high, forcing the scores
corresponding to the other samples to be very small. To resolve
this issue, we perform the dropout technique on samples of the
modality during the training and randomly set some of the quality
scores to zero. Here, dki is a binary value, and takes values based
upon the modality-specific dropout probability, µk. As presented
in Fig. 2, when a modality consists of one sample, Xk = Xk1, the
first fusion block acts as a feature extraction block, and provides a
discriminative unimodal representation for this sample.

Inter-modality fusion (Fusionb): As presented in Fig. 1,
the second fusion block consists of feature transformation, inter-
modality quality estimation and inter-modality feature aggrega-
tion. The feature transformation aims to provide the flexibility for
the unimodal representations, Yk, utilized for inter-modality qual-
ity estimation and feature aggregation trained by loss functions
described in Section 3.3. This fusion block includes inter-modality
networks, qNetbk, and a fully-connected block FNetb to estimate
the inter-modality quality scores.1 This fusion block constructs
a multimodal representation for the multimodal sample set, X ,

1. qNetak networks have different architectures. However, although param-
eters for qNetbk networks differ, we consider their architecture to be the same.
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Fig. 3: Fusionb
k consists of K modality-dedicated networks,

qNetbk, and a fully-connected network, FNetb. Each modality-
dedicated network, qNetbk, presents a modality with a representa-
tion and a modality-dedicated quality vector. Quality vectors are
concatenated and fed into FNetb to provide the inter-modality
quality scores.

through learning the inter-modality quality of the unimodal repre-
sentations. To this aim, the unimodal representations are fed into
inter-modality networks (qNetbk, 1 ≤ k ≤ K). This fusion block
constructs an embedding space representation, Zk, as well as a
modality-dedicated quality vector, Qb

k. Each representation and
the quality vector, interacting with the corresponding unimodal
feature vectors and quality vectors from the other modalities, build
Z as the multimodal embedding space representation ofX . To this
aim, as presented in Fig. 3, the quality vectors are concatenated
and fed into a fully-connected block of layers, FNetb. The
quality vectors from all of the modalities interact through this
network, and the inter-modality quality scores corresponding to
each modality, as qbk , k = 1, 2, ...,K are estimated. These quality
scores are normalized through softmax normalization:

q̃bk =
eq

b
kdk∑

j e
qbj dj

, k = 1, ...,K, (3)

where q̃bk represents the normalized inter-modality quality score
for the kth modality in X and present the relative importance of
this modality in the recognition of X . To avoid the possibility of
one modality dominating the other modalities during the training,
we randomly set some of these quality scores to zero. This
approach is implemented utilizing binary values, dk, which take
values based upon the dropout probability, µ. In the case of single-
sample multimodal recognition, each normalized inter-modality
quality score interprets the quality of the sample as well as the
inter-modality quality of the modality. These normalized quality
scores interact with the embedding space representations of the
modality samples, Zk vectors, to present a quality-aware repre-
sentation of X , where q̃bkZk represents the normalized embedding
space representation for Xk. We aggregate the representations of

‘

Fig. 4: Our multimodal separability training loss consists of four
multimodal losses. The angular loss,La, provides the compactness
between different multimodal sample sets of a given class. The
uniform loss, Lu, aims to guarantee that the centers for different
multimodal classes are uniformly distributed in the embedding
space. Lc forces the centers of different modalities for a class to
follow the same direction. For each class, Lr aims to provide Zk

representations that are comparable.

all the modalities as:

Z = ΦK
k=1(q̃bkZk), (4)

where Φ represents the aggregation method applied to the nor-
malized embedding space vectors, such as addition [2], con-
catenation [10], bilinear multiplication [12], or compact bilinear
pooling [13]. In all experiments presented in this paper, we
consider addition of the feature vectors as the aggregation method,
which results in Z =

∑K
k=1 q̃

b
kZk. Equivalently, this operation

represents re-weighting the last layers of the modality-dedicated
networks. The learned representations, Z and Yk, are considered
for multimodal and unimodal frameworks, respectively. These
representations are utilized through the loss functions described
in the next section to construct the decision.

The proposed framework learns inter-modality quality scores
by minimizing the recognition loss function. These scores rep-
resent both the quality of the samples of one modality assigned
to each multimodal sample and the inter-modality quality of the
modality compared to the other modalities for a multimodal sam-
ple set. Therefore, the inter-modality quality of the kth modality
over the dataset for the underlying recognition task is computed
as:

P b
k = EX{q̃bk}, (5)

where EX represents the expectation over the multimodal sample
sets in the dataset.

3.3 Multimodal separability and network compactness

Inspired by the recent advances in metric learning for deep
biometric recognition such as SphereFace [49], ArcFace [50],
and UniformFace [51], we design an equi-distributed multimodal
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embedding in which the inter-class distance of multimodal repre-
sentations is maximized and the intra-class variance is minimized.
The equi-distributed constraint is applied on the centers of each
class representations by uniformly spreading them in the embed-
ding space. However, simple consideration of this constraint is
not sufficient in a multimodal framework in practice. Thus, we
consider two additional constraints on the unimodal embeddings,
linking them to the multimodal embedding, which subsequently
results in unifying the unimodal representations. In addition, to
boost the generalization capability of the proposed framework,
we regularize the weights in each layer of the architecture. The
proposed regularization method benefits from considering similar,
but not necessarily the same, architectures for different networks.

Separability of representations: The softmax loss is the com-
mon loss used for training CNN-based classifiers in the literature.
This loss is defined as a combination of the last fully-connected
layer, a softmax function, and a cross-entropy loss [52]. The radial
properties of features learned by the softmax loss do not contribute
to the discrimination of samples, thereby the angular similarity
should be preferred, leading to normalized features [53].

Let us assume that N is the number of training samples, xi is
the learned feature representation corresponding to the ith training
sample with label yi, and vj and bj are the weights and bias of the
last fully connected layer corresponding to jth class, respectively.
To impose the angular similarity to the softmax loss, we assume
that ||vj || = 1 and bj = 0. These assumptions result in the
classification to depend entirely on the angles between xi and vj ,
θj,i. Therefore, the modified softmax loss can be defined only
based on θj,i [49]. Several works have provided more general
assumptions on the modified softmax loss for different recognition
tasks:

La = − 1

N

∑
i

log
e||xi||(cos(m1θyi,i+m2)−m3)

e||xi||(cos(m1θyi,i+m2)−m3) +
∑
j 6=i

e||xi|| cos(θj,i)
,

(6)
where La represents the angular similarity loss. The effect of m1,
m2, and m3 are studied in SphereFace [49], ArcFace [50], and
CosFace [54], respectively. Inspired by the UniformFace [51], we
maintain the discriminative nature of the framework considering
the angular loss, while forcing the embedding space representa-
tions to follow a uniform distribution. Here, during the training,
centers cj1 and cj2 are assigned to the j1th and j2th classes [51].
Then, the uniform loss is defined as:

Lu =
1

M(M − 1)

M∑
j1=1

M∑
j2=1
j2 6=j1

1

||cj1 − cj2 ||2 + 1
, (7)

where M is the number of classes during the training phase. We
combine the uniform loss and angular softmax loss as uniform
angular loss:

L1 = La + λuLu, (8)

where λu is the regularization parameter.
As described in Equation 11, we train the multimodal repre-

sentation, Z and each of the unimodal representations, Yk, using
Equation 8. However, to enforce the unimodal representations, Zk,
for different modalities of a class to be comparable for both es-
timating the inter-modality quality scores and multimodal fusion,
we define a representation loss between these representations. In

particular, we want the magnitude and phase of q̃bkZk to capture
the inter-modality quality of the corresponding modality and its
recognition information, respectively. Therefore, we constrain the
magnitude of the modality representations to depend solely on q̃bk :

Lr =
1

NK(K − 1)

N∑
i=1

K∑
k1=1

K∑
k2=1
k2 6=k1

(||Zk1 ||2 − ||Zk2 ||2)2∑K
k=1 ||Zk||2

,

(9)
where the first summation represents multimodal sample sets in
the training set and the denominator represents the summation of
the norms of Zk representations for a multimodal sample set.

We consider that for each class, Zk representations share the
same direction. This assumption provides a better separability
between the classes since small variations of unimodal representa-
tions for each modality result in a minimal multimodal intra-class
variance. Equivalently, the unimodal representations for different
modalities of the same class should represent the same directions
as the multimodal embedding space representation of that class.
We define a similarity loss between the directions of the centers
of the modalities of the same class as:

Lc =
1

KM

K∑
k=1

M∑
j=1

|| cj
||cj ||2

−
c
(k)
j

||c(k)j ||2
||2, (10)

where c(k)j represents the representation center for kth modality
of the jth class. We define multimodal separability loss as:

Lms = La + λuLu︸ ︷︷ ︸
L1

+λcLc + λrLr︸ ︷︷ ︸
L2

+
1

K

K∑
k=1

(λakLak + λukLuk),

(11)
where Lak and Luk represent the unimodal uniform angular loss
function for the kth modality and λr , λc, λak, and λuk are the
regularization parameters. In verification setups, λc = 0. In this
training loss, L2 represents the inter-modality training loss, while
L1 represents multimodal uniform angular training loss. Fig. 4
highlights the effect of the four defined losses on the separability
of our multimodal framework. It is worth mentioning that the
last term in the above equation represents the unimodal uniform
angular training loss [51]. Therefore, while computing it, the
unimodal centers of classes are considered.

Network compactness: Although deep neural networks are
powerful nonlinear functions that can be trained end-to-end to
extract the features and satisfy the underlying recognition task
simultaneously, their over-parametrization results in highly cor-
related neurons that can hurt the generalization ability and incur
unnecessary computation cost [55]. Multimodal deep neural net-
works suffer from this shortcoming the most, since they require a
vast number of parameters and training multimodal sample sets.
Regularization of the deep neural networks aims to avoid the
representation redundancy. Regularization of these networks can
roughly be categorized into implicit and explicit methods [56].

Implicit methods do not directly impose constraints on the
weights, but instead, regularize the networks in order to prevent
over-fitting and stabilize the training dynamics. Batch normaliza-
tion [59], dropout [60], weight normalization [61], and group
normalization [62] are examples of the implicit regularization
methods. Explicit models, such as orthonormal regularization [63],
[64], diversification [65], [66], uncorrelation [67], [68], and mini-
mizing the hyperspherical energy (MHE) [55], aim to impose di-
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Fig. 5: Corrupted fingerprint samples from the BioCOP dataset
in the training set generated from the clean sample (top left)
by warping the clean fingerprint [57] (first row) and fading the
fingerprint ridges at random points and adding backgrounds [58]
(second row).

rect constraints on the weights of the network. However, the high-
dimensionality of the kernels in convolutional neural networks, in
addition to the vast number of kernels in multimodal frameworks,
makes it difficult to regularize our multimodal framework using
explicit methods [69]. Here, we expand Compressive Hyperspher-
ical Energy Minimization (CoMHE) [56], which projects the
kernels and neurons of the network to a low-dimensional space
and minimizes the energy in the projected space, to apply it
in our multimodal setting. We define the hyperspherical energy
for the jth convolutional layer which consists of Nj kernels,
Wj = {w1, w2, ..., wNj} as [55]:

Es(Wj) =

Nj∑
i=1

Nj∑
l=1,l 6=i

(||g(ŵi)− g(ŵl)||2)−2, (12)

where ŵi = wi

||wi||2 . However, the proposed energy minimization
problem can result in colinear kernels in opposite directions.
Therefore, we consider MHE in half space, in which both ŵi and
−ŵi are utilized in the energy function above. The same energy
function can be applied to the fully-connected layers where the
vector wi represents the weights going to the ith neuron.

The compression function is defined as g(ŵi) = P∗ŵi

||P∗ŵi|| ,
where P ∗ is the optimized projection matrix using unrolled
optimization [56]. Then, the hyperspherical loss can be defined
as:

Lmc = λh

L−1∑
j=1

1

Nj(Nj − 1)
{Es}j+λh0

1

NL(NL − 1)
Es(ŵ

out
i |Mi=1),

(13)
where L is the number of layers. For our multimodal framework,
the P ∗ matrices for different modalities are shared when the kernel
size is the same. We find it beneficial to share projection matrices
for different modalities. Sharing the projection basis can effec-
tively reduce the number of projection parameters, also reducing
the inconsistency within the hyperspherical energy minimization
of projected neurons for different modalities, and further improves
the generalization. To implement this loss function, we consider
the dimension of the projected space to be equal to 30 for all
layers. For the rest of this paper we refer to this loss function
as multimodal network compactness loss, Lmc. Then, the overall
training loss is defined as:

L = Lms + Lmc. (14)

Fig. 6: (a) Eye image, (b) normalized iris and mask images, (c)
latent fingerprint image, (d) enhanced fingerprint image using [70],
and (e) three enhanced fingerprint images using constant Gabor
angles of 0◦, 60◦, and 100◦ for the whole image.

4 EXPERIMENTS AND DISCUSSIONS

In this section, we present performance metrics, the data represen-
tation for different modalities, training setup, experimental sce-
narios, and results. We conclude this section with the discussions
and comparisons with the state-of-the-art classical and deep learn-
ing algorithms to address multi-sample multimodal recognition
problem. To evaluate the performance of the proposed framework,
we follow the evaluation metrics and protocols presented in [71].
For the identification setup, the Recall metric is used. This metric
computes the probability that a subject is correctly classified at
least at the specified rank, while the candidate classes are sorted
by their similarity score to the query samples. The performance
metrics for the verification setup are the area under the curve
(AUC), equal error rate (EER), and true acceptance rate (TAR)
at different false acceptance rates (FAR). In addition, cumulative
match curve (CMC) and receiver operating characteristic (ROC)
are considered to present the performance for identification and
verification setups, respectively.

Data representation: To preprocess the samples, the face
images are aligned through five landmarks (two eyes, two mouth
corners and nose) [72], and cropped to 112 × 112 resolution
images. As presented in Fig. 6(b), iris images are segmented,
normalized using OSIRIS [73], and transformed into 64 × 512
strips. In addition, each iris image is concatenated in depth with
its mask image. Fingerprint images are enhanced using the method
described in [74], in which the core point is detected from the
enhanced image [70], and a 224 × 224 region centered by the
core point is cropped for recognition. We follow the conventional
Gabor filtering for enhancing fingerprint ridge information [70].

This approach identifies the locally optimal Gabor filter using
the estimated ridge frequency and orientation maps. However,
since in our problem fingerprints are assumed to be of different
quality, these maps and the subsequent filtering can be signif-
icantly deteriorated. Hence, instead of estimating the best local
Gabor filter, which is unreliable for low-quality samples, we feed
the network with the response of several major Gabor filters with
varying angles. We assume that the network learns to select the
appropriate response through minimizing the recognition loss.
Each fingerprint image is concatenated in depth with nine other
images. The algorithm described in [70] computes the direction of
the Gabor filter to estimate the ridge maps locally. Each of these
additional nine images is the response of Gabor filtering with the
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Fig. 7: The estimated quality of the corrupted samples from the BioCOP dataset in a multi-sample unimodal framework.

angels in [0◦−160◦] with steps of 20◦. Figs 6(d) and 6(e) visualize
several Gabor responses obtained from the latent fingerprint in
Fig. 6(c).

4.1 Training setup

Training datasets: The BioCOP multimodal dataset2 is one of
the few datasets that allows training of multi-sample multimodal
fusion since it contains a vast number of samples from different
modalities from the same individual. This dataset consists of four
sub-collections acquired over the course of 5 years, labeled by
the year when each sub-collection was initiated; 2008, 2009,
2012, and 2013. There are 3,990 distinct subjects in these four
sub-collections, while there are subjects common in these sub-
collections, e.g., 294 in sub-collections 2012 and 2013. We con-
sider face, iris, and fingerprint samples from this dataset in our
training phase. There are a total number of 254,660, 264,821, and
338,912 samples for face, iris, and fingerprint modalities in this
dataset, respectively.

The face modality contains both constrained and unconstrained
images with different expressions, camera angles, and camera
models. The constrained face images are acquired in head pose
angles of ±90◦, ±45◦, and 0◦, with open and closed eyes. The
fingerprint modality consists of all ten fingers captured using the
CrossMatch Verifier 300LC, CrossMatch Verifier 310, and UPEK
EikonTouch 700 sensors. The iris samples contain both left and
right irises and are acquired using the Aoptix Insight, CrossMatch I
SCAN 2, and LG ICAM 4000 near-infra-red sensors. Although, the
interval of data acquisition in BioCOP dataset can vary up to five
years, we also utilize the VGGFace2 [75] dataset to consider age-
progression during the training phase. The VGGFace2 dataset also
provides the training setup with more pose variations. This dataset
consists of 9,131 subjects with 3.31 million face images. These
images include different pose, quality, and resolution variations.
As described in the Training section in more details, for half of
the subjects which have the least number of face samples, the face
samples in BioCOP dataset are replaced with face samples from
the VGGFace2 dataset.

To provide real-world scenarios for our training setup, we
augment the described datasets with corruptions that reduce image
quality. The face images are corrupted using motion blur, JPEG
compression, additive Gaussian noise, scaling (width to height
ratio ∼ 0.9− 1.1), down-sampling and smoothing. To corrupt
the iris images, blurring matrix, B, warping, W , downsampling,

2. This dataset is available upon request: Jeremy.Dawson@mail.wvu.edu.

TABLE 1: The input size and network architectures. The first row
for each network represents the main branch which delivers the
embedding space representation and the second row represents
the quality score branch.

network input architecture

qNetaFace 112×112×3 C64-3×RES64-3×RES128 -3×RES256-FC512
-M-FC1

qNetaIris 64×512×2 2×C64-3×RES64-3×RES128 -3×RES256-FC512
-M-FC1

qNetaFing 224×224×10 2×C64-3×RES64-3×RES128 -3×RES256-FC512
-M-FC1

qNetbk 512×1×1 FC512 -FC512
-FC64-FC1

FNetb 16K×1×1 FC16-FC16-FCK

D, and additive noise n̄ are considered: X̄ = DBWX + n̄ as
described in [76].

Similarly, as presented in Fig. 5, the fingerprint images are
degraded using two corruptions [57], [58]. The first corruption
consists of warping the clean fingerprints [57] by randomly
sampling the first two principal warp components extracted from
the Tsinghua Distorted Fingerprint Database [57], [77]. The
other corruption considers fading the fingerprint ridges at random
points [58]. Data augmentation is also performed on the fingerprint
images, where 20 samples are generated for each fingerprint
image by translating the core point both vertically and horizontally
using distances coming from Gaussian distributions [39]. Here, ten
translated images are generated using a Gaussian distribution with
parameters µ = 0 and σ = 2.5. The remaining ten augmented
images are generated with µ = 0 and σ = 5.

Architecture: As presented in Fig. 2, the main architecture
of each qNetak is a multi-task CNN that delivers a unimodal
embedding space representation and a scalar quality score. This ar-
chitecture consists of a ResNet network [78] and a fully-connected
modality-dedicated embedding layer of size 512 to deliver Yki.
The quality estimation branch of this network delivers a scalar
quality score, qki. As presented in Fig. 3, the qNetbk networks
are also multi-task networks consisting of fully-connected layers
which deliver an embedding space representation, Zk, of size 512
and a modality-dedicated quality vector, Qb

k. The score vectors
dedicated to modalities are concatenated and fed into FNetb to
estimate the inter-modality quality scores for each modality.

Table 1 lists the architectures for these networks. We use (M)
as max-pooling of size 2× 2 with stride 2, (C[i]) as convolutional
layers with i kernels of spatial size 3 × 3 followed by an M, and
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Fig. 8: Samples from test datasets before preprocessing: (a) BIOMDATA non-ideal, (b) IIIT-Delhi MOLF-Latent (D4), (c) IIIT-Delhi
Latent, (d) CASIA Iris V4-Distance, (e) YouTube Face, and (f) IJB-A.

TABLE 2: Test datasets description, fine-tuning of the test datasets, and training parameters. For the verification setups, λc = 0.

Unimodal Multimodal
# classes Modalities Fine-tuning Datasets m1,m2,m3 λh, λh0

λak, λuk µk m1,m2,m3 λh, λh0 λu λr, λc µ

i 219
BIOMDATA L iris BIOMDATA R Iris 1.2, 0.3, 0.2 1.5,1 0.3,0.3 0.1

1.1,0.4,0.2 2.5,1 1 0.2,0.2 0.2BIOMDATA L index BIOMDATA R Index 1.2, 0.4, 0.2 1.5,1 0.3,0.3 0.1
BIOMDATA L thumb BIOMDATA R Thumb 1.2, 0.4, 0.2 1.5,1 0.3,0.3 0.1

ii 500 IJB-A VGGFACE2 1.35, 0.4, 0.15 1.5,1 0.4,0.4 0.2 1.1,0.4,0.2 2,1 1 0.2,0.2 0.3MOLF-Latent MOLF-D4 (remain. cla.) 1.2, 0.4, 0.2 1.5,1 0.4,0.4 0.1

iii 142
YouTube Face VGGFACE2 1.35, 0.4, 0.15 1.5,1 0.3,0.3 0.2

1.1,0.4,0.2 2.5,1 1 0.2,0 0.3CASIA-distance L iris CASIA-distance R iris 1.2, 0.3, 0.2 1.5,1 0.3,0.3 0.1
IIIT-Dehli Latent IIIT-Lat. (remain. cla.) 1.2, 0.4, 0.2 1.5,1 0.3,0.3 0.1

(FC[i]) as fully-connected layers with i nodes. Element j×RES[i]
consists of 2j residual blocks with skip connections after two
convolutional layers with i kernels followed by an M. For each
qNetak, the quality estimation branch diverges from the main
branch at RES128 and delivers the quality score. This branch
contains M and FC layers. ReLU is used as the non-linearity after
each layer for all networks, except for the final layer of score
estimation branches for the qNetak networks and FNetb network
where sigmoid function is considered to limit the scores in the
range [0,1].

Training: We initially train each qNetak for the classification
setup with a varying number of modality samples per multimodal
sample set, where a feature vector of size 512 is trained using
uniform angular loss and network compactness loss as defined in
Equations 8 and 13, respectively. Iris and fingerprint unimodal
networks are trained on their respective BioCOP modalities, while
the face network is trained on the combination of BioCOP and
VGGFace2 datasets. The estimated normalized quality scores
for degraded samples in the BioCOP dataset can be found in
Fig. 7. Each row in this figure presents eight samples of the
same subject to construct the unimodal multi-sample set. The
number of samples from a modality in a multimodal sample set is
chosen to represent the test datasets. Therefore, up to 30 samples
are considered for the face modality, while for the other two
modalities up to five samples are considered.

As described in Table 2, each multimodal network, is trained
for the multimodal setup, while the multimodal separability loss
and multimodal network compactness losses are enforced. This
setup is trained for 3,990 subjects in the BioCop dataset, where,
for half of the subjects which have the least number of face
samples, the face samples are replaced with face samples from
the VGGFace2 dataset. To study the effect of data augmentation
on the qNetaFing, we compare the rank-25 recognition rate, with
and without data augmentation, with NBIS software [79]. Data

augmentation improves the performance of the proposed frame-
work from 14.29% to 17.87%, while the NBIS software results
in 12.72%.

The main branch of qNetak networks are initialized with
weights pre-trained on Imagenet [80]. The other parameters are
initialized using Kaiming initialization [81]. The preprocessing
algorithm consists of the channel-wise mean subtraction. The five-
fold cross-validation method is considered to estimate the best
hyperparameters during the training phase. The training algorithm
is deployed using mini-batch stochastic gradient descent with
momentum of 0.9. The training is regularized by weight decay
of 5 × 10−4 and 50% dropout for the fully-connected layers,
except for the last layer of each network where the representations
are considered for recognition. The moving average decay is set
to 0.99 for all the networks except the iris modality, for which
it is set to 0.9. Batch size is set to 32 and 16 for unimodal and
multimodal frameworks, respectively. The initial learning rate is
set to 0.1. The learning rate decreases exponentially by a factor
of 0.1 after 105 iterations, and then every 5× 104 iterations, with
the final learning rate of 10−6.

4.2 Results

Datasets: In our experiments, we consider multimodal dataset
BIOMDATA [1], face datasets IJB-A [71] and YouTube Face
(YTF) [82], iris dataset CASIA-Distance [83], and fingerprint
datasets IIIT-Delhi MOLF-Latent (D4) [84] and IIIT-Delhi Latent
fingerprint (D4) [85]. Samples from these datasets are presented
in Fig. 8. To evaluate the performance of the proposed framework,
we consider three multimodal datasets. In the first dataset, which
can represent a traditional biometric framework, the recognition
framework has access to only one sample from each modality.
The second experimental scenario characterizes a multi-biometric
identification framework where multiple samples extracted from
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TABLE 3: The performance for the BIOMDATA non-ideal multi-
modal dataset.

Method @10−4 Rank-1 EER

JSRC [4] 27.13 97.15 7.12
GJSRC [89] 28.54 97.24 6.84
SMDL [3] 28.14 97.12 6.15
MDCA [2] 30.41 98.51 5.94
VeriFinger+OSIRIS-Sum 30.85 98.28 5.87
VeriFinger+OSIRIS-Major 29.54 97.86 6.15
CNN-Major 32.96 99.12 5.65
CNN-Sum 38.33 99.22 5.21
Weighted feature fusion [39] 43.83 99.40 4.84
Multi-abstract fusion [39] 54.06 99.57 2.97
Generalized compact bilinear [21] 58.30 99.74 2.45
Ours w/o L2 89.06 99.80 0.86
Ours w/o Lc 90.13 99.84 0.82
Ours with weight sharing 86.82 99.80 0.90
Ours 90.11 99.92 0.82

a low-quality video footage and a varying number of latent
fingerprints are available. The third experimental scenario, which
can model a access control security system, studies the possibility
of improved recognition when multiple samples are available for
multiple modalities, e.g., face, iris and fingerprint. To evaluate the
performance of the proposed framework for these scenarios, we
consider three datasets corresponding to these three scenarios.

There are few multimodal datasets captured in real-world
circumstances where each modality consists of multiple sam-
ples. Therefore, in our multimodal test setup, except for the
BIOMDATA multimodal dataset, we create virtual subjects by
assigning real-world biometric samples from subjects in one
dataset to the subjects in other dataset i.e., chimeric pairing. For
instance, we consider the face samples from IJB-A dataset and
fingerprint samples from IIIT-Dehli MOLF fingerprint dataset to
create our second multimodal dataset. It might be noted that this
procedure is feasible since modalities considered in this work
are intrinsically independent [86], [87], [88]. For each dataset,
the number of samples per subject and per modality may vary.
Therefore, for each subject, up to 25 multimodal sample sets
are randomly constructed. A brief description of each multimodal
dataset, the fine-tuning, and the hyper-parameters for fine-tuning
the architecture for each test dataset are presented in Table 2.
It is worth mentioning that, although virtual subjects inherently
can provide different recognition performances because of the
quality of the samples assigned to them e.g., thumb compared
to index fingerprints, the same virtual subjects are considered for
all the baselines, which results in a fair comparison. In addition, to
provide a better performance assessment for chimeric datasets, we
expanded our experiments by evaluating the standard deviation of
the multimodal recognition performance over five different sets of
virtual subjects from the unimodal datasets.

Baselines: Unimodal matching algorithms considered as base-
lines for the iris modality are OSIRIS (Version 4.1) [73], Sun et
al. [90], and Zhao et al. [91]. The performance of the fingerprint
modality is compared to NBIS (Release 5.0.0) [79] and VeriFinger
(Version 10.0) [92]. In addition, angular decision-making algo-
rithms such as SphereFace [49] and UniformFace [51] as well
as aggregation algorithms such as Neural Aggregation Network
(NAN) [17] are considered to build baselines for face recognition
performance. The performance of the proposed framework is
compared with the decision-level and score-level fusion of the

TABLE 4: The performance for the second multimodal dataset
for varying number of latent fingerprint samples per multimodal
sample set.

Verification Identification
@10−2 @10−3 Rank-1 @10−2 @10−1

1 96.31 92.35 96.12 91.64 94.57
2 96.74 92.59 96.57 92.06 94.76
3 97.12 93.42 97.67 92.54 95.14
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4 97.64 94.12 97.93 92.75 95.78
1 97.64 93.48 98.37 92.97 96.48
2 97.88 93.72 98.39 93.12 96.55
3 97.93 94.01 98.41 93.21 96.58

W
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d
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ur
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[3
9]

4 98.01 94.12 98.42 93.25 96.61
1 97.67 93.52 98.38 93.02 96.51
2 98.90 93.75 98.40 93.14 96.57
3 97.92 94.07 98.42 93.21 96.59

G
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.
co

m
pa

ct
bi

lin
ea

r
[2

1]

4 98.02 94.18 98.43 93.25 96.60
0 97.34 93.14 98.37 92.71 96.36
1 97.92 94.22 98.48 93.22 96.64
2 98.16 94.72 98.53 93.43 96.75
3 98.31 95.03 98.56 93.52 96.79O

ur
s

4 98.40 95.18 98.57 93.54 96.81

mentioned algorithms as well as the unimodal performance of our
proposed framework. To achieve score-level and decision-level
fusion we train independent classifiers for each modality. Then,
we aggregate the outputs by adding the corresponding scores of
each modality or using the majority voting among the independent
decisions. These approaches are abbreviated with Sum and Major,
respectively [3]. We also consider the element-wise averaging of
the feature vectors representing samples, equivalent to assigning
similar quality scores to all the samples in one modality. This
approach is abbreviated as Avg. The performance of the proposed
framework is compared with the performance of Joint Sparse
Representation Classifier (JSRC) [4], Generalized Joint Sparse
Representation Classifier (GJSRC) [89], Supervised Multimodal
Dictionary Learning (SMDL) [3], and Multiset Discriminant Cor-
relation Analysis (MDCA) [2]. Multi-abstract fusion and gener-
alized compact bilinear fusion are adopted from [39] and [21],
respectively.

First multimodal dataset: BIOMDATA non-ideal multimodal
database-Release 1 [1] is a challenging dataset, since many of
the samples are damaged with blur, occlusion, sensor noise and
shadows [2]. Six biometric modalities are considered in our exper-
iments: left and right irises, and thumb and index fingerprints from
both hands. Our experiments are conducted on 219 subjects that
have samples in all six modalities. Following the protocol in [93],
we fine-tune the network on the right index and thumb fingerprints
and the right iris samples. The performance of the framework is
tested on the left thumb and index fingerprints and the left iris
samples as three modalities constructing the multimodal sample
sets. In this dataset, there are 1458, 1519 and 1504 images for left
iris, left thumb, and left index, respectively. In the identification
setup, for each modality, four randomly chosen samples are used
as the gallery and the remaining samples are used for the test set.
For any modality in which the number of the samples is less than
five, one sample is used as the probe and the remaining samples
are used as the gallery. Then, the multimodal sample sets are
generated as described in the Datasets section. In the verification
setup, the pairs of multimodal sample sets are generated from
these described disjoint sub-sets.

Table 3 and Fig. 9 present the results for this dataset. Here,
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Fig. 9: The CMC curves for identification performance on the first
multimodal dataset.

CNN-Major and CNN-Sum represent the rank-level and score-
level fusion of the outputs of each modality network when
quality scores for the second fusion block are not considered. As
presented in Table 3, the proposed framework outperforms these
two frameworks by more than 30% for TAR at FAR = 10−4.
We also observe that the effect of weight-sharing between qNetbk
networks, which decreases the number of parameters in the inter-
modality quality score estimation networks by 66% and results in
0.08 drop of the performance in terms of EER. Fig. 9 presents
the CMC curve for the proposed framework in comparison with
mentioned frameworks. As presented in this figure, the proposed
framework consistently outperforms the baseline frameworks.

For this dataset, since one sample per modality is considered,
the first quality-aware fusion block acts as a feature extraction
framework, feeding the features to the second fusion block to
estimate the inter-modality-quality of each modality. In our ex-
periments, we observed that for this dataset the expectation of
inter-modality quality score, as defined in Equation 5, for the left
iris, index, and thumb are 0.44, 0.32, and 0.24, respectively. This
observation is aligned with our expectation since the unimodal
performance of these three modalities, which can represent the
overall quality of these modalities, follows the same sequence.
Since the considered modalities are independent, we expect that
the alignment of the embedding space representations of different
modalities during the training should only affect the identification
and not the verification performance. These expectations are
consistent with the performance observed in Table 3.

Second multimodal dataset: This dataset consists of face
samples from IJB-A [71] and latent fingerprints from IIIT-Delhi
MOLF-Latent (D4) [84]. IJB-A is a challenging face recognition
dataset consisting of unconstrained images. This dataset contains
500 individuals, 5,397 images, and 20,412 video frames split
from 2,042 videos. These images are captured with extreme pose,
illumination, and expression conditions. The testing protocol for
the dataset consists of 10 folds, where each fold is represented by a
different random collection of 333 subjects for training and 167 for
testing. IIIT-Delhi MOLF-Latent (D4) contains 4,400 fingerprint
samples from 1,000 classes (10 fingers of 100 individuals). The
latent fingerprints are captured using a black powder dusting

Fig. 10: The verification TAR at FAR = 10−3 for the second
multimodal dataset when the number of latent fingerprint samples
per subject increases.

process. In this experimental setup, we consider two modalities,
where we assign 500 fingerprint classes with multiple samples
to the IJB-A subjects. The network is fine-tuned on multimodal
sample sets consisting of the remaining 500 fingerprint classes
and 500 classes of VGGFace2. As presented in Table 4, for our
multimodal experiments, we follow the setup presented for the
IJB-A dataset. In addition, Fig. 10 and Fig. 11 study the effect of
increasing the number of fingerprint samples per subject.

We compare the performance of the proposed framework with
the same framework when the network compactness loss, Lmc,
is not considered for the fingerprint modality. We observe that
the AUC performance gap widens from 0.13 to 0.29, when the
number of fingerprint samples increases from one to four. We
believe this improvement is due to the more reliable fingerprint
representation in the embedding space when four fingerprints
are considered. We also observe that the performance when the
feature vectors representing the fingerprints are averaged, i.e., the
same quality score is considered for all the fingerprint samples,
drops by 0.61 when considering four fingerprint samples. We
study the effect of the auxiliary ridge maps when we compare the
performance with the framework in which no additional map is
concatenated to the original map. We observe that the variation
of our framework with these additional maps in which equal
quality scores are assigned to the fingerprints outperforms the
previously mentioned framework with a margin of 0.72 for four
fingerprints. In addition, we compare the performance of the
proposed framework with the score-based fusion of VeriFinger
and qNetaFace. As presented in Table 4, inter-modality quality es-
timation of the proposed framework can improve the performance
of the qNetaFace when combined with qNetaFing compared to its
combination with VeriFinger.

To compare the performance of the proposed method with
other fusion methods, we average the feature vectors representing
each fingerprint sample and consider the score-level fusion of the
fingerprint and face modalities. As presented in Fig. 10, the pro-
posed framework consistently outperforms the score-level fusion
of the modalities. Table 4 studies the effect of the inter-modality-
quality score estimation by comparing the performance of the
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Fig. 11: The verification performance for the second multimodal
dataset when the number of latent fingerprint samples per subject
varies.

proposed framework with score-level fusion of and qNetaFace, and
weighted feature fusion [39] and generalized compact bilinear
pooling [21] of the outputs of qNetak networks. As presented
in this table, the conventional aggregation of the feature vectors,
when one of the modalities is significantly more informative than
the other modality and samples in the dataset are of varying
quality, does not prove to be beneficial. On the other hand,
the estimation of the inter-modality-quality scores for samples
in the multimodal sample set can provide better recognition
performance. As presented in this table, our proposed framework
outperforms these fusion methods. However, when we study the
rate of the recognition improvement by adding fingerprint samples,
we observe that the gap in this rate shrinks when the number
of fingerprint samples increases. For instance, adding the first
fingerprint sample results in a TAR at a FAR of 10−3 improvement
of 0.81 and 0.34 for the proposed framework and weighted feature
fusion, respectively. However, the improvement, when adding the
fourth sample, is equal to 0.15 and 0.11, respectively.

For this dataset which consists of face image sets and latent
fingerprint samples of low quality, the expectations for inter-
modality quality scores, when one latent fingerprint is considered,
are 0.72 and 0.28 respectively. The expectation for inter-modality-
quality scores of the fingerprint modality scores increases from
0.28 to 0.33 when the number of fingerprints per multimodal
sample set increases from one to four. These inter-modality quality
scores, which can represent both the importance of a modality in
the joint multimodal framework as well as the overall quality of
the samples, are aligned with our expectation about inter-modality-
quality scores.

Third multimodal dataset: We construct this multimodal
dataset using three datasets. YouTube Face dataset (YTF) [82] is
designed for unconstrained face verification in videos. It contains
3,425 videos of 1,595 different people, and the video lengths vary
from 48 to 6,070 frames with an average length of 181.3 frames.
In this dataset, ten folds of 500 video pairs are available. CASIA
Iris V4-Distance dataset is a subset of database [83] and contains
2,446 instances from 142 different subjects. IIIT-Delhi Latent
fingerprint (D4) dataset [85] consists of 1046 latent fingerprint

Fig. 12: The verification AUC for the third multimodal dataset
when the number of iris and latent fingerprint samples per subject
increases.

samples pertaining to 15 subjects with all 10 fingerprints, thus the
dataset has 150 classes. The latent fingerprints are captured under
semi-controlled environment the black powder dusting process.
The dataset is prepared in multiple sessions with variations in
background, and captures the effect of dryness, wetness, and
moisture. This provides sample variation in the quality, noise, and
information content of latent fingerprint samples. The samples of
lifted latent fingerprints are digitized using a Canon EOS 500D
camera. For our third dataset, we consider three modalities and
142 classes. Here, we select 142 random classes from YouTube
Face, assign iris classes and randomly selected fingerprint classes
to them, and follow the protocol described in YouTube Face
for our verification setup. The network is fine-tuned using the
VGGFACE2, the right iris samples from CASIA Iris V4-Distance,
and the remaining subjects from IIIT-Delhi Latent (D4).

Table 5 and Fig. 12 present the verification performance for
this dataset. In Table 5a, we study the impact of adding the
latent fingerprint and iris samples to the YouTube Face dataset
classes. As expected, adding iris samples improves the recognition
performance better than adding the latent fingerprint samples. In
addition, the performance improves drastically after adding the
first few fingerprint and iris samples. However, this improve-
ment lessens when adding several samples. Furthermore, Fig. 12
presents results related to the effect of different modifications in
the multimodal framework. In this figure, the blue curves present
the results when up to four pairs of iris and latent fingerprint
samples are added to each subject. Similarly, red and green curves
represent the performance when adding only iris or fingerprint
samples to each class, respectively. The dashed blue curve repre-
sents the performance when Lmc is not considered for iris and
fingerprint networks. As presented in this figure, the iris modality
outperforms the latent fingerprint modality by a wide margin. In
addition, the gap between the improvement resulted by using iris
samples and latent fingerprint samples widens as the number of
considered samples increases. On the other hand, the performance
of the framework in which only iris samples are added to YouTube
Face dataset classes approaches the performance of framework
using all three modalities as the number of iris samples increases.
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TABLE 5: The verification AUC for the third multimodal dataset
when the number of latent fingerprint and iris samples per subject
vary.

Iris
0 1 2 3 4

0 98.12 98.65 98.99 99.17 99.32
1 98.45 98.85 99.10 99.25 99.39
2 98.69 99.01 99.19 99.31 99.42
3 98.84 99.12 99.25 99.35 99.44

Fi
ng

er
pr

in
t

4 98.93 99.17 99.28 99.38 99.45

(a) Ours
Iris

0 1 2 3 4
0 98.12 98.23 98.44 98.53 98.61
1 98.24 98.42 98.53 98.61 98.75
2 98.43 98.61 98.82 98.72 98.94
3 98.67 98.82 98.94 99.03 99.12

Fi
ng

er
pr

in
t

4 98.72 98.93 99.13 99.26 99.36

(b) qNetaFace+VeriFinger+OSIRIS-Sum.

For this multimodal dataset, we observe that the inter-
modality-quality score for face, iris and fingerprint modalities,
when one fingerprint and iris samples are included in the multi-
modal sample set, are 0.51, 0.30, and 0.19, respectively. However,
by increasing the number of iris and fingerprint samples from
one to four, their corresponding scores improve to 0.37 and
0.24, respectively. As studied in [50], the combination of inter-
class loss functions cannot improve the angular loss defined in
Equation 6 for face recognition. However, we observe that the
multimodal network compactness loss, Lmc, although not very
efficient for the unimodal networks, can improve the multimodal
performance. We believe this is due to the over-parametrization of
the multimodal network compared to the unimodal networks. In
addition, we compare the performance of the proposed framework
with the score-level fusion of VeriFinger and OSIRIS in Table 5b.
As presented in this table, the proposed framework outperforms
the performance of this score-level fusion with a wide margin
when considering a fewer number of samples. However, when the
number of samples is increased, the performance of the score-level
fusion becomes closer to the proposed framework.

Chimeric pairing and statistical analysis: Due to the lack of
multimodal datasets for evaluating the current work, we manually
constructed two chimeric multimodal sets. Multimodal samples
generated randomly in our experiments can possess varying
recognition potentials which consequently affects the matching
performance and comparisons. To provide a better performance
assessment for chimeric datasets, we expanded our experiments
by evaluating the standard deviation of the multimodal recognition
performance over five different sets of virtual subjects from the
unimodal datasets. The standard deviation of the performance for
the second and the third datasets, when considering four samples
from each modality, is observed to be less than 0.05% and 0.02%,
respectively. This validates the effectiveness of random pairing for
constructing multimodal datasets using independent single modal-
ities, and advocates that the same criterion can be used to alleviate
the scarcity of real-world multimodal datasets. It is also worth
mentioning that, although the improvement in the performance
resulted from multimodal settings compared to the unimodal
settings, may be considered as small, these improvements can be
beneficial when large-scale applications such as passport control
are considered [82], [94], [95], [96].

TABLE 6: The unimodal performance of qNetaIris on single-
samples. For Sun et al. and Zhao et al., results are reported
from [91].

BIOMDATA Left CASIA-Dist. Left
Method @10−3 Rank-1 EER @10−3 Rank-1 EER
OSIRIS [73] 86.30 95.17 4.43 80.07 88.68 6.39
Sun et al. [90] 90.11 – 5.19 83.07 – 7.89
Zhao et al. [91] 94.30 – 2.63 84.10 – 5.50
Ours w/o mask 92.84 99.38 3.14 83.51 94.52 6.47
Ours 95.48 99.51 2.15 86.12 96.14 5.09

4.3 Ablation study

Here, we study the feature extraction performance of the first
quality-aware fusion block when a single sample is fed to the
network. On the other hand, the aggregation capability and quality
estimation performance of this block is studied when we feed
multiple samples to the unimodal network.

Single-sample and single-modality: For the IJB-A [71] and
YouTube Face [82] datasets, we follow the protocol presented
in the corresponding papers. For the identification setup for iris
datasets contained in BIOMDATA [1] and CASIA-Distance [83],
we consider the protocol presented in [2], while for the verification
setup we follow [91]. Here, in the identification setup, for each
subject, four randomly selected samples are considered as the
gallery and the remaining samples are considered as the probes.
For fingerprint datasets present in BIOMDATA, IIIT-Delhi MOLF-
Latent (D4) [84], and the IIIT-Delhi Latent fingerprint dataset [85],
we follow [2], [84], and [85], respectively. It should be noted that,
for experiments performed on the IIIT-Delhi MOLF-Latent (D4)
dataset, we consider the latent-to-sensor framework, while for the
IIIT-Delhi Latent fingerprint dataset, latent-to-latent recognition is
considered.

Tables 6 and 7 present the unimodal results for the single-
sample setup on iris and fingerprint modalities. The performance
of the qNetaIris is compared to OSIRIS [73], Sun et al. [90], and
Zhao et al. [91]. We also compare the performance of the proposed
framework with the same framework when not concatenating
the mask images to the iris images. As presented in Table 6,
concatenating the mask image with the iris image can improve the
recognition performance, which outperforms the state-of-the-art
framework [91] by 0.48 and 0.41 in terms of EER on BIOMDATA
left and CASIA-Distance left, respectively.

Table 7 presents the performance of qNetaFing compared to
NBIS [79], VeriFinger [92], and qNetaFing fed with only the
original fingerprint image processed with Gabor filters with locally
estimated angles and not concatenated with the remaining nine
maps explained in the Data representation section. As presented
in this table, the additional ridge maps are mostly beneficial for
latent fingerprints since these maps are constructed using constant
directions for the whole fingerprint image. These auxiliary maps
are considered according to the fact that ridge orientation estima-
tion for latent fingerprints is not accurate due to the photometric
and geometric distortions, and therefore, using that orientation
map for enhancement reduces the reliability of ridge information.
However, by considering a constant global direction for each
auxiliary map, there is a chance that the ridge information from
unreliable regions can be enhanced in at least one of the additional
maps and the deep model can exploit these maps to construct better
representations.
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TABLE 7: The unimodal performance of qNetaFing for single-samples.

BIOMDATA L Thumb BIOMDATA L Index MOLF-Latant IIIT-Latant

Method @10−3 EER Rank-1 @10−3 EER Rank-1 @10−2 Rank-25 Rank-50 @10−2 Rank-1 Rank-10 Rank-25
NBIS [79] 57.49 14.45 71.23 68.68 6.48 87.17 12.21 5.01 8.63 48.33 52.31 58.90 63.42
VeriFinger [92] 68.26 12.03 76.16 76.12 6.18 90.41 8.14 2.87 6.56 55.19 61.02 74.00 77.44
Ours w/o 9 maps 61.23 13.16 74.78 73.12 6.35 88.51 5.21 4.51 7.73 52.89 57.57 68.21 72.35
Ours w/o Lmc 74.83 8.71 83.43 81.84 5.87 94.87 22.12 37.14 64.94 60.56 69.47 81.54 86.81
Ours 76.16 7.52 84.71 87.63 4.66 95.12 25.14 40.41 67.11 65.53 73.81 85.21 89.74

TABLE 8: Identification performance of qNetaFing for multi-sample setup consisting of one to four samples.

BIOMDATA L Thumb BIOMDATA L Index MOLF-Latant IIIT-Latant
Rank-1 Rank-1 Rank-25 Rank-1

Method 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
VeriFinger-Major 76.16 76.74 82.45 84.23 90.41 91.22 94.92 95.58 2.87 3.54 9.10 13.41 61.02 62.81 62.84 76.20
VeriFinger-Sum 76.16 80.10 83.87 85.41 90.41 93.98 95.15 95.89 2.87 5.49 10.83 14.45 61.02 68.82 74.43 78.56
Ours-w/o 9 maps-Sum 74.78 76.45 77.34 78.12 88.51 90.38 91.79 92.24 4.51 5.81 6.76 7.13 57.57 61.79 63.64 65.42
Ours-w/o 9 maps 74.78 78.51 81.64 83.34 88.51 91.56 93.58 94.19 4.51 6.03 8.42 9.05 57.57 64.80 69.28 63.82
Ours-Major 84.71 85.12 91.53 93.85 95.12 95.47 97.63 98.51 40.41 40.92 56.52 60.33 73.81 73.91 80.95 82.49
Ours-Sum 84.71 87.74 91.63 93.59 95.12 97.96 98.01 98.94 40.41 50.48 56.33 60.07 73.81 77.23 80.18 82.41
Ours-Avg. 84.71 88.57 92.46 94.12 95.12 98.17 98.87 99.22 40.41 51.39 57.27 62.76 73.81 77.40 81.42 83.83
Ours 84.71 89.41 93.74 95.64 95.12 98.53 99.23 99.70 40.41 52.34 58.79 64.88 73.81 78.78 82.64 85.12

TABLE 9: Recognition performance of qNetaIris for multi-sample setup consisting of one to four samples.

BIOMDATA Left CASIA-Dist. Left
@10−3 Rank-1 @10−3 Rank-1

Method 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
OSIRIS-Major 86.30 86.41 88.41 90.17 95.17 95.21 95.83 95.97 80.07 80.23 85.68 86.35 88.68 88.70 89.01 89.12
OSIRIS-Sum 86.30 89.10 90.92 91.53 95.17 95.94 96.43 96.78 80.07 84.49 86.83 88.45 88.68 88.88 89.15 89.35
Ours-Major 95.48 97.02 97.12 97.34 99.51 99.54 99.55 99.55 86.12 86.22 86.32 86.38 96.14 96.63 96.93 97.13
Ours-Sum 95.48 97.74 97.63 97.59 99.51 99.55 99.07 99.59 86.12 88.33 89.41 90.45 96.14 96.75 96.82 97.25
Ours-Avg. 95.48 97.49 98.17 98.55 99.51 99.60 99.63 99.67 86.12 88.87 91.24 93.85 96.14 96.87 97.57 97.92
Ours 95.48 98.67 99.75 99.82 99.51 99.62 99.67 99.71 86.12 89.58 92.81 94.32 96.14 97.35 98.51 98.89

Multi-sample and single-modality: Tables 10, 8, and 9
present the results for the unimodal multi-sample setup for face,
fingerprint, and iris modalities, respectively. The unimodal net-
works are trained with uniform angular loss as defined by Equa-
tion 8 and network compactness loss. In addition to comparison
with other frameworks, in these tables, we study the effect of
these loss functions on the unimodal performance. As presented
in Table 10, the performance of the qNetaFace is compared to
frameworks such as SphereFace [49] and UniformFace [51], and
it is shown to achieve state-of-the-art performance with fewer
training samples; 3M compared to 6M for UniformFace. Here,
on the face recognition task, we clearly observe the effect of the
network compactness loss as well as the separability loss which
improve the performance of the proposed framework to 93.1%
and 98.12% on IJB-A and YouTube Face datasets for verification
at a FAR of 10−3, respectively.

Table 8 presents the multi-sample recognition results on four
fingerprint datasets when up to four samples are considered.
The performance of the proposed quality-aware framework is
compared to the rank-level and score-level fusions of the single-
sample representations as well as element-wise averaging of these
representations. On the other hand, the fusion of the VeriFinger
scores outperforms our framework when auxiliary ridge maps are
not considered. However, the proposed framework outperforms
VeriFinger by a large margin on the latent fingerprints. Table 9
presents the results for BIOMDATA left and CASIA-Distance left

iris datasets. As presented in this table, the proposed framework
consistently outperforms different score-, rank-, and feature-level
variations of the multi-sample frameworks as well as score-level
and rank-level fusion of the OSIRIS verifier.

Quality measures: To analyze the quality scores esti-
mated by the proposed framework, we focus on our single-
sample single-modality frameworks and the comparison of the
distribution of learned scores with no-reference image qual-
ity metrics Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [102] and NIST Fingerprint Image Quality (NFIQ
2.0) [103]. The BRISQUE score is predicted by a support vector
regression model trained on a set of images with their correspond-
ing differential mean opinion score as the target. The set of images
contain original images along with their distorted versions cor-
rupted by known distortion effects such as compression artifacts,
blurring, and noise. The BRISQUE score is a scalar value typically
in the range [0, 100]. Lower values of BRISQUE score reflects
better perceptual quality. NFIQ 2.0 assigns each fingerprint a score
from zero (low quality) to 100 (high quality). In Figs 13 and 14, to
provide a better comparison, all the quality scores are normalized
to [0, 1], with higher values representing better quality. It is worth
mentioning that in the original BRISQUE algorithm lower values
represent higher qualities. Therefore, in Fig 13, the BRISQUE
scores are reversed as, 1-normalized score, to provide comparison
with the scores estimated by other frameworks.

Fig. 13 compares the distribution of the quality scores mea-
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TABLE 10: The performance of qNetaFace for multi-sample face recognition.

IJB-A YTF

Verification Identification Verification
Method @10−2 @10−3 Rank-1 Rank-5 @10−3 AUC
DR-GAN [97] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1 – –
Triplet Similarity [98] 79.0± 3.0 59.0± 5.0 88.0± 1.5 95.0± 0.7 – –
Template Adaptation [99] 93.9± 1.3 83.6± 2.7 92.8± 1.0 97.7± 0.4 – –
NAN [17] 93.3± 0.9 86.0± 1.2 95.4± 0.7 97.8± 0.4 95.72 98.8
SphereFace [49] 92.3± 1.6 88.4± 4.2 93.2± 1.3 96.5± 1.1 95.0 –
DeepFace [100] – – – – 91.4 96.3
CosFace [54] – – – – 97.6 –
ArcFace [50] – – – – 98.02 –
PRN [101] 96.5± 0.4 91.9± 1.3 98.2± 0.4 99.2 ± 0.2 95.8 –
UniformFace [51] 96.9± 0.8 92.3± 1.7 97.9± 0.5 98.8± 0.2 97.7 –
Ours-Avg. 92.5± 0.8 82.7± 2.3 97.9± 0.5 98.8± 0.2 97.51 99.0
Ours w/o Lmc 97.0± 0.7 92.5± 1.9 98.0± 0.5 98.8± 0.3 98.06 99.0
Ours 97.3 ± 0.7 93.1 ± 1.7 98.4 ± 0.4 99.2 ± 0.2 98.12 99.1

Fig. 13: The probability of estimated quality scores for the pro-
posed framework compared to BRISQUE on IJB-A and Youtube
Face datasets.

sured by the BRISQUE with our multi-sample single-modality
framework on IJB-A and Youtube Face datasets. As presented
in this figure, the distribution of the quality scores estimated by
the proposed framework closely follow the BRISQUE scores. On
the other hand, Fig. 14 compares the quality scores estimated
by the proposed framework with NFIQ 2.0. In this figure, all
the fingerprint samples from three test multimodal datasets are
considered and the scores are quantized to five levels. As presented
in these figures, our estimated scores are closer to one compared
to no-reference measures since our proposed networks are trained
mostly on corrupted samples, while NFIQ 2.0 and BRISQUE
are trained on a large number of images with various qualities
including high-quality samples. Therefore, our estimated scores
provide a relative quality measure for low-quality samples, while
each mentioned no-reference measure computes a more global
quality metric. It should be noted that our quality scores do not
aim to serve as stand-alone quality measures, and the current
comparisons seek to showcase the positive correlation of our
sample weighting scores with actual quality scores.

Failed verification of sample sets: To study the perfor-
mance of the proposed framework from another perspective, we

Fig. 14: The probability of quantized quality scores for the pro-
posed framework compared to NFIQ 2.0 on fingerprint datasets.

investigate the multimodal sample sets that our framework fails
to correctly verify. The first multimodal dataset which consists
of BIOMDATA samples, includes images corrupted with blur,
occlusion, shadows, and sensor noise. In Fig. 15, we present
four pairs of sample sets, consisting of left iris, left thumb, and
left index, that the framework fails to correctly verify. For better
presentation, we also present the left eye, although the eye image
is not used as an input to the framework. In Figs 15(a) and 15(b),
we investigate positive multimodal sample pairs that are rejected
by our framework for false acceptance rate (FAR) of 10−4. To
further investigate the performance of the framework, we increase
the FAR for these sample sets and observe that these pairs are
correctly verified at FAR = 2× 10−4 and 5× 10−4, respectively.
Then, in Figs 15(c) and 15(d), we illustrate two negative multi-
modal sample pairs that are accepted by the framework at false
rejection rates (FRR) of 10−4. Similarly, we increase the FRR for
these sample sets and these pairs are rejected at FRR = 5× 10−3

and 10−2, respectively.
For the third multimodal dataset which consists of multiple

samples of faces, irises captured from distance, and latent finger-
prints, we study the performance when adding iris and fingerprint
samples to a pair of incorrectly verified sample sets of face images.
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Fig. 15: Examples of failed verification for the first multimodal dataset, (a-b) false rejection at FAR = 10−4 and (c-d) false acceptance
at FRR = 10−3.

As presented in Fig. 16, the pairs of samples that we study include
two sets of frames from the same class that are rejected by the
framework at FAR = 5 × 10−4. However, by adding two latent
fingerprint and two iris samples to each of the multimodal face
sample sets, the framework successfully accepts the sample set at
the same mentioned FAR. It might be noted that these fingerprint
and iris samples are not independently verified correctly by the
framework at the same threshold.

One observation through our experiments is that, as discussed
earlier in this section, although some of the fingerprint and
iris samples are visually considered of very bad quality, the
preprocessing plays a crucial role in their verification. We can
also observe that the majority of the samples our framework
fails to verify correctly are of very low quality or far from their
class center. Another observation in these experiments is that the
incorrectly accepted pairs of multimodal sample sets which pass
the hardest FRR values are the pairs of very low quality. This is
aligned with the common observation in image recognition that, in
the representation domain, very low quality samples are relatively
closer to the mass centers of the training set compared to the mass
center of their own class [104], [105].

5 CONCLUSIONS

In this paper, we presented a quality-aware fusion with feature-
level fusion for multi-sample multimodal recognition using modal-
ities of face, iris, and fingerprint consisting of two blocks to han-
dle different multi-sample multimodal scenarios. The first block
provides high-level representation of each modality considering
the quality of the samples in that modality. The second block
provides a multimodal representation for the input multimodal
sample set, while utilizing the inter-modality quality of modalities.
The network is trained using the proposed multimodal separability
loss, while the multimodal network compactness loss alleviates
the over-fitting caused by the over-parametrization of multimodal
networks. To study the performance of the proposed framework,
as well as loss functions proposed in this paper, we consider three
real-world multimodal and eight unimodal datasets. The proposed
framework is trained end-to-end in a weakly-supervised fashion
without any quality score supervision. The expectation of the inter-
modality quality on each multimodal test dataset represents the
importance of the modalities in the recognition task and is aligned
with the unimodal performance of the framework. Compared to

Fig. 16: Failed verification for the third multimodal dataset, (a)
false rejection at FAR = 5 × 10−4 for the pairs of video frames
and (b) correct verification at the same threshold when the iris and
fingerprint samples are added to the multimodal sample sets.

state-of-the-art algorithms, we demonstrated that the proposed
architecture significantly improves the multimodal performance
by estimating the quality of the samples. The proposed quality-
aware fusion can be adapted to different preprocessing algorithms,
feature extraction methods, and loss functions for recognition
and several other multimodal applications such as access control
security system, passport control, and unlocking the smartphones.
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