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Abstract

Motivation: Minimizers are efficient methods to sample k-mers from genomic sequences that unconditionally pre-
serve sufficiently long matches between sequences. Well-established methods to construct efficient minimizers
focus on sampling fewer k-mers on a random sequence and use universal hitting sets (sets of k-mers that appear fre-
quently enough) to upper bound the sketch size. In contrast, the problem of sequence-specific minimizers, which is
to construct efficient minimizers to sample fewer k-mers on a specific sequence such as the reference genome, is
less studied. Currently, the theoretical understanding of this problem is lacking, and existing methods do not special-
ize well to sketch specific sequences.

Results: We propose the concept of polar sets, complementary to the existing idea of universal hitting sets. Polar
sets are k-mer sets that are spread out enough on the reference, and provably specialize well to specific sequences.
Link energy measures how well spread out a polar set is, and with it, the sketch size can be bounded from above
and below in a theoretically sound way. This allows for direct optimization of sketch size. We propose efficient heu-
ristics to construct polar sets, and via experiments on the human reference genome, show their practical superiority
in designing efficient sequence-specific minimizers.

Availability and implementation: A reference implementation and code for analyses under an open-source license

are at https://github.com/kingsford-group/polarset.
Contact: gmarcais@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The minimizer (Roberts et al., 2004a,b) methods, also known as
winnowing (Schleimer et al., 2003), are methods to sample positions
or k-mers (substrings of length k) from a long string. Thanks to its
versatility, this method is used in many bioinformatics programs to
reduce memory requirements and computational resources. Read
mappers (Jain et al., 2020a,b; Li and Birol, 2018), k-mer counters
(Deorowicz et al., 2015; Erbert et al., 2017), genome assemblers
(Chikhi et al., 2016; Ye et al., 2012) and many more (see Margais
et al., 2019 for a review) use minimizers.

In most cases, sampling the smallest number of positions, as long
as a string is roughly uniformly sampled, is desirable as it leads to
sparser data structures or less computation as fewer k-mers need to
be processed. Minimizers have such a guarantee of approximate uni-
form sampling: given the parameters w and k, it guarantees to select
at least one k-mer in every window of w consecutive k-mers. It
achieves this goal by selecting the smallest k-mer (the ‘minimizer’) in
every w-long window, where smallest is defined by a choice of an
order O on the k-mers. Even though every minimizer scheme satis-
fies the constraint above, depending on the choice of the order O the
total number of selected k-mers may vary significantly.

Consequently, research on minimizers has focused on finding
orders O that obtain the lowest possible density, where the density is
defined as the number of selected k-mers over the length of the se-
quence. In particular, most research concentrates on the average
case: what is the lowest expected density given a long random input
sequence where each character is sampled from the alphabet with
equal probability (Ekim ez al., 2020; Marcais et al., 2017, 2018;
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Orenstein et al., 2016)? In practice, many tools use a ‘random min-
imizer’ where the order is defined by choosing at random a permuta-
tion of all the k-mers (e.g. by using a hash function on the k-mers).
This choice has the advantage of being simple to implement and pro-
viding good performance on the average case.

Here, we investigate a different setup that is common in bio-
informatics applications. Instead of the average density over a ran-
dom input we try to optimize the density for one particular string or
sequence. When applying minimizers in computational genomics, in
many scenarios the sequence is known well in advance and it does
not change very often. For example, a read aligner may align reads
repeatedly against the same reference genome (e.g. the human refer-
ence genome). In such cases, optimizing the density on this specific
sequence is more meaningful than on a random sequence.
Moreover, the human genome has markedly different properties
than a random sequence and optimization for the average case may
not carry over to this specific sequence. In the read aligner example,
a minimizer with lower density leads to a smaller index to save on
disk and fewer seeds to consider in the seed-and-extend alignment
algorithm while preserving the same sensitivity thanks to the ap-
proximate uniform sampling property.

The idea of constructing sequence sketches tailored to a specific
sequence has been explored before (Chikhi ez al., 2016; DeBlasio
et al., 2019; Jain et al., 2020b), but it remains less understood than
the average case. Random sequences have nice properties that allow
for simplified probabilistic analysis. Consequently, different analytic
tools are needed to analyze sequence-specific minimizers. In fact,
minimizers designed to have low density in the average case often
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offer only modest improvements on sequences of interest such as ref-
erence genomes (Zheng et al., 2020).

The current theory for minimizers with low density in average is
tightly linked to the theory of universal hitting sets (UHS) (Margais
et al., 2018; Orenstein et al., 2016). As the name suggests, a UHS is a
set of k-mers that ‘hits’ every w-long window of every possible se-
quence (hence the universality; it is an unavoidable set of k-mers).
Universal hitting sets of small size generate minimizers with a provable
upper-bound on their density, meaning the number of selected locations
is upper bounded. Universal hitting sets are less useful in the sequence-
specific case as the requirement to hit every window of every sequence
is too strong, and UHSs are too large to provide a meaningful upper-
bound on the density in the sequence-specific case. New theoretical
tools are needed to analyze the sequence-specific case.

Frequency-based orders are examples of sequence-specific mini-
mizers (Chikhi et al., 2016; Jain et al., 2020b). In these construc-
tions, k-mers that occur less frequently in the sequence compare less
than k-mers that occur more frequently. The intuition is to select
rare k-mers as they should be spread apart in the sequence, hence
giving a sparse sampling. This intuition is only partially correct.
First, there is no theoretical guarantee that a frequency-based order
gives low-density minimizers, and there are many theoretical coun-
ter-examples. Second, in practice, frequency-based orders often give
minimizers with lower density, but not always. For example,
Winnowmap (Jain et al., 2020b) uses a two-tier classification (very
frequent versus less frequent k-mers) as it performs better than an
order strictly following frequency of occurrence.

Another approach to sequence-specific minimizers is to start
from a UHS U and to remove as many k-mers from U as long as it
still hits every w-long window of the sequence of interest (DeBlasio
et al., 2019). Because this procedure starts with a UHS that is not
related to the sequence, the amount of possible improvement in
density is limited. In addition, given the exponential growth in size
of the UHS with k, current methods are computationally limited to
k < 15, which is limiting in many applications.

The construction proposed here takes a different approach and
introduces polar sets. The polar sets concept can be seen as comple-
mentary to the universal hitting sets: while a UHS is a set of k-mers
that intersects with every w-long window at least once, a polar set is
a set of k-mers that intersect with any window at most once. The
name ‘polar set’ is an analogy to a set of polar opposite magnets that
cannot be too close to one another. That is, our construction builds
upon sets of k-mers that are sparse in the sequence of interest, and
consequently the minimizers derived from these polar sets have
provably tight bounds on their density.

Our main contribution is Theorem 1, which gives an upper
bound and a lower bound on the expected density (over inherent
randomness in the construction) obtained by a minimizer created
from a polar set. These bounds are expressed using the ‘total link en-
ergy’ of the polar set on the given sequence. The link energy is a new
concept that measures how well spread apart the k-mers of the polar
sets are; the higher the energy, the more spread apart the k-mers are
in the given sequence. We show that the link energy is almost exactly
the expected density improvement by using a minimizer created
from the polar set compared to a random minimizer.

In the following sections, we also show that the problem of finding
a polar set with maximum total link energy is, unsurprisingly, NP-
hard. We then describe heuristics to create polar sets with high total
link energy. Finally, we show that our implementation of these heuris-
tics generates minimizers that have specific density on the human refer-
ence genome much lower than any other previous methods, and, for
some parameter choices, relatively close to the theoretical minimum.

2 Materials and methods

2.1 Overview

We set the stage by defining important terms and concepts, then giv-
ing an overview of the main results, which are then proved formally
in the following sections. The sequence § is a string on the alphabet
Y of size ¢ = |X|. The parameters k and w define respectively the

length of the k-mers and the window size. We assume that S is rela-
tively long compared to these parameters: S| > w + kZ|S| > w + k.

(Minimizer and Windows). A minimizer is characterized
by (w,k,©) where O is a complete order of =*. A window is a sequence

Definition 1.

of length (w + k — 1) consisting of exactly w k-mers. Given a window as
input, the minimizer outputs the location of the smallest k-mer according
to O, breaking ties by preferring the leftmost k-mer.

The minimizer (w, k,0) is applied to the sequence S by finding the pos-
ition of the smallest k-mer in every window of S. Because two consecu-
tive windows in S have a large overlap, the same k-mer is often selected
in these two windows, hence the minimizer returns a sampling of posi-
tions in the sequence S. The specific density of the minimizer on § is
defined as the number of selected positions over the length |S].

The density is between 1/w, because at least one k-mer in every window
must be picked, and 1, because it is a sampling of the positions of S.
Therefore the goal is to find orders O that have a density as close to 1/w
as possible. A minimizer with density 1/w is a perfect minimizer. For
simplicity, when stating the density of a minimizer we ignore any addi-
tive term that is o(1/w) (i.e. asymptotically negligible compared to

1/w).

A random minimizer is defined by choosing at random one of the permu-
tations of all k-mers. The expected density of a random minimizer over a
random string is 2/(w + 1) (Roberts ez al., 2004b; Schleimer et al.,
2003; Zheng et al., 2020). Equivalently, the expected distance between
adjacent selected k-mers is (w + 1)/2. The random minimizers will serve
as a baseline against which to compare.

Defining orders. For practical reasons, we define orders by defin-
ing a set U and considering orders that are compatible with U: an
order O is compatible with U if for O every element of U compares
less than any element not in U. That is, only the smallest elements
for O are specified (the elements of U) and a minimizer using an
order compatible with U will preferentially select the elements of U.
There exist many orders that are compatible with U as the relative
order between the elements within U is not specified.

Universal hitting sets. A set U is a universal hitting set if for every
one of 6“1 possible windows (recall ¢ is the size of the alphabet),
it contains a k-mer from U. In the average case, minimizers compat-
ible with U have densities upper bounded by |U|/a*, because only k-
mers from the universal hitting set can be selected. Supplementary
Section S2 provides a more detailed discussion of why this bound
provided by universal hitting sets does not always apply for se-
quence-specific minimizer analysis, and why universal hitting sets do
not specialize well.

Short sequences. On a short random sequence (in a sense made
precise by Lemma 1) most k-mers are unique (i.e. they occur only
once in the sequence S). Therefore, it is likely that there is a set U of
unique k-mers of S that are exactly w bases apart in S, and a minim-
izer compatible with U is perfect. Unfortunately most sequences of
interest (e.g. reference genomes) are too long, too repetitive and in
general do not satisfy the hypothesis of Lemma 1. For most sequen-
ces it is not possible to find a set of ‘perfect seeds’ of k-mers spaced
exactly w apart.

Polar sets. A polar set is a relaxed version of a perfect set: any
pair of k-mers m; and 1, from a polar set A is always more than
w/2 bases apart in § (see the more general Definition 2). The intu-
ition behind this definition is that for a minimizer compatible with
A, any k-mer from A selected by the minimizer is at distance >
(w+ 1)/2 from the previous and the next selected k-mer. Hence, k-
mers selected from A are at least as sparse, and usually more sparse
than k-mers selected using a random minimizer in expectation.

Section 2.2 gives a formal definition of the link energy of a polar
set and Theorem 1 gives upper and lower bounds using this link en-
ergy for the density of a minimizer compatible with a polar set. This
theorem shows that the link energy of the polar set A is a measure of
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how much reduction in density is obtained by using a minimizer
compatible with A rather than a random minimizer. Hence, design-
ing a polar set with high link energy is a method to find minimizers
with provably low density.

Section 2.3 introduces layered polar sets, which are an extension
to polar sets, and builds heuristic methods to create such sets.

2.2 Polar sets and link energy

2.2.1 Key definitions

We now define polar sets, the key component for our proposed
methods.

Definition 2. (Polar set). Given sequence S and parameters (w, k, s)
with 0 < s < 1/2, a polar set A of slackness s is a set of k-mers such
that every two k-mers in A appears at least (1 — s)w bases apart in S.

This can be viewed as a complementary idea to the universal hitting sets
or a relaxed form of perfect sets. As discussed in the introduction, a uni-
versal hitting set requires the set to hit every w consecutive k-mers at
least once, while a polar set with s =0 requires the set to hit every w con-
secutive k-mers at most once. A set of perfect seeds, if it exists, is both a
polar set with zero slackness and a universal hitting set. See Figure 1 for
a more concrete example.

The condition s < 1/2 is critical for our analysis. Specifically, this condi-
tion is required to obtain a lower bound on the specific density of com-
patible minimizers, not just an upper bound.

Definition 3. (Link energy). Given sequence S, parameters (w, k) and a
polar set A, if two k-mers on § are [ < w bases apart and are both in A,
they form a link with link energy 2//(w + 1) — 1 > 0. The total link en-
ergy of A is the sum of link energy across all eligible pairs.

Any two k-mers from A in S must be more than w/2 bases apart, so
two k-mers cannot form a link if there is a third k-mer from A be-
tween them. This means that only consecutive occurrences of polar k-
mers can form links. With s=0, the link energy is fixed to be
2w/(w+1)—1=1-2/(w+1)=1 for each eligible pair, and the
total link energy is approximately the number of pairs that form a
link, which in turn is the number of k-mer pairs in the polar set that
are exactly w bases away on S.

In the following sections, we introduce and discuss the backbone of the
polar set framework, which revolves around closer inspection of how a
random minimizer works on a specific sequence, and drawing contrast
between sequence-specific minimizers and non-sequence-specific mini-
mizers. We use the term ‘non-sequence-specific minimizers’ to refer to

contain at least one UHS k-mer
Some windows have multiple

[ kemers in UHS

W Perfect Seeds All windows contain exactly one seed k-mer

All windows contain at most one polar k-mer
Some windows have none

H polar k-mers
(slackness 5=0)

|
1
I
I

Fig. 1. Comparing universal hitting sets, perfect seeds (compatible minimizers be-
come perfect minimizers) and polar sets. Each block indicates a k-mer, and each seg-
ment indicates a window of length 5 (w=35). To provide a better contrast with
universal hitting sets, we show polar sets with slackness s =0 (see Definition 2)

constructions of minimizers that do not specifically target a certain se-
quence, but rather aim to minimize the expected specific density on a
random string.

2.2.2  Perfect minimizer for short sequences

A perfect minimizer is a minimizer that achieves density of exactly
1/w. While the only known examples of perfect minimizers are in
the asymptotic case where w < k (Marqais et al., 2018), perfect se-
quence-specific minimizers exist with high probability for short
sequences.

Lemma 1. If|S| < \/ewo*/?, with at least 1 — ¢ probability, a sequence
of length |S| where each character is uniformly randomly selected has a
perfect minimizer.

Proof. The optimal minimizer is constructed with fixed interval sam-
pling. More specifically, we take every w k-mer in S and denote the
resulting k-mer set U, then construct a minimizer compatible with U.
The resulting minimizer is perfect if and only if the k-mers in U only ap-
pear in the selected locations. There are |S|/w selected locations and
(1 —1/w)|S| locations not selected, and for each pair of selected and not
selected locations, the k-mer at these two locations are identical with
probability 6% (see Supplementary Section $1.1). By union bound, the
probability that the sequence violates the polar set condition is at most
IS|?6* /w < e, and the sequence has a perfect minimizer with probabil-
ity atleast 1 —e. OJ

2.2.3 Context energy and energy savers

Contexts provide an alternative way to measure the density of a
minimizer (Zheng et al., 2020). These play a central role on the ana-
lysis of polar sets.

Definition 4. (Charged Contexts). A context of S is a substring of
length (w + k), or equivalently (w + 1) consecutive k-mers, or equiva-
lently two consecutive windows.

A context is charged if the minimizer selects a different k-mer in the first
window than in the second window.

See top left of Figure 2 for examples of charged contexts. Intuitively, a
charged context corresponds to the event that a new k-mer is picked,
and counting picked k-mers is equivalent to counting charged contexts.

A context has two windows.

(Singleton: 2 contexts charged, 6 covered, L=0)

Charged if different k-mer
selected in these windows.

4—¢ always charged
Contexts with polar k-mers -4 could be charged
#---® never charged

Contexts without polar k-mers as random minimizer

F&1 minimizer selection

- ’}z out of 4 is charged.

EENEEE NN EEN EEEEEN

(Linked Polar k-mers: 2+2=4 contexts charged, 13 covered, L=1/3)

Fig. 2. Examples for our argument for the polar set density bound with w=35. Left
top: Legend for a context, and when it is charged. Right top: Case for a singleton
polar k-mer without links. In this case, L(S, A) = 0. Bottom: Case for three linked
polar k-mers. Whatever the ordering between the three polar k-mers, two of the
four contexts marked in blue will be charged. The link energy L(S,A) = 1/3: A and
B are [=3 bases away with energy 2//(w+1) —1=0, B and C are /=4 bases
away with energy 2//(w+1) - 1=1/3
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Lemma 2. (Specific Density by Charged Contexts). For a given se-
quence S and a minimizer, the number of selected locations by the min-

imizer equals the number of charged contexts plus 1.

Given a context c, define E(c) as the probability that ¢ will be charged
with a random minimizer (one with a random ordering of k-mers),
which we call the energy of c.

Lemma 3. The expected number of picked k-mers in S under a random
minimizer is 1+ Eo(S), where Eo(S) = >_ E(c) is called the initial en-
ergy of S and the summation is over every context of S.

This is proved by combining the linearity of expectation and Lemma 2.
This implies that the total energy of a sequence is directly related to the
specific density of random minimizers, which is number of picked loca-
tions in S divided by number of k-mers in S. E(c) admits a simple formula:

Lemma 4. E(c) =2/u(c) if the last k-mer in the context is unique,
1/u(c) otherwise, where #(c) denotes the number of unique k-mers in c.

See proof in Supplementary Section S1.2. If all k-mers in a context are
unique, E(c) =2/(w + 1) is guaranteed, which we call the baseline. If
this holds for all windows, a random minimizer will have specific density
of 2/(w + 1), similar to applying a random minimizer to a random se-
quence. As lower #u(c) only increases E(c), E(c) < 2/(w + 1) only if the
last k-mer in c is not unique and there are over (w + 1)/2 unique k-mers
in the context.

Definition 5. A context ¢ is called an energy saver if
E(c) < 2/(w+ 1), and its energy deficit is defined as 2/(w + 1) — E(c).
The energy deficit of S, denoted D(S), is the total energy deficit across all
energy savers: D(S) = .. max(0,2/(w + 1) — E(c)).

In general, the value of D(S) is very small due to the fact that energy
saver contexts (those with E(c) < 2/(w + 1)) are rare.

Lemma 5. For a random context, the probability that it is an energy

saver is at most wa .

See proof in Supplementary Section S1.3. There are examples of sequen-
ces where energy saver contexts are abundant. An extreme scenario is
when the sequence S is has a period of w, and has w distinct k-mers. In
this case, all contexts become energy saver contexts. These scenarios are
rare in practice.

Similarly, we can define energy spenders and energy surplus as follows:

Definition 6. A context ¢ is called an energy spender if
E(c) >2/(w+ 1), and its surplus is defined as E(c) —2/(w + 1). The
energy surplus of S, denoted X(S), is the total energy surplus across all
energy spenders: X(S) = >-_max(0,E(c) —2/(w + 1)).

Contexts with energy surpluses are more common than energy savers,
but still fairly rare in a random sequence with suitable choice of w and k.

Lemma 6. For a random context, the probability that it is an energy

spender is at most w(w + 1)a* /2.

See proof in Supplementary Section S1.3.

2.2.4 Density bounds with polar sets
With the proper tools, we now state the main theorem of the Polar
Sets.

Theorem 1. Given a sequence S and a polar set A on S, let Eo(S) be the
initial energy of S, D(S) be the total energy deficit, X(S) be the total en-
ergy surplus, and L(S, A) be the total link energy from the polar set. The
expected number of selected k-mers over S for a random minimizer com-
patible with A is at most 1+ Ey(S)+ D(S) — L(S,A), and at least
1+ Eo(S) — X(S) — L(S, A).

Proof. We first prove the upper bound part. We start by elevating the en-
ergy of every energy saver context to the baseline 2/(w + 1). By defin-
ition, this increases the total energy of S by D(S), so number of selected
k-mers is now upper bounded by 14 Ey(S)+ D(S). Formally,
Y E(x) < 14 Eo(S)+ D(S).

Consider the minimizer compatible with A, with arbitrary ordering with-
in A and random ordering outside A. We can still calculate the expected
number of selected k-mers by summing up the probability of every con-
text being charged, which we denote E4(x). Our goal for the rest of this
proof is to show > (E(x) — Ea(x)) > L(S, A).

If a context does not contain a k-mer from A, E(x) = E4(x). Thus, we
only need to consider the contexts that contain at least a k-mer from A,
which are split into continuous segments by the set of contexts not con-
taining k-mers from A.

If a segment only contains one k-mer from A, there are exactly (w + 1)
contexts in this segment (see Fig. 2, upper right for an example). As each
context now has energy at least 2/(w + 1), the total energy from (w + 1)
contexts is at least 2. However, > E4(x) across these contexts is exactly
2, as exactly two contexts will be always charged (the first and last in the
segment), and every other context will never be charged. This means
such segments can be ignored in the upper bound analysis, as they can
only decrease the total energy: > (E(x) — Ea(x)) > 0.

We now focus on the segments with more than one k-mer from A (see
Fig. 2, bottom, for an example). Let 7 be the number of contexts from
this segment, we have > E(x) > 2n/(w + 1) because we have assumed
E(x) >2/(w+1) for every context. We next count the number of
charged contexts, which is > E4(x). Because every two k-mers in A are
more than w/2 bases apart, for every k-mer m in A, there is a window
such that 1 is the only polar k-mer, and will be selected. Recall a context
is charged if and only if a new k-mer is selected in its latter window.
Given that each of the d k-mers in A is selected, this corresponds to d
charged contexts in the segment. However, there is an extra charged
context: The last context ¢ in the segment, of which the last k-mer in A is
the first k-mer of c. In the second window of ¢, a new k-mer outside A
will be selected because being at the end of the segment, there are no
more k-mers in A to choose from. Let d be the number of k-mers in A in
this segment; we conclude that )~ E4(x) = d + 1 regardless of the order-
ing, and > (E(x) — Ea(x)) > 2n/(w+1) —d — 1.

Next, we calculate the total link energy. Recall the link energy is defined
as 2//(w + 1) — 1 for two polar k-mers | < w bases away. The total link
energy is thus 2(3°/)/(w+1) — (>_ 1), summed across all k-mer links.
The latter term is simply counting number of links, which resolves to
d—1. The earlier term is summing up distance between adjacent k-mers
in A. As this is a segment where every two adjacent k-mers have a link,
>~ lis the distance from the first k-mer in A to the last k-mer in A. There
are 7 contexts in the segment. The first k-mer in A is the last k-mer in the
first context, and the last k-mer in A is the first k-mer in the last context.
The first context and the last context are n—1 bases away. The first k-
mer and the last k-mer in a context are w bases away. Thus, we have
Nl=n-1-w.

Finally, we have the following, using S’ to denote the sequence that con-
tains the contexts in a segment:
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L(S,A) =Y @2l/(w+1)-1)
=2mn-w-1)/(w+1)—(d-1)
=2n/(w+1)—d—-1

< ST (E() ~ Eala)).

The summation is over each context in the segment. This inequality
holds for every segment, and thus we have:

D Ea(x) =Y E(x)+ > (Ea(x) - E(x))
< 1+ Eo(S) + D(S) — L(S, A).

The lower bound uses a symmetric argument as we first upper bound the
energy of each context by the baseline 2/(w + 1). This decreases total en-
ergy by X(S) and total expected number of selected k-mers is lower bounded
by 1+ Eo(S) — X(S). The identical argument (with signs flipped) will lead
to the final lower bound Y~ E4(x) > 1 +Eo(S) — X(S) — L(S,A). O

As 14 Eo(S) is the expected number of selected k-mers with a complete-
ly random minimizer, we can provably outperform random minimizers
in expectation if L(S,A) > D(S). For a ballpark estimate, we assume S is
a random sequence, and assume the slackness parameter s=0 in con-
struction of the polar set. In this setup, each link has exactly 1 —2/(w +
1) &~ 1 energy. As seen in Lemma 5, a context is an energy saver with
probability wo*, and its deficit is at most 2/(w+1) — 1/w =~ 1/w,
meaning D(S) ~ ¢~¥|S|. This further means we need the number of links
to be at least 67*|S| to provably beat a random minimizer. On the other
hand, ignoring the effect of D(S), in order to beat the specific density of
a random minimizer by €/(w + 1), total link energy of €S|/(w + 1) is
needed. Assuming no slackness, this means the number of links need to
be at least €|S|/(w — 1). Intuitively, e portion of the sequence needs to be
covered by links between close enough k-mers in polar set.

A proper polar set requires s > 1/2 for the main theorem to hold. When
s < 1/2, only the upper bound part of the theorem holds with an alter-
native definition of link energy. We will discuss the alternative definition
in Section 2.3.4, and further discuss generalization of polar sets in
Supplementary Section S2.4.

2.2.5 Hardness of optimizing polar sets

The link energy formulation of polar sets allows us to cast the prob-
lem in graph theoretical framework. Consider an undirected,
weighted graph where every unique k-mer is a vertex. An edge con-
nects two k-mers with the following: If these two k-mers ever appear
within fewer than (1 — s)w bases of each other in S, the weight is
—o0. Otherwise, the weight of this edge is the total link energy by
selecting only these two k-mers, which might establish several links
given each k-mer may appear in S multiple times. There can also be
self-loops with weights, given a k-mer may appear close to itself on
the reference sequence. The problem of finding optimal polar sets
becomes the problem of finding an induced subgraph with max-
imum weight.

The general maximum induced subgraph problem is well known
to be NP-hard via reduction from max-clique. In Supplementary
Section S3, we provide an explicit proof that shows optimization of
polar sets, even with an alphabet of three, is NP-Hard.

2.3 Constructing polar sets
In this section, we propose a practical extension to polar sets, and
formally introduce our heuristics.

2.3.1 Layered polar sets
Assume we have already constructed a polar set A that covers some
segments of the reference sequence. Here, covered means that every

window contains a k-mer from the polar set, or equivalently, A acts
as a universal hitting set on these segments.

Now, to cover the rest of the reference, we shall extend A so
more k-mers become polar k-mers. It is natural to consider generat-
ing a polar set over the uncovered portion of the reference sequence,
then merge this set with A. This however leads to problems. Let A’
be a polar set over the uncovered portion of the reference sequence.
AU A’ might not always be a valid polar set, because a k-mer ' €
A’ may appear in the already-covered part of the reference sequence,
and appear close to another k-mer m € A, thus violating the polar
set condition for AU A’.

On the other hand, the reason we set up the constraint for polar
sets is to ensure that k-mers in the polar set will always be selected
by any compatible minimizer. In other words, we want to ensure we
know exactly the set of k-mers that will be selected. The issue was
that 7' € A’ might not always be selected by a compatible minim-
izer. However, from the perspective of constructing efficient mini-
mizers, we do not need 7’ to be selected everywhere, as in some
places the reference sequence is already covered with k-mers in A.
By forcing m < m' for any m € A, we ensure that »’ will only be
selected outside the segments covered by A.

Applying this argument to all k-mers in A’, we can essentially ig-
nore the sequence segments already covered by A when constructing
A', as long as the ordering is satisfied. This gives a way to progres-
sively construct the layers of polar sets: at each layer we only need
to consider regions of the reference sequence that are not yet covered
by previous layers. Formally:

Definition 7A layered polar set is a list of sets of k-mers {A;}, for
1 < i < m. With slackness s, the layered polar set condition is satisfied
if for any k-mer in Aj, for each of its appearance at location ¢ in the refer-
ence sequence, either of the following holds:

* Itisatleast (1 — s)w bases apart from any k-mer in {A1, Az, ..., A;}.

* Itis covered: There are two k-mers in {A1,Az,...,Aj_1} (important-

ly does not include A;), appearing at location [ and b, satisfying [ <t < h
and b — 1 < w.

Similarly, a compatible order for {A;} is an order that places all k-mers
from A; first in arbitrary order, then those in A,, ..., then those in A4,,
and finally those not in any of {A;} in a random order. The link energy
L({A;},S) is similarly defined over the pairs of close k-mer appearances
that are not covered. More formally:

Definition 8For a layered polar set, if two k-mers in the layered polar
sets, not necessarily from the same layer, appear | < w bases apart in S,
and neither are covered, the link energy between them is
2l/(w+1) —1> 0. L({A;},S) is the total link energy across all pairs.

These definitions of layered polar sets and link energy have two import-
ant properties. First the link energy is non-decreasing as more layers are
added to the set. Second, an almost identical argument proves the same
bounds for layered polar sets as for polar sets in Theorem 1. See Figure 3
for a concrete example of layered polar sets.

2.3.2 Polar set heuristic

We consider a simple heuristic to generate a polar set. The core idea
is to select as many k-mers as possible from the set of k-mers that ap-
pear exactly w bases away from each other. We cannot select all of
them as it may violate the polar set condition due to some k-mers
appearing multiple times. Because reference sequences are long
strings (in the range of billions of bases for mammalian genomes),
we consider algorithms that scale well with the length of the refer-
ence sequence, preferably close to linear.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab313#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab313#supplementary-data
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Final Coverage (Not-Covered k-mers)
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[0 B [ Selected and not-covered locations [ B Covered locations

Fig. 3. Examples of layered polar sets, with three layers. Without layered polar sets,
the k-mers from layer 2 and 3 could not be selected as in the polar set because of
self-collision. The whole sequence is covered in this case (every window contains a
polar k-mer from one layer). Layer 1 is the one with highest priority and our layered
heuristics construct it first

We start by fixing an offset o € [0, — 1] and randomly permut-
ing all locations ¢ satisfying t =0 modw. In this randomly per-
muted order, we add the k-mer at each location ¢ to the polar set.
Whenever a k-mer m is added, we remove all existing k-mers in the
polar set that have a conflict; that is, we remove k-mer n7' if 7’ and
m appear fewer than (1 — s)w bases away from each other in S. We
also attempt to add a k-mer only when we first encounter it in the
permuted order. This is to prioritize k-mers that appear less often,
similar to the biased hash function as explained in Jain et al.
(2020b).

Our algorithm also has a first-choice-hill-climbing variant,
which we call ‘monotonic’. In this variant, we require that adding a
new k-mer m and removing the k-mers conflicting with » actually
increases the link energy. (As Theorem 1 holds for all polar sets, it is
guaranteed that we are reducing the specific density by increasing
the link energy.) Otherwise, the k-mer is skipped and no conflicting
k-mers are removed. This variant is slower but results in more effi-
cient polar sets.

We filter k-mers before they are considered for addition to polar
sets. A k-mer that collides with itself (appears fewer than (1 — s)w
bases away from its own copy) cannot be in the polar set. We also
filter out k-mers by their frequency in the reference sequence (see
Section 2.3.3 for the threshold value).Algorithm 1 shows the
pseudocode for the non-monotonic variant of the heuristic. The
monotonic variant is similar. We describe the data structures in
Section 2.3.4, and analyze the time complexity in Section 2.3.5.

2.3.3 Layered heuristics and hyperparameters
We construct layered polar sets with a similar algorithm. The prop-
erties of layered polar sets guarantee that new layers cannot decrease
the final link energy of the polar set.

We rerun the polar set heuristic multiple times, each time with a
new random offset 0. Each round is run with the current layers of

Algorithm 1 Pseudocode for Polar Set Heuristics

function POLARSET(S, w, k)
Start with an empty set A < {} and a random offset o
Shuffle list of locations # =0 modw for 0 < ¢t < |S]
for each ¢ in the shuffled list and the k-mer #, at location ¢ do
Skip if m1, is filtered, or has been processed previously
Obtain list / of occurrences of m, via suffix array
Obtain list of conflicting k-mers via linked blocks
Remove all conflicting k-mers and add 7, to the polar set A
end for
return A
end function

polar sets, and the resulting polar set is added as a new layer. The al-
gorithm for each layer is mostly identical to the single-layer version,
with a few changes.

*  When processing a k-mer, we skip all of its occurrences that are
covered by existing layers of the polar set.

* We skip k-mers at non-covered locations ¢ that are fewer than
(1 — s)w bases away from a k-mer in a previous layer. These k-
mers cannot be in the layer without violating the layered polar
set condition.

* At the end of each round, we remove all k-mers selected in the
current layer that do not form a link with any k-mers.

We also gradually increase the threshold of k-mer frequency at
each round to prioritize low frequency k-mers. In our experiments,
we use a total of 7 rounds, with last two rounds being monotonic.
The frequency threshold is set at the value to include 85% of loca-
tions of the reference in the first round, gradually increasing to 95%
in the last round.

The slackness s is also a tunable parameter, which determines
when a pair of k-mers is considered in collision. Lower value of s
ensures the distance between adjacent polar k-mers are large and
have higher link energy for every pair of linked k-mers, but results in
smaller number of k-mers selected, implying fewer links. Higher
value of s means larger polar sets covering more of the reference se-
quence and more links formed, but adjacent polar k-mers may be
closer to each other resulting in lower energy per link.

In our experiments, we use a fixed slackness s = 0.4 after param-
eter search. This results in approximately 20% less efficient links
(average link energy compared to theoretical maximum), but higher
total link energy due to inclusion of more links. A more thorough
parameter tuning might suggest a gradually increasing value of s be-
tween rounds.

2.3.4 Supporting data structures
Our heuristics require some data structures to operate efficiently
both in theory and in practice.

Suffix array. In order to quickly index k-mers and obtain the list
of occurrences of a k-mer, we precompute the suffix array, the in-
verse suffix array and the heights table (also known as the LCP
array) of the reference sequence. All can be computed in linear time.
This allows us to find the list of T locations that share the same k-
mer as location ¢, in O(T) time.

Linked blocks. The layered polar set property ensures that in any
stretch of w/2 bases, at most one k-mer at one location is selected
into any layer of the layered polar sets, excluding covered locations.
We use a data structure called linked blocks to represent the set of
these selected locations of k-mers. Let h = |w/2], we divide the
locations in the reference sequence into h-long blocks, and use an
array of length |S|/b to represent these blocks. Each value in the
array C[b] is either -1, meaning there are no selected location within
this block spanning location [bh, (b + 1)b), or a non-negative integer
j, indicating that the k-mer at location bh + j is selected. With linked
blocks we can do the following operation quickly:

Definition 9PeekL(x) returns the closest selected location to the left of x,
up to w bases.

This is because we only need to query up to three blocks. Adding a loca-
tion and removing a location also only involves a single block. Similarly
we can define PeekR(x). With this data structure, we can implement
many critical operations in the aforementioned heuristics. The step of fil-
tering k-mers, more specifically determining whether a k-mer collides
with itself, is done using this data structure, in similar fashion to bucket
sorting. By maintaining two linked blocks, one for the current layer and
one for all previous layers, we can determine whether a location is cov-
ered by the previous layers, and list collisions on the current layer.
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Calculating link energy. In the monotonic variant of our heuris-
tics, we need to calculate the total link energy before and after add-
ing a k-mer. In our implementation, we update the link energy of the
polar set as we add and remove locations to the linked blocks, using
the following alternative formula for link energy:

L({Ai}7 S) = 2Acov/(w + 1) - Aele - Aseg-

Here, Aoy is the number of contexts that contain a k-mer from
the polar set, A is the number of non-covered location of selected
k-mers, and Ay is the number of continuous segments of windows
that contain a k-mer from the polar set. When adding and removing
a location to the linked blocks, the changes to these three values are
calculated using linked block primitives in constant time, so we can
update the link energy in constant overhead. In practice, the over-
head from maintaining these statistics is negligible. As a sanity
check, we see that when adding an isolated k-mer, Aoy increases by
(w+1) and the other two values increase by 1, resulting in a net
link energy gain of zero, consistent with the original definition. We
can also compute the link energy of the polar k-mers in bottom part
of Figure 3 using this formula, where Ay = 13,Aq. =3 and
Ageg = 1, resulting in the total link energy of 1/3. In addition, this
definition of link energy extends to arbitrary sets of k-mers. In
Supplementary Section S2.4 we discuss this topic in more detail in
connection with universal hitting sets.

2.3.5 Time complexity analysis
We now analyze the time complexity of the layered polar sets heuris-
tic, assuming no monotonic rounds for now. Let 7 be the length of
the reference sequence, and assume a constant-sized alphabet. We as-
sume a word of constant size can hold an integer in [0, 7], and that
accessing an element in an array of length 7 takes constant time.
These conditions hold for human genomes and 64-bit machines. This
means the primitive operations on linked blocks take constant time,
and operations involving the suffix array also take constant time.
Consider a worst case scenario: By iterating k-mers that appear
exactly w bases away from each other, we iterate over all k-mers in the
reference sequence. Assume a k-mer 2 occurs T times in the reference
sequence. In filtering phase, we first fetch the list of T locations in O(T)
time using the suffix array, and we want to determine if there are two
elements whose difference is less than (1 — s)w. This can be done using
the linked blocks in O(T) time. In the case of layered polar sets, we also
want to determine if each of the locations is covered by previous layers,
and if it is fewer than (1 — s)w bases away from a location in a previ-
ous layer. As we use one linked block for all previous layers, this can be
done in O(T) time. The filtering phase thus finishes in O(T) time.
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The main algorithm is split into three parts: detecting k-mers
that are close to 7 in the reference sequence, removing those k-mers
from the polar set, and adding 1 to the polar set. Detecting and list-
ing k-mers that are close to m takes O(T) time, as each location
reports only four collisions at most, two to the left and two to the
right. Removing a k-mer that occurs T’ times takes O(T’) time, but
since each k-mer is only added and removed once in one round, this
amortizes to O(T) time. Adding m to the polar set also takes O(T)
time. The singleton detection step (removing k-mers forming no
links) also takes O(T) time for checking if 72 is a singleton.

As each k-mer is only visited once in the main algorithm, and in
the worst case scenario every k-mer in S is visited, we conclude that
the layered polar set heuristics runs in Y O(T) = O(n) time for
each layer, and as a special case the (non-layered) polar set heuristics
runs in O(#n). The monotonic variant of the heuristic can in theory
run in O(#?) time, but it is not significantly slower in practice.

3 Results

All the experiments are run using the human reference genome
hg38. To facilitate the performance comparison across a range of
parameter values of w and k, we report the density factor (Margais
et al., 2017) instead of the density. The density factor is the density
multiplied by (w + 1). Regardless of the value of w, the random
minimizer has an expected density factor of two and a perfect min-
imizer has a density factor of ~1.

3.1 Energy deficit and energy surplus
First, we calculate the average energy deficit X(S)/|S| and average
energy surplus D(S)/|S|. The results are in Figure 4A.

The reference genome is more repetitive than a purely random
sequence. However, empirically the energy surplus and deficit are
still small, well below 0.01 measured in density factor, implying a
relative error of at most 1% when estimating specific density with
link energy. Thus, when constructing efficient minimizers by (lay-
ered) polar sets, using link energy to estimate specific density is effi-
cient and accurate. For reference, on a random sequence the average
energy surplus and deficit are below 1077 in absolute value, for the
parameter range we are interested in.

3.2 Evaluating polar set heuristics

We next evaluate our proposed algorithms for layered polar sets.
We implemented the algorithm with Python3. Experiments are run
in parallel and the longest ones (v = 10,k = 15 in our experiments)
finish within a day. The peak memory usage stands at 100 GB,
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Fig. 4. (A) Energy surplus and deficit for short (= 10) and for long (w = 100) windows, computed on the human reference sequence hg38. The difference between the two
lines is the difference between the upper and lower bound of Theorem 1. It is very small and the bounds are very good estimates in practice. (B) Density factor for the proposed
methods, for short and long windows, computed on hg38. The bottom orange dashed line is the theoretical minimum density (perfect minimizers)
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which happens at the start loading the precomputed suffix array
using Python pickle.
We compare our results against some other candidates:

* Random Minimizers. Achieves density factor of two in theory
and in practice, as indicated in last section.

* Fixed Interval Sampling. This method uses every w k-mer from S
as the set U to define a compatible minimizer.

* The Miniception (Zheng et al., 2020), a practical algorithm that
provably achieves lower density in many scenarios. The hyper-
parameter Ry is set to max(35, k — w) for our experiments.

We also plot the theoretical lower bound, corresponding to the
density factor for perfect minimizers. While our theory predicts ex-
istence of perfect minimizers matching the lower bound with large
value of k, this rarely happens with practical parameter values. We
do not include existing algorithms for constructing compact univer-
sal hitting sets because these methods do not scale to values of
k > 14. Our heuristics work the best when k-mers do not appear too
frequently, or roughly speaking, when ¢* > 7 where # is the length
of the reference sequence. This choice of parameter is common in
bioinformatics analysis. With the sequence at the size of human ref-
erence genome, our heuristics work well starting at k=15. The
Miniception achieves comparable performance with leading UHS-
based heuristics, so its performance also serves as a viable proxy.

We consider two scenarios, first with short windows (w =10)
and second with long windows (= 100). The results are shown in
Figure 4B. Our experiments indicate that our simple heuristics yield
efficient minimizers, greatly outperforming random minimizers and
the Miniception, while maintaining a consistent edge over fixed
interval sampling methods, in both short windows and long win-
dows settings. The improvement is more pronounced when the win-
dows are long. Given our layered polar set heuristics consist of
multiple rounds, in Supplementary Section S5.1 we show the pro-
gression of density factors through rounds, demonstrating that the
layered heuristics are particularly effective at low values of k. We
next show that in building sequence-specific minimizers using lay-
ered anchor sets, we do not sacrifice their performance in the general
case measured by (expected) density. In Supplementary Section S5.2,
we sketch a random sequence using the sequence-specific minimizers
we built for hg38. As expected, the performance closely matches
that of a random minimizer.

4 Discussion

4.1 Limits and future of polar sets
While the concept of polar sets is interesting and leads to improve-
ments in state-of-the-art sequence-specific minimizer design, we
should acknowledge its limitations. It cannot be used in designing
non-sequence-specific minimizers when w > k. Arguably, this means
the method is more tailored for sequence-specific minimizers. See
Supplementary Section S4 for proof and more discussion on non-se-
quence-specific polar sets.

Our experimental results show that the performance of minimiz-
ers based on polar sets greatly improves as k grows. When each k-
mer appears many times in the reference sequence, it becomes hard
to select many k-mers without violating the polar set condition. For
comparison, in Supplementary Section S5.3 we show the results
when we apply the heuristics to human chromosome 1 sequence
only, which is about 1/10 as long as the whole human reference gen-
ome. Improvements across the board for the heuristic algorithms
and the fixed interval sampling methods are observed. The repeti-
tiveness of human reference genome also means much more difficult
optimization of specific density. In Supplementary Section S5.4, we
show the results when we apply the heuristics to build sequence-spe-
cific minimizers on a random sequence that are as long as the chrl
sequence. It is significantly easier to reach the theoretical minimum
specific density of 1/w in this setup compared to the previous one.
Finally, in Supplementary Section S5.5 we show the results when we

apply the heuristics to a complete assembly of human chromosome
X (Miga et al., 2020), including the highly repetitive centromere. As
expected, the performance (measured by density) significantly
degrades over the centromere region, but is always no worse than a
random minimizer.

With better computing power and more efficient algorithms, it is
desirable to compute an optimal polar set. The optimal polar set can
be found with integer linear programming using ideas introduced in
Section 2.2.5 for moderately sized reference sequences. However, no
such convenient formulation exists for layered polar sets, and it is an
interesting question whether there is a tractable optimization prob-
lem for minimizers in general.

4.2 Practicality of sketches-by-optimization

The polar sets can be used wherever universal hitting sets are used,
in most cases. Given that our heuristics for layered polar sets only
produce a small number of layers, implementation of a compatible
minimizer with layered polar sets is not fundamentally different
from that with a universal hitting set. The fixed interval sampling
method is very similar to previously proposed methods (Almutairy
and Torng, 2018; Frith ez al., 2020; Khiste and Ilie, 2015), where
the sketch of a reference sequence is simply the set of k-mers appear-
ing at locations divisible by w. Polar sets might not be able to direct-
ly replace fixed interval sampling, however it can be readily
expanded into a set of seeds that covers the whole reference
sequence.

These approaches are currently relatively underused, compared
to more traditional approach of minimizers like lexicographical,
random or slight variants of either one. A significant reason for their
unpopularity is the fact that using these methods requires looking up
a table of k-mers, be it a set of polar k-mers or universal hitting k-
mers, for every k-mer in the query sequence. In contrast, for a ran-
dom minimizer implemented using a hash function, no lookup is
required during the sequence sketch generation process. Since these
lookup tables are usually the result of sequence-specific optimiza-
tion, we say these methods fall into the category of ‘sketches-by-op-
timization’. This contrast leads to interesting tradeoffs in efficiency.
For example, using a polar-set-compatible minimizer generates a
more compact sequence sketch, but might take more time at query
compared to using a random minimizer, due to the time spent in
loading and querying the set of polar k-mers.

We believe better implementation of k-mer lookup tables and
better optimization of sequence sketches, possibly in a joint manner,
will popularize sketches-by-optimization. Existing methods already
take step toward this goal. Jain et al. (2020b) uses a compact lookup
table to index frequent k-mers, and Liu et al. (2019) uses a Bloom
filter to perform approximate query over fixed interval samples.
Techniques like k-mer Bloom filters (Pellow ez al., 2017) might also
further help the performance.

4.3 Alternative measurements of efficiency

Throughout this manuscript our goal has been the optimization of
specific density. Low density results in smaller sequence sketches,
and for many applications this is desirable. However, depending on
the way one uses the sequence sketch, alternative measurements of
efficiency may be desirable [also see discussion in Edgar (2020)]. For
example, in k-mer counting, minimizers are used to place k-mers
into buckets. In this case, the specific density is less relevant, and we
are more concerned about the number of buckets, and the load bal-
ance between different buckets (Margais ef al., 2017; Nystrom-
Persson et al., 2020). For read mapping, smaller sequence sketches
have its own advantage, while some may prefer reducing the number
of matches, or reducing the false positive seed matches in general.
We believe many of these objectives are correlated with each other,
and we are interested in both further exploring benefits of a small se-
quence sketch, and optimization techniques for alternative measure-
ments of efficiency.
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5 Conclusion

Inspired by deficiencies with current theory and practice around se-
quence-specific minimizers, we propose the concept of polar sets, a new
approach to construct sequence-specific minimizers with the ability to
directly optimize the specific density of the resulting sequence sketch.
We also propose simple and efficient heuristics for constructing (lay-
ered) polar sets, and demonstrate via experiments on the human refer-
ence genome the superior performance of minimizers constructed by
our proposed heuristics. While there are still concerns around the prac-
tical utility, we believe the polar set framework will be a valuable asset
in design and analysis of efficient sequence sketches.
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