Personalized Neural Architecture Search for
Federated Learning

Minh Hoang Carl Kingsford
Department of Computer Science Computational Biology Department
Carnegie-Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
ghoang@andrew.cmu.edu carlk@cs.cmu.edu
Abstract

Federated Learning (FL) is a recently proposed learning paradigm for decentralized
devices to collaboratively train a predictive model without exchanging private data.
Existing FL frameworks, however, assume a one-size-fit-all model architecture to
be collectively trained by local devices, which is determined prior to observing
their data. Even with good engineering acumen, this often falls apart when local
tasks are different and require diverging choices of architecture modelling to learn
effectively. This motivates us to develop a novel personalized neural architecture
search (NAS) algorithm for FL, which learns a base architecture that can be
structurally personalized for quick adaptation to each local task. On several real-
world datasets, our algorithm, FEDPNAS is able to achieve superior performance
compared to other benchmarks on heterogeneous multitask scenarios.

1 Introduction

Federated Learning (FL) [McMahan et al., 2017, Vo et al., 2021, Li et al., 2020] is a variant of
distributed learning [Hoang et al., 2019a,b] where the objective function £ can be decomposed into a
linear combination of M local objective functions {£; };—1. . Each function depends on its local
private data and a set of shared parameters w. Specifically, let D; denote the i*" local training dataset,
1 denote the w-parameterized neural network architecture chosen for the federated task, and ¢(z, y)
denote the loss incurred by predicting 1 (z; w) with ground truth y, we define the FL objective as:

M
argmin £(w) = argmin Zﬁi(w | D;) £ argminE(,), {E(x,y;q/})} . (1)

w w i=1
This is not applicable to scenarios where local models are expected to solve different tasks which are
similar in broad sense yet diverge in finer details [Lam et al., 2021, Hoang et al., 2020, Yurochkin
et al., 2019]. For example, consider the task of recognizing the outcome of a coin flip given images
collected by two clients: one capture the coin from above, the other from below. This setting implies
that when the same input image is provided by both clients, the correct classifications must be the
opposite of one another. However, since existing FL methods converge on a single model architecture
and weight, there can only be one predictive outcome which cannot satisfy both tasks.

To relax this constraint, the recent work of Fallah et al. [2020] extends FL by incorporating ideas
from meta learning [Finn et al., 2017] which results in a new framework of personalized FL. The new
framework can accommodate for such task heterogeneity but still requires all client models to agree
on a single architecture beforehand, which is sub-optimal. To address this shortcoming, one naive
idea is to adopt existing ideas in Neural Architecture Search (NAS) via Reinforcement Learning
[Zoph and Le, 2016, Pham et al., 2018] which act as an outer loop to the existing FL routine.

1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), Virtual Meeting.

However, this simple approach does not allow client models to adapt to local tasks on an architecture
level and is often not preferred due to the cost of repeated FL training. This paper proposes a novel
personalized NAS algorithm for federated learning, which generalizes ideas in respective areas of
NAS [Zoph and Le, 2016, Pham et al., 2018] originally developed for single-task scenarios, and
FL [Fallah et al., 2020] under a unified len of federated personalized neural architecture search
(FEDPNAS).

In particular, to customize the model architecture for each task in the FL. workflow, FEDPNAS
first represents the model architecture for each task as a sub-network sampled from a large, over-
parameterized network. The sampling distribution is (collaboratively) learned along with the pa-
rameters of the sampled network via a generalization of the recently proposed Discrete Stochastic
NAS (DSNAS) method [Hu et al., 2020]. Unlike DSNAS, which lacks the ability to customize
architecture for individual tasks, our generalized FEDPNAS incorporates model personalization on
an architecture level. Our contributions include:

1. A novel architecture that factorizes into a base component (shared across tasks) and a personalizable
component, which respectively capture the task-agnostic and task-specific information (Section 3.1).

2. A context-aware sampling distribution conditioned on specific task instance, which captures task-
specific information and naturally incorporates personalization into architecture search (Section 3.3).

3. An FL algorithm that optimizes for a common architecture, followed by a personalization phase
where each client subsequently adapts only the personalized component to fit its own task via fine-
tuning with local data. To ensure that the common architecture distribution converges at a vantage
point that is relevant and beneficial to all clients, we generalize the vanilla FL objective in Eq. (1) such
that local gradient steps directly optimize for expected improvement resulting from future fine-tuning
(Section 3.2).

2 Related Work

Two-stage Neural Architecture Search: Most existing NAS frameworks separately optimize for
the optimal architecture and its parameters in two stages: searching and evaluation. The former stage
usually employs evolutionary-based strategies [Floreano et al., 2008, Real et al., 2019], Bayesian
optimization surrogates [Bergstra et al., 2013, Hu et al., 2018] or Reinforcement Learning controllers
[Baker et al., 2016, Zoph and Le, 2016, Pham et al., 2018] to propose candidate architectures based
on random mutations and/or observed experience; while the latter optimizes the parameters of these
architectures given task data and provide feedback to improve the search agent.

Naturally, an extension of such methods to the FL setting is through distributing the evaluation
workload over many clients, which does not require exposing private data. A pioneering work in this
direction is FEDNAS [He et al., 2020]. In practice, however, two-stage federated NAS frameworks
are generally not suitable for the personalized FL setting for two reasons: (a) the clients often lack
the computational capacity to repeatedly optimize the parameters for many candidate architectures;
and (b) the clients have to converge on a single architecture proposed by the central search agent.

Discrete Stochastic Neural Architecture Search: Discrete stochastic neural architecture search
(DSNAS) [Hu et al., 2020] addresses the computational issue of two-stage NAS by jointly optimizing
the optimal architecture and its weight in an end-to-end fashion, which allows users to continually
train a single network on demand over time as opposed to performing full parameter optimization for
every candidate until a good architecture is discovered.

The main idea of DSNAS is to combine weight training for an over-parameterized master architecture
with discrete computational path sampling. DSNAS parameterizes the master architecture as a
stack of modular cells: ¥ (z) = ¥c 0 9c_1--- 0y (), where z is an arbitrary input, C' is the
number of cells, ¢, denotes the t*? cell in the stack, and o denotes the compositional operator. The
inner computation of %), is in turn characterized by a directed acyclic graph (DAG) with V' nodes

{vi} ‘Zzll, where each node represents some intermediate feature map. For each directed edge (v;, v;),

there is an associated list of D possible network operations O;; = [O%j, o O-D»] 2 where each

i O
operation o,’fj transforms v; to v;. Here, vy corresponds to the output of previous cell ¢;_; (or

'In this description, we assume each DSNAS cell receives input from only one previous cell.
2We drop the cell index in the definition operation for ease of notation.

Federated Phase Server Fine-tune Phase Server

Client C;—1 Client Cj—1
Weight
ti b
m wb Query base ll)
feature map

-—————-

Weight

broadcast D wﬂ

FedPNAS Update ¥ GD Update

Figure 1: Our proposed method FEDPNAS. FL phase: each client updates both base (3/?) and
personalized components (1) (Section 3.2); then sends its parameters to the server for aggregation.
Fine-tune phase: each client continues to update only the personalized component.

input 2 when ¢ = 1). We recursively define intermediate nodes v; = 37—} Z;0,;(v;), where

0,;(v;) & [ogj(vi), ofj(vi) e 05 (v;)] and Z;; is a one-hot vector sampled from the categorical
distribution p(Z | II) where the event probabilities IT = {7, m2,...,7p | Zle m; = 1} are
learnable. Essentially, learning the distribution p(Z) allows us to sample computational paths or
sub-graphs of the original DAG that correspond to high-performing, compact architecture from the
over-parameterized master network. Sampling discrete random variables from p(Z), however, does
not result in a gradient amenable to back-propagation. To sidestep this issue, DSNAS adopts the
straight-through Gumbel-softmax trick [Jang et al., 2016], which re-parameterizes the kM index of

the one-hot variable as Z;;[k] =1 (k £ arg max [gt + log wt]) , where g; ~ Gumbel(0, 1). While
¢

this forward computation does not have a gradient by itself, we can estimate the gradient through a
proxy during the backward pass:

V Zijk] ~ VZjkl 2 V(exp ((gr + logmy) /7)) -

S7 exp (g0 + log) /7)

which is unbiased when converged as the temperature 7 is steadily annealed to 0 [Jang et al., 2016].
This formulation, however, is not easily extended to the FL setting, especially when local tasks are not
homogeneous. We describe the key challenges in Section 3, together with our proposed approaches.

3 Personalized NAS for Federated Learning

Let W denote the concatenated weights of all network operations in the network architecture. The
set up above of DSNAS [Jang et al., 2016] is naively extendable to a FL setting:

M
argmin £L(W,II) = au"gmini Z L;(W,I1 | D;) . 3)

W, IT wn M~
McMabhan et al. [2017] optimizes this objective by alternating between (a) central agent broadcasting
aggregated weights to local clients and (b) local clients sending gradient descent updated weights
(given local data) to the central agent for aggregation. This, however, implies that after the last
central aggregation step, all clients will follow the same architecture distribution induced by the final
broadcasted copy of W and II. As previously argued, this is not optimal in a heterogenous task

setting which requires task-specific adaptation for local clients to achieve good performance.

Furthermore, having the same sampling distribution p(Z) regardless of context (i.e., feature maps
received as cell input) limits the architecture discovery to those that perform reasonably on average
over the entire dataset. However, we remark that restricting the architecture to be the same for every
input samples is unnecessary and undermines the expressiveness of an over-parameterized search
space. On the other hand, letting the architecture be determined on a per-sample basis makes better
use of the search space and potentially improves the predictive performance.

The focus of this work is therefore to incorporate both task-wise and context-wise personalization to
federated neural architecture search in multitask scenarios, which is achieved through our proposed

algorithm FEDPNAS. In general, FEDPNAS functions similarly to the vanilla FEDDSNAS algo-
rithm described above, with an addition of a fine-tuning phase at each local client after the FL phase
to adapt the aggregated common model for local task data, as shown in Fig. 1. To make this work,
however, we need to address the following key challenges:

C1. First, as previously argued in Section 1, tasks across federated clients tend to share similarities in
broad sense, and diverge in finer details. A good federated personalization search space, therefore,
need to capture this fundamental observation through design and appropriate resource distribution.
We address this challenge in Section 3.1.

C2. Second, an over-parameterized architecture search space offers the flexibility of having specific
computation paths for different samples. This is not exploited by DSNAS as reflected in its choice
of context-independent sampling distribution p(Z). To address this, Section 3.3 proposes a novel
parameterization of p(Z) to incorporate context information into operator sampling.

C3. Last, the common model may not be universally useful to all local clients, which makes it
difficult to be fine-tuned. To address this concern, Section 3.2 proposes a new personalized federated
NAS objective inspired by Finn et al. [2017] to optimize the common model in anticipation of further
fine-tuning by the client models.

3.1 Personalizable Architecture Search Space

CONV IX1 CONV IX1 CONV 1X1

Similar to DSNAS [Hu et al., 2020], we adopt - < _Basestack
a cell-based representation to trade-off search \\v
space expressiveness for efficiency. Unlike the b
original design, which assumes similar role for | Yo
every cell in the architecture stack (i.e., implied

by the fully factorizable path sampling distri-

bution p(Z)), we split our cells into two com- o e o | o
ponent stacks with separate meta-roles cater- Sk i i
ing to the federated personalization task: (a) a
base stack vy, = {¢},¢5 ..., } which aims Personalized Stack
to capture the broad commonalities of data

samples across client tasks; and (b) person- Figlll(re %f: Featuile mapping down the C(l)lmponent
; — S P ; stacks of our architecture space. Base cells receive
alized stack v, = {¢7, 95 .. .¢Cp}, which

outputs from two previous cells. Personalized cells
receive outputs from only one previous cell.

will be fine-tuned with local data to capture
task-specific details.

We explain the main difference between these components to account for different level of expres-
siveness requirements below:

Base stack. Every cell ¥ in the base stack takes as inputs the outputs of its previous two cells ¥?_;
and ¢?_, (replaced with raw input = when necessary for ¢ < 2). The output of the skip-ahead cell
Y?_, is additionally passed through a 1 x 1 convolution layer as a cost-effective way to control the
number of channels. Additionally, the operators available to the base cell include large convolution
layers with size 5 x 5 and 7 x 7. To compensate for the growing number of channels, we periodically
employ a reduction convolution (with stride larger than 1) similar to DSNAS [Hu et al., 2020] to
reduce the feature dimension down the stack.

Personalized stack. As opposed to the design of the base cells above, every cell 1)} in the personal-
ized stack has minimal expressiveness. That is, 1}’ excludes large operators and only takes as input
the output of its immediate predecessor ¢} ; (or wgb when ¢ = 1). There are two reasons for this
choice. First, as the fine-tuning phase has access to fewer data samples than the federated phase,
having a more compact fine-tuning space helps to improve the rate of convergence. Second, as we will
discuss in Section 3.3 below, our personalized FL objective requires the Hessian of the personalized
parameters, which is computationally expensive. As such, we only restrict the personalization to
happen on the more compact personalized stack.

3.2 Personalized Federated Learning Objective

Unlike FEDAVERAGING [McMahan et al., 2017], which assumes the clients will follow the consensus
base model obtained after the federated phase, FEDPNAS expects clients to further personalize

the base model with local task data. That said, while the base model is trained to work well in the
expected sense over the task distribution, there is no guarantee that it is a good initial point for every
client model to improve upon via fine-tuning. To address this, we adopt the concept of training in
anticipation of future adaptation introduced by MAML [Finn et al., 2017]. That is, during client
update, instead of optimizing the loss with respect to the same consensus weight, each client will
instead optimize the weight perturbed by a small gradient step in the fine-tuning direction.

For simplicity, let 8 = {6,, 6, } respectively denote all trainable parameters of the base stack and the
personalized stack, i.e., 8, = {W,, I}, 0, = {W,, II,}. The personalized FL objective at client 4
is then given by £;(6s,60,) = L;(0s,0),) where 6, = 6, — nVy L;(6y,0,) adjusts the parameters of
the personalized component to account for a small fine-tuning gradient step. The adjusted local loss
only depends on the respective client data and is amenable to federated learning. The local update
gradient, however, involves a Hessian term whose computation is expensive to repeat over many
epochs. To circumvent this problem, we use the first-order Taylor approximation to estimate the
Hessian term by the outer product of Jacobian, which results in a gradient that requires exactly two
forward/backward passes to compute:

Vo i = (1-nv3,6) (V5,8) ~ (1-0Vi £Vo,£) (V5. 8:)

where £; and £; are short-hands for £;(0y,6,) and L£;(6,,6),) respectively. The FL phase of our
FEDPNAS framework is detailed in Alg. 1 (Appendix A). An instance of FEDPNAS’s forward and
backward pass which sequentially unrolls down the component stacks, alternating between sampling
and evaluation, is in turn given in Alg. 2 in (Appendix A).

3.3 Context-aware Operator Sampler

The choice of a fully factorizable sampling distribution p(Z) in DSNAS follows that of SNAS [Xie
et al., 2018], which argues that the Markov assumption for p(Z) is not necessary because NAS
has fully delayed rewards in a deterministic environment. However, this generally only holds for
two-stage NAS (Section 2) and does not apply to end-to-end frameworks such as SNAS and DSNAS.
We instead to take advantage of the over-parameterized architecture via factorizing the conditional
p(Z | x), which takes into account the temporal dependency of structural decisions:

c

c
p(Z|z) = p(Zi|2)[[p(Z:|of,2) = p(Zi|2)][] p(Z; |0t 2), 4)

t=2 =2 (i,j)

where Z,, Zﬁj and v! respectively denote all the samples, the sample at edge (4, j) and the input at

cell ¥;. We have also assumed a single stack setting since the parameterization of p(Z) does not
differ between base and personalized cells.

To reduce computational complexity, instead of conditioning the samples of subsequent cells on
previous Z samples, we approximate p(Z; | Zy_1...Z1,7) ~ p(Z; | v}, x) by the assumption
that the cell contents are conditionally independent given the immediate cell input and the original
input. Finally, we assume that p(Z; | v{, z) is fully factorizable across edges in the same cell and
parameterize p(Z;; | vi,) = (7 (vt) where ¢ is a deep classification network whose output
dimension equal the number of edges in cell ¢;. Samples of Zﬁj can then be generated using the
straight-through Gumbel-softmax reparameterization similar to Jang et al. [2016].

4 Experiments

This section describes our experiments to showcase the performance of FEDPNAS compared to
different NAS and FL benchmarks on various scenarios. All of our empirical studies are conducted
on two image recognition datasets: (a) the CIFAR-10 dataset [Krizhevsky et al., 2009] which aims to
predict image labels from 10 classes given a train/test set of 50000/10000 colour images of dimension
32 x 32 pixels; and (b) the MNIST dataset [LeCun et al., 2010] which aims to predict handwritten
digits (i.e. 0 to 9) given a train/test set of 60000/10000 grayscale images of dimension 28 x 28
pixels. Our search space entails 24° possible architectures, which is detailed in Appendix D. We
compare two variants of our framework, CA-FEDPNAS (with context-aware operation sampler) and
FEDPNAS (without the operation sampler), against: (a) FEDAVERAGING of a fixed architecture to

justify the need for NAS in FL; (b) FEDDSNAS: the federated extension of DSNAS (Section 3), to
show the effectiveness of our proposed context-aware sampler on NAS performance; and finally (c)
CA-FEDDSNAS, which extends FEDDSNAS with our context-aware sampler.

On simulate heterogenous predictive tasks. To simulate this scenario, we first distribute the data
i.i.d across clients (10000/2000 and 12000/2000 training/test images per client for CIFAR-10 and
MNIST datasets respectively). Then, we independently apply a different transformation to each
partitioned dataset. Input images within the same train/test set is subject to the same transformation.
In both our experiments, the client datasets are subjected to rotations of —30°, —15°,0°,15° and
30° respectively. This data generation protocol reflects a realistic and frequently seen scenario
where independently collected data of the same phenomenon might contain systematic bias due to
measurement errors and/or different collection protocols. Fig. 3 below shows the performance of all
the methods in comparison, plotted against number of search epochs and averaged over the above
rotated variants of CIFAR-10 and MNIST datasets.

le7
e e —4— CA-FedPNAS
25 CA-FedDSNAS
—4— FedDSNAS

1.0

0.9

0.8

2074
]

—— FedDSNAS g o4 —— FedDSNAS

v}
<os

Cumulative Time (ms)

FedPNAS 03 FedPNAS
0.4 —t— FedAvg 02 —t— FedAvg s
03 —f— CA-FedDSNAS ’ —— CA-FedDSNAS :
: —}— CA-FedPNAS 0.1 —}— CA-FedPNAS 00
0.0 :
0 50 100 150 200 250 300 0 50 100 150 200 250 0 100 200 300 400 500 600
Epochs Epochs Epochs
(a) (b) (©

Figure 3: Plotting average classification accuracy of various methods against no. training epochs on
heterogeneous tasks derived from (a) MNIST dataset; and (b) CIFAR-10 dataset. Figure (c) compares
cumulative running time of various methods against no. training epochs on CIFAR-10 dataset.

On the MNIST dataset (Fig. 3b), all methods eventually converge to a similar performance. Among
the NAS benchmarks, FEDPNAS and FEDDSNAS both converge slower than FEDAVG and start off
with worse performance in early iterations, which is expected since FEDAVG does not have to search
for the architecture and it is likely that the default architecture is sufficient for the MNIST task. On
the other hand, we observe that both CA-FEDPNAS and CA-FEDDSNAS converge much faster
than their counterparts without the context-aware operation sampler component. This shows that
making use of contextual information helps to quickly locate regions of high-performing architectures,
especially on similar inputs.

On the CIFAR-10 dataset (Fig. 3a), we instead observe significant gaps between the worst performing
FEDAVG and other NAS methods. This is likely because the default architecture does not have
sufficient learning capability, which confirms the need for customizing solutions. Among the NAS
benchmarks, we again observe that both CA-FEDPNAS and CA-FEDDSNAS outperform their
counterparts without our operation sampler, which confirms the intuition above. Most remarkably,
our proposed framework CA-FEDPNAS achieves the best performance (0.8) and significantly out-
performed both variants of federated DSNAS (0.71 for CA-FEDDSNAS and 0.63 for FEDDSNAS).

Lastly, Fig. 3c shows the runtime comparison between three methods on the CIFAR-10 experiment.
In terms of sampling time, we observe that there is negligible overhead incurred by using our
context-aware sampler (CA-FEDDSNAS vs. FEDDSNAS). The time incurred by our update (CA-
FEDPNAS) scales by a constant factor compared to CA-FEDDSNAS since we use exactly one extra
forward/backward pass per update.

On objectives with varying heterogeneity. We expand the above study by investigating respective
performance of CA-FEDPNAS and FEDDSNAS on tasks with varying levels of heterogeneity. At
low level of heterogeneity, we deploy these methods on 5 sets of slightly rotated MNIST images. At
high level of heterogeneity, we employ a more diverse set of transformations on MNIST images, such
as hue jitter and large angle rotations of 90° and —90°. Table 1 show the respective result of each task
from these two settings. We observe that our method CA-FEDPNAS achieves better performance
on most tasks and the performance gaps on tasks with higher heterogeneity are more pronounced
(i.e., up to 7% improvement on ROTATE 90 task). This clearly shows the importance of architecture
personalization when the training tasks are significantly different and justifies our research goal.

HETEROGENEITY DESE/}:IS;;ION FEDDSNAS | CA-FEDPNAS

ROTATE -30 0.947 0.978

ROTATE -15 0.973 0.976

Low VANILLA 0.988 0.985
ROTATE 15 0.986 0.987

ROTATE 30 0.972 0.981

HUEJITTER -0.5 0.966 0.978

HUEJITTER 0.5 0.967 0.972

HiGH VANILLA 0.988 0.989
ROTATE -90 0.892 0.932

ROTATE 90 0.866 0.932

Table 1: Predictive accuracy of CA-FEDPNAS vs. FEDDSNAS on tasks with varying heterogeneity
levels. ROTATE X denotes a rotation transformation of X° on client data; VANILLA denotes the
original MNIST images; and HUEJITTER X denotes a hue jitter transformation of training images by
a factor of X. The best performance in each row is in bold font.

On knowledge transfer to completely new tasks. Finally, we investigate a scenario where the
architecture distributions discovered by CA-FEDPNAS and FEDDSNAS are required to generalize
to completely unseen tasks. Particularly, we train both methods on five clients whose local data
consist of 12000 slightly rotated CIFAR-10 images (i.e., in the range of £30°), similar to the setting
of the first experiment. During testing, however, we supply each local client with 2000 test images
subjected to related but completely unseen transformations (i.e., 90° and —90° rotations).

Our results are summarized in Table 2. First, we measure the performance of CA-FEDPNAS and
FEDDSNAS without any weight retraining. When received no additional information from the
unseen tasks, both methods perform poorly as expected. While CA-FEDPNAS achieves better
predictive accuracy, the performance gap in this scenario is negligible. To provide additional clues
for adaptation, albeit minimal, we retrain the weights of each local model with 200 images rotated
according to respective unseen task description. Here, the parameters of our operator sampler
component, (and respectively, FEDDSNAS’s categorical distribution parameters), are frozen to
gauge the quality of the learned architecture distributions. Our results show that, with only 100
retraining iterations on limited data, CA-FEDPSNAS already outperforms FEDDSNAS (5% and
8% improvement respectively on two unseen tasks). This implies that CA-FEDPNAS has more
accurately capture the broad similarity of the task spectrum through the personalized architecture
distribution, which requires minimal additional information to successfully adapt to unseen tasks.

5 Conclusion

We demonstrate that federated learning for multi-task scenarios requires extensive personalization
on the architecture level to obtain good predictive performance. This paper identifies two potential
sources of model personalization: (1) task-personalization, which aims to select architectures best
suited for specific learning objectives; and (2) context-personalization, which aims to select archi-
tectures best suited for specific input samples. To incorporate these aspects of personalization into
Federated NAS, we propose FEDPNAS which consists of two main components: (1) a context-aware
operator sampler which learns a sampling distribution for feature maps along a master architecture;
and (2) a personalized federated learning objective which anticipates client fine-tuning and guides the
federated model update to regions that tolerate future local updates.

UNSEEN TASK FEDDSNAS | CA-FEDPNAS
DESCRIPTION FEDDSNAS | CA-FEDPNAS (RETRAINED) | (RETRAINED)
ROTATE -90 0.545+0.04 | 0.578+£0.09 | 0.699 +£0.12 | 0.734 +0.17

ROTATE 90 0.553 £0.12 | 0.569+£0.06 | 0.673 £0.13 | 0.727 + 0.22

Table 2: Predictive accuracy (averaged over 5 clients) and standard deviation of CA-FEDPNAS and
FEDDSNAS on two unseen tasks (CIFAR-10). The best performance in each row is in bold font.

6 Acknowledgement

This work was supported in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery
Initiative [GBMF4554 to C.K.], the US National Institutes of Health [RO1GM122935], and the US
National Science Foundation [DBI-1937540]. Conflict of Interest: C.K. is a co-founder of Ocean
Genomics, Inc.

References

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using reinforce-
ment learning. arXiv preprint arXiv:1611.02167, 2016.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In International Conference on Machine
Learning, pages 115-123. PMLR, 2013.

A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: Model-agnostic meta-
learning approach. In Proc. NeurIPS, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In Proc. ICML, pages 1126-1135, 2017.

D. Floreano, P. Diirr, and C. Mattiussi. Neuroevolution: from architectures to learning. Evolutionary
Intelligence, 1(1):47-62, 2008.

C. He, M. Annavaram, and S. Avestimehr. Fednas: Federated deep learning via neural architecture
search. arXiv e-prints, pages arXiv—2004, 2020.

M. Hoang, N. Hoang, B. K. H. Low, and C. Kingsford. Collective model fusion for multiple black-box
experts. In International Conference on Machine Learning, pages 2742-2750. PMLR, 2019a.

N. Hoang, T. Lam, B. K. H. Low, and P. Jaillet. Learning task-agnostic embedding of multiple
black-box experts for multi-task model fusion. In International Conference on Machine Learning,
pages 4282-4292. PMLR, 2020.

T. N. Hoang, Q. M. Hoang, K. H. Low, and J. P. How. Collective online learning of Gaussian
processes in massive multi-agent systems. In Proc. AAAI 2019b.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7132-7141, 2018.

S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, and D. Lin. DSNAS: Direct neural architecture search
without parameter retraining. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12084—12092, 2020.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

A. Krizhevsky et al. Learning multiple layers of features from tiny images. Citeseer, 2009.

T. C. Lam, N. Hoang, B. K. H. Low, and P. Jaillet. Model fusion for personalized learning. In
International Conference on Machine Learning, pages 5948-5958. PMLR, 2021.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database. ATT Labs [Online], 2, 2010.
URL http://yann.lecun.com/exdb/mnist.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020.

H. B. McMabhan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Proc. AISTATS, pages 1273-1282, 2017.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

http://yann.lecun.com/exdb/mnist

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4780-4789, 2019.

T. V. Vo, T. N. Hoang, Y. Lee, and T.-Y. Leong. Federated estimation of causal effects from
observational data. arXiv preprint arXiv:2106.00456, 2021.

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018.

M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, and N. Hoang. Statistical model aggregation
via parameter matching. Advances in Neural Information Processing Systems, 32:10956—10966,
2019.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

	Introduction
	Related Work
	Personalized NAS for Federated Learning
	Personalizable Architecture Search Space
	Personalized Federated Learning Objective
	Context-aware Operator Sampler

	Experiments
	Conclusion
	Acknowledgement

