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Abstract

Motivation: Intra-sample heterogeneity describes the phenomenon where a genomic sample contains a
diverse set of genomic sequences. In practice, the true string sets in a sample are often unknown due to
limitations in sequencing technology. In order to compare heterogeneous samples, genome graphs can
be used to represent such sets of strings. However, a genome graph is generally able to represent a string
set universe that contains multiple sets of strings in addition to the true string set. This difference between
genome graphs and string sets is not well characterized. As a result, a distance metric between genome
graphs may not match the distance between true string sets.

Results: We extend a genome graph distance metric, Graph Traversal Edit Distance (GTED) proposed by
Ebrahimpour Boroojeny et al., to FGTED to model the distance between heterogeneous string sets and
show that GTED and FGTED always underestimate the Earth Mover’s Edit Distance (EMED) between
string sets. We introduce the notion of string set universe diameter of a genome graph. Using the diameter,
we are able to upper-bound the deviation of FGTED from EMED and to improve FGTED so that it reduces
the average error in empirically estimating the similarity between true string sets. On simulated TCR
sequences and actual Hepatitis B virus genomes, we show that the diameter-corrected FGTED reduces

the average deviation of the estimated distance from the true string set distances by more than 250%.
Availability: Data and source code for reproducing the experiments are available at:

https://github.com/Kingsford-Group/gtedemedtest/
Contact: carlk@cs.cmu.edu

1 Introduction

Intra-sample heterogeneity describes the phenomenon where a genomic
sample contains a diverse set of genomic sequences. A heterogeneous
string set is a set of strings where each string is assigned a weight
representing its abundance in the set. Computing the distance between
heterogeneous string sets is essentially computing the distance between
two distributions of strings. We formulate the problem of heterogeneous
sample comparison as the heterogeneous string set comparison problem.

This problem can be used to compare samples where differences
can be traced to the differences between sets of genomic sequences.
For example, cancer samples are clustered based on differences in their
genomic and transcriptomic features (Morris et al., 2016; Zhao et al.,

2019) into cancer subtypes that correlate with patient survival rates. The
dissimilarities between T-cell receptor (TCR) sequences are computed
between individuals to study immune responses (Bolen et al., 2017).
Different compositions of these sequences result in different clinical
outcomes such as response to treatment.

We point out that the Earth Mover’s Distance (EMD) (Rubner e al.,
2000), or the Wasserstein distance (Wasserstein et al., 1969), with edit
distance as the ground metric is an elegant metric to compare a pair of
heterogeneous string sets. Given two distributions of items and a cost
to transform one item into another, EMD computes the total cost of
transforming one distribution into another. The EMD was initially used in
computer vision to compare distributions of pixel values in images (Levina
and Bickel, 2001) and later adapted to natural language processing (Kusner
etal.,2015). It has also been used to approximate the distance between two
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genomes (Mangul and Koslicki, 2016) by computing the distance between
two distributions of k-mers. To compare heterogeneous string sets, when
the strings and their distributions are known, we use edit distance as the
cost to transform one string to another. We refer to this as the Earth Mover’s
Edit Distance (EMED).

In practice, the complete strings of interest and their abundances
are often unknown, and these strings are only observed as fragmented
sequencing reads. It is impossible to exactly compute EMED between the
true sets of complete strings from the sequencing reads only.

The challenges posed by incomplete observed sequences can be
alleviated by representing the string set using a graph structure. Multiple
types of genome graphs have been introduced (Holley and Melsted, 2020;
Almodaresi et al., 2018; Li et al., 2020; Igbal et al., 2012; Dilthey et al.,
2015; Garrison et al., 2018; Minkin et al., 2017; Paten et al., 2017, 2011;
Lee and Kingsford, 2018). For our purposes, a genome graph is a directed
multigraph with labeled nodes and weighted edges, along with a source
and a sink node. A string is spelled by a source-to-sink path, or s — ¢ path,
if it is equal to the concatenation of node labels on the path. We say that a
genome graph represents a string set if the union of paths that spells each
string in the set is equal to the graph. In other words, a string set can be
spelled by a decomposition of the genome graph.

There are several methods that compute the distance between genome
graphs (Minkin and Medvedev, 2020; Polevikov and Kolmogorov, 2019;
Ebrahimpour Boroojeny et al., 2020). Among those, Graph Traversal
Edit Distance (GTED) (Ebrahimpour Boroojeny et al., 2020) is a general
measure that can be applied to genome graphs and does not rely on the
type of genome graphs nor the knowledge of the true string sets. Given
two genome graphs, GTED finds an Eulerian cycle in each graph that
minimizes the edit distance between the strings spelled by each cycle.
applying GTED on genome graphs representing
heterogeneous string sets may overestimate the similarity between these

However,

string sets for two reasons. First, since GTED computes the distance
between Eulerian cycles in genome graphs, it may align the prefix of a
string to the suffix of another string with no additional penalties. We address
this challenge by proposing an extension of GTED, called FGTED, that
penalizes direct alignment of prefixes of a string with suffixes of other
strings.

Second, and more significantly, both FGTED and GTED compute
the edit distance between the two string sets represented by each genome
graph that are most similar to each other. However, a genome graph that
is constructed from sequencing fragments typically is able to represent
more than one set of strings (Kingsford er al., 2010; Paten et al., 2018).
As a genome graph merges shared sequences into the same node, it
creates chains of bubble structures (Zerbino and Birney, 2008) that result
in exponential number of possible paths, and these paths spell a much
more diverse collection of strings than the original set. We call the
degree to which a genome graph encodes a larger set of strings than the
true underlying set the “expressiveness” of a genome graph. Due to the
expressiveness of a genome graph, the Eulerian cycles found by GTED
may not spell the true set of strings and the computed distance may be
far from the true distance between string sets used to construct the graphs
(Figure 1(a)).

We prove both that FGTED always produces a distance that is larger
than or equal to GTED, and that FGTED computes a metric that is always
less than or equal to the EMED between true sets of strings.

However, FGTED and GTED can be quite far from the EMED. To
resolve this discrepancy between FGTED and EMED, we define the
collection of strings that can be represented by the genome graph as its
string set universe, and genome graph expressiveness as the diameter of
its string set universe (SUD), which is the maximum EMED between two
string sets that can be represented by the graph (Figure 1(b)).
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Fig. 1. (a) Genome graph expressiveness results in inexact representations of true string
sets. (b) Overview of part of theoretical contributions.

Using diameters, we are able to upper-bound the deviation of FGTED
from EMED. Additionally, we are able to correct FGTED and more
accurately estimate the true string set distance empirically. On simulated
TCR sequences, we reduce the average deviation of FGTED from EMED
by more than 300%, and increase the correlation between the true and
estimated string set distances by 20%. On Hepatitis B virus genomes, we
reduce the average deviation by more than 250%.

These results provide the first connection between comparisons of
genome graphs that encode multiple sequences and a natural string distance
and provide the first formalization of the expressiveness of genome graphs.
Additionally, they provide a practical method to estimate and reduce
discrepancy between genome graph distances and string set distances.

2 Preliminary Concepts
2.1 Strings

Definition 1 (Heterogeneous string set). A heterogeneous string set S =
{(w1,s1),..., (wn, sn)} contains a set of strings, where each string s;
is assigned a weight w; € [0, 1] that indicates the abundance of s; in S.
We say that the total weight of S is Zie[l,n] w; = 1.

ED(s1, s2) is the minimum cost to transform s; into s under edit
distance (Levenshtein et al., 1966). The set of operations that transforms
$1 to sz can be written as an alignment between s and s, or A =
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€(1,4)
€(2,i)]°

align(s1, s2). The i-th position in A is denoted by A[i] = [

«

where ¢(, ;) is either a gap character “-” or a character in sq.

2.2 Earth Mover’s Edit Distance

To find a distance between two heterogeneous string sets, we need to take
into account not only the distance between pairs of strings, but also the
weight, or abundance of each string in the set. When we are comparing two
heterogeneous string sets, we are essentially comparing two distributions
of strings. Therefore, we propose using the Earth Mover’s Distance (EMD)
as a natural distance measure.

Given two distributions of items (here, strings) and a cost function that
quantifies the cost of transforming one item into another, the EMD between
the two distributions is the minimum cost to transform one distribution into
another. Computing EMD can be viewed as a transportation problem that
finds a many-to-many mapping between two sets of items and minimizes
the total cost of the mapping (Rubner et al., 2000; Wasserstein et al., 1969).

Given two heterogeneous string sets S1 = {(w1, 1), ..., (Wn,sn)}
and S2 = {(Wn+1,8n+1),---, (Wm,Sm)}, to compute the Earth
Mover’s Edit Distance (EMED), we use the edit distance between s;
and s; as the cost of transforming one string to another. Following
procedures to compute EMD (Rubner et al., 2000) as a min-cost max-
flow problem, we find a mapping M, where M (s;, s;) is the amount of
s; € 81 to be transformed into s; € Sz, that minimizes cost(M) =
281,631 M(Si, Sj) . ED(SZ'7 Sj). We define that EMED(ShSQ) =

sj €S2
minps cost(M).

2.3 Flow Networks

Definition 2 (Valid flow network). A directed graph G = (V, E, w),
where w(e) is the weight of each edge, is a valid flow network if there
exists a source s and sink node t such that:

w(u,v) = Z

(v,w)EE

(Flow conservation) Z
(u,v)EE

w(v, w)

Yo € Vv # s,v # t,
w(s,u) = Z w(v,t).

(v,t)EE

(Total capacity) Z
(s,u)€EE

Definition 3 (Flow decomposition). A flow decomposition of a valid
Sflow graph G, denoted as D(G), is a collection of paths and their weights
P = {(w1,p1),...,(wn,pn)}, where p; = ((s, ul), .., (Um, t)) is
an ordered sequence of edges in G, such that:

(Flow coverage) Z O(e,i) -w; =w(e) Ve € g,
p;EP

where O(e, 1) is equal to the number of occurrences of edge e in path p;.

A valid flow network typically has more than one flow decomposition.
Let the set of possible flow decompositions of G be Dg.

2.4 Genome Graphs

There are many variants of genome graphs used for various purposes and
in various settings. Here, we introduce the definition of genome graphs we
will use.

Definition 4 (Genome graph). A genome graph G = (V, E,l,w) is
a valid flow network with node set V, edge set E, node labels l(u) for
each u € V and edge weights w(e) for each e € E. A genome graph
contains a source node s and a sink node t, and l(s) =“$”, l(t) =“#",
where $ and # are special characters that do not appear in any string set
considered in the scope of this manuscript.

Define operator S|(-) that transforms a set of paths in a genome graph G
to a set of strings by concatenating the node labels on each path. S(P) =
{(concat(p), w(p)) | p € P} is a heterogeneous string set where the
weight of each string is equal to the weight of the path that spells the string.

Definition 5 (String set represented by a genome graph). A genome
graph G represents a string set S if there exists a decomposition D(G) €
Dg, such that S(D(G)) = S.

We use G = G(S) to denote when G represents S.

Definition 6 (String set universe represented by a genome graph).
The string set universe SU(G) of a genome graph G is the collection
of heterogeneous string sets that can be represented by G. Formally,
SU(G) ={S(D) | D € Dg}.

2.5 Alignment Graph

Analignment graph is used to align two genome graphs (Ebrahimpour Boroojeny

et al., 2020) and can be viewed as a graph product between two genome
graphs. A special case of the alignment graph (Jain et al., 2020) is used to
align a string to a graph where the string is represented as a graph with only
one path. We assume that the genome graphs to be aligned are transformed
so that the label of each node contains only one character.

Definition 7 (Alignment graph). Given genome graphs G; =
Vi, E1,li,w1) and Go = (Va, Ea2,l2,w2), an alignment graph
AG(G1,G2) = (Va, Ea,cost,w) is a directed graph with node set
V4, edge set E 4, edge cost cost(e) and edge weight w(e) for each edge

e € E 4. The alignment graph is defined following the steps:

o V4 is constructed by adding pairings of nodes in V1 and Va; that is
Va ={(u1,u2) | u1 € Vi,uz € Va}.

e Foreachedge (u1,v1) € Ey and (uz,v2) € Ea, where (u1,u2) €
Va and (vi,v2) € V4, create three types of edges:

1. A match/mismatch edge e = ((u1,u2), (v1,v2)) with w(e) =
min{wi (u1,v1), wa(uz,v2)}.

2. An insertion (in) edge e = ((u1,u2), (u1,v2)) with w(e) =
wa (uz, v2).

3. A deletion (del) edge e = ((u1,u2), (vi,u2)) with w(e) =

w1 (u1,v1).

The cost of an in/del edge and a mismatch edge is equal to a customized
penalty. The cost of a match edge is equal to zero. A match/mismatch
edge should be distinguished with an in/del edge if the corresponding
edge in one of the input graphs is a self-loop.

Each edge e = ((u1,u2), (v1,v2)) in an alignment graph can be
projected onto one edge in each of the input graphs. An edge in each of
the input graphs can also be projected onto a set of edges in AG. The size
of AG is O(|E1] - |E2|) and thus the time to construct AG is quadratic
in the sizes of the input genome graphs.

Definition 8 (Projection function). Define the projection function as
PG 1) (e) = E’ that maps an edge e from graph G to a set of edges
E’ in graph H. The projection function maps an edge in the alignment
graph to the edges in the input graphs that are matched together by that
edge. It also maps an edge in one of the input graphs to a set of edges in
the alignment graph where it is matched with other edges in another input
graph. Specifically:

Projection from alignment graph to one of the input graphs is defined by

P(AG,gi)((uLUQ)ﬂ (v1,v2)) = {(ui,vi)}v S {11 2}.
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Projection from one of the input graphs to alignment graph is defined by

P, ac)((ur,v1)) = {e | e = ((u1,u2), (v1,v2)) € Eacl,
P, ac)((uz,v2)) = {e| e = ((u1,u2), (v1,v2)) € Eag}
Given a set of paths P in AG, we use P(4¢,g,)(P) to denote the

projection of P onto G;, where Plac,g,)(P) = {(Pag,g;)(e) | e €
p) Ip€ P}

For convenience, we define that f; (D(AG)) = S(Paq,g,)(D(AG))),

which is the set of strings spelled by a path decomposition in AG that is
projected onto G;.

2.6 Graph Traversal Edit Distance (GTED)

Graph Traversal Edit Distance (GTED), proposed by Ebrahimpour Boroojeny

et al. (2020), is a distance between two labeled graphs which are assumed
to be Eulerian graphs. Given a genome graph in our definition, we add
an edge directing from sink to source with weight equal the sum of edge
weights that are directing from the source node in order to make an Eulerian
graph.

Let the language of G, L(G), be the set of strings spelled by Eulerian
cycles in G. Formally, L(G) = {S(c) | c¢is an Eulerian cycle in G}.

Definition 9 (Graph Traversal Edit Distance (Ebrahimpour Boroojeny
et al., 2020)). Let G1 and G2 be two Eulerian graphs, where the weights
on the edges are seen as the number of times an edge must be visited in
each Eulerian cycle. Then,

GTED(G1,G2) = min
s1€L(G1)
s2€L(G2)

ED(s1,s2).

GTED finds one Eulerian cycle in each genome graph such that the edit
distance between the strings spelled by the Eulerian cycles is minimized.
GTED is computed by solving a linear programming (LP) formulation
(Equations (1)-(4)) on the alignment graph AG(G1, G2), which minimizes
the cost of a flow in the graph with the flow conservation (Equation (4))
and flow coverage constraints (Equations (2)-(3)). The LP formulation is

as follows:
min Z cost(e) - e (1)
zerIEAl cEF4

s.t. Zm((i,j),(k,l)) = wl(i, k)) V(l, k) € E1 (2)

Jil
DTk = w25, 0)

ik

Z Tlu,v) = Z

(u,v)EE 4 (v,w)EE 4

VG eE ()

z((v,w)) Yo eVa (4)

Ebrahimpour Boroojeny et al. (2020) prove that GTED is equal to the
optimal solution of this LP formulation, and thus GTED is computable in
polynomial time. The number of constraints in the above LP is linear in
the size of the alignment graph and thus quadratic in the size of the input
genome graphs.

3 An Extension of GTED

GTED was originally used to compare genome graphs that are assumed to
contain single genomes. It is therefore intuitive that each string represented
by the genome graph is spelled with an Eulerian cycle. This property
follows the property of assembly graphs (Pevzner et al., 2001). When the
genome graph represents more than one string, finding a string spelled by

$,$—> G, —>¢,D

NN

(A$) —> (AR —> (AT

1
1
c |* «,n
2l \
# (#,#)
—— Insertion
—— Deletion
— Match/Mismatch
(b) 1
/\
2
AG’ $ A——T—— ¢
$ 4,9 $,A) $,m
i
A (A, $) (A,R) (A, T
| N
U T a9 o an
C |* «,$ ,n «,m™
i
# (i, #)

Fig. 2. (a) An alignment graph AG between G1 (vertical) and G2 (horizontal). Insertion,
deletion and match/mismatch edges are labeled with different colors. (b) AG’ after
removing all the edges with zero flow in a solution to FGTED(G;, G2). Edges in G
and Go that are highlighted with matching colors are projections from edges in AG’ to
G1 and Go, respectively. Path ($, A, T, #) € G; isalignedto ($, A, T, #) € Go and
path ($, A, C, #) € Gy is aligned to ($, A, #) € Go. The weights on AG and AG’
edges are omitted for simplicity.

an Eulerian cycle c in the graph is equivalent to finding a concatenation of
a permutation of strings in a string set. When aligning two Eulerian cycles,
c1 and c2, from input graphs, the boundaries between strings are ignored
and the prefix of one string may be aligned to the suffix of another string
with no cost. However, such alignment is not allowed when we align sets
of strings using EMED.

We propose an extension of GTED with a modified cost function in
edit distance computation so that the cost of aligning the sink character #
with any other character is infinity.

Figure 2(a) shows an example of the alignment graph built from two
input graphs using the proposed cost function. Let the sink nodes in G1
and Go be t1 and t2, and the source nodes be s1 and sa, respectively.
After removing all the alignment edges with infinite costs, there is an edge
to the alignment node (t1,¢2) in AG if and only if there exists an edge
(u1,t1) in G1 and an edge (u2,t2) in G2. The only incoming edge to
(s1,82) is ((t1,t2), (s1,s2)). We refer to the edge ((t1,t2), (s1,52))
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as the sink-to-source edge, or ¢ — s edge in alignment graph in the rest of
the manuscript.

We let Flow-GTED, or FGTED, denote the distance computed using
the alignment graph after removing all infinity cost edges that forbids
aligning the sink with any nodes other than the source node. FGTED
assumes that the input genome graphs are flow networks that represent
string sets, which can be seen as an analog to Eulerian tours in the
graphs that are used as input for GTED. Sink-to-source edges are added
to transform flow networks into Eulerian graphs such that FGTED can be
reduced to GTED. As FGTED solves a similar LP formulation as GTED
that is constructed on a slightly smaller alignment graph, FGTED is also
solvable in polynomial time.

Theorem 1. GTED(G1,G2) < FGTED(G1,G2) for any pair of
genome graphs G1, Ga.

Proof. Since FGTED is computed on a smaller alignment graph that
contains fewer edges than that for computing GTED, FGTED explores
a smaller solution space than GTED in solving the LP formulation.
Therefore, any feasible solution to the LP formulation for FGTED(G1, G2)
is a feasible solution to the LP formulation for GTED(G1, G2). Since
GTED(G1,G2) minimizes the objective, the theorem is true.

4 The Relationship Between GTED, FGTED and
EMED

Let AG* be the alignment graph after removing the ¢ — s edge and all the
edges from {e | zc = 0, e € E 4} from the LP solution to Equations (1)—
(4). We say that AG™ is a solution of FGTED. Due to constraints (2)—(4),
AG™ is a valid flow network. Let D(AG™*) be a flow decomposition in
AG™. Similar to the Eulerian cycles found during the GTED computation,
each path in D(AG™) can be projected to a path in G; and a path in Go.

Denote S; = fi1(D(AG*)) = S(Pag=,g,)(D(AG*))) as
the set of strings spelled by the set of projected paths from a
decomposition D(AG*) to Gy. Similarly, S5 = f2(D(AG*)) =
S(Pac*,g,)(D(AG*))). We show an example of path projections in
Figure 2(b).

Observing that we can do flow decomposition in both the FGTED
solution and input genome graphs, we will show in this section that FGTED
can be bounded by EMED between decompositions in input genome
graphs and in the alignment graph solutions.

Theorem 2. Given two sets of strings S1 and Sa, and genome graphs
representing these string sets, G1 = G(81) and Ga = G(8S2),

0 < EMED(S:,S2) — FGTED(G1, G2)

< min
D(AG*)ED g+
Si=f1(D(AG™))
S3=f2(D(AG™))

(EMED(S1,SY) + EMED(S2, S3))

where AG* is the solution obtained from FGTED(G1,G2).

The proof of this theorem is completed in two parts. The first inequality
is proven in Section 4.1 and the second is proven in Section 4.2. Since
FGTED computes a distance that is larger than GTED between the same
pair of genome graphs (Theorem 1), Theorem 2 also shows that FGTED
always estimates the distance between true string sets more accurately than
GTED.

4.1 FGTED is Always Less Than or Equal to EMED

‘We show in this section that FGTED can be expressed in terms of EMED
between string sets constructed from decomposing AG*. In other words,

while GTED finds an Eulerian tour in each input graph, FGTED finds a
flow decomposition in G and Ga, respectively, that minimizes the EMED
between them. Analogous to Definition 9, we have:

Theorem 3. Given two genome graphs G1 and Ga,

FGTED(G1,G2) = min
D(G1)€Dg,
D(G2)€Dg,

EMED(S(D(G1)), S(D(G2)))

Theorem 3 allows us to define FGTED as the minimum EMED between
flow decompositions in input graphs. To prove Theorem 3, we first explore
the relationship between an s — ¢ path in AG™ and the strings spelled by
the projections of this path onto G and Ga.

Lemma 1. Given an s-t path p € D(AG*), let s1 =
S(Pag*,6,)(p)) be the string spelled by projecting p onto G1, and
s2 = S(Piag*,g,)(P))- Then for any p € D(AG™),

Z cost(e) = ED(s1, $2).

ecp

Proof. We prove in two directions.

(> direction) We construct A = align(si, s2) from p. For each e =
((u1,u2), (v1,v2)) € p:

() if ur =v1,add ¢ = [;(,)] 10 A, () if uz = v2, add ¢ = (V)] 10
A, (3)else,add ¢ = [;v1] 1o A.

By definition of an alignment graph, cost(e) = cost(c) in for all e,
and therefore cost(A) = 3= ¢ 4 cost(c) = >3-, cost(e). Since edit
distance minimizes the cost of edit operations, cost(A) = cost(p) >

ED(s1, s2).
(< direction) We construct p’ from A* = align(si,s2) such that
cost(A*) = ED(s1,s2). The procedure is similar as above — for

each pair of adjacent entries in A*, add corresponding edge to p’. Then
cost(p') = cost(A*) = ED(s1, s2).

Let AG' = AG*\pUp'. Both p and p’ can be found in AG, and both
p and p’ can be constructed by the alignment of the same pair of strings.
Therefore, AG’ is also a valid flow network and a feasible solution to
FGTED. Since AG* is the optimal solution to FGTED, cost(AG*) <
cost(AG"), and

cost(AG*) — cost(AG') <0

= w(p) - (cost(p) — cost(p’)) <0
= w(p) - (cost(p) — ED(s1,s2)) <0
= cost(p) < ED(s1, s2).

We have shown that the cost of an s — ¢ path in AG* is equal to the
edit distance between its projections onto input graphs. Using this lemma,
we can transform an optimal FGTED solution into an EMED solution.

Given an optimal FGTED solution, AG*, let the set of possible flow
decompositions of AG* be Dygg+. Let D(AG™) be one of the flow
decompositions that is a set of weighted s — ¢ paths. We can construct
heterogeneous string sets S and S3 by projecting paths in D(AG*) to
G1 and Ga. Formally, 87 = {S(Piag+,g,)(®)) | p € D(AG*)} and
83 = {8(Plag=,6,)(P)) | p € D(AG™) }.

Lemma 2. Given S} and S5 obtained from any decomposition
D(AG*) € Dag~,

EMED(ST,S85) = cost(AG™),

where cost(AG™) is sum of edge costs in the solution alignment graph to
FGTED.

Proof. We prove in two directions.
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(< direction) We construct a mapping M between strings in ST and S5
from the decomposition D(AG™*), where M (s;, s;) is the portion of
s; € Sy and s; € Sz that are aligned. For each p € D(AG*), we obtain
s1 and s2 as strings constructed from projections of p onto G; and Go
and increment the weight of mapping M (s1, s2) by w(p). After iterating
through all paths in D(AG™*), the cost of M is

cost(M) = Z M(s1,s2) - ED(s1, s2)
(s1,82)EM
= Z w(p) - cost(p) = cost(AG™).
pED(AG*)

M is also a feasible solution to the LP formulation of EMED. Since EMED
minimizes the cost of mapping between S7 and S5, EMED(ST, S3) <
cost(AG*).

(> direction) We construct a valid flow network, AG’ using an optimal
solution to EMED(SY,S3). For each pairing (s;,s;) for s; € S1
and s; € Sz, we obtain its weight w and cost ¢ from the EMED
solution. Let A = align(s;,s;) be an optimal alignment under
edit distance, and cost(A) = c. We then add a path corresponding
to A with weight w in AG’. This follows the same procedure in
the proof of Lemma 1. After adding all paths, we obtain AG’
with cost(AG’) = EMED(S},S3). Since cost(AG*) is minimized
by FGTED, cost(AG’) > cost(AG*) = EMED(S},S;) >
cost(AG™*).

Lemma 2 provides a transformation algorithm between optimal
solutions to EMED and solutions to FGTED. Using Lemma 2, we can show
that the EMED between S} and S5 constructed from any decomposition
in AG* is equal to the decompositions of G; and G that are closest in
terms of EMED.

Lemma 3. Given Sy and S5 obtained from any decomposition
D(AG*) S ,DAG*v

EMED(ST,S5) = D(gn}inp
1)€Dg,
D(QQ)eDQQ

EMED(S(D(G1)), S(D(G2)))

Proof. In Lemma 2, ST and S5 can be constructed from decomposing
G1 and Ga. Suppose for contradiction that there exists a decomposition
that constructs string sets S and S5, such that EMED(S},S;) >
EMED(S], S5). Following the procedure in the proof of Lemma 2, we can
construct a feasible solution to FGTED with cost equal to EMED(S7, S5),
which is less than cost(AG*) = EMED(S7, S5 ). This contradicts with
the assumption that FGTED minimizes cost(AG™*).

Theorem 3 is therefore true because of Lemma 2 and 3. Using
Theorem 3, we are able to prove the first inequality in Theorem 2 with
Lemma 4.

Lemma 4. Given heterogeneous string sets S1 and S2 and genome
graphs representing these string sets, G1 = G(81) and G2 = G(S2),
FGTED(G1,G2) < EMED(S1,S2).

Proof. Given Theorem 3, FGTED finds flow decomposition in Dg, and
Dg.,, that minimizes the EMED between them. Since S1 and Sz can be
constructed from a flow decomposition in Dg, and Dg, , respectively, this
lemma is true.

4.2 Genome Graph Expressiveness

A genome graph typically can represent more than one set of strings.
We name the collection of string sets representable by a genome graph the
string set universe of that genome graph, or SU(G). Using Theorem 3, we

can say that FGTED finds two sets of strings in the string set universe of G
that are closest in the metric space of EMED. We define the expressiveness
of a genome graph as the diameter of its string set universe, which is the
maximum EMED between the string sets in SU(G).

Definition 10 (String Set Universe Diameter (SUD)). Given a genome
graph G,

SUD(G) = = max _ EMED(Sa,Sp)
Sa-SpESU(9)

4.2.1 String Set Universe Diameter as an Upper Bound on Deviation
of FGTED from EMED
The string set universe diameter gives one measure of the size of SU(G),
and it can also be used to characterize the deviation of GTED from EMED.
Recall that S§ and S5 are string sets obtained from a decomposition
D(AG*), and that EMED(S}, S3) = FGTED(G(S1), G(S2)), where
S1 and Sy are true string sets. From Theorem 2, we have that
EMED(S1,S2) > EMED(S],S5). We can bound the deviation of
EMED(S5, S5) from EMED(S1, S2) using triangle inequalities.

Lemma 5. Given string sets S1 and S2 and genome graphs G1 =
G(81) and Ga = G(S2),

EMED(S1,S2) — FGTED(G1, G2)

< min
D(AG*)ED g+
Si=f1(D(AG™))
S3=f2(D(AG™))

(EMED(S1,SY) + EMED(S2,S3)), (5)

where AG* is the solution obtained from FGTED(G1, G2).

Proof. Both edit distance and EMD are metrics (Rubner et al., 2000;
Levenshtein et al., 1966), which means that triangle inequality holds for
EMED between strings. Therefore, for any string sets S} and S5,

EMED(S1, 8;) + EMED(S}, S2) > EMED(S1, S2)
EMED(Ss, S5) + EMED(S}, 55) > EMED(S}, S2)

Combining two inequalities, we have

EMED(S}, S3) = FGTED(G1, G2)
> EMED(S1, S2) — (EMED(S1, S;) + EMED(S2, S3))
=EMED(S1, S2) — FGTED(G1, G2)
< EMED(Sy, 8F) + EMED(S2, S3). (©6)

The above inequality (6) holds for any string sets S§ and S3. To give
a tight upper bound on the deviation, we take the minimum over all
possible pairs of string sets constructed from decomposing AG* that yields
inequality (5).

Lemma 5 proves the second inequality of Theorem 2 thus completing
the proof for Theorem 2 with Lemma 4.

The upper-bound found in Lemma 5 can be used as a factor that
evaluates the pair-wise expressiveness of two genome graphs. While a
genome graph may represent a large universe of string sets, as long as the
true string set is close to the “best” string set in the pair-wise comparison,
the deviation of FGTED from EMED is small. We define this upper bound
as the String Universe Co-Expansion Factor (SUCEF), which can be used
to evaluate the discrepancy between FGTED and EMED.
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Definition 11 (String Universe Co-Expansion Factor (SUCEF)).

SUCEF(S1,82,G1,G2)

= min
D(AG*)ED 4o+
S7=f1(D(AG™))
S3=f2(D(AG™))

(EMED(S1,87) + EMED(S2,53)),

where AG* is the solution to FGTED(G1, G2).

On the other hand, finding SUCEF not only requires knowledge of
true string sets S1 and Sz, but SUCEF is also a pair-dependent measure
that needs to be calculated for every pair of string sets and corresponding
genome graphs. In order to characterize the effect of the expressiveness of
individual genome graphs, we derive another upper bound on the deviation
of FGTED from EMED using the string set universe diameters.

The sum of string set universe diameters of two genome graphs is an
upper bound on SUCEEF of these graphs and any two sets of strings they
represent.

Lemma 6. Given two genome graphs G1 and Go and two sets of strings
S1 and S they represent,

EMED(S1,S2) — FGTED(G1,G2) < SUCEF(S1, 82,61, G2)
< SUD(G1) + SUD(G2).

Proof. Both Sy and ST are represented by G1 and belong to SU(G1).
Therefore, by definition of string set universe diameter, EMED(S1, ST) <
SUD(G1) as the diameter maximizes the distance between any pair
of strings represented by the genome graph. The same holds for
EMED(Sz,S5) < SUD(Ga2).

Using Lemma 6, we can bound the deviation of FGTED from EMED
using the expressiveness of individual genome graphs even when we do
not have the knowledge of ground truth string sets. In practice, we can
construct genome graphs using known sequences from the species of
interest and form a training set. Using the training set, we can learn the
relationship between SUDs and the deviation of FGTED from EMED, and
then empirically estimate the anticipated discrepancy between FGTED
and EMED. In the following sections, we show that we can improve
FGTED using SUDs to obtain reduced anticipated deviation from EMED
and stronger correlation with EMED.

5 Practically Correcting the Discrepancy between
FGTED and EMED

5.1 Estimating String Set Universe Diameters

The string set universe diameter of a genome graph can be estimated
by sampling flow decompositions of the graph. To sample a flow
decomposition, we first sample one s — ¢ path. At each node u, we choose
the neighbor v with the highest edge weight w(u, v) with probability 0.5
and randomly choose a neighbor otherwise. After sampling a path, we send
flow that is equal to the minimum edge weight on that path and produce
the residual graph by subtracting the flow from edge weights on that s — ¢
path. We repeat this process on the residual graph until all edge weights
are zero. This process assumes that the input genome graphs are acyclic
to ensure all edge capacities (weights) are satisfied. If a genome graph is
cyclic, e.g. de Bruijn graphs, string sets from SU(G1) can be obtained by
sampling Eulerian cycles in the genome graph, and each string in the string
set is obtained by segmenting the sampled Eulerian cycle at source and sink
nodes. After sampling 50 pairs of flow decompositions, we construct string
sets from sampled flow decompositions and calculate pairwise EMED. We
then obtain the highest pairwise EMED and use it as the estimated diameter.

5.2 Correcting FGTED Using String Set Universe
Diameters

Using the sum of SUDs, we empirically estimate the deviation of FGTED
from EMED with a linear regression model. We denote the deviation of
FGTED from EMED by deviation(S1, Sz, G1, G2), which is computed
as [EMED(S1,S2) — FGTED(G(S1), G(S2))|. The linear regression
model, LR, has the following form

deviation(S1,S2,G1,G2)
=a- (SUD(G1) 4+ SUD(G2)) + b = LR(SUD(G1) + SUD(G2)),

where a is the coefficient of the model and b is the intercept. The fitted
model will minimize the mean squared error between predicted deviation
and true deviation in the training set.

The corrected FGTED for each pair of graphs is calculated using the
learned linear regression model as follows.

correctedFGTED(G1, G2)
= FGTED(G1,G2) + LR(SUD(G1) + SUD(Gz2))

The deviation of corrected FGTED from EMED has the same form as the
deviation of uncorrected FGTED from EMED.

5.3 Data

‘We evaluate the use of string set universe diameters on two sequence sets:

1. Simulated T-Cell Receptor (TCR) Repertoire. We simulate 50
sets of TCR sequences and assign weights to each sequence using
reference gene sequences of V, D and J genes from Immunogenetics
(IMGT) V-Quest sequence directory (Lefranc and Lefranc, 2001).
The number of sequences in each set varies from 2 to 5. We then
generate 225 pairs of TCR string sets. Each TCR sequence is about 300
base pairs long. See Supplementary Materials for detailed simulation
process.

2. Hepatitis B Virus (HBV) Genomes. We collect 9 sets of HBV
genomes from three hosts — humans, bats and ducks — from the
NCBI virus database (Hatcher et al., 2017). We build 36 pairs of
HBYV string sets. See Supplementary Materials for detailed string set
construction process.

We construct a partial order MSA graph on each string set (Lee et al.,
2002). We first conduct multiple sequence alignment (MSA) for each string
set using Clustal Omega (Sievers et al., 2011). Then for each column of the
MSA, we create a node for each unique character and add an edge between
two nodes if the characters in node labels are adjacent in the input strings
at that column. For each consecutive stretch of gap characters, no nodes
are created, but an edge is added between flanking columns of the stretch
of gaps. We also create a source node and a sink node that are connected
to nodes representing the first and last characters of the input strings. The
MSA graphs created in this process are all acyclic. We compute FGTED
on MSA graphs by adding sink-to-source edges.

We also construct a de Bruijn graph (Pevzner et al., 2001) with k-
mer size equal to 4 on TCR sequence sets, which we refer to as dBG4 in
the following sections. This k-mer size is reasonable as compared to the
average lengths of TCR sequences which is 350 base pairs and allows us to
experiment with graphs that are expected to have higher expressiveness. In
dBG4, each node corresponds to a k-mer, S[i : ¢ + k|, where S is a string
from the ground truth string set, S. Each edge corresponds to the overlap
between two k-mers, S[i : ¢+ k]and S[i+1: i+ k+ 1] forany S € S.
In order to construct the alignment graph, we process the de Bruijn graphs
such that each node represents one character. We add a source node and a
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Fig. 3. Comparison between de Bruijn graphs and MSA graphs constructed with TCR
sequence sets. (a) The distribution of diameters sampled in both types of graphs. Each box
shows the quartiles of the distribution, and the whiskers show the rest of the distribution.
Each black dot represent the diameter of one graph. (b) The correlation between FGTED
and EMED with different types of graphs. The red line denotes equality between FGTED
and EMED.

sink node to each dBG4 and connect them to nodes that represent the first
and the last character in each string, respectively.

5.4 FGTED Deviates from EMED as the Expressiveness of
the Genome Graph Increases

We compute EMED and FGTED on string set pairs and genome graph
pairs. The alignment graphs are constructed using one thread, which on
average takes 6 seconds for dBG4s, 8 seconds for each MSA graph on
TCR sequences, 9.43 minutes for each MSA graph on HBV genomes.
Optimization for LP with 10 threads takes on average 601 seconds for
each dBG4, 1 hour for each MSA graph of TCR sequence sets and 4 hours
for each MSA graph on HBV genomes (Figure S1).

We show that the deviation of FGTED from EMED is higher on genome
graphs that are more expressive. We compare the FGTED computed
on dBG4s and MSA graphs constructed with TCR sequences and the
diameters of two types of graphs. DBG4 represents all sequences with
the same 5-mer distributions as the ground truth sequences. Therefore,
as expected, we observe larger sampled SUDs from dBG4 than the MSA
graphs (Figure 3(a)). The deviation of FGTED from EMED is also larger
with dBG4s than the MSA graphs (Figure 3(b)). This further illustrates the
effect of graph construction approaches on the resulting expressiveness.

5.5 Corrected FGTED More Accurately Estimates Distance
Between Unseen String Sets Encoded With Genome
Graphs

For each pair of string sets, we obtain the deviation of FGTED from
EMED and sum of estimated SUDs. We fit three linear regression models,

LRipg4, LRTrcrand LRy gy, to predict deviation from sum of SUDs
on simulated TCR sequences and HBV genomes of different types of
graphs separately.

We evaluate the corrected and uncorrected FGTED by performing
Pearson correlation experiments. We fit L R models on half of the data
and compute the corrected FGTED on the other half as the test set. We
evaluate the correlation between corrected and uncorrected FGTED and
EMED on the test set. Two-tail P-values are calculated for each correlation
experiment to test for non-correlation.

The LR models are evaluated with 10-fold cross validation. We
randomly permute and split data into 10 equal parts. In each of the 10
iterations, we use one part as the test set and the rest as the training set.
An average deviation is calculated across all iterations.

Pearson Correlation

FGTED
TCR (dBG4) TCR (MSA Graph) HBV (MSA Graph)
Uncorrected 0.75 0.74 0.99
Corrected 0.68 0.90 0.99

Table 1. Pearson correlation between EMED and corrected and uncorrected
FGTED on simulated TCR and HBV sequences. Pearson correlation is
calculated on a held-out set of data for both simulated TCR and HBV that
consist of 50% of data, and L R model is fit on the other half.

In Table 1 and Table 2, we show that using string set universe diameters,
we are able to improve the correlation between FGTED and EMED on
MSA graphs of both the simulated TCR sequences and HBV genomes. On
dBGd4s, the correlation is reduced slightly by the correction. All Pearson
correlation experiments are statistically significant with P-values < 0.01.
On HBV genomes, since the correlation between uncorrected FGTED and
EMED is approaching 1, no significant improvement is observed. On the
other hand, significant reduction in average deviation is observed on both
types of data. We are able to reduce the average deviation from 77.29 to
19.08 on de Bruijn Graphs with TCR sequences, from 32.74 to 9.13 on
MSA graphs containing simulated TCR sequences and from 140.12 to
54.87 on HBV genomes.

Average Deviation

FGTED
TCR (dBG4) TCR (MSA Graph) HBV (MSA Graph)
Uncorrected 77.29 32.74 140.12
Corrected 19.08 9.13 54.87

Table 2. Average deviation of corrected and uncorrected FGTED from EMED
on simulated TCR and HBV sequences. The average deviation is calculated
over a 10-fold cross validation of the L R model.

One caveat of using SUDs for correcting distances between genome
graphs is that this correction is not guaranteed to always improve the
distance. Given two string sets, there is usually an adversarial worst case
where adjusting the distance using this approach reduces the accuracy in
estimating string sets distances. When EMED between true string sets are
small, the corrected FGTED may overestimate the EMED and result in
a larger deviation. Nevertheless, we show that corrected FGTED reduces
the anticipated deviation from EMED.

6 Discussion

A genome graph’s string set universe diameter (SUD) provides information
on the size and diversity of the represented string sets. We show that we
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can use SUDs to practically characterize the discrepancy between FGTED
and EMED and to obtain a more accurate distance between unseen string
sets encoded in genome graphs on average. While the results are obtained
on short genomic sequences due to the high computational cost of FGTED
and GTED, this result is encouraging.

The corrected FGTED can be used to compute a more accurate
distance between heterogeneous samples represented by genome graphs
in applications such as immune repertoire analysis and cancer subtyping.
This opens up avenues for more comprehensive heterogeneous sample
comparison methods. However, FGTED, as well as GTED, is not scalable
to mammalian genomes due to the quadratic size of the alignment graph
and time it takes to solve the LP formulations. Algorithms that compute
FGTED faster or efficient approximation genome graph comparison
methods (Minkin and Medvedev, 2020; Polevikov and Kolmogorov, 2019)
are needed for comparing large heterogeneous string sets.

SUDs may also be used to characterize the diversity of strings
represented by reference genome graphs that are used in sequence-to-
graph alignment (Rautiainen and Marschall, 2020; Sirén et al., 2020). In
sequence-to-graph alignment, it is often desired that a more diverse set of
strings than the original reference string set is represented by the graph.
Here, SUDs could be used as a measure to control the right amount of
variation in the string set universe of created genome graphs.

Another future direction is to use expressiveness as a regularization
term in the objective function to construct better genome graphs. To
ensure efficiency of genome graphs in storing sequences, we can construct
genome graphs that minimize their sizes (Qiu and Kingsford, 2021; Pandey
et al., 2021). However, reducing the size of a genome graph may result in
graphs that are highly expressive, and the distance between these genome
graphs will deviate further from distances between true string sets. Adding
a SUD term to the objective may address this problem.
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