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Abstract

Motivation: Despite numerous RNA-seq samples available at large databases, most RNA-seq analysis tools are eval-
uated on a limited number of RNA-seq samples. This drives a need for methods to select a representative subset
from all available RNA-seq samples to facilitate comprehensive, unbiased evaluation of bioinformatics tools. In se-
quence-based approaches for representative set selection (e.g. a k-mer counting approach that selects a subset
based on k-mer similarities between RNA-seq samples), because of the large numbers of available RNA-seq sam-
ples and of k-mers/sequences in each sample, computing the full similarity matrix using k-mers/sequences for the
entire set of RNA-seq samples in a large database (e.g. the SRA) has memory and runtime challenges; this makes
direct representative set selection infeasible with limited computing resources.

Results: We developed a novel computational method called ‘hierarchical representative set selection’ to handle
this challenge. Hierarchical representative set selection is a divide-and-conquer-like algorithm that breaks represen-
tative set selection into sub-selections and hierarchically selects representative samples through multiple levels. We
demonstrate that hierarchical representative set selection can achieve summarization quality close to that of direct
representative set selection, while largely reducing runtime and memory requirements of computing the full similar-
ity matrix (up to 8.4x runtime reduction and 5.35x memory reduction for 10 000 and 12 000 samples respectively
that could be practically run with direct subset selection). We show that hierarchical representative set selection sub-
stantially outperforms random sampling on the entire SRA set of RNA-seq samples, making it a practical solution to
representative set selection on large databases like the SRA.

Availability and implementation: The code is available at https:/github.com/Kingsford-Group/hierrepsetselection
and https://github.com/Kingsford-Group/jellyfishsim.

Contact: carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A vast number of RNA-seq short-read samples are publicly available
at large sequence databases [e.g. NIH’s Sequence Read Archive
(Leinonen et al., 2011), known as SRA]. However, most bioinfor-
matics tools for RNA-seq analyses are evaluated on a limited num-
ber of samples; this evaluation may be insufficient, as the tools may
not be adequately evaluated by samples with a variety of cell/tissue
types and disease conditions. To ensure general applicability, an
RNA-seq analysis tool should be validated on varying cell/tissue
types and experiments. On the other hand, using all available RNA-
seq samples to evaluate RNA-seq analysis tools is infeasible, and
many samples in databases are similar to each other. This leads to a
need to select a representative subset from available RNA-seq
samples that effectively summarizes a large collection of RNA-seq
samples to capture various essential transcriptional phenomena.
Moreover, bioinformatics tools have algorithm parameters to be
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optimized, and automatic learning of optimal parameters can be
made more robust using representative samples. Thus, our objective
is to develop a computational method of selecting a representative
subset from a large collection of RNA-seq short-read samples for a
given organism (e.g. human), such that RNA-seq analysis tools can
be effectively evaluated on this subset. Bioinformatics tools such as
transcript assemblers, read mappers and expression abundance esti-
mators would benefit from a good selection of RNA-seq samples in
their evaluation and parameter optimization.

Various representative set selection methods that solve the prob-
lem of finding a subset of data points (representatives) to efficiently
describe the original collection of data have been developed in the
fields of computer vision, signal/image processing, information
retrieval and machine learning. Most common applications of repre-
sentative set selection include image, video and text summarizations.
Machine learning tasks such as classification and regression can also
improve in terms of fast training and reduced memory usage by
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using a representative subset as the training set (Elhamifar ez al.,
2012a; Garcia et al., 2012). One category of representative set selec-
tion methods is clustering-based algorithms (Daszykowski et al.,
2002; Frey and Dueck, 2007), using k-means, k-medoids, spectral
clustering or DBSCAN. Another category is sparse modeling-based
algorithms (Elhamifar et al., 2012b; Wang et al., 2014), which for-
mulate the representative set selection as a dictionary learning prob-
lem, based on the assumption that the entire set can be
reconstructed by linear combinations of dictionary items. There are
also Rank Revealing QR algorithms (Boutsidis et al., 2009) that use
matrix factorization to find a subset of columns of the data matrix
corresponding to the best conditioned submatrix, and algorithms
using mutual information and relative entropy to search for a repre-
sentative subset (Pan et al., 2005).

In the field of RNA-seq analysis, Hie et al. developed a geometric
sketching algorithm (Hie et al., 2019) for single-cell RNA-seq,
which summarizes the transcriptomic heterogeneity within a dataset
using a representative subset of cells to accelerate single-cell ana-
lysis. Using a covering algorithm that approximates the original data
space as a union of equal-sized boxes, geometric sketching focuses
on even coverage of the transcriptional space spanned by the origin-
al set, so that rare cell types can be sufficiently sampled and repre-
sented. Maintaining a similar density distribution to that of the
original set is useful for video/photo summarizations. However, for
RNA-seq analyses, even coverage of the transcriptional space is
more important in order to represent rare cell types.

A Python package, apricot (Schreiber et al., 2020), has been
developed for selecting representative subsets using submodular op-
timization. Based on the ‘diminishing returns’ property, apricot
maximizes a monotone submodular function’s value to find a repre-
sentative subset. Using facility location functions, apricot maximizes
the sum of similarities between each sample and its closest represen-
tative sample; as a result, the representative set selected by apricot
approximately evenly spans the space of the original data, like geo-
metric sketching. While geometric sketching requires knowing sam-
ples’ gene expression vectors, apricot can work with the similarity
matrix between the samples directly.

A main challenge in representative set selection for RNA-seq
samples is that the number of RNA-seq samples in large databases is
huge and each RNA-seq sample takes up substantial disk space;
therefore, it is impractical to download all RNA-seq sequences of all
the samples available at a large database like the SRA due to limited
disk space. To perform representative set selection directly, we need
to obtain gene expression vectors of, or distances between, all avail-
able SRA samples; however, SRA streaming is also not feasible due
to issues with paired-end reads.

Given this challenge, one might attempt to select a representative
set without looking at the sequences of each RNA-seq sample and
relying instead on each sample’s metadata, for example, using
NCBI’s BioSample attributes (Barrett et al., 2012) that affect gene
expression levels to predict gene expression distances between RNA-
seq samples. However, for most large RNA-seq collections, includ-
ing the SRA, the metadata is highly incomplete and most samples do
not have the needed metadata values for predicting their gene ex-
pression distances.

Thus, we use a sequence-based approach for representative set
selection of RNA-seq samples. We randomly sample a small subset
of reads from each RNA-seq sample to download, such that the sub-
sets of reads from all available RNA-seq samples at the SRA take a
reasonable disk space. We count k-mers in the subset of reads of
each sample and compute the similarity between k-mer distributions
of samples. This approach selects a representative set based on k-
mer similarities and thus sequence similarities among RNA-seq sam-
ples. Since the number of publicly available RNA-seq samples in the
SRA is large (N=196 523 for human) and the number of k-mers in
each sample is large (~2000000 k-mers), computing the 196
523 x 196 523 similarity matrix with k-mers has memory and run-
time challenges even using a chunking method for matrix computa-
tion (Li et al., 2010).

To tackle this challenge, we developed a novel method called
‘hierarchical representative set selection.” The hierarchical

representative set selection is a divide-and-conquer-like algorithm
that hierarchically selects representative samples through multiple
levels. At each level, samples are divided into smaller chunks, and
representative set selection is performed on each chunk with a
weighting scheme. The representative samples selected from every
chunk are merged into the next level, and the process repeats until
the size of the similarity matrix of the merged samples is feasible for
the computing resources.

Our results show that hierarchical representative set selection
achieves summarization quality close to that of direct representative
set selection using apricot (5.37% average difference in the measure
of how well a selected subset represents the full set), while substan-
tially reducing runtime and memory requirements of computing the
full similarity matrix (up to 8.4x runtime reduction and 5.35x
memory reduction for 10 000 and 12 000 samples respectively that
could be practically run with direct subset selection), thus making
selecting representative samples from the entire SRA RNA-seq sam-
ples feasible (the estimated runtime reduction is 90x and memory
reduction is 41.4x for the SRA full set of 196 523 human samples).
We demonstrate that the representative subset selected by our hier-
archical representative set selection method from all human RNA-
seq samples in the SRA better represents the transcriptomic hetero-
geneity among those samples than that by random sampling, and
thus can be used for more comprehensive and complete evaluation
of bioinformatics tools.

2 Materials and methods

2.1 Problem formulation

Let set R be a large set of RNA-seq samples (such as all the RNA-
seq samples in the NIH SRA database for a given organism), let
d(i,j) be a distance or dissimilarity measure between samples i and j
in R, and let d(x, S) be the distance between a data point x and its
closest data point in a set S. A reasonable formulation is to find a
representative subset R C R, such that

max,erd(7, Ié)

is as small as possible.

This is equivalent to minimizing the classical Hausdorff distance
which is defined as: dy (X, S) = max,ex{minges d(x,s)} where X is
the full set and S is its representative subset (Hie et al., 2019). The
Hausdorff distance can be used to evaluate how well a selected sub-
set represents the original full set (a smaller value is better) (Hie
et al., 2019). However, the classical Hausdorff distance is highly
sensitive to extreme outliers (Huttenlocher et al., 1993; Sim et al.,
1999). Thus, in practice, a more robust measure, the partial
Hausdorff distance, is used to evaluate the representative subset
(Hie et al., 2019; Huttenlocher et al., 1993). The partial Hausdorff
distance is defined as: dpk (X, S) = K* {minssd(x,s)} where K?_,
is the Kth largest value (counting from the minimum), and a param-
eter ¢ =1 — K/|X| is used to determine K (when g =0, duyx = du;
when g is small enough, dyk is very close to dy; but is robust to ex-
treme outliers) (Hie et al., 2019; Huttenlocher et al., 1993). dyx is
at the ((1 — g) x 100)-th percentile of the distances from every sam-
ple x in the full set to its closest representative sample.

2.2 K-mer similarity-based approach

The similarity between k-mer distributions of RNA-seq samples
reflects the similarity between their sequences and is a reasonable
approach for computing d(i, j). Thus, by counting the k-mers of
RNA-seq reads, we can select a representative set based on the k-
mer similarities and therefore sequence similarities among samples.
Downloading all reads of all SRA samples is infeasible, so we down-
load a small subset of reads from each RNA-seq sample. To repre-
sent a full RNA-seq sample, the sampled small subset of reads are
random with respect to the genome coordinates. For approximately
88% of SRA RNA-seq samples, the reads are stored from the se-
quencer without alignment. Reads coming from Illumina sequencers
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without alignment are random with respect to the genome coordi-
nates. Thus, a range of reads downloaded from unaligned samples
by fastq-dump are random. We download 10 000 reads to represent
each unaligned RNA-seq sample (we skip the first 5000 reads in the
sample when downloading, since the beginning of sequencing may
contain some technical variation of signal introduced in the sequenc-
ing process).

Choosing a proper k-mer size is important, as smaller k-mers
give less information about sequence similarities, while larger k-
mers may result in fewer matches due to sequencing errors. To select
an optimal k-mer size, we plot the number of distinct k-mers with
the varying k-mer size for a range of typical read lengths of Illumina
(Supplementary Figs S1-S5). In the linearly increasing part of the
curve, short k-mers match randomly; from the beginning of the hori-
zontal part of the curve, k-mers start to reveal the genome structure.
Thus, we want the smallest k-mer size in the horizontal part of the
curve, so that the k-mer matching moves from being random to
being representative of the read content and is still resilient to
sequencing errors. Among the optimal k-mer sizes we obtained for
long, medium and short read-lengths, we choose a compromise 17
as the optimal k-mer size.

Jellyfish (Margais and Kingsford, 2011) was used to count k-
mers in the subset of reads. We use canonical k-mers (i.e. the lexico-
graphically smaller of a k-mer and its reverse complement), so all
samples are compared based on the common k-mer sequences re-
gardless of the sequenced strand. We use the cosine similarity as the
similarity of k-mer distributions between samples. Cosine similarity
is the cosine of the angle between two vectors and is commonly used
in document clustering and information retrieval; our k-mer vectors
have some similar aspects to Term Frequency-Inverse Document
Frequency vectors (e.g. large vocabulary, word counts, high dimen-
sion and high sparsity). Cosine similarity is also a good measure for
k-mer-based metagenome comparisons (Choi ez al., 2019).

2.3 Hierarchical representative set selection algorithm

To handle the memory and runtime challenges, hierarchical repre-
sentative set selection (as shown in Algorithm 1) breaks the whole
representative set selection into multiple levels of progressive sub-

Algorithm 1: Hierarchical Representative Set Selection

Input: Full set R of N samples (k-mer counts). 7: chunk size.
Q: average representative-set size for each chunk. L:
max size of similarity matrix (L x L) feasible for com-
puting resources. 7: user-desired size of final represen-
tative set.

Output: 7 representative samples.

1. Divide: divide R into / = [N/m] chunks using a seeded-

chunking method (see Algorithm 2), each has m samples.

2. Compute similarity matrix (72 x m) for each chunk i.

3. Compute weight w; for each chunk i (see ‘Weighting

scheme’).

Set the representative-set size RSS; = w;Q

4. For each chunk 4, perform representative set selection on

its mxm similarity matrix to get RSS; representative

samples.

5. Merge: sequentially merge RSS; representative samples

from every chunk into a set R’ of N’ = Y, RSS; samples.

6. R — R/, repeat steps 1-5 until N’ < L

7. Compute similarity matrix (N’ x N'); store it for any user-

desired smaller-size representative set selection.

8. Perform representative set selection on the N’ x N’ similar-

ity matrix to get 7 representative samples.

* Once step 7 is completed, step 8 can be independently per-

formed repeatedly for different 7.

Algorithm 2: Seeded-Chunking Method

Input: Full set R of N samples. m: chunk size. /: number of
chunks. J: size of a randomly selected subset used for
selecting seeds.

Output: / chunks.

1. Randomly select a subset X of J samples from R.

2. Perform the ‘farthest point sampling’ on X to find a set S

of [ seeds:

Initialization: Seed s; = a randomly selected sample from X.
S = {s1}. Distance from x € X to S:
ds(x) = distance(x, s1)
Fori=2, ..., I, repeat steps (a)—(c):
a. Find the farthest sample away from the already selected
seeds’ set S: s; = argmax ds(x), x € X
b. Adds; as a new seed into S.
c. Update the distance from x € X to S:
ds(x) < min{ds(x), distance(x,s;)}

3. Compute distances between each sample in R and / seeds.
4. Assign each sample in R to its closest seed:
i. Find all currently non-full chunks (i.e. size < m).
ii. Assign the sample to its closest seed among all non-full
chunks.

selections, like divide-and-conquer. At each level, the ‘full set’ of
samples are divided into smaller equal-size chunks using a seeded-
chunking method (see Algorithm 2), such that chunks are well sepa-
rated with closer samples going into the same chunk if possible. The
similarity matrix for each chunk is computed, and weights that de-
termine the size of the representative set for every chunk are com-
puted based on the density/sparseness of each chunk (samples in a
denser chunk are more similar to each other). Representative set se-
lection is then performed on each chunk (for example, using apri-
cot’s facility location approach). The representative samples selected
from every chunk are merged into a new set, which becomes the “full
set’ of the next level. This process iterates until the size of the simi-
larity matrix of the merged set is feasible for the computing resour-
ces. Lastly, the similarity matrix of the final merged set is computed,
and representative set selection is performed on it to get the final
representative set of a desired size.

Computing the similarity matrix with k-mers is the runtime and
memory bottleneck, while apricot’s runtime is relatively negligible
in comparison. For direct representative set selection using apricot,
the computational cost for the similarity matrix of the full set is
O(N?). Using the hierarchical selection (considering one iteration
of divide-and-merge with [ chunks, chunk size m and the final
merged set size N’), the computational cost is reduced to
O(lm?) + O(Nr?) = O(N?/I) + O(N7?). The seeded-chunking has
an added computational cost O(NI). So the total computational cost
of the hierarchical selection is O(N?/l) + O(N7*) + O(NI), where
Il < N and N’ < N. With multiple iterations, the computational
cost is further reduced. Since m < N, the memory requirement for
computing the similarity matrix is greatly reduced.

Figure 1 illustrates applying the hierarchical representative set se-
lection to 196 523 human RNA-seq samples in the SRA, using two
levels (two iterations) of divide-and-merge. The first level has /; =
197 chunks; the second level has [, = 40 chunks. ~200 representa-
tive samples are selected from each chunk of 1000 samples.

2.3.1 Seeded-chunking method

The ideal situation for the hierarchical representative set selection is
that chunks have no overlaps. Here, the ‘overlap’ of chunks means
data points and their close neighbors are in different chunks (e.g.
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Fig. 1. Illustration of the hierarchical representative set selection for 196 523 human
RNA-seq samples in the SRA

different chunks occupy the same dense cluster). When chunks have
no overlaps, the union of the representative sets selected from every
chunk would be similar to the representative set selected directly
from the original set. When chunks have overlapping regions with
similar densities, unnecessarily more representative data points may
be selected in the overlapping regions from different chunks. The
subsequent representative set selection on the merged set can allevi-
ate this effect, but the over-use of the quota (i.e. a region’s propor-
tion of the desired number of representative data points) in the
overlapping regions may cause other regions to have less quota.
Thus, more separated chunks lead to more accurate hierarchical
selection.

A sequential-chunking method that divides chunks sequentially
along the SRA accession list can cause many overlaps, even complete
overlaps between chunks. To overcome the introduction of overlaps
with sequential chunking, we developed a novel seeded-chunking
method (as shown in Algorithm 2). The seeded-chunking first uses
the “farthest point sampling’ algorithm (Bronstein et al., 2009; Pai et
al., 2019) to find I seeds for [ chunks, such that the seeds are farthest
away from each other. That is, starting from a randomly selected
seed, the seeds are chosen one at a time, such that each new seed has
the largest distance to the set of already selected seeds (i.e. the larg-
est minimum distance to the already selected seeds). The entire set of
RNA-seq samples available at a large database cannot fit into mem-
ory at once, but if loading each sample one at a time when comput-
ing its distance to a seed, each sample would be repeatedly loaded
for [ — 1 times. Thus, we randomly select a subset X from the full set
and perform the ‘farthest point sampling’ on X to find / seeds. Each
sample in the full set is assigned to its closest seed. Since chunks
have equal sizes, the sample is assigned to its closest seed among all
currently non-full chunks (i.e. their current size < m).

The seeded-chunking can generate well-separated chunks, with
an added computational cost: O(NI) of computing similarities. Since
I < N, this cost is fairly small compared to computing the full simi-
larity matrix (O(N?)). We benchmarked the seeded-chunking versus
sequential chunking on various sizes of full sets (Supplementary
Table S5). In all cases, the seeded-chunking outperforms the sequen-
tial chunking; as the full-set size increases, the seeded-chunking
shows more advantages over the sequential chunking in the partial
Hausdorff distance.

2.3.2 Weighting scheme
Denser chunks (in which samples are more similar to each other)
should have fewer representative samples than sparser chunks, since

we want representative data points to approximately evenly span
the space of the original data, so that rare cell/tissue types can be suf-
ficiently represented. Since chunks have equal sizes, denser chunks
occupy smaller spaces than sparser chunks. Thus, we propose a
novel weighting scheme (‘mean®-weighting scheme’) to assign the
representative-set size to each chunk based on their average density/
sparseness.

The mean®-weighting scheme is as follows. Let y; be the mean of
distances between samples in chunk i; z; is the size of chunk i (note
that when N/m is not an integer, not all chunks are full); Q, / and m
are as defined in Algorithm 1. Suppose the I/th chunk is non-full: let
oy = z;/m. The weight w; and the representative-set size RSS; for
chunk 7 are defined to be:

w; = u%/weightedmean{all,uiz} wherei,j =1,...,/ (1)

RSS; = w;0 fori=1,...,1-1 (2)

RSS] = WMIQ (3)

where the weightedmean{allﬂiz} uses weight = 1 forj=1,...,/—1
and weight = o for j = . The following relationship holds:

ZRSS,» =(I-1)Q+ 0.

With the seeded-chunking, there could be multiple non-full
chunks, but the same weighting method applies. The mean®-weight-
ing scheme is a heuristic to adjust the representative-set size for each
chunk according to their average density/sparseness.

The code for the hierarchical representative set selection is avail-
able at https://github.com/Kingsford-Group/hierrepsetselection; the
code for computing k-mer similarities is available at https:/github.
com/Kingsford-Group/jellyfishsim. We have two GitHub reposito-
ries since the second repository contains the code that can also be
used for other k-mer similarity applications; other applications that
need to compute k-mer similarities between samples can use the se-
cond repository only.

3 Results

3.1 Hierarchical selection achieves summarization
quality close to that of direct representative set

selection

Excluding SRA samples with no public access permission, aligned
samples and samples with no valid 17-mers (read-lengths < the k-
mer size 17, or reads that contain many N’s in the middle), we
obtained 196 523 human bulk RNA-seq (Illumina) samples as the
SRA entire set. Each sample corresponds to an SRA Experiment.

In this particular implementation of the hierarchical representa-
tive set selection, we use apricot’s facility location approach as the
base level to perform representative set selection on each chunk and
on the merged set. We use cosine distance as the distance measure.
In this context, we define the term ‘summarization quality’ as a
measure of how well a selected subset represents the full set (i.e.
‘representativeness’), evaluated by dyk.

We refer to the direct representative set selection using apricot as
‘direct apricot’, which includes two parts: (i) computing the similar-
ity matrix of the full set; (ii) applying apricot’s facility location ap-
proach to the full similarity matrix. The main computational cost of
direct apricot comes from part (i).

The motivation of the hierarchical representative set selection is
to reduce the runtime and memory requirement of direct representa-
tive set selection, while not sacrificing too much summarization
quality. Thus, we compared the performance between direct apricot,
the hierarchical selection and random sampling, using the most re-
cent 1000, 2000, 5000, 8000, 10 000, 12 000 samples in the SRA as
the full sets (Fig. 2; Supplementary Table S1). We also compared the
three methods using the early-time 1000, 2000, 5000, 8000, 10 000,
12 000 samples in the SRA as the full sets (in the earliest quarter of
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Fig. 2. Using the most recent 1000, 2000, 5000, 8000, 10 000, 12 000 samples in the SRA as the full sets. rep,,,size/N=0.1. (a) Partial Hausdorff distances dyx of direct apri-
cot, hierarchical selection and random selection. (b) Partial Hausdorff distances’ difference: hierarchical selection dpx — direct apricot dpyk
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Fig. 3. Using the early-time 1000, 2000, 5000, 8000, 10 000, 12 000 samples in the SRA as the full sets. rep,,,size/N=0.1. (a) Partial Hausdorff distances dyx of direct apricot,
hierarchical selection and random selection. (b) Partial Hausdorff distances’ difference: hierarchical selection dyx — direct apricot dyx
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Fig. 4. Using the mid-time 1000, 2000, 5000, 8000, 10 000, 12 000 samples in the SRA as the full sets. rep,,size/N=0.1. (a) Partial Hausdorff distances dpx of direct apricot,
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the SRA time span, i.e. the 4th quarter of the SRA accession list) The hierarchical selection achieves summarization quality close
(Fig. 3; Supplementary Table S2), and using the mid-time 1000, to that of direct apricot. For the recent 1000 and 2000 samples, the
2000, 5000, 8000, 10 000, 12 000 samples in the SRA as the full hierarchical selection performs better than direct apricot; for the re-
sets (around the middle of the SRA time span) (Fig. 4; cent 5000, 8000, 10 000 and 12 000 samples, the hierarchical selec-
Supplementary Table S3). For all these cases: we use 1 iteration, tion is modestly less accurate than direct apricot but has
repy,size/N = 0.1, m = N/I, O =m/5. We set [=10, except for representativeness close to that of direct apricot (Fig. 2). As N
N=1000,/=35. increases while keeping the same rep_,,size/N, the dyx difference of
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Table 1. Runtime and memory reduction with the hierarchical selection over direct apricot using the most recent 1000, 2000, 5000, 8000, 10

000, 12 000 samples in the SRA as the full sets

Reduction Recent 1000 Recent 2000 Recent 5000 Recent 8000 Recent 10 000 Recent 12 000
(select 100, 1 = 5) (select 200, 1 = 10) (select 500, = 10) (select 800, [ = 10) (select 1000, (select 1200,
1=10) I=10)
Real-time reduction 1.47x 2.72% 6.04x 6.53x 7.02x 7.17x
User + Sys time reduction 2.99x% 5.76x 8.33x 8.17x 8.4x 8.19%
Memory reduction 2.13x 2.9x% 4.47 % 4.59x% 4.54x 5.22x

Table 2. Runtime and memory reduction with the hierarchical selection over direct apricot using the early-time 1000, 2000, 5000, 8000, 10

000, 12 000 samples in the SRA as the full sets

Reduction Early 1000 Early 2000 Early 5000 Early 8000 Early 10 000 Early 12 000
(select 100,11 =5) (select 200, 1 = 10) (select 500, = 10) (select 800, [ = 10) (select 1000, (select 1200,
1=10) 1= 10)
Real-time reduction 1.53x 2.14x 4.62x 4.99x 7.47 % 6.35%
User + Sys time reduction 3.05x% 4.89x% 5.88x% 6.2% 8.31x 7.06 %
Memory reduction 2.2x 2.83x% 4.33x 4.37x 4.68x 5.0x

Table 3. Runtime and memory reduction with the hierarchical selection over direct apricot using the mid-time 1000, 2000, 5000, 8000, 10

000, 12 000 samples in the SRA as the full sets

Reduction Mid 1000 Mid 2000 Mid 5000 Mid 8000 Mid 10 000 Mid 12 000
(select 100, 1 = 5) (select 200, 1 = 10) (select 500, = 10) (select 800, [ = 10) (select 1000, (select 1200,

1=10) 1=10)

Real-time reduction 0.94 % 2.24x 4.92x 5.66x 6.92x 6.45x%

User + Sys time reduction 3.13x 5.5% 7.12x 7.1x 7.79% 7.19%

Memory reduction 2.33x 2.78x 4.58x 4.5x% 4.55% 5.35x%

the hierarchical selection minus direct apricot initially increases

from negative values, then levels out and then slightly decreases 104

when N becomes very large, indicating that the dpx difference be-

tween the hierarchical selection and direct apricot does not get

larger when N further increases (Fig. 2). For the early and middle ¥ 0.91

sets of samples, the trend of dyk of the hierarchical selection is more E

similar to that of direct apricot, so their dy difference curves are S 084

flatter (Figs 3 and 4). For the early sets, the dyx difference increases %

initially, and then slightly decreases and levels out when N becomes T

very large (Fig. 3). For the middle sets, the dpk difference also even- g 071

tually decreases when N becomes very large (Fig. 4). Overall, the s

average sacrifice in representativeness (% increase in dyy) of the 0.6 hierarchical selection (seeded)

hierarchical selection versus direct apricot is 5.37%. These demon- —e— random selection

strate that the hierarchical selection achieves summarization quality 051 ‘ ‘ |

close to that of direct apricot, which is partially contributed by the Select 3000 Select 4000 Select 5000 Select 7000

seeded-chunking and mean®-weighting.

The hierarchical selection substantially outperforms random
sampling. Random sampling has substantially larger dyx values
than the hierarchical selection for all the recent, early and middle
sets of samples, and this trend is consistent (Figs 2—4). When the full
set becomes very large, random sampling’s dyx approaches 1.0 that
is the maximum cosine distance. Random sampling follows the
density distribution of the original set, so the rare cell/tissue types
are not sufficiently represented, which yields large dpk.

3.2 Hierarchical selection substantially reduces runtime

and memory of direct representative set selection

The hierarchical selection substantially reduces the runtime and
memory usage of direct apricot. For the recent, early and middle sets
of samples, the hierarchical selection and direct apricot were all run
using 85 cores for parallelism; their runtime and memory are
reported in Supplementary Tables S1-S3. As the full-set size
increases, the real time and user + system time reductions generally

Representative Set Size

Fig. 5. Selecting different sizes of representative sets from the SRA entire set
(N=196 523 human RNA-seq samples): partial Hausdorff distances dyx of hier-
archical selection and random selection. For dpk, ¢=0.0001, so dyk is the 21st-
largest distance

increase (Tables 1-3). The user + system time reduction can reach
8.4x and the real-time reduction can reach 7.47x when N=10
000. Real-time reductions are less than user + system time reduc-
tions, since in direct apricot the full similarity matrix computation is
fully parallel, while in the hierarchical selection although the simi-
larity matrix computation for each chunk is fully parallel, chunks
are processed sequentially to reduce the memory usage. Runtime
reductions for most recent samples are generally greater than those
for early- and mid-time samples, as longer reads generate more k-
mers. The memory reduction also generally increases as the full-set
size increases (Tables 1-3). The memory reduction can reach 5.35x
when N =12 000.
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For the entire set of SRA RNA-seq samples (N =196 523), we use
two levels of divide-and-merge (Fig. 1), with =1000,
Q =m/5 =200. At the 1st-level, l; = 197, the subset-size J; = 2000
(used for the seeded-chunking). At the 2nd-level, /, = 40, J, = 1000.

The hierarchical representative set selection makes selecting rep-
resentative samples from the entire set of SRA RNA-seq samples
feasible. When N =10 000, direct apricot by computing the full
N x N similarity matrix takes 4.1h (using 85 cores) and 118.906
GB memory (Supplementary Table S1). With the O(N?) time com-
plexity and O(N) space complexity, for the entire SRA set (N =196
523), the estimated runtime of direct apricot is 66 days (using 85
cores) and the estimated memory usage is 2336.776 GB, which is in-
feasible. The hierarchical selection on the entire SRA set (N =196
523) takes 17.6 h (using 85 cores) and 56.430 GB memory, which
makes this task fully feasible.

3.3 Hierarchical selection outperforms random

sampling for the entire set of SRA RNA-seq samples

The hierarchical representative set selection outperforms random
sampling for the entire set of SRA RNA-seq samples. We compare
the hierarchical selection with random sampling by selecting differ-
ent sizes of representative sets from the entire SRA set (Fig. 5;
Supplementary Table S4). The hierarchical selection outperforms
random selection in all these cases (Fig. 5); when selecting 7000 rep-
resentative samples, the hierarchical selection outperforms random
selection substantially, with a similar level of difference to those of
smaller full sets. The dpg values of the hierarchical selection are
larger than that of selecting 1000 from the recent 10 000 samples,
mainly because the ratios rep,,,size/full ,,size are much smaller here,
one magnitude smaller than the ratio 0.1 in selecting 1000 from 10
000. As the size of the representative set increases, the representa-
tiveness of the hierarchical selection initially barely changes but
increases when going from selecting 5000 to selecting 7000 repre-
sentative samples. Random sampling’s dyx are almost 1.0 (the max-
imum cosine distance) and do not change as the size of the
representative set increases, indicating its poor performance on the
entire SRA set. The final representative sets of different sizes are
available at the GitHub repository: https://github.com/Kingsford-
Group/hierrepsetselection.

4 Discussion

Our results show that the hierarchical representative set selection is
a close estimate to the direct representative set selection, while sub-
stantially reducing the runtime and memory usage of the direct se-
lection, which makes subset selections feasible on big data such as
the entire available RNA-seq samples in the SRA.

The chunk-size 7 needs to be large enough to avoid chunk over-
laps in the seeded-chunking (Supplementary Table S7). If the chunk-
size is too small, a large dense blob containing many more samples
than the chunk-size could have multiple chunks overlapping there.
Chunks need to have equal sizes (except for 1 or 2 chunks when
N/m is not an integer) to fit to the resource capacity, so when the
chunk of the closest seed is full, the data point has to be assigned to
its closest non-full seed. So although the seeds are spread out, if the
chunk-size is not large enough, there could still be chunk overlaps in
the seeded-chunking.

The choices of the parameters m (which yields /), O and the
number of iterations (levels) depend on the full-set size N and the
memory of available computing resources. These parameters can
affect the selection accuracy, runtime and memory usage of the hier-
archical selection. In all the results here, we use Q =m/5, which
means rep,,size/chunk,, = ~0.2 for each chunk. Increasing this
ratio could increase the selection accuracy at each chunk, however,
the subsequent merged set would be larger, causing more chunks at
the next level and thus increasing the runtime. Decreasing 7 (and
thus increasing /) could reduce the runtime, however, smaller chunks
have more overlaps which decrease the overall selection accuracy
(Supplementary Table S7). Thus, the overall design of the hierarchy

with parameters’ choices involves trade-offs between selection ac-
curacy, runtime and the resource capacity.

The mean®-weighting uses the average distance between samples
of a chunk to indicate the chunk overall density. This is a heuristic.
In a case that a chunk has several dense clusters that are far apart,
causing a bigger average distance than the distances within clusters,
the chunk may be assigned an unnecessarily larger weight. This may
be partially addressed by performing clustering on each chunk and
using the weighted-mean of average distances of all clusters as the
chunk density. However, an accurate clustering incurs more compu-
tational cost. In our observation, most chunks do not have a dis-
tinctly clustered structure, and rather have a mixture of a few
clusters and many roughly uniformly distributed data points. Thus,
the mean?-weighting is a viable trade-off between runtime and selec-
tion accuracy.

In addition to the partial Hausdorff distance, a useful evaluation
for a representative set could be using the representative set as the
training set to train classifiers to compare the classification accuracy.
The classifiers could take the gene expression vectors or transcript
abundance vectors as input features. We could compare the classifi-
cation accuracy of the models trained by using different representa-
tive sets. This is a direction for future work.

Additional discussions can be found in the ‘Additional discus-
sions’ section in Supplementary Materials.

5 Conclusion

We demonstrate that our novel hierarchical representative set selec-
tion method can greatly reduce the runtime and memory usage of
the direct representative set selection with the full similarity matrix
computation, while still achieving summarization quality close to
that of the direct representative subset selection and substantially
outperforming random sampling. This is the first approach to this
problem that can scale to collections of the size of the full set of pub-
lic human RNA-seq samples in the SRA.
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