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Bayesian Risk With Bregman Loss: A Cramér—Rao
Type Bound and Linear Estimation

Alex Dytso™”, Member, IEEE, Michael Faul}

Abstract— A general class of Bayesian lower bounds when the
underlying loss function is a Bregman divergence is demon-
strated. This class can be considered as an extension of the
Weinstein—-Weiss family of bounds for the mean squared error
and relies on finding a variational characterization of Bayesian
risk. This approach allows for the derivation of a version of
the Cramér-Rao bound that is specific to a given Bregman
divergence. This new generalization of the Cramér-Rao bound
reduces to the classical one when the loss function is taken to
be the Euclidean norm. In order to evaluate the effectiveness of
the new lower bounds, the paper also develops upper bounds on
Bayesian risk, which are based on optimal linear estimators. The
effectiveness of the new bound is evaluated in the Poisson noise
setting.

Index Terms— Cramér-Rao, minimum mean squared error
(MMSE), Bregman divergence, linear estimation, Poisson noise,
Gaussian Noise.

I. INTRODUCTION

INDING lower bounds on a Bayesian risk is an impor-

tant issue in signal estimation as such bounds provide
fundamental limits on signal recovery. Moreover, they can
contribute useful insights and guidelines for algorithm design
in data-driven applications, where Bayesian analysis is of ever-
increasing importance. A plethora of such bounds are known
for the mean squared error (MSE). Loosely speaking, these
bounds can be divided into three families. The first family,
termed Weinstein—Weiss, works by using the Cauchy—Schwarz
inequality [2], and includes the prevalent Cramér—Rao (CR)
bound (also known as the van-Trees bound [3]) as a special
case. The second family, termed Ziv—Zakai, is derived by
connecting estimation and binary hypothesis testing [4]. The
third family uses a variational approach and works by mini-
mizing the MSE subject to a constraint on a suitably chosen
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divergence measure, for example, the Kullback—Leibler (KL)
divergence [5], [6].

This paper is concerned with a generalization of the
Weinstein—Weiss family of bounds beyond the MSE. Specif-
ically, the aim is to provide a generalization of this family
to a larger class of Bayesian risks, where the loss functions
are taken to be Bregman divergences (BDs). Bayesian risk
based on BDs is playing an increasingly important role in
estimation and information theory [7]-[11], and there is a
need to derive lower bounds that will hold for these loss
functions. A possible research program in this area consists
of attempting to generalized each of the aforementioned
family of bounds to the BD case. This work follows this
program by generalizing the Weinstein—Weiss bounds, while
follow-up work will generalize the variational bounds based on
the Kullback-Leibler divergence. Beyond information theory,
Bregman divergences are also starting to play an important
role in statistics and machine learning, where non-Euclidean
losses have found several applications [12]-[16]. The use of
Bregman risk can also be motivated from the point of view of
directional statistics [17].

The key to deriving the Weinstein—Weiss bounds for the
MSE is the Cauchy—Schwarz inequality. The difficulty with
such a generalization is that it is not immediately clear how
the Cauchy—Schwarz inequality can be applied to BDs, which
are, in general, not metrics, and do not necessarily have natural
norms associated with them.

In this paper, by using elementary techniques such as Tay-
lor’s remainder theorem, it is shown that the Weinstein—Weiss
approach can be generalized to the Bayesian risk when
the loss function is taken to be a BD. Furthermore, this
generalization makes it possible to derive a version of the
CR bound that is specific to a given BD. This new gen-
eralization of the CR bound reduces to the classical CR
bound when the loss function is taken to be the Euclidean
norm.

In addition to developing a new Cramér—Rao type family of
bounds, a second goal of this work is to assess the tightness
of these bounds. However, in order to do so, we need to
have access to the true Bayesian risk. The latter is usually
not available, which is the reason why we seek lower bounds
in the first place. Therefore, to assess the effectiveness of the
lower bounds, we will further upper bound the Bayesian risk
with a risk that uses a linear estimator and will compare the
proximity of the upper and lower bounds. The theory of linear
estimation is well-understood in the case of the MSE error.
However, in the case of BDs, the general structure of optimal
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linear estimators is not well-understood. To close this gap,

this work will also focus on determining the optimal linear

coefficients for a given BD.
The paper outline and contributions are as follows:

o Section II reviews properties of BDs and of the correspond-
ing Bayesian risks.

o Section III presents a variational characterization of the
Bregman risk and the new family of bounds.

o Section IV discusses some applications of the variational
representation. In particular, Theorem 3 presents a general-
ization for the CR bound that is specific to a given BD and
reduces to the classical CR bound when the Bayesian risk
corresponds to the MSE.

e Section V discusses the structure of the optimal linear
estimator for a given BD. In particular, Proposition 2
presents equations that characterize the optimal coefficients.
Moreover, conditions on the prior distributions under which
the optimal estimators are linear are discussed.

o Section VI, in order to show the utility of the new CR bound,
evaluates the bound for the Poisson noise case with a BD
natural for this setting. In particular, it is shown that the CR
bound has the same behavior as the Bayesian risk when the
scaling parameter of the Poisson noise is taken to be large.

Notation: Random variables are denoted by upper case

letters, and their realizations are denoted by lower case letters.
The inner product is denoted by (-,-). The identity matrix is
denoted by I. For two symmetric matrices A and B we say
that A < B if B — A is positive-definite. For a symmetric
positive semidefinite matrix A with an eigendecomposition
A = VAV~! the square root matrix is defined as Az =
VAzV~! where the square root of the diagonal matrix A is
defined element wise. For 0 < A we define the Mahalanobis
metric as ||z||a = VaT Az, where ||z|| denotes the Euclidian
metric. The expected value is denoted by E[-]. For a random
variable X € R™ with a probability density function (pdf) fx,
the score function is defined as px (z) = %’ where V is
the gradient operator.

II. BREGMAN DIVERGENCE AND BAYESIAN RISK

In order to define a Bayesian risk or estimation error, one
needs to select a loss function. The family of loss functions
considered in this paper is defined next.

Definition 1 (Bregman Divergence): Let ¢ : @ — R be a
continuously-differentiable and strictly convex function defined
on a non-empty closed convex set 8 C R™ — [0,00). The
Bregman divergence between u and v associated with the
function ¢ is defined as

ly(u,v) = (u) = ¢(v) — (u — v, Vo(v)),

Remark 1: Formally, to avoid issues with the differentiation
of ¢, the Bregman divergence needs to be defined as £, : € x
in(€2) — [0, co) where in(€2) denotes the relative interior of €.
However, for the ease of exposition we omit this notation.

The BD can be interpreted as an error due to an approxima-
tion of ¢(u) with a line tangent to the point (v, ¢(v)). Fig. 1
illustrates this interpretation.

BDs have been introduced in [18] in the context of
convex optimization. There exists several extension of the

u,v € Q. (1)
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Fig. 1.

Illustration of the definition of the BD.

BD definition such as an extension to functional spaces [19],
an extension to submodular set functions [20], and a matrix
extension [21].

In [22], BDs, together with f-divergences, were charac-
terized axiomatically. A thorough investigation of BDs was
undertaken in [12], where it was shown that many commonly
used loss functions are members of this family. Moreover,
the authors of [12] have shown that every regular exponential
distribution has a unique BD associated with it.

Now consider the problem of estimating a random variable
X from a noisy observation Y, where the loss function is
according to (1). The smallest Bayesian risk associated with
this estimation problem is defined next.

Definition 2 (Minimum Bayesian Risk With Respect to a
BD): For a joint distribution Py x we denote the minimum
Bayesian risk with respect to the Bregman divergence £4(u, v)
as

inf
f:f is measurable

Ry(X|Y) = Ells (X, f(Y)]. @
R4(X|Y) is also referred to as Bayesian Bregman risk in
what follows.
Remark 2: The most prominent example of Ry(X|Y) is
the minimum mean squared error (MMSE), which is induced
by choosing ¢(u) = ||u/|?> and will be denoted by

The structure of the optimal estimator in (2) was studied
in [23], where it was shown that the conditional expectation is
the unique minimizer. Moreover, the authors of [23] have also
demonstrated the converse result, namely that the conditional
expectation is an optimal estimator only when the loss function
is a Bregman divergence.

A. Fundamental Properties of Bregman Divergences

We now, for completeness, review the most important
properties of BDs and the associated Bayesian risks [12], [23].
Theorem 1 (Fundamental Properties of Bregman Diver-
gences and Bayesian Bregman Risks):
1) (Non-Negativity) £y(u,v) > 0,Yu,v € €, with equality if
and only if u = v;
2) (Convexity) {4(u,v) is convex in u;
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3) (Linearity) £s(u,v) is linear in ¢;
4) (Generalized Law of Cosines): For u,v,w € )

€¢(ua U) = €¢ (u7 ’LU) + €¢(’LU, U)
—(u—w,Vo(v) = Vo(w)); )

5) (Orthogonality Principle and Pythagorean Identity) For
every random variable X € 2 and every u € 2

E[ls(X,u)] = E[ls (X, EIX])] + Lo(E[X], u).  (5)
Moreover, for any measurable f(Y")
Ells(X, f(Y))] = E[ls (X, E[X|Y])]
+E[l (BEX[Y], f(Y))].  (6)

6) (Conditional Expectation is the Unique Minimizer) Sup-
pose that E[X] < oo and E[¢(X)] < co. Then,

inf
f:f is measurable

Ells (X, f(Y))] =E [l (X EXY])]. (D)

7) (Coupling between Conditional Expectation and Bregman
Divergence) Let ' : R™ x R" — R be a non-negative
function such that F(z,x) = 0 and assume that all
partial derivatives F, ., are continuous. If for all random
variables X € R" it holds that

inf B[F(X,u)] =E[F(X,E[X])], ®
ueR™

with E[X] being the unique minimizer, then F(u,v) =
Ly (u,v) for some strictly convex and differentiable func-
tion ¢ : R" — R.

B. Notable Examples of BDs in Estimation Theory

BDs and their associated Bayesian risks appear naturally
in connection with information measures. For example, the
mutual information between Y and X can be represented as
an integral of the BD induced by
o ¢(u) = |lul|* (ie., the MMSE) when Py |x is a Gaussian

distribution [24], [25];

o ¢(u) = ulogu when Py x is a Poisson distribution [8], [9];

o ¢(u) = wulogi*- when Py x is a binomial distribu-
tion [10]; and
o #(u) = wulog{y, when Py|x is a negative binomial

distribution [10].
Table I summarizes the above examples together with the
corresponding BDs. The latter will be referred to as the
natural BDs in what follows. For a more detailed treatment
of connections between information measures and BDs, the
interested reader is referred to [26].

III. A VARIATIONAL REPRESENTATION
OF BREGMAN RISK

In this section, we provide a variational characteriza-
tion of Bayesian Bregman risk. We start by introducing an
{o-representation of Bregman divergences.

1987

TABLE I
TABLE OF BDs

Domain o(u) Ly (u,v) Natural Noise
R™ lull2, 0=<A lu—v||% Gaussian
Ry ulogu ulog ¥ — (u —v) Poisson
[0,1] ulog 12— ulog Z((i:::g - (71‘::;) Binomial
R4 ulog 13 ulog ZSIZ; - (11:;’) Negative Binomial

A. Bregman Divergence Vs. Mahalanobis Distance

As one might expect, the variational characterization of
the Bayesian Bregman risk requires an application of the
Cauchy—Schwarz inequality. However, a priori, it is not imme-
diately clear how the Cauchy—Schwarz inequality can be
applied to frequently complicated expressions (see Table I)
of BDs. The approach, however, becomes clear after an
elementary application of Taylor’s remainder theorem, which
allows representing a BD as a weighted squared error.

Lemma 1 ({y-Representation of Bregman Divergences):
Suppose that ¢ in Definition 1 is twice differentiable and let

1
Ay(u,v) = %/0 (I —t)Hu((1 — t)u + tv)dt, 9)

where x — Hg(x) is the Hessian matrix of ¢ evaluated at z.
Then, Ay(u,v) is positive definite and

Co(u,0) = [[(w—0)T A2 (w,0)|%, wv € Q. (10)

Proof: Recall that given a twice differentiable function
¢ : R" — R Taylor’s remainder theorem [27] asserts that

Bu) = 9(v) + {u — v, V()
#5007 | [ 0= 0t tto = )at] (o)
(11)

Observe that the BD (y(u,v) is the remainder of the
first order Taylor series expansion of ¢(u) around v. There-
fore, by the integral representation of the remainder in (11),
it follows that

ly(u,v)
1
= =0 | [ Mot o0 - ] (w—0)
(12)
= (u—v)TAy(u,v)(u —v). (13)

Furthermore, since ¢ is strictly convex, the Hessian matrix
Hg and the matrix A, (u,v) are positive definite. This con-
cludes the proof. |

Remark 3: In the scalar case (13) simplifies to

Lo (u,v) = Ly2(u, v) Ay (u, v), (14)

with Ay being strictly positive.
Remark 4: It can be argued that (10) and (14) trivially
hold true since any two functions with identical support can
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be expressed as weighted versions of one another by simply
choosing the weight to be their ratio. Here, however, it is
important to note that Ay can be obtained directly from ¢ by
evaluating the integral on the right hand side of (9). In other
words, A can be calculated without evaluating /.

We note there have been other attempts to connect /5 dis-
tance and the BD. For instance, the authors of [28] also used
the fact that BD is the remainder of the first order Taylor
series expansion and expressed the remained as an infinite
series. However, such infinite series representations require ¢
to be infinitely differentiable and do not lead to a compact
representation as in (10).

Equation in (10) has a strong resemblance to Mahalanobis
distance with the exception that the covariance matrix depends
on the inputs u, v. That is, using (10), we can write

£ (,0) = lu=0]2, - (15)

It is important to note that this analogy only holds locally,
meaning that at any given point (u,v) the BD /4(u,v)
corresponds to a certain Mahalanobis distance. However, since
the latter changes with (u, v), the global properties of BDs and
Mahalanobis distances, such as the expected risk considered
here, can differ significantly. For instance, one can compare
the topology of the ball induced by each divergence. To this
end, let the Bregman-ball of radius r with center at ¢ € 2 be
defined as follows:

By(r,c) ={ueQ:ly(u,c) <r}. (16)

Moreover, because £4(u,v) may not by symmetric we can
also define By (r,¢) = {u € Q: £4(c,u) < r}. For the Maha-
lanobis distance, the shape of the ball or the neighborhood is
given by an ellipse. This is not the case for BDs. For example,
consider the function ¢(u) = wuqlogus + uslogus where
uw = [ug,us)” with © = R2, which induces the following
BD: for u = [u1,uz2]’ and v = [vy,v]T
2

Ly (u,v) = uq log L + us log el
U1 V2

(u1 - 1]1) — (U;Q — 'UQ).
A7)

The BD in (17) is known as generalized I-divergence or
generalized KL-divergence. Fig. 2 compares neighborhoods
By (r,c) and By(r, ¢) induced by the BD in (17) to the standard
Euclidian ball B2 (r, c) where we set ¢ = (2,2) and r = 1.

B. Variational Characterization of the Bayesian Bregman
Risk
With Lemma 1 at our disposal, we are now ready to derive
a variational characterization of the Bayesian Bregman risk.
Theorem 2 (Variational Characterization of Bayesian Breg-
man Risk): Let g : RF — Q. Then,

E[64(X, g(Y)]
B [(X—g(Y)To(xX, V)]

= sup — , (18)
wRexE - B (A (X, g(V)$(X,Y)2]
and equality in (18) is attained if
P(X,Y) = Dy (X, g(Y))(X—g(Y)). (19)
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Fig. 2. Comparison of Bregman balls B(b (r,¢), [5’¢(r, ¢) and the Euclidean
ball B),2(r, ¢) where 7 =1 and ¢ = [2,2].

Proof: By using Lemma | we have that

E[ls(X,9(Y))]

T A3 2
= E[(X—g(")" 8 (X, (V)] (20)
TAZ ?

_ [ElE-som i g0y
- E [[|n(X, Y)[1?] ’
where the last step follows from the Cauchy—Schwarz inequal-

ity for some arbitrary function h R” x RF — R~
Next, we rescale the expression by choosing h(z,y) =

21

A;%(x,g(y))w(x,y), for some arbitrary function v : R™ x
R* — R”™, which leads to the expression on right side of (18).
The proof of the equality condition follows by inspection. This
concludes the proof. |

The variational characterization in (18) is a generalization
of the Weinstein—Weiss representation of the MSE, which is
included as the special case when A, = | [2]. Note that the
expression in (18) holds even if the denominator on the right
side of (18) vanishes but the numerator does not; in this case
E [£4(X, g(Y))] = oc.

Setting g(Y) = E[X|Y] yields a variational characterization
of the minimum Bayesian risk with respect to a BD, which is
an important corollary of the above result.

Corollary 1:

wp  ELX BT V)

Ry(X]Y) = 1 '
YR XRESRY | [HA¢ *(X,E[X|Y])v(X, Y)IIQ}

(22)

IV. DISCUSSION AND APPLICATIONS TO ESTIMATION

In this section, we first show a small application of the
alternative representation of the BD in Lemma 1. Second,
we present a generalized version of the CR that is specific
to a given BD bound.

A. Comparing Bregman Risk and the MMSE

Our first application shows how Bregman risks can be
connected to the ubiquitous case of a risk with a squared error
loss.
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Proposition 1: Suppose that x;l < Hg =< Kyl for some

constants k;, k, > 0. Then,
rmmse(X|Y) < Ry(X|Y) < k,mmse(X|Y). (23)

Proof: The proof follows by using Lemma 1, that is under
the hypothesis of the theorem we have that

Kil = Ag(u, v) < Kyl (24)

Hence,
Kily2 (u,v) < ly(u,v) < Kyly2(u,v). (25)
This concludes the proof. |

B. A Generalization of the Bayesian CR Bound

The classic CR bound allows for lower bounding the MMSE
with the Fisher information: for X €  C R™

2

n
mmse(X|Y) > ) (26)
)2 BVt fr X0
where the above holds under the regularity conditions
E[Vxlog fyx (Y, X)|Y =y =0, Vy; and (27a)
rfyx(y,x) =0, Vy, Vo € 0Q, (27b)

where 02 denotes the boundary of the set 2 [3]. The quantity
E [|[Vx log fyx (Y, X)||?] is of course the Fisher information.

The next theorem proposes a generalization of the CR
bound.

Theorem 3 (Generalized CR-Bound): Suppose that condi-
tions in (27) hold. Then,

2

Ry(X|Y) > —— . .
E (18, (X, E[X|Y])Vx log fyx (Y, X)|P’]

(28)

Proof:  The proof follows by choosing ¥(x,y) =

V. log fyx(y,z) in (18). Now observe that

E[(X —E[X[Y])Vxlog fyx (Y, X)]
=E [X"Vxlog fyx (Y, X)]

—E[EX[Y]E[Vx log fyx (Y, X)[Y]] (29)
ZE[XTVXlogfyx(KX)], (30)
where E [E[X|Y]E[Vxlog fyx(Y,X)[Y]] = 0 from the
assumption in (27). To conclude the proof note that
E [X"Vxlog fyx (Y, X)]
Tv fYX yv )
dad 31
// Frx (0.2) ———— frx(y,x)dzdy 3D
— [ [a"9utvxt.)doy (32)
- 0
= ;//mia—%fyx(y,x)dmdy = —n, (33)

where in the last step we have used integration by parts and
the fact that = fy x (y, ) = 0 for x € 9. |
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Observe that the quantity in (28) can be thought of as
a generalization of the Fisher information that takes into
account the corresponding BD. Its dependence on the quantity

A;% (X,E[X|Y]) makes the generalized CR bound more
difficult to compute than the classical CR bound for the MMSE
for which A, ?(X,E[X[Y]) = I. In Section VI, by using
a Poisson noise example, we will show how this difficulty
can be overcome. We also refer the reader to [29] where we
show yet another example in which the lower bound in (28)
is effective for the binomial noise channel. A goal of this
work is to assess the tightness of the above bound. However,
in order to make such a comparison, we need to have access to
R4(X|Y'), which is not usually available and is the reason why
we find lower bounds in the first place. Therefore, in order to
assess the effectiveness of the lower bound, we will first upper
bound Ry (X|Y) and then compare the proximity of the upper
and lower bounds. Our upper bound on R, (X|Y) will be
based on a risk that uses an optimal linear estimator instead
of the optimal estimator. The theory of linear estimation is
well-understood in the case of the MSE error but is less well
understood in the case of BD divergences. In the next section,
we present several results concerning optimal linear estimators
for the BDs.

Remark 5: We note that (28) is not the only way of general-
izing the CR bound. There exist several other generalizations
of the CR bound either to other loss functions or other notions
of variance; the interested reader is referred to [30]-[37] and
the references therein.

Remark 6: An interesting feature of the CR lower bound in
(28) is that it depends on the estimator ¢g(Y"). Note that in the
case of the MSE the CR bound in (26) does not depend on
the estimator in question and is uniform over all estimators.
On the one hand, a benefit of this dependence is that one can
adapt the lower bound to the estimator in use and potentially
get a tighter bound. On the other hand, a drawback might be
the computability of such a bound. However, the latter can be
addressed by using the CR bound corresponding to Ry (X|Y),
which is uniform over all estimators, i.e.,

Ells(X,9(Y))] = Ry (X[|Y)

n2

> 1 :
E[l18,% (X E[X|Y])Vx log fyx (¥, X) 2]

Finally, we would like to note that in the non-Bayesian
literature lower bounds on risk often depend on the estimator.
An example of such a bound is the CR bound for biased
estimators; see for example [38].

V. ON OPTIMAL LINEAR ESTIMATORS

We say that a linear estimator ¢g(Y') = CY + d, where C €
R"** and d € R", is permissible with respect to the domain
Q C R™ (or simply permissible) if

PICY +de Q] =1. (34)

Note that unlike for the MSE where 2 = R"™, not all
linear estimators might be permissible for a given BD as
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g(Y) = CY + d might not belong to 2. Consequently,
we define the minimum linear Bayesian risk as

Ry L (X[Y) = E[€s(X;9(Y))]
(35)

It immediately follows that R,(X|Y) < Ry (X]|Y).
We next explore the following two questions: 1) What is
a characterization of the optimal coefficients in (35)? and
2) When are linear estimators optimal (i.e., Ry(X|Y) =

R¢7|_(X|Y))?

inf
g=CY +d, and g is permissible

A. On the Characterization of Optimal Linear Estimators

Recall that the optimal coefficients of MSE-optimal linear
estimators are given by [39]

Cumse = Cov(X, Y)Var 1(Y), (36a)
dmse = E[X] — C*E[Y7], (36b)
where Cov(X,Y) = E[(X — E[X])(Y — E[Y])T] € R**k

and Var(Y) = E[(Y — E[Y])(Y — E[Y])T] € R¥** 1t is
important to note that the MSE-optimal coefficients are not
in general optimal for other BDs. The next result provides
necessary conditions for the optimality of linear estimators.

Proposition 2: Fix some ¢. Then, C, d minimize (35) only
if the following conditions hold:

PCY +d e Q] =1, (37a)
E[H4(CY +d)(CY +d— X)Y'] =0, (37b)
E[H4(CY +d)(CY +d — X)] = 0. (37¢)

The above conditions are also sufficient if v — £4(u,v) is
convex for very u € €.

Proof: The condition in (37a) is needed for the estimator

to be permissible with respect to the domain (2. To show the

other two conditions let C = [C|d] and Y7 = [Y7 1]. We now

check the first order condition necessary for optimality
0 = VeE[(4(X,CY)). (38)

If v — £4(u,v) is convex for very u € ), then the first
order condition is also sufficient.
To find the gradient first observe that

Vil (u,v) = Hg(v)(v = u).

Consequently, by using the chain-rule of differentiation we
have that

(39)

Velo(u, C) = Vi (u, Ch)g" (40)
= Hy(Co)(Cg — w)j". (41)

Therefore, the first order condition becomes
0= VeE[(4(X,CY)] = E[H,(CY)(CY — X)YT].  (42)
|

Perhaps the most obvious example to consider first is that
of Gaussian statistics.

Example: Fix some ¢ with Q = R™ and (X,Y") let be jointly
Gaussian. Then, the Bregman-optimal linear estimator for
Ry (X|Y) is given by the MSE-optimal estimator in (36b).
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Proof: First, we show that for Gaussian statistics, the
coefficients of the estimator in (36b) solve the equations
in (37c), which show that these estimators satisfy the necessary
condition. The fact that these are also sufficient will be shown
in a more general result in the next section.

Since 2 = R™, we only need to check the last two equations
in (37c). These simplify to

E [E [He(CY +d)(CY +d — X)YT|Y]]

E [Hy(CY +d)(CY +d—E[X|Y])Y"], and  (43)
E[E[Hg(CY +d)(CY +d — X)|Y]]
7]E[H¢(CY+d)(CY+d—E[X|Y])]. (44)

The fact that the above equations are equal to zero if (C, d)
are chosen to be the coefficients of the MSE-optimal estimator
follows from the fact that if (X,Y") are jointly Gaussian, then
E [X]Y] is given by the linear estimator in (36b). [

Remark 7: It is interesting to note that, under Gaussian
statistics, the MSE-optimal linear estimator is optimal for
a much wider range of loss functions such as ¢,,p > 1.
Moreover, for these loss functions, the conditional expectation
is, in general, not an optimal estimator. The interested reader
is referred to [40] and references therein.

Remark 8: In general, the equations in (37c) can be difficult
to compute in closed-form, and one needs to resort to algo-
rithmic solutions. We do not attempt to explore this question
in depth as it warrants its own independent study. However,
one possible approach to finding optimal coefficients is to
use a projected gradient descent algorithm. To that end, let

=[C|d)and YT = [YT 1] and
C={C:P[CY € Q] =1}. (45)

The set C represents the collection of all permissible linear
estimators with respect to €2. The projection operation onto C
is denoted by proje (-). Therefore, the update equation for the
gradient descent is given by

Civt = proje (Ct — AVE[l(X, CY/)]) teN  (46)
where A > 0 and where the gradient was computed in (42)
and is given by V:E[(, (X, CY)] = E[H4(CY)(CY — X)Y7].

The difference between the MSE-optimal coefficients
(Cinses dmse) and the Bregman-optimal coefficients (C*,d*)
will be demonstrated via several examples in Section VI
in the context of Poisson noise. A partial answer to when
(Cinse, dmse) = (C*,d*) is given next.

B. Conjugate Priors and Exponential Family

In this section, we consider the question: when does
Ry (X]Y) = Ry(X|Y)? Clearly, a sufficient condition
is equality between the optimal estimator E[X|Y] and the
optimal linear estimators. This condition turns out to be also
necessary, as is shown next.

Lemma 2: Let the linear estimator g(Y) = C*Y + d* be
Bregman-optimal in the sense of (35). Then,

Ry L(X]Y) = Ry(X]Y), (47)
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if and only if

E[X|Y] = CY +d*, Y-almost surely. (48)

Moreover, (C*,d*) are the MSE-optimal coefficients given
in (36b).

Proof: Using the Pythagorean property in Theorem 1 we
have that

Ry L (XY) = Ry (X[Y) = E[ls(E[X[Y], C7Y + d7)].
(49)

Therefore, Ry (X|Y) = R4(X|Y) if and only if
E[{4(E[X|Y],C'Y + d*)] = 0. Since BDs are non-negative,
this is true if and only if {4(E[X|Y], C*Y +d*) = 0, Y-almost
surely. Moreover, in view of the first property in Theorem 1,
ly(E[X|Y],CY +d*) = 0, Y-almost surely, if and only if
E[X|Y] = CY +d*, Y-almost surely.

Finally, because E[X|Y] is also MSE-optimal, the estimator
C*Y + d* must also be the MSE-optimal linear estimator. H

In view of Lemma 2, the condition for the equality of
Ry (X|Y) and Ry(X|Y) reduces to characterizing a set
of distributions on (X,Y’) such that (48) holds. Answering
this question in full generality is a difficult task. However,
partial answers to this question are available in the literature.
In particular, a very general set of distributions is known for
the case when

E[X|Y] = a*Y + d*, (50)

that is when C* = a*| for some scalar a*. We next present
this family of distributions. This is done by first defining a set
of noise transformations Py |x, and then defining the set of
priors Px.

The noise transformation that we use comes from the
exponential family defined next [41].

Definition 3: An n-parameter natural regular exponential
family {Pye—s}, of probability measures with respect to a
o-finite measure ;x on R™ is given by

dPy|e=¢

— oW.0)—v(0) g 31
i (y) =e 0 EN, 5D

where y € R™ and N’ C R" is an open set, and where
e¥(0) — /e<y’0>du(y). (52)

The parameter ©, the set A/ and the function v are known
as the natural parameter, the natural parameter space, and the
log-partition function, respectively.

We denote the mean parameter of the exponential family
by X = E[Y|O]. Recall that there is a one-to-one mapping
between the natural parameter and the mean parameter:

X = Vi(0) and © = V" (X),

where 1* is a convex conjugate of 1.!

As an object of estimation, we will focus on the random
mean parameter X with a distribution Py, and let the random
transformation according to (51) be denoted by

Y =&y ,.(X).

ILet f:Q — R be a convex function on €. Then, its convex conjugate is
the function f*(y) = sup,cq((y, z) — f(z)),y € Q.

(53)

(54)

1991

We will also refer to the expression in (54) as a channel.
We next define a set of priors on X for which linear estimation
is optimal. Such priors are easiest to define with respect to the
natural parameter ©.

Definition 4 (Conjugate Prior): Let N be a nonempty
convex open set in R™ and let A denote the Lebesgue measure.
Define a measure 1, , < A whose density with respect to
A is given by

Ts(0n,v) = OO L e R ne R 0N, (55)

where () is a log-partition function. If TT,, ,(N) < oo,
then 7, (0|n,v) can be normalized to a probability measure
with density 7y, (6|n, ). We refer to my(6|n, ) as the conju-
gate prior associated with .

Remark 9: Let Y C R™ denote the interior of the convex
hull of the support set of the measure p in Definition 3.
As was show in [42], a sufficient and necessary condition for
I, ,(N) < oo is that v > 0 and 1 ¢ Y. In the remaining
analysis we assume that this condition holds.

Theorem 4: Assume the following:

o Vi(N) C Q; and

o Y =E& ,(X) and O ~ 7y (:|n,v).

Then,

Ry(X[Y) = Ry, (X]Y), (56)
where E[X|Y = y] = Ziﬁ{ (e, a* = # € Rand d* =
o7 ERM).

Proof: The assumption that © follows a conjugate prior
7y (-|n, v) together with the result in [42, Thm. 2] imply that

nty
E[Vo(@)lY = y) = LY.

Moreover, using the fact that X = V¢(©), we have that
E[X|Y = y] = . Furthermore, the condition V) (A) C ©
implies that E[X|Y = y] = Ziﬁ{ and X are permissible with
respect to the domain €2, where X is permissible in an almost
sure sense. Hence, both are valid input arguments into the
Bergman divergence /.

Now since the conditional expectation is a linear function of
Y, the conclusion that Ry (X|Y) = Ry (X|Y) follows from
Lemma 2. |

Remark 10: Despite the fact that for conjugate priors
we have a simpler structure for the conditional expectation,
finding a closed-form expression for Ry (X|Y) can still be
a difficult task.

Further investigation of the conditions under which the
conditional expectation is a linear function is an interesting
director for further research. For example, one ambitious
direction is to characterize the set of pairs of priors and
exponential distributions for which E[X Y] = CY +d where C
is not an identity matrix. As was shown in [43] for the vector
Poisson channel, such pairs do not always exist, and the only
case when E[X|Y] is linear is when C is a diagonal matrix.

(57)

VI. EVALUATIONS OF THE BOUNDS FOR
THE POISSON NOISE CASE

In this section, we consider an observation model governed
by Poisson noise and a loss function natural for this setting.
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Fig. 3. Comparison of the squared error loss to the loss in (58) for v = 0.5.

Specifically, we consider ¢(u) = ulogu with = R4 so that

Ly(u;v) :ulogE —(u—wv), u,v € (58)
v

which is natural for Poisson noise. Note that ¢ (u) is
unbounded, and the results of Proposition 1 do not apply.
Therefore, it is non-trivial to compare the Bayesian risk
corresponding to (58) and the MMSE. Fig. 3 compares the
squared error loss to the loss in (58).

Next, consider the problem of denoising a non-negative
random variable in Poisson noise. The random Poisson trans-
formation of a non-negative real-valued input random variable
X to a non-negative integer-valued output random variable Y
will be denoted by

Y = P(aX), (59)

where a > 0 is the scaling factor. Concretely, the Poisson
noise channel is dictated by the following probability mass
function (pmf):

Prix(ole) = —(az)’e "), (60)
where y = 0,1,... and * > 0. In words, conditioned on
a non-negative input X, the output of the Poisson channel
is a non-negative integer-valued random variable Y that is
distributed according to (60). Note that in (60) we use the
convention that 0° = 1. Poisson noise models comprise an
important family of models with a wide range of applications,
including optical communications [44], [45]. The analysis of
the MMSE in the context of Poisson noise was undertaken
in [46]-[48]. Our objectives in this section are the following:
1) Compare Bregman-optimal coefficients for linear estima-
tion (¢*, d*) and MSE-optimal coefficients for linear esti-
mation (Cmse, dmse). Moreover, we also want to compare
Ry (X]Y) and E [l4(X; cmseY + dmse)]. In particular,
it will be shown that (¢*,d*) may not be equal to
(Cmse, dmse ). Moreover, it will be shown that the linear
estimator with coefficients (¢*,d*) may be biased, while

the linear MMSE estimator is always unbiased.
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2) Evaluate the effectiveness of the CR bound. In particular,
it will be shown that the CR bound is effective in the
high signal-to-noise-ratio regime; and

3) Understand the scaling of Ry (X|Y") and mmse(X|Y") as
a function of the parameter a.

Note that to achieve 2) and 3), we will need to find a prior on
X such that R4 (X]Y), Rg(X|Y) and mmse(X|Y") can be
computed exactly or very efficiently numerically. To find such
a distribution, we resort to the notion of conjugate priors for
which Ry (X|Y) = Ry(XY) discussed in Section V-B.

A. On Optimal Linear Estimation

The MSE-optimal linear estimator in (36b) has a
closed-form expression that depends only on the second-order
statistics and can be easily implemented. Therefore, an inter-
esting question to explore is how does the MSE-optimal linear
estimator in (36b) perform for a given BD when compared to
the Bregman-optimal linear estimator? In other words, we seek
to compare Ry (X|Y) and E [(4(X; cmseY + dmse)]-

We begin by finding the best linear estimator for Poisson
noise and the corresponding MSE. Besides helping us answer
the aforementioned question, this computation will also help us
to evaluate the effectiveness of the CR bound in Section VI-D.

Lemma 3 (Best Linear Estimator for the MSE): Let Y =
P(aX), ¢p(u) = u?. Then,

V(X) E2[X]

e = 0 + B T o rEm @)
and V(xX)
Ry (X]Y) = —55 62)
AEX] +1
Proof: See Appendix A. |

For the loss function induced by ¢(u) = ulog(u), we have
that v — £4(u;v) is convex for every u, and the conditions in
Proposition 2 become sufficient and necessary and reduce to

XY

E [de} = aE[X], (63a)
X

E [CYHJ =1, (63b)

where ¢ > 0,d > 0. As before the coefficients that solve
the above equations are denoted by (c*,d*). In general, the
equations in (63b) do not appear to have a closed-form solution
and must be solved numerically.

We now consider an example that shows that the
Bregman-optimal coefficients can differ from the MSE-optimal
coefficients. Consider the case when the input random variable
X is distributed equally likely on {0, m} (i.e., on-off signal-
ing) and let Y = P(X). Then, using (61) we have that

m m/2
Cmse = m——f'l’ mse — m——{—l (64)
Moreover, for ¢(u) = ulogu
E [€¢ (X; CmseY + dmse)]
1
= % log(m +1) — %]E {log (Nm + 5)} , (65)
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Fig. 4. Comparison of Ry | (X|Y) and E [£4(X; cmseY + dmse)] -

where NV,,, is a Poisson random variable with mean m. This
type of on-off signaling is commonly used over the Poisson
noise channel, for example, as a modulation scheme [45].

We now use the algorithm in Remark 8 to explore
the question of how does the mismatched linear risk
E[l4(X; cmseY + dmse)] compare to the Bregman-optimal
linear risk Ry (X]Y). Fig. 4 depicts the following:
1) the performance of R4 (X|Y) vs. the performance of
E [l4(X; cmseY + dmse)]; 2) the Bregman-optimal coefficients
(¢*,d*) for Ry (X|Y) and the MSE-optimal coefficients
(Cmse, dmse); and 3) the bias of the best linear estimator with
respect to Ry | (X]Y).

From the above example we observe the following:

1) The values of E [(4(X; cmseY + dmse)] and Ry (X]Y)
can differ significantly. See Fig. 4a for the comparison.

2) The values of the MSE-optimal coefficients (Cmse, dmse)
and the Bregman-optimal coefficients (c¢*,d*) for
R4 (X]Y) can different significantly. See Fig. 4b for
the comparison.

3) While the linear MMSE estimator is always unbiased, the
best linear Bregman estimator can be biased. See Fig. 4c
for an example.

In the above example, we have set the scaling coefficient to
a = 1 and looked at the behavior of the risk as a function of

the distribution of X by increasing the parameter m. We now
fix the distribution of X and vary the scaling parameter a.
By inserting the MSE coefficients into the optimality equation
in (63b), it is not difficult to check that

lim (C*, d*) = lim (Cmsea dee)v
a—0 a—0
lim (C*, d*) = lim (Cmse; dmse)~
In other words, for a fixed distribution, the MSE-optimal

coefficients are Bregman-optimal both in high and low noise
regimes.

B. The Conjugate Prior for Poisson Noise

In order to study the estimation in Poisson noise, it is useful
to consider the conjugate prior distribution for this noise.
In the case of Poisson noise, we can describe the conjugate
prior directly in terms X. A conjugate prior for the Poisson
distribution is given by a gamma distribution. We say that X
is distributed according to a gamma distribution if it has a pdf
given by

fl@) = a2’ le ™%, 2 > 0, (66)

where 6 > 0 is the shape parameter and o > 0 is the rate
parameter. We denote the distribution with the pdf in (66) by
Gam(a, 9).
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The next lemma compiles several properties of the gamma
distribution needed in this section.

Lemma 4: Suppose that X ~ Gam(w,f) and that Y =
P(aX). Then,

Blx] = 2, 67
(6%
o
V() = =, (68)
E[ ! ] 00, 9sm (69)
| = nI(0@—n B
Xn « (1“(9) ), 0>n
5 B oo, 6<2
E0={ 3 535 (10)
2 _ oQ, 0 S 1
EpA0X]={ % 93] . an
1 0
E[X|Y = ¢] = 72
(XY =y] ard’Tara (72)
Proof: See Appendix B. |

C. Regularity Conditions

We now verify conditions under which the CR bound in (28)
holds. This condition is given in (27) and is independent of
the choice of ¢. It is also important to observe that the output
of the Poisson noise channel is discrete. However, there is no
issue in applying the CR bound in (28) as differentiability is
only required in the X variable, while the Y variable can have
an arbitrary support.

Proposition 3 (CR Regularity Condition for Poisson Noise):
Let X ~ fx and Y = P(aX). The conditions in (27) hold if

lim fx(x) = 0. (73)

Tr—

Proof: See Appendix C. |
We now applying the above condition to our conjugate prior.
Lemma 5: Let X ~ Gam(a,6). Then, the regularity

condition in (73) holds if 6 > 1.

Proof: The fact that the regularity condition in (73) holds

for 6 > 1 follows from the limit

o 0<1
lim_ et =0 1, #=1 (74)
70 0, 6>1
[}

D. CR Bound for the Squared Loss

In this section, we compute the CR bound for the MMSE.
This computation has two purposes. First, we will be able to
compare the performance of the MMSE to that of Ry(X|Y).
Second, this computation is of independent interest as the MSE
is still a widely use fidelity criterion, and, to the best of our
knowledge, the Bayesian CR bound has not been computed in
the Poisson noise case.

Theorem 5 (CR Bound for the MMSE): Let Y = P(aX)
and suppose (73) holds. Then,

1

mmse(X|Y) > E[L]TER X

(75)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

Proof: See Appendix D. |

From Lemma 3 we have an upper bound on mmse(X|Y),

and from Theorem 5 we have a lower bound on mmse(X |Y)
from which we conclude that

mmse(X|Y) = © (é) .

In other words, the CR bound is an effective lower bound for
large values of a, which corresponds to the low noise regime.
Further evidence of the effectiveness of the bound will be
given in Section VI-F when the bound will be evaluated with
a gamma distribution.

(76)

E. CR Bound for the Natural BD

Before computing the CR bound in Theorem 3 for ¢(u) =
ulogu, we present two ancillary lemmas. The first result
provides bounds on A (u,v).

Lemma 6: Let ¢(u) = ulogu. Then,

1 8u 4dv

2u < Ag(u,v) = 3 T3

Proof: See Appendix E. |
Lemma 7: Let Y = P(aX) with a > 0. Then,

EX|Y =y 1

(77)

lim ——— % < —. 78
y=o (y+1) T oa 78
Consequently, there exist constants ¢; and co such that
EX|Y =y]<cry+eca, y=0,1,... (79)
Furthermore, ¢; and ¢o can be choose as
M(nJrl) o
o= —sup—x A (80)

n20 (n+ M (~a)

where Mx(t) = E [¢"*] ¢t > 0 and /\/lg?) (t) is the moment
generating function of X and its n-th derivative.
Proof: See Appendix F. |

The result in Lemma 7 says that we can find a linear
estimator that upper bounds E[X|Y]. This further underscores
the importance of linear estimators.

We now proceed to evaluate the CR lower bound in
Theorem 3.

Theorem 6 (CR Bound): Let ¢(u) = ulogu and Y =
P(aX) and suppose that regularity condition in (73) holds.
Then,

1
Ry(X]Y) = ; (81)
¢ DChCz
where ¢ and co are defined in (79) and where
8
D51752 = g (a’+E [pAQX(X)X})
401 1
+35 <a2 +aE {Y] +alE [pg((X)X})
402 1
Proof: See Appendix G. |

Note that the lower bound on the MMSE in (75) depends
on E [+] and E [p% (X)] while the lower bound in (81) addi-
tionally depends on the product term E [p% (X)X]. In what
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Fig. 5. Evaluation of the exact MMSE in (83) and the CR bound in (84).
The parameters are set to v = 2.1 and 6 = 3.

follows, we further evaluate the bounds in (75) and (81) with
the gamma prior.

F. Evaluations of the CR Bounds With a Gamma Prior

In this section, we evaluate the CR bound for the MMSE
and the Bregman Risk induced by the function ¢(u) = ulogu.
In addition, to assess the tightness of these bounds, we provide
either closed-form or easily computable expressions for the
risk. Note that, in general, we do not have the luxury of
closed-form expressions, and the case with the gamma prior
is one of the few cases for which it is possible to obtain such
expressions.

The next result evaluates the MMSE and the CR lower
bound for the case when X ~ Gam(a, 6).

Proposition 4 (Gamma Prior and MMSE): Suppose that
X ~ Gam(e,0) and ¥ = P(aX). Then, the following
statements hold:

o (An Exact Expression) An exact expression for the MMSE
is given by

V(X) 0
mmse(X|Y) = T, = a@ta)’ (83)
a_]E[X] +

with V(X) = % and E(X) = £;
e (CR Bound) The CR regularity condition in (73) holds for
6 > 1. Moreover, the bound in (75) reduces to

0, 1<6<2

6—1 922

-1 (84)
a(aJra%) ’

mmse(X|Y) > {

Proof: See Appendix H. |

Fig. 5 compares the exact MMSE and the CR lower bound
evaluated in Proposition 4.

Remark 11: The fact that the bound in (62) is attained by

a gamma distribution suggest that a gamma distribution is the

least favorable prior distribution for the MMSE under the
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mean and variance constraint. To put it differently, for ¥ =
P(aX) the maximizer of

Px. = arg mmse(X|Y), (83)

max
Px E[X]=p,V(X)=P

is given by Px. = Gam(a*,6*) with a* = (%)i and 0* =
M%Pi. We also note that the maximizer in (85) is unique; see
[49, Remark 9] for the details.

As noted in Remark 10, the fact that the estimator has a
simple form does not necessarily imply that Ry(X|Y") does
too. Therefore, in order to evaluate the tightness of the CR
bound, we also provide an exact expression for R4 (X |Y") and
an upper bound on R,(X|Y"), both of which are amenable to
numerical evaluation.

Proposition 5 (Gamma Prior for BD): Let ¢(u) = ulogu,
Y = P(aX) and X ~ Gam(a,6). Then, the following
statements hold:

e (CR Bound) The constant ¢; and co in the CR bound in

Theorem 6 can be chosen to be ¢; = ¢*,co = d* and

8 4 1 o
Des ge = — ——— (a?
d 3(a+a)+3a+a<a —|—a9_1—|—aa>

2
+§aia<a9i1+9a—2)’ (86)
for 0 > 2 and D¢+ 4+ = oo for 0 € [1,2].
o (An Exact Expression)
Ry(X|Y)=E[Xlog X]| - B, (87)
where
E[X log X] = 0 (log (1) +w(9+1))7 38

«
where 1 is the digamma function, and

B:]EK Y + o >log( Y + o )], (89)
a+a a+a a+a a+a

and where Y has a negative binomial distribution with the

pmf given by
ava? <9+y—1> y=0.1
(a+a)"™ y ) T

e (An Upper on R4(X|Y)) The expression in (89) can be
further lower bounded as follows:

Py (y) = (90)

B>E[< aX n 0 >log<aX n 0 ﬂ

at+a «ata at+a «ata
oD

Proof: See Appendix 1. |

Fig. 6 compares the CR bound in (86) to the exact value and
bounds on R4(X|Y) computed in Proposition 5.

Remark 12: Note that in Proposition 5 the CR bound in (86)
can be computed analytically while the exact expression for
R4(X|Y) in (89) cannot be computed in closed-form and
needs to be evaluated numerically. One possible way to do this
is to use the Monte-Carlo approach and generate samples of Y
according to the pmf in (90). Alternatively, since the random
variable Y is discrete with countable support, one can com-
pute (89) by truncating the infinite sum after sufficiently many
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Fig. 6. Evaluation of the exact Bregman risk in (89), the CR bound in (86),
and the bounds in (91). The parameters are set to « = 2.1 and 6 = 3.
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Fig. 7. Scaling of the MMSE and the Bregman risk with ¢(u) = ulog u.
The parameters are set to o = 2.1 and 6 = 3.

terms. To compute R4 (X |Y'), we take the latter approach and
truncate the sum in (89) at y = 300.
It is also instructive to loosen the lower bound in (91) to

erf(Em()]
a+a a+a
which implies that

EIX 1 X (aE[X]—I—H)log ozaa
Ry(x|v) < 2108 X] <+ ) (93)

a+a a+a
Therefore, the new CR bound is of the same order as the

upper bound and

Ry(X|Y) = © (2) . (94)

This conclusion demonstrates that the new CR bound is
effective.
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Finally, note that both Ry(X|Y") in (94) and the MMSE
in (83) are of the same order. Fig. 7 compares the scaling of
the MMSE and the Bregman risk induced by ¢(u) = ulogu
for the gamma prior. From Fig. 7 we also see that the scaling
of the MMSE and R4(X|Y) do not match as a — 0. Indeed,
it is not difficult to show the following limits:

lim Ry(X|Y) = E[X log X] ~ E[X] log(E[X]),

iii% mmse(X|Y) = V(X).

Note that this behavior of the CR bound is not unexpected,
and it is well-known that the CR bound is good only in the
high signal-to-noise-ratio regime [3], while typically different
types of lower bounds are needed in the low signal-to-noise-
ratio regime.

VII. CONCLUSION

This paper has proposed a general class of Bayesian lower
bounds for the case in which the underlying loss function is
a BD. The approach allows for deriving a version of the CR
bound that is specific to a given BD. To show the applicability
of the new CR bound it has been evaluated for the Poisson
noise case. For both examples, the bounds have been shown to
admit the same behavior as the corresponding Bregman risk in
the low noise regime, hence, demonstrating the effectiveness
of the new CR bound.

APPENDIX A
PROOF OF LEMMA 3

The minimizers of (61) are given in (36b), and the minimum
value is given by

Ry L(X]Y) = V(X) = (¢")?V(Y). (95)
The proof is completed by observing that
E[Y] = E[aX] = aE[X],  (96)
V(Y) = a®V(X) +aE[X], (97)
E[(X —E[X])(Y - E[Y])] = aV(X). (98)

APPENDIX B
PROOF OF LEMMA 4

The expressions for E[X] and V(X) are standard.
To show (69) we use the following well-known integral:

/OO k —azrq { o0, k < _]-; (99)
z"e T =
0 ngﬂ), k> —1.
Therefore,
1 af 'O —n)
El_—| = O-1-ng—aqe —q"——__ (100
5| =g [+ e = B a0
for § > n and infinity otherwise.
To show (99) observe that
0—1
px(x) = - —a,z>0 (101)
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and, hence,
61 ? (0 —1)2 o—1
El(T—a> ‘|:E|: X2 —ZQT—FO[ (102)
o ~ .03
= 2
G- —20% + a2, 0>2, (103)
2I(6-2) o?

where we have used that E [;] = «

Xz
for 6 > 2 and E [%] = aF§0(9)1)

T ~— (0—2)(0—-1)
= fl for 6 > 1. Moreover,

0—1 g (6 —1)?2 )
E —_— X| =E -2 -1 X
(X a) ] [ < al@—1)+
0, <1
{051 (104
where have used thatE[%]:a%—e for 0 > 1.

The proof of (72) can be found in [49]. Thls concludes the
proof.

APPENDIX C
PROOF OF PROPOSITION 3

E [Vxlog (Pyx(Y|X)fx(X)) Y =y]

_ [T Ve (Pyix (W) fx ()

_/0 Prix o) fx (@) X @de o a05)
1 oo

N Py(y)/o Vi (Pyix (yl2) fx (@) do (106)

_ %(y) (Prix(lo)fx(@)] ) (107)

o Py x(y|z) fx(z) =0, (108)

Py( ) —0+

where the last step follows from the assumption in (73). This
verifies that the CR bound applies.

APPENDIX D
PROOF OF THEOREM 5

Observe that the score function is readily computed to be

Vo log (Pyx (yle) fx (2)) = v;fil)((;é')x) v}cf((x()x)
:%—a—kpx(x). (109)

Therefore, the denominator in the CR bound is given by

(% —a+PX(X)>2

=E (%—a)Q +2E{<§—a>pX(X)}+E[p§((X)]
=F §_a>2 +E [p% (X)] (110)
=aE {%] +E [p% (X)], (111

1997

where in (110) we have used that
Y E[(Y —aX)|X]
E|(% - ‘X = med)Al

and in (111) we have used the variance of the Poisson
distribution, so that E {(Y —aX)?|X } = aX. This concludes
the proof.

0; (112)

APPENDIX E
PROOF OF LEMMA 6

We first show the upper bound. To that end, let T" be a
random variable on [0, 1] with a pdf given by fr(t) = 2(1—t).
Then, ¢ (u) = * and

u

1 1

(113)
2A¢(u,v) fo @ (1t utJ)rtv
= ! (114)
%E |:(17T)1u+Tv}

<2E[1-TJu+2E[T]v (115)

4du 2o
= — 4+ — 116
3 + 3 (116)

where in (115) we have used Jensen’s inequality. The proof
of the lower bound follows since v > 0 and

(1—1) dtgl

1
/0 (1—t)u+tv u

This concludes the proof.

(117)

APPENDIX F
PROOF OF LEMMA 7

First, observe the following:

Py (y) :/i(ax)ye*‘”dpx(x)

a¥ Py (0 e—az
_7;!( )/x A0 )dPX( )

= %ﬁ(o)/mysz(m),

where in (120) we have defined dPy(z) = %dPX (z). The
fact that that P is a proper probability distribution follows
since

(118)

(119)

(120)

e ax PY(O)
dPz(x) = dP — =1. 121
Therefore,
a’Py (0
Py(y) = —yy,( Jg(z7v) (122)
where Z is distributed according to dPz(x) = %dPX(a:).

Now by using a well-known fact that E[X|Y = y] =

%% (see for example [49]), we arrive at

W+ @+1)
Py (y)

E[Zv*]
E[Zv] ~

1
EX|Y =y] =~ (123)
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Therefore, the limits can be bounded as follows:
E[X]Y =y] E[Zv*]

lim ——— — A = iy — 124
i y+1 450 (y + 1)E[ 2] (124)
1 _R[zv+l
= 1 M (125)
1
E Zy v
= lim (#) (126)
y—00 y!
o [ J A dPxe) )
Yy—00 y'
(127)
uPl 5 yYe Yy Y
< lim (“‘ Y‘y>| ) (128)
1
=-. (129)

where (124) uses the representation in (123); (126) uses
the fact that for a positive sequence {a,}>2, we have that
lim,, — oo “a—:l = lim,— o a;?; and in (128) follows form
Ve ¥ < a%yye_y,y > 1.

Furthermore, by using (123) we have that

EXY =y E[Zv*]
Sup —————= =sup ————— 130
T S uromz Y
1(\/[)oreover, observe that E[ZY] = [a¥f-5dPx(z) =
ngi((g)a)’ Consequently,
E[X|Y = AR
sup 7[ | y] = sup Mx (()a) . (131)
y>0 y+1 v>0 (y + 1YMY (—a)

This implies that the conditional expectation is bounded by
a linear function. Therefore, there must exist numbers ¢; and
co such that

EX|Y =y]<c1y+ce,y=0,1,... (132)

This concludes the proof.

APPENDIX G
PROOF OF THEOREM 6

Using the CR bound in (28) and the expression for the score
function in (109) we have that

o (5% log fyx (Y, X))?
Ay (X, E[X]Y])
_ (§—G+PX(X))2
-k Ap(X, 1Y + c3) (133)
Y 218X A(eY
<8[(Z ar i) (B4 e
(134)

where in the last step we have used the bound in (77). We now
compute individual terms in (134).
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The first term in (134) is computed as follows:

E

(; —a+pX(X)>2X

e [(X ) ] o (%-a) o]

+E[px(0)X] (135)
=F (%—a)QX +E [pk (X)X] (136)
—a+E [P% (X)X] . (137)

where in (137) we have used that E [(Y —aX)? |X} =aX.
The second term in (134) is computed as follows:

E l(; —a+pX(X)>2Y

-y . .
- (Y —a) Y| +2E K} - a) px(X)Y]
+E [p%(X)Y] (138)
‘ -
(X a) ] < mion (129
:Y?’ y2 -
—E| g+ aQY} +aE [p% (X)X] (140)
[aX3 4+ 3a2X% +aX  _ aX +a?X?
-E| e — 20— +a3X}
+aE [p% (X)X] (141)
=a®+aE {%} +aE [p% (X)X], (142)

where we have used that
Y aX + a2X?
E [YpX(X)Y} =E {TPX(X)} =—a®, (143)

Elpx(X)Y] =E[px(X)aX] = —a. (144)

Furthermore, the third term has been computed in (111) and
is given by

E [(; —a+pX(X>)2] —E|[ 2] +E[&(0)]. (145)

Finally, combining (134), (137), (142) and (145) leads to
the desired bound. This concludes the proof.

APPENDIX H
PROOF OF PROPOSITION 4

Observe that the MMSE estimator for X ~ Gam(«,0) is
given by (72),
V(X)
aV(X) + E[X]

LoBEX 16
I TWOFEX] ata’T0ra
(146)

where we have used that E[X] = £ and V(X) = %. Since
the two estimators agree, the upper bound is achieved with
equality.
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The proof of (84) follows by inserting (69) and (70)
into (75).

APPENDIX I

PROOF OF PROPOSITION 5

The proof of the lower bound follows from Lemma 4 where
we have shown that

EX]Y =y] = =cy+d = .
XY =yl = ——y+ o =cytd =ay+e
(147)
From the structure of the BD we have that
0
Ry(X|Y)=E[XlogX|-E|X]1
SXIY) = ELXlog X] - B | Xtog ( 2 + 12 )|
Y 0
—-E {X - - } . (148)
at+a a+ta
Now by using Lemma 4 where we have shown that
Y 0 —
E|X -2 - 2% =0 and
al [
E[Xlog X] = —/ zlog(z) z’ e *®dx  (149)
I'(0) Jo

_ 0 (log (L) +v(0+1)) (150)
a Y

where 9 (t) is the digamma function. Next, observe that = log «
is a convex function, and hence,

E[Xlog< Y + i )]
a—+a a—+a

=E E[X|Y]10g< Y + f >]
L at+a a+a

=E < Y + f 1og< Y + f )] (151)
I\a+a «a+a at+a a+a

=E E[( Y + o >log< Y + o >|X”
L ata a+a ata a+t+a

>R <IE[Y|X]+ 6 >1Og<IE[Y|X]+ 0 ﬂ
L\ a+a a+a a+a a+a

(152)

[ X X

—E (a 9 )1og(a 40 )] (153)
L\a+a a+a at+a a+a

where in (152) we have used Jensen’s inequality. Observe
that (151) leads to (89), the fact that Y is according to a
negative-binomial was show in [49].

This concludes the proof.
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