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Abstract. Minimizers are k-mer sampling schemes designed to gener-
ate sketches for large sequences that preserve sufficiently long matches
between sequences. Despite their widespread application, learning an
effective minimizer scheme with optimal sketch size is still an open ques-
tion. Most work in this direction focuses on designing schemes that work
well on expectation over random sequences, which have limited appli-
cability to many practical tools. On the other hand, several methods
have been proposed to construct minimizer schemes for a specific tar-
get sequence. These methods, however, require greedy approximations
to solve an intractable discrete optimization problem on the permuta-
tion space of k-mer orderings. To address this challenge, we propose: (a)
a reformulation of the combinatorial solution space using a deep neural
network re-parameterization; and (b) a fully differentiable approximation
of the discrete objective. We demonstrate that our framework, Deep-
Minimizer, discovers minimizer schemes that significantly outperform
state-of-the-art constructions on genomic sequences.
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1 Introduction

Minimizers [15,16] are deterministic methods to sample k-mers from a sequence
at approximately regular intervals such that sufficient information about the
identity of the sequence is preserved. Sequence sketching with minimizers is
widely used to reduce memory consumption and processing time in bioinfor-
matics programs such as read mappers [7,10], k-mer counters [3,5] and genome
assemblers [17]. Given a choice of k-mer length k and window length w, a min-
imizer selects the lowest priority k-mer from every overlapping window in the
target sequence according to some total ordering π over all k-mers. Minimizer
performance is measured by its density [12] on a target sequence, which is pro-
portional to the induced sketch size.
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Depending on the choice of π, the resulting density can significantly vary.
The theoretical lower-bound of density achievable by any minimizer scheme is
given by 1/w [12]. On the other hand, a random initialization of π will yield an
expected density of approximately 2/w [16], which is frequently used as a baseline
for comparing minimizer performance. This motivates the question: How do we
effectively optimize π to improve the performance of minimizers?

An exhaustive search over the combinatorial space of π suffices for very small
k, but quickly becomes intractable for values of k used in practice (i.e., k ≥ 7)
(Sect. 3.1). To work around this, many existing approaches focus on constructing
minimizer schemes from mathematical objects with appealing properties such as
universal hitting sets (UHS) [4,11,12,14,19]. While these schemes provide upper-
bound guarantees for expected densities on random sequences, they only obtain
modest improvements over a random minimizer when used to sketch a specific
sequence [19].

The idea of learning minimizer schemes tailored towards a target sequence
has been previously explored, although to a lesser extent. Current approaches
include heuristic designs [1,8], greedy pruning [2] and construction of k-mer sets
that are well-spread on the target sequence [20]. However, these methods only
learn crude approximations of π by dividing k-mers into disjoint subsets with
different priorities to be selected. Within each subset, the relative ordering is
arbitrarily assigned to recover a valid minimizer, hence they are not necessarily
optimal. We give a detailed overview of these methods in Sect. 2.

This paper instead tackles the problem of directly learning a total order
π. The hardness of solving such a task comes from two factors, which we will
review in detail in Sect. 3.1: (1) the search space of k-mer orderings is very
large; and (2) the density minimizing objective is discrete. To overcome the
above challenges, we propose to reformulate the original problem as parameter
optimization of a deep learning system. This results in the first fully-differentiable
minimizer selection framework that can be efficiently optimized using gradient-
based learning techniques. Our contributions are:

– We define a more well-behaved search space that is suitable for gradient-based
optimization. This is achieved by implicitly representing k-mer orderings as
continuous score assignments. The space of these assignments is parameter-
ized by a neural network called PriorityNet, whose architecture guarantees
that every output assignment is consistent (i.e., corresponding to valid mini-
mizer schemes). The modelling capacity of PriorityNet can be controlled
via increasing its architecture depth, which implies a mild restriction on the
candidate space in practice (Sect. 3.2).

– We approximate the discrete learning objective by a pair of simpler tasks.
First, we design a complementary neural network called TemplateNet,
which outputs potentially inconsistent assignments (i.e., template) with guar-
anteed low densities on the target sequence (Sect. 3.4). We then search for
consistent assignments (i.e., valid minimizers) around these templates, which
potentially will yield similar densities. This is achieved via a fully differen-
tiable proxy objective (Sect. 3.3) that minimizes a novel divergence (Sect. 3.5)
between these networks.
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– We compare our framework, DeepMinimizer, against various state-of-the-
art benchmarks and observe that DeepMinimizer yields sketches with sig-
nificantly lower densities on genomic sequences (Sect. 4).

2 Related Work

UHS-Based Methods. Most existing minimizer selection schemes with per-
formance guarantees over random sequences are based on the theory of universal
hitting sets (UHS) [11,14]. Particularly, a (w, k)-UHS is defined as a set of k-
mers such that every window of length w (from any possible sequence) contains
at least one of its elements. Every UHS subsequently defines a family of corre-
sponding minimizer schemes whose expected densities on random sequences can
be upper-bounded in terms of the UHS size [12]. As such, to obtain minimizers
with provably low density, it suffices to construct small UHS, which is often the
common learning objective of many existing approaches [4,12,19].

In the context of sequence-specific minimizers, there are several concerns
with this approach. First, the requirement of UHS to “hit” all windows of every
possible sequence is often too strong with respect to the need of sketching a
specific string and results in sub-optimal universal hitting sets [20]. Addition-
ally, since real sequences rarely follow a uniform distribution [18], there tends to
be little correspondence between the provable upper-bound on expected density
and the actual density measured on a target sequence. In practice, the latter
is usually more pessimistic on sequences of interest, such as the human refer-
ence genome [19,20], which drives the development of various sequence-specific
minimizer selection methods.

Heuristic Methods. Several minimizer construction schemes rank k-mers
based on their frequencies in the target sequence [1,8], such that rare k-mers
are more likely to be chosen as minimizers. These constructions nonetheless rely
on the assumption that rare k-mers are spread apart and ideally correspond to
a sparse sampling. Another greedy approach is to sequentially remove k-mers
from an arbitrarily constructed UHS, as long as the resulting set still hits every
w-long window on the target sequence [2]. Though this helps to fine-tune a given
UHS with respect to the sequence of interest, there is no guarantee that such an
initial set will yield the optimal solution after pruning.

Polar Set Construction. Recently, a novel class of minimizer constructions
was proposed based on polar sets of k-mers, whose elements are sufficiently
far apart on the target sequence [20]. The sketch size induced by such a polar
set is shown to be tightly bounded with respect to its cardinality. This reveals
an alternate route to low-density minimizer schemes through searching for the
minimal polar set. Unfortunately, this proxy objective is NP-hard and currently
approximated by a greedy construction [20].
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Remark. In all of the above methods, the common objective to be optimized
can be seen as a partition of the set of all k-mers into disjoint subsets. For
example, frequency values are used to denote different buckets of k-mers [1,8].
Others [2,4,19,20] employ a more fine-grained partitioning scheme defined by the
constructed UHS/polar set. Each subset has an assigned priority value, such that
k-mers from higher priority subsets are always chosen over k-mers from lower
priority subsets. However, it remains inconclusive how k-mers from within the
same subset can be optimally selected to recover a total ordering π. Practically,
these methods resort to using a pre-determined arbitrary ordering to resolve
such situations. In contrast, our work investigates a novel approach to directly
learn this ordering.

3 Methods

3.1 Background

Let Σ be an alphabet of size |Σ| = σ and S be a sequence containing exactly l
overlapping k-mers defined on this alphabet, i.e., S ∈ Σl+k−1. For some w ∈ N

+

such that l ≥ w, we define a (w, k)-window as a substring in S of length w+k−1,
which contains exactly w overlapping k-mers. For ease of notation, we further
let lw � l − w + 1 denote the number of (w, k)-windows in S. For the rest of
this paper, we assume that w and k are fixed and given as application-specific
parameters.

Definition 1 (Minimizer). A minimizer scheme m : Σw+k−1 → [1..w] is
uniquely specified by a total ordering π on Σk. Here, we encode π as a function
ρ : Σk → N

+ that maps k-mers to its position in π. Given a (w, k)-window ω,
m then returns the smallest k-mer in ω according to ρ:

m(ω;π) � argmin
i∈[1..w]

ρ(ω[i];π) ≡ argmin
i∈[1..w]

∑

s∈Σk

I(s <π ω[i]) , (1)

where I denotes the indicator function, ω[i] denotes the i-th k-mer in ω, and
s <π ω[i] implies s precedes ω[i] in π. We break ties by prioritizing k-mers that
occur earlier in (i.e., to the left of) the window.

When applied to a sequence S, the above scheme selects one k-mer position
from every overlapping window to construct the sequence sketch L(S;m) =
{t+m(ωt) | t ∈ [1, lw]}, with ωt denoting the tth window in S. Naturally, a smaller
sketch leads to more space and cost savings. As such, we measure minimizer
performance by the density factor metric D(S;m) � |L(S;m)|×(w+1)/lw, which
approximates the number of k-mers selected per window [12]. The minimizer
selection problem is then formalized as density minimization with respect to π:

π∗ = argmin
π

D(S;m(·;π)) ≡ argmin
π

|L(S;m(·;π))| . (2)

This objective, however, is intractable to optimize for two reasons. First, the
number of all k-mer permutations scales super-exponentially with k and σ (i.e.,
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σk!), thus renders any form of exhaustive search on this space impossible under
most practical settings. Furthermore, the set counting operation |L(S;m(·;π))| is
non-differentiable even if the solution space is continuous, which makes efficient
gradient-based optimizers inaccessible. The remainder of this section therefore
proposes a deep-learning strategy to address both these challenges, and is orga-
nized as follows.

Section 3.2 describes a unifying view of existing methods as reparameteriza-
tions of ρ (Definition 1). We then propose a novel deep parameterization called
PriorityNet, which relaxes the permutation search space of Eq. 2 into a well-
behaved weight space of a neural network.

Section 3.3 shows that density optimization with respect to PriorityNet
can be approximated by two sub-tasks via introducing another complementary
network, called TemplateNet. This approximation can be formalized as a fully-
differentiable proxy objective that minimizes divergence between TemplateNet
and PriorityNet.

Section 3.4 and Sect. 3.5 then respectively discuss the parameterization of
TemplateNet and the divergence measure in our proxy objective, thus com-
pleting the specification of our framework, DeepMinimizer. An overview of our
framework is given in Fig. 1.

Fig. 1. Our DeepMinimizer framework employs a twin network architecture. Pri-
orityNet generates valid minimizers, but has no guarantee on density. In contrast,
TemplateNet generates low-density templates that might not correspond to valid
minimizers. We minimize the divergence between these networks to arrive at consensus
minimizers with low densities on the target sequence.

3.2 Search Space Reparameterization

We first remark that many existing methods can be seen as different re-
parameterizations of ρ in Definition 1. For example, ρ can be parameterized
with frequency information from the target sequence [1,8], i.e., ρ(ωi;S) ∝∑lw

j=1 I(ωj = ωi); or instantiated with a UHS υ [4,19], i.e., ρ(ωi; υ) = I(ωi �∈ υ).
Similar set-ups have been explored in the context of sequence-specific minimizers
using a pruned UHS υ(S) [2] and a polar set ζ(S) [20] constructed for the target
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sequence. We note that there are fewer discrete values potentially assigned by ρ
than the total number of k-mers in all these re-parameterizations. As such, these
methods still rely on a pre-determined arbitrary ordering to break ties in win-
dows with two or more similarly scored k-mers. When collisions occur frequently,
this could have unexpected impact on the final density.

DeepMinimizer instead employs a continuous parameterization of ρ using
a feed-forward neural network parameterized by weights α, which takes as input
the multi-hot encoding of a k-mer (i.e., a concatenation of its character one-
hot encodings) and returns a real-valued score in [0, 1]. This continuous scheme
practically eliminates the chance for scoring collisions. Furthermore, the solution
space of this re-parameterization is only restricted by the modelling capacity
encoded by our architecture weight space. This limitation quickly diminishes as
we employ sufficiently large number of hidden layers in the network. We can
subsequently rewrite Eq. 2 as optimizing a neural network with density as its
loss function:

α∗ = argmin
α

D(S; ρ(·;α)) . (3)

Applying this network on every k-mer along S can be compactly written as
a convolutional neural network, denoted by f , which maps the entire sequence
S to a score assignment vector. We require this score assignment to be consis-
tent across different windows in order to recover a valid ordering π from such
implicitly encoded ρ. Specifically, one k-mer can not be assigned different scores
at different locations in S. To enforce this, we let the first convolution layer of
our architecture, PriorityNet, have kernel size k, and all subsequent layers
to have kernel size 1. An illustration for PriorityNet when k = 2 is given in
Fig. 2.

Fig. 2. Our PriorityNet architecture for k = 2, parameterized by weights α, maps
sequence multi-hot encoding to priority scores through a series of 3 convolution layers
with kernel size [k, 1, 1] and [256, 64, 16] embedding channels respectively. Fixing net-
work weights α, the computation of assigned priority score to any k-mer is deterministic
given its character one-hot encodings.

3.3 Proxy Objective

The density computation in Eq. 3, however, is not differentiable with respect to
the network weights. As such, α cannot be readily optimized with established
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gradient back-propagation techniques used in most deep learning methods. To
work around this, we introduce a proxy optimization objective that approximates
Eq. 3 via coupling PriorityNet with another function called TemplateNet.
Unlike the former, TemplateNet relaxes the consistency requirement and gen-
erates template score assignments that might not correspond to valid minimizer
schemes. In exchange, such templates are guaranteed to yield low densities by
design.

Intuitively, the goals of these networks are complementary: PriorityNet
generates valid minimizer schemes in the form of consistent priority score assign-
ments, whereas TemplateNet pinpoints neighborhoods of low-density score
assignments situated around its output templates. This reveals an alternative
optimization route where these networks negotiate towards a consensus solution
that (a) satisfies the constraint enforced by PriorityNet; and (b) resembles a
template in the output space of TemplateNet, thus potentially yielding low
density. Let f and g denote our proposed PriorityNet and TemplateNet,
respectively parameterized by weights α and β, we formalize this objective as
minimizing some divergence measure Δ between their outputs:

(α∗, β∗) = argmin
α,β

Δ (f(S;α), g(S;β)) . (4)

In the remainder of this paper, we detail the full specification of our proxy
objective, which requires two other ingredients. First, Sect. 3.4 discusses the
parameterization of our TemplateNet g to consistently generate templates
that achieve the theoretical lower-bound density [12] on the target sequence.
Furthermore, we note that the proxy objective in Eq. 4 will perform best when
the divergence measure Δ reflects the difference in densities of two score assign-
ments. Section 3.5 then discusses a practical choice of Δ to accurately capture
high-performing neighborhoods of minimizers. These specifications have strong
implications on the expressiveness of the solution space and directly influences
the performance of our framework, as shown in Sect. 4.

3.4 Specification of TEMPLATENET

The well-known theoretical lower bound 1 + 1/w for density factor [12] implies
that the optimal minimizer, if it exists, samples k-mers exactly w positions apart.
As a result, we want to guarantee that the output of TemplateNet approxi-
mates this scenario given any weights initialization. Without loss of generality,
we impose that TemplateNet is given by a continuous function g : R → [0, 1],
such that its output template v = [g(i)]i∈[l] consists of evaluations of g restricted
to integer inputs (i.e., k-mer positions). Then, Proposition 1 below shows a suf-
ficient construction for g that approximately yields the optimal density.

Proposition 1. Let g : R → [0, 1] be a periodic function with minimal period
w, such that g has a unique minimum value on every w-long interval. Formally,
g satisfies:

(1) : ∀t ∈ R : g(t) = g(t + w)
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(2) : ∀i, j ∈ arginf
t

g(t), ∃u ∈ N : |i − j| = uw .

Then, the template generated by g induces a sketch with density factor 1+1/w+
o(1) on S when S is sufficiently long (i.e., lw 
 w2).

Proof. We give a detailed proof of Proposition 1 in Appendix A.

Note that the resulting sketch induced by g does not necessarily correspond
to a valid minimizer. While this sketch has low density, it does not preserve the
sequence identity like a minimizer sketch, hence is not useful for downstream
applications. However, it is sufficient as a guiding template to help PriorityNet
navigate the space of orderings.

Proposition 1 leaves us with infinitely many candidate functions to choose
from. In fact, TemplateNet can be as simple as g(t) = sin(2πt/w) to gener-
ate a near-optimal score assignment. This näıve specification, however, encodes
exactly one template (i.e., one that picks k-mers from the set of interval posi-
tions {w, 2w, . . . }), whose proximal neighborhood might not contain any valid
minimizer scheme. For example, consider a sequence S in which some particu-
lar k-mer occurs exactly at positions t ∈ {

1
2w, 3

2w, . . .
}
. Ideally, we would want

to align the template minima with these locations, which is not possible given
the above choice of g. As such, it is necessary that the specification of Tem-
plateNet is sufficiently expressive for Eq. 4 to find an optimal solution.

In particular, we want to construct a parameterized function such that every
k-mer position can be sampled by at least one sketch encoded in its parame-
ter space. Furthermore, we note that the periodic property is only a sufficient
condition to obtain low-density sketches. In practice, we only want the template
minima to periodically occur at fixed intervals. Enforcing the scores assigned at
all positions to exactly follow a sinusoidal pattern is restrictive and might lead
to overlooking good templates. To address these design goals, we propose the
following ensemble parameterization:

g(t) = σ

⎛

⎝
w−1∑

φ=0

βφ sin
(

2π

w
(t + φ)

)⎞

⎠ , (5)

where σ denotes a sigmoid activation function, which ensures that g(t) appropri-
ately maps to [0, 1]; β = {βφ}w−1

φ=0 are optimizable parameters such that βφ ≥ 0
and

∑w
φ=1 βφ = 1.

Optimizing β has two implications. First, by adjusting the dominant phase
shift φmax = argmaxφ βφ, we can control the offset of the periodic template min-
ima, which leads to good coverage on the target sequence. Second, by adjusting
the magnitudes of the remaining phase shifts {βφ}φ�=φmax , we can have more
degrees of freedom to assign scores outside the template minima. Lastly, the
non-negative and sum-to-one constraints help to avoid the trivial assignment
of squashing all magnitudes to 0 and are easily guaranteed by letting β be the
output of a softmax layer.
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3.5 Specification of the Divergence Measure Δ

As standard practice, we first consider instantiating Δ with the squared 
2-
distance. Specifically, let vf = f(S;α) and vg = g(S;β) denote the score assign-
ments respectively output by PriorityNet and TemplateNet given S, then
Δ�2(vf ,vg) �

∑l
i=1(vf [i] − vg[i])2. This divergence measure, however, places

an excessively strict matching objective at all locations along vf and vg. Such
a perfect match is unnecessary as long as the k-mers outside sampled locations
are assigned higher scores, and will take away the degrees of freedom needed for
the proxy objective to satisfy the constraints implied by PriorityNet.

Consequently, we are interested in constructing a divergence that: (a) strate-
gically prioritizes matching vf to the minima of the template vg; and (b) enables
flexible assignment at other positions to admit more solutions that meet the con-
sistency requirement. To accomplish these design goals, we propose the following
asymmetrical divergence:

Δ(vf ,vg) �
l∑

i=1

[
(1 − vg[i]) · (vf [i] − vg[i])2 + λ · vg[i] · (1 − vf [i])2

]
. (6)

Specifically, the idea behind the first component (1 − vg[i]) · (vf [i] − vg[i])2

in the summation is to weight each position-wise matching term (vf [i] − vg[i])2

by its corresponding template score: the weight term (1−vg[i]) implies stronger
matching preference around the minima of vg where the template scores vg[i]
are low, and vice versa weaker preference at other locations. Furthermore, to
ensure that f properly assigns higher scores to the locations outside the minima
of vg, the second component vg[i] · (1 − vf [i])2 subsequently encourages f to
maximize its assigned scores wherever possible, again weighted by the relative
relevance of each location. The trade-off between these components is controlled
by the hyper-parameter λ. Finally, we confirm that this divergence measure is
fully differentiable with respect to α and β, hence can be efficiently optimized
using gradient-based techniques. Particularly, the parameter gradients of both
networks are given by:

∂

∂α
Δ(vf ,vg) =

∑l
i=1 ai · ∂

∂αvf [i]

∂

∂β
Δ(vf ,vg) =

∑l
i=1 bi · ∂

∂βvg[i] , (7)

where the gradients of network outputs are obtained via back-propagation and
their respective constants are given by ai = 2·(1−vg[i])·(vf [i]−vg[i])+2λ·vg[i]·
(vf [i]−1) and bi = 2·(vg[i]−1)·(vf [i]−vg[i])−(vf [i]−vg[i])2+λ·vg[i]·(vf [i]−1).
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4 Results

Implementation Details. We implement our method using PyTorch and
deploy all experiments on a RTX-2060 GPU. Due to limited GPU memory, each
training epoch only computes a batch divergence which averages over N = 10
randomly sampled subsequences of length l = 500 × (w + k). We set λ = 1 and
use architectures of PriorityNet and TemplateNet as given in Fig. 2 and
Sect. 3.4 respectively. Network weights are optimized using the ADAM optimizer
[9] with learning rate η = 5 × 10−3. Our implementation is available at https://
github.com/Kingsford-Group/deepminimizer.

Comparison Baselines. We compare DeepMinimizer with the following
benchmarks: (a) random minimizer baseline; (b) Miniception [19]; (c) PASHA
[4]; and (d) PolarSet Minimizer [20]. Among these methods, (d) is a sequence-
specific minimizer scheme. For each method, we measure the density factor D
obtained on different segments of the human reference genome: (a) chromosome
1 (Chr1); (b) chromosome X (ChrX); (c) the centromere region of chromosome
X [13] (which we denote by ChrXC); and (d) the full genome (Hg38). We used
lexicographic ordering for PASHA as suggested by [19]. Random ordering is used
to rank k-mers within the UHS for Miniception, and outside the layered sets for
PolarSet.

Visualizing the Mechanism of DEEPMINIMIZER. First, we show the trans-
formation of the priority scores assigned by ScoreNet and TemplateNet
over 600 training epochs. Figure 3 plots the outputs of these networks evalu-
ated on positions 500 to 1000 of ChrXC, and their corresponding locations
of sampled k-mers. Initially, the PriorityNet assignment resembles that of
a random minimizer and expectedly yields D = 2.05. After training, the final

Fig. 3. Visualization of PriorityNet and TemplateNet score assignments on posi-
tions 500–1000 of ChrXC with w = 13, k = 8. Left: Initial assignments (D = 2.05);
Right: Final assignments after 600 training epochs (D = 1.39). The bottom plots show
corresponding locations of sampled k-mers: a value of 1 means selected, and 0 otherwise.

https://github.com/Kingsford-Group/deepminimizer
https://github.com/Kingsford-Group/deepminimizer
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TemplateNet assignment converges with a different phase shift than its initial
assignment, but its period remains the same. Simultaneously, the PriorityNet
assignment learns to match this template, hence induces a visibly sparser sketch
with D = 1.39. This result clearly demonstrates the negotiating behaviour of
our twin architecture to find optimal neighborhood of score assignments.

Convergence of Our Proxy Objective. We further demonstrate that our
proxy objective meaningfully improves minimizer performance as it is optimized.
The first two columns of Fig. 4 show the best density factors achieved by our
method over 600 epochs on two scenarios: (a) varying k with fixed w; and (b)
varying w with fixed k. The experiment is repeated on ChrXC and Hg38. In
every scenario, DeepMinimizer starts with D � 2.0, which is only comparable
to a random minimizer. We observe steady decrease of D over the first 300 epochs
before reaching convergence, where total reduction ranges from 11–23%.

Generally, larger k values lead to better performance improvement at con-
vergence. This is expected since longer k-mers are more likely to occur uniquely
in the target sequence, which makes it easier for a minimizer to achieve sparse
sampling. In fact, previous results have shown that when k is much smaller
than log w, no minimizer will be able to achieve the theoretical lower-bound
D [19]. On the other hand, larger w values lead to smaller improvements and
generally slower convergence. This is because our ensemble parameterization of
TemplateNet scales with the window size w and becomes more complicated
to optimize as w increases.

Evaluating Our Proposed Divergence Measure. The last column of Fig. 4
shows the density factors achieved by our DeepMinimizer method, respectively
specified by the proposed divergence function in Eq. 6 and 
2-divergence. Here,
we fix w = 14 and vary k ∈ {6, 8, 10, 12, 14} and observe that with the 
2-
divergence, we only obtain performance similar to a random minimizer. On the
other hand, with our divergence function, DeepMinimizer obtains much lower
densities on all settings, thus confirming the intuition in Sect. 3.5.

Comparing Against Other Minimizer Selection Benchmarks. We show
the performance of DeepMinimizer compared to other benchmark methods.
DeepMinimizer is trained for 600 epochs to ensure convergence, as shown
above. Figure 5 shows the final density factors achieved by all methods, again
on two comparison scenarios: (a) fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; and
(b) fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}.
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Fig. 4. Best density factors obtained by DeepMinimizer on Hg38 (above) and ChrXC
(below) over 600 training epochs. Left: fix w = 13, and vary k ∈ {6, 8, 10, 12, 14};
Center: fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}; Right: Comparing proposed
Δ-divergence and �2-divergence.

DeepMinimizer consistently achieves better performance compared to non-
sequence-specific minimizers (i.e., PASHA, Miniception) on all settings. We
observe up to 40% reduction of density factor (e.g., on ChrXC, w = 70, k = 14),
which clearly demonstrates the ability of DeepMinimizer to exploit sequence-
specific information. Furthermore, we also observe that DeepMinimizer out-
performs our sequence-specific competitor, PolarSet, in a majority of settings.
The improvements over PolarSet are especially pronounced for smaller k val-
ues, which are known harder tasks for minimizers [19]. On larger w values, our
method performs slightly worse than PolarSet in some settings. This is likely
due to the added complexity of optimizing TemplateNet, as described in con-
vergence ablation study of our method.

In addition, we also conduct investigation on the centromere region of chro-
mosome X (i.e., ChrXC), which contains highly repetitive subsequences [6] and
has been shown to hamper performance of PolarSet [20]. Figure 5 shows that
PolarSet and the UHS-based methods perform similarly to a random minimizer,
whereas our method is consistently better. Moreover, we observe that Deep-
Minimizer obtains near-optimal densities with ChrXC on several settings. For
example, we achieved D = 1.22 when k = 14, w ∈ {40, 70}, which is significantly
better than the results on Chr1 and ChrX. This suggests that ChrXC is not
necessarily more difficult to sketch, but rather good sketches have been excluded
by the UHS and polar set reparameterizations, which is not the case with our
framework.

Runtime Performance. DeepMinimizer runs efficiently with GPU comput-
ing. In all of our experiments, each training epoch takes approximately 30 seconds
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to 2 minutes, depending on the choice of k and w, which controls the batch
size. Performance evaluation takes between several minutes (ChrXC) to 1 hour
(Hg38), depending on the length of the target sequence. Generally, our method
is cost-efficient without frequent evaluations. Our most cost-intensive experiment
(i.e., convergence ablation study on Hg38) requires a full-sequence evaluation
every 20 epochs over 600 epochs, thus takes approximately 2 days to complete.
This is faster than PolarSet, which has a theoretical runtime of O(n2) and takes
several days to run with Hg38. A more detailed runtime ablation study on Chr1
is provided in Appendix B.

Fig. 5. Density factors obtained by DeepMinimizer (600 training epochs), Ran-
dom Minimizer, PASHA, Miniception and PolarSet on Chr1, ChrX and ChrXC.
Above: fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; Below: fix k = 14, and vary
w ∈ {10, 25, 40, 55, 70, 85}.

5 Conclusion

We introduce a novel framework called DeepMinimizer for learning sequence-
specific minimizers. This is achieved via casting minimizer selection as optimizing
a k-mer scoring function ρ. We propose a more well-behaved search space for
minimizers, given by a neural network parameterization of ρ, called Priori-
tyNet. Then, we introduce a complementary network, called TemplateNet
which pinpoints optimal scoring templates and guides PriorityNet to the
neighborhood of low-density assignments around them. Coupling these net-
works leads to a fully differentiable proxy objective that can effectively leverage
gradient-based learning techniques. DeepMinimizer obtains better performance
than state-of-the-art sequence-agnostic and sequence-aware minimizer selection
schemes, especially on known hard tasks such as sketching the repetitive cen-
tromere region of Chromosome X. However, we also observe mild limitations
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in several settings with large window length w, which hampers the perfor-
mance of DeepMinimizer. This is likely due to the heuristic construction of
our TemplateNet component, which we will investigate in our future work.
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A Proof of Proposition 1

We first re-express the density factor of S in terms of a priority score assign-
ment v ∈ [0, 1]l. Note that this expression will hold regardless of whether
v satisfies the consistency constraint (Sect. 3.2). Particularly, let γ1 = 1 and
γt = I

(
argmin

j∈ωt

v[j] �= argmin
j′∈ωt−1

v[j′]
)

indicate the event the t-th window picks a

different k-mer than the (t − 1)-th window, we have:

D(S;v) =
w + 1

lw
× |L(S;v)| =

w + 1
lw

lw∑

t=1

γt . (8)

Without loss of generality, we assume 0 ∈ arginf
t

g(t) since this can always

be achieved via adding a constant phase shift to g. As g has a fundamental
period of w, this implies {uw | u ∈ N} ⊆ arginft g(t), which further reduces to
{uw | k ∈ N} = arginft g(t) when condition (2) holds.

Let us now derive the values of γt for t ∈ Iu � [(u − 1)w + 1, uw], u ∈ N
+.

We have:

– uw ∈ arginf g(t),
– ∀t ∈ Iu such that t �= uw, we have t /∈ arginf

t
g(t), and

– ∀t ∈ I(u) : uw ∈ ωt, which follows from the above argument and the definition
of window ωt.

Together, these observations imply that ∀t ∈ Iu : argminj∈ωt
v[j] = uw

and consequently γt = 0 for all values of t ∈ Iu except t = (u − 1)w + 1.
For u = 1, we trivially have γ(u−1)w+1 = 1 by definition of γ1. For u > 1, we
have argminj∈ω(u−1)w

v[j] = (u − 1)w �= argminj∈ω(u−1)w+1
, which also implies

γ(u−1)w+1 = 1. Following the above derivations, we have:

D(S;v) =
w + 1

lw

lw∑

t=1

γt =
w + 1

lw

⎛

⎝c +
� lw

w �∑

u=1

∑

t∈Iu

γt

⎞

⎠ =
w + 1

lw

(
c +

⌊
lw
w

⌋)
,

(9)
where the third equality follows from the derived values γt for t ∈ Iu. Finally,
using the fact that c =

∑lw
t=� lw

w �w+1
γt < w and the sufficient length assumption
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lw 
 w2, we have:

w + 1
lw

(
c +

⌊
lw
w

⌋)
≤ w2

lw
+

w + 1
w

= 1 +
1
w

+ o(1) , (10)

which concludes our proof. ��

B Other Empirical Results

This section contains extra experiments that showcase various aspects of our
DeepMinimizer framework. For all experiments, we use the same implementa-
tion, benchmarks and settings as detailed in Sect. 4.

Density Performance of DEEPMINIMIZER on More Sequence Baselines.
We deploy DeepMinimizer on Chr1 and ChrX. For both sequences, we
observe the best density factor obtained over 600 training epochs for various
values of k and w. Figure 6 shows that DeepMinimizer consistently improves
density factors until convergence, which tends to happen between 200–300 train-
ing epochs for all experiments.

Fig. 6. Demonstrating convergence of DeepMinimizer on Chr1 (left) and ChrX
(right) with different w, k values.
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Fig. 7. Comparing performance of DeepMinimizer with other benchmarks on Hg38
for different values of w, k.

Fig. 8. Best density obtained (left) and runtime (right) of DeepMinimizer for k ∈
{10, 20, 40, 80, 160, 320} on Chr1.

DEEPMINIMIZER Outperforms Other Baselines on Large Sequences.
Figure 7 compares the performance of DeepMinimizer and various comparison
baselines on the entire human genome Hg38. We measure the best density factor
obtained over 600 training epochs for various values of k and w and observe that
DeepMinimizer consistently achieves the best performance among comparison
baselines.

Density Performance of DEEPMINIMIZER on Large Values of k. Figure 8
(left) showcases the performance of DeepMinimizer on Chr1 with large values
of k. We fix w = 13 and observe the best density factor obtained over 600 training
epochs for various values of k up to 320. We show that DeepMinimizer behaves
similarly for large k, and achieves the best density D = 1.22 with k = 160.

Runtime Performance of DEEPMINIMIZER on Large Values of k. Figure 8
(right) measures runtime (in seconds) of DeepMinimizer on Chr1 over 600
epochs. Larger k values require PriorityNet to have more parameters. Expect-
edly, we observe runtime for k = 40, 80, 160, 320 to increase in the same order. For
k = 10 and 20, however, the runtimes are approximately the same as k = 80. We
note that a smaller k value means there are more k-mers in the same sequence.
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As such, even though PriorityNet is more compact for these values of k, we
will incur some overhead from querying it more often.
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11. Marçais, G., DeBlasio, D., Kingsford, C.: Asymptotically optimal minimizers
schemes. Bioinformatics 34(13), i13–i22 (2018)
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