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Abstract— Consider n random variables forming a Markov
random field (MRF). The true model of the MRF is unknown,
and it is assumed to belong to a binary set. The objective is
to sequentially sample the random variables (one-at-a-time) such
that the true MRF model can be detected with the fewest number
of samples, while in parallel, the decision reliability is controlled.
The core element of an optimal decision process is a rule for
selecting and sampling the random variables over time. Such
a process, at every time instant and adaptively to the collected
data, selects the random variable that is expected to be most
informative about the model, rendering an overall minimized
number of samples required for reaching a reliable decision. The
existing studies on detecting MRF structures generally sample the
entire network at the same time and focus on designing optimal
detection rules without regard to the data-acquisition process.
This paper characterizes the sampling process for general MRFs,
which is shown to be optimal in the asymptote of large n. The
critical insight in designing the sampling process is devising
an information measure that captures the decisions’ inherent
statistical dependence over time. Furthermore, when the MRFs
can be modeled by acyclic probabilistic graphical models, the
sampling rule is shown to take a computationally simple form.
Performance analysis for the general case is provided, and the
results are interpreted in several special cases: Gaussian MRFs,
non-asymptotic regimes, Chernoff’s rule for controlled (active)
sensing, and the problem of cluster detection.

Index Terms— Active sampling, controlled sensing, correlation
detection, Markov network, quickest detection.

I. INTRODUCTION

A. Overview

DRIVEN by advances in information sensing and acqui-
sition, many application domains have evolved towards

interconnected networks of information sources in which
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large-scale and complex data is constantly generated and
processed for various inferential and decision-making pur-
poses. Induced by their physical couplings, such information
sources generate data streams that often bear strong statistical
dependence structures. Probabilistic graphical models, in gen-
eral, and Markov random fields (MRFs), in particular, provide
effective analytical frameworks for encoding the statistical
relationship among the datasets generated by different agents
in a network [1]–[4].

Forming inferential decisions in an MRF strongly hinges
on determining the dependence structure embedded in the
MRF. There are two distinct aspects to determining an MRF
structure: selecting (estimating) versus differentiating (detect-
ing) the models. In model selection (structure learning), the
objective is to sample the random variables that form an
MRF, and select (estimate) the edge set of the graphical
model associated with the MRF (a representative list of the
existing approaches includes [5]–[18]). While graph structure
learning is NP-hard in its general form [19], it becomes
feasible under proper restrictions on the structure of the graph,
e.g., limiting the graph to the classes of sparsely-connected
graphs, edge-bounded graphs, and degree-bounded graphs.
There is rich literature investigating the algorithmic and
information-theoretic aspects of structure learning, especially
for Gaussian and Ising graphical models. The existing studies
can be distinguished based on the sampling mechanisms that
they adopt. Broadly, there exists two distinct approaches to
sampling: (i) pre-specific sampling, in which sampling is
agnostic to the data and follows pre-specified rules [5]–[12],
and (ii) active sampling, in which the sampling decisions are
data-driven and they are updated dynamically as the data is
collected [13]–[18]. In active sampling methods, sampling and
model selection processes are inherently coupled, and their
emphasis is on co-designing these two processes. In contrast,
when the sampling mechanism is pre-specified, the sampling
and model selection processes are decoupled, and the emphasis
is placed on forming reliable decisions given a set of samples.

In contrast to model selection, in model detection, the
unknown model of an MRF is assumed to belong to a finite
set of known models, and the objective is to sample the
random variables in order to identify the true model. MRF
model detection, in its simplest form, is used for deciding
whether a given set of random variables are independent,
which is referred to as testing against independence. More
generally, dependence model detection is the process of decid-
ing in favor of one dependence model against a group of
alternative ones (a representative list of relevant literature
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includes [20]–[28]). The existing studies on MRF model
detection adopt pre-specified sampling mechanisms and focus
on forming detection rules. Furthermore, existing studies pri-
marily investigate Gaussian MRFs.

In this paper, we investigate active sampling for model
detection in general MRFs. The objectives are (i) characteriz-
ing the fundamentally minimum number of samples required
for forming decisions with target reliability, and (ii) charac-
terizing the attendant sampling and detection rules. Charac-
terizing an optimal active sampling algorithm that can detect
the model of an MRF with the minimal number of samples is
especially imperative as an MRF’s size or dimension grows,
in which case sampling incurs substantial communication,
sensing, and decision delay costs. An active sampling process
in an MRF is specified by the aggregate number of samples
to be collected as well as the order in which they are
collected. When the order is pre-specified, determining the
optimal sampling strategy reduces to minimizing the (aver-
age) number of samples. This can be effectively facilitated
via sequential hypothesis testing, which is well-investigated.
In sequential hypothesis testing, the samples are collected
sequentially according to a pre-specified order, and the sam-
pling strategy dynamically decides whether to take more
samples or to terminate the process and form a decision [29]–
[32]. However, incorporating dynamic decisions about the
order of sampling introduces a new dimension to decision-
making, which is investigated less. Forming such dynamic
decisions that pertain to data acquisition naturally arises in a
broad range of applications such as sensor management [33],
inspection, and classification [34], medical diagnosis [35],
cognitive science [36], generalized binary search [37], and
channel coding with feedback [38], to name a few.

The contributions of this paper can be summarized as
follows. First, we design an active sampling algorithm that
guides the data collection over an MRF and specifies the
final decision rules. Next, we analyze the performance of
the proposed algorithm in terms of decision reliability, error
exponents, and average decision delay. For delay analysis, we
quantify the expected number of samples required to make
a reliable decision in both non-asymptotic and asymptotic
regimes. The non-asymptotic analysis provides a tool to deter-
mine the feasibility of the problem. In contrast, the asymptotic
analysis highlights the optimality of the proposed algorithm
in the asymptote of small error rates. Then, we provide some
special cases and examples to further illustrate the quantities
defined throughout the paper and showcase the effectiveness of
the proposed algorithm. Finally, some experiments quantify the
gap between our algorithm and the state-of-the-art approaches.
We remark that some of the results in this paper have also
appeared in [39] and [40].

B. Related Literature

1) Hypothesis Testing of Precision Matrices: For Gaussian
MRFs with identical means, determining the covariance matrix
(or its inverse, precision matrix) is equivalent to detecting the
true model of the data. Testing simple global null hypothesis
structures is investigated in [41]–[43]. Specifically, the focus

of these studies is on the case where the number of samples
and the data dimension are comparable and they focus on
testing a single global model against the identity covariance
matrix. The Gaussian setting is investigated in [41], the sub-
Gaussian setting in [42], and the more general setting with
moment conditions in [43]. Testing a composite global null
hypothesis with only one sample is investigated in [44]–[47].
Testing for equality of two covariance matrices is investigated
in [48]–[51], while [46], [47], and [52] study a composite
global null hypothesis with a diagonal covariance matrix. A
more recent review of these settings is available in [53].

In the context of testing precision matrices, testing for two
different correlation matrices investigated in [55] and [56], and
testing for two different precision matrices studied in [56], are
most relevant to the problem in this paper. The key distinction
of these studies with the setting considered in this paper is that
they consider the fixed sample-size setting and use only the
covariance matrices. In this paper, on the other hand, we focus
on the sequential setting, and instead of considering only the
covariance matrices, we leverage the entire distribution, which
is necessary for the non-Gaussian MRFs.

2) Estimation of Covariance Matrices: In another related
direction, model selection is performed via estimating the
covariance matrix (or its inverse) of the data [5], [9], [10], [12],
[28]. In [28], the temporal correlation of the data is treated
as a nuisance parameter. By making a Gaussian assumption,
a testing procedure is proposed to identify all the non-zero
elements of the precision matrix with guaranteed performance.
Estimating sparse covariance matrices via adaptive threshold-
ing is considered in [9]. By adapting the threshold to the
variability of individual entries in a data-driven setting, it
is shown that, compared to the commonly used universal
thresholding estimators, these estimators achieve the optimal
rate of convergence over a large class of sparse covariance
matrices under the spectral norm and enjoy excellent perfor-
mance both theoretically and numerically. In [5], [10], and
[12] estimating sparse precision matrices is considered, and
�1 minimization is used to solve the problem by using the
estimated covariance matrix of the given data. All the studies
above consider the problem in the fixed sample-size setting,
and their application to model selection is limited to Gaussian
distributions.

3) Controlled (Active) Sensing for Detection: One directly
applicable approach to treat coupled sampling and decision-
making process is controlled sensing, originally developed
by Chernoff for binary composite hypothesis testing through
incorporating a controlled information gathering process that
dynamically decides about taking one of a finite number of
possible actions at each time [57]. Under the assumption of
uniformly distinguishable hypotheses and having independent
control actions, Chernoff’s rule decides in favor of the action
with the best immediate return according to proper information
measures. It achieves optimal performance in the asymptote
of a diminishing rate of erroneous decisions. Chernoff’s rule,
specifically, at each time, identifies the most likely true hypoth-
esis based on the collected data and takes the action that
reinforces that decision.
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Extensions of Chernoff’s rule to various settings are studied
in [58]–[61]. Specifically, the studies in [58] and [59] investi-
gate an extension to accommodate an infinite number of avail-
able actions and an infinite number of hypotheses, and [60]
and [61] provide alternative rules that are empirically shown
to outperform Chernoff’s rule in the non-asymptotic regimes.
Recent advances in controlled sensing that are relevant to the
scope of this paper include [62]–[65]. In [62], Chernoff’s rule
is modified to relax the assumption that the hypotheses should
be uniformly distinguishable in the multi-hypothesis setting.
In this modified rule, a randomization policy is introduced
into the selection rule such that at certain time instants,
it ignores Chernoff’s rule and randomly selects one action
according to a uniform distribution. This rule is shown to
admit the same asymptotic performance as Chernoff’s rule.
The results are extended to the setting in which the available
data belongs to a discrete alphabet and follows a stationary
Markov model in [63]. An application of Chernoff’s rule
to anomaly detection in a dataset is investigated in [64],
where it is shown that when facing a finite number of
sequences consisting of an anomalous one, Chernoff’s rule
is asymptotically optimal even without assuming that the
hypotheses are distinguishable or exerting randomized actions.
The study in [65] imposes a cost on switching among different
actions and offers a modification of Chernoff’s rule, which
randomly decides between repeating the previous action, and
a new action based on Chernoff’s rule. It achieves the same
asymptotic optimality as Chernoff’s rule. Similarly, Cher-
noff’s rule is also applied to sparse signal recovery [66],
sequential estimation [67], and classification problems [68]
and [69].

Besides Chernoff’s rule and its variations, there exist alter-
native strategies admitting certain optimality guarantees. In
pioneering studies, [70] and [71] offer a strategy that initially
takes a number of sampels according to a pre-designated
rule in order to identify the true hypothesis, after which it
selects the action that maximizes the information under the
identified hypothesis. The study in [72] proposes a heuris-
tic strategy and characterizes the deviation of its average
delay from the optimal rule. Other studies have investigated
the Bayesian setting [73]–[77]. The study in [73] considers
a sequential multi-hypothesis testing problem with multiple
control actions for which the optimal strategy is the solution
to dynamic programming that is computationally intractable.
Hence, it designs two heuristic policies and investigates their
non-asymptotic and asymptotic performances. For the same
problem, performance bounds and the gains of sequential sam-
pling and optimal data-adaptive selection rules are analyzed in
the asymptote of the high cost of erroneous decisions [74].
The study in [75] restricts the samples to be generated
by the exponential family distributions and shows that the
dimension of the sufficient statistic space is less than both the
number of parameters governing the exponential family and
the number of hypotheses. Hence, an exactly optimal policy
is characterized by only moderate computational complexity.
Other heuristic approaches for anomaly detection are also
investigated in [76] and [77], which select the action with the
minimum immediate effect on the total Bayesian cost and are

shown to achieve the same optimality guarantees suggested by
Chernoff [57].

Despite their discrepancies in settings and approaches, all
the studies above on controlled sensing assume that the avail-
able actions are independent or follow a first-order stationary
Markov process. This is in contrast to the setting of this paper,
in which the correlation structure in the generated data under
one hypothesis or both induces co-dependence among the
control actions. In this paper, we devise a sequential sampling
strategy for detecting MRFs, in which the correlation model
plays a significant role in forming the sampling decisions.
Specifically, the devised selection rule, unlike Chernoff’s rule,
incorporates the correlation structure into decision-making via
accounting for the impact of each action on the future ones
and selecting the one with the largest expected information
under the most likely true hypothesis. The associated opti-
mality guarantees are established, and the specific results for
the special case of Gaussian distributions are characterized.
The gains of the proposed selection rule are also delineated
analytically and numerically.

4) Active Learning for Model Selection: Unlike for model
detection, active sampling for model selection (structure learn-
ing) is investigated in more depth [13]–[18]. In [13], a model
selection problem in a supervised setting is considered, in
which active learning is applied in order to identify the set
of training examples that should be used to minimize the
integrated variance of the model. The studies in [17] and [18]
propose active learning algorithms for selecting the structures
of MRFs. Their main distinction from our work is that they
are concerned with a structure learning problem, while in this
paper, the true model is selected from a finite set of candidate
models. In [14]–[16], active learning over Bayesian networks
is considered. In [14], it is assumed that the graphical model
underlying the Bayesian network is known, and the objective is
estimating network parameters. The studies in [15], [16], and
[78] are concerned with learning the connectivity structure, the
parameters, and the direction of the causal relationship among
the nodes.

II. DATA MODEL AND PROBLEM FORMULATION

A. Notation

Throughout the paper (Ω,F ,P) is a probability space on
which all the probability measures are defined. In this space,
consider n random variables X �= {X1, . . . , Xn} forming an
MRF with respect to an undirected graph G(V,E) with nodes
V

�= {1, . . . , n} and the edge set E ⊆ V × V . For any given
set A ⊆ V , we define XA

�= {Xi : i ∈ A}. Random
variables X satisfy the global Markov property, that is, any
two disjoint subsets of random variables are conditionally
independent given a separating set, i.e.,

XA ⊥⊥ XB | XC , (1)

where C separates disjoint sets A and B such that every path
between a node in A and a node in B passes through at least
one node in C. One immediate result of the global Markov
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Fig. 1. Data model with two different correlation structures.

property is the pair-wise Markov property, i.e.,

∀ (i, j) /∈ E ⇔ Xi ⊥⊥ Xj | XV \{i,j}. (2)

The model of the underlying X is unknown, and it is
assumed to obey one of the two possible known models.
Detecting the MRF model can be formalized as the solution
to the binary hypothesis test:

H0 : (X1, . . . , Xn) ∼ P0,

H1 : (X1, . . . , Xn) ∼ P1, (3)

where P0 and P1 denote the two known and completely
distinct probability measures governing the two models. We
denote the undirected dependency graphs associated with joint
measures P0 and P1 by G0(V,E0) and G1(V,E1), respectively.
Figure 1 depicts the graphs associated with the precision
matrices of a dichotomous Gaussian MRF model, in which
the edges encode the conditional dependency structures. For
convenience in notations, we assume that the distributions of
the random variables under each hypothesis � ∈ {0, 1} are
absolutely continuous with respect to a common distribution
and have well-defined probability density functions (pdfs). For
every non-empty set A ⊆ V , we denote the joint pdf of XA

under H� by f�(·;A). We also define T ∈ {H0,H1} as the true
hypothesis and denote the prior probability that hypothesis H�
is true by ε�, where ε0 + ε1 = 1.

B. Sampling Model

We consider a fully sequential data acquisition mechanism,
in which we select and sample one node at-a-time. The
objective is to identify an optimal sequence of nodes, such
that with the minimum number of samples, the true model
T ∈ {H0,H1} can be discerned. Samples are collected sequen-
tially, such that at any time t and based on the information
accumulated up to that time, the sampling procedure takes one
of the following actions.

A1) Exploration: Due to lack of sufficient confidence, mak-
ing any decision is deferred, and one more sample is
taken from another node in the graph. Under this action,
the node to be selected should be specified.

A2) Detection: The data collection process is terminated,
and a reliable decision about the true model of the
graph is formed. Under this action, the stopping
time and the final decision rule upon stopping will
be specified.

The sampling process can be expressed uniquely by the data-
adaptive rule for selecting the nodes over time, the stopping

rule, and the final detection decision rule. To formalize the
information-gathering process (exploration), we define ψn :
V → V , where ψn(t) returns the index of the node observed
at time t. Accordingly, we define ψtn as the ordered set
of nodes selected and sampled up to time t, i.e., ψtn

�=
{ψn(1), . . . , ψn(t)}. We also define ϕtn as the set of nodes
that are remained unobserved prior to time t and can be
observed at t, i.e., ϕtn

�= V \ψt−1
n . We denote sample collected

at time t by Yt
�= Xψn(t), and denote the sequence of

samples accumulated up to time t by Y t
�=
(
Y1, . . . , Yt

)
. The

information accumulated sequentially generate a σ-algebra of
F denoted by {Ft : t = 1, 2, . . . }, where

Ft
�= σ(Y t;ψtn). (4)

We define τn ∈ N as the Markov stopping time with
respect to the family {Ft}, at which the sampling process
is terminated and a decision is formed. We also define δn ∈
{0, 1} as an Ft-measurable function as the terminal decision
rule, where δn = � indicates accepting hypothesis H�, for
� ∈ {0, 1}. We define the tuple Φn

�= (τn, δn, ψτn
n ) to

uniquely specify the sampling strategy1 and the decision rules
involved. Finally, we define two information measures that
are instrumental in formalizing and analyzing various decision
rules throughout the paper. Specifically, for any given ψtn and
A ⊆ V \ψtn we define

J0(A,ψtn) �= DKL

(
f0(XA;A | Ft) ‖ f1(XA;A | Ft)

)
,

(5)

J1(A,ψtn) �= DKL

(
f1(XA;A | Ft) ‖ f0(XA;A | Ft)

)
,

(6)

where f�(XA;A | Ft) denotes the conditional pdf of XA

given the data collected up to time t, captured by the
σ-algebra Ft, and DKL(f ‖ g) denotes the Kullback-Leibler
(KL) divergence from a statistical model with pdf g to a model
with pdf f .

C. Problem Statement

The coupled information-gathering strategy and decision-
making processes are uniquely specified by the triplet Φn =
(τn, δn, ψτn

n ). Designing the optimal sampling strategy for
achieving the quickest reliable decision involves resolving the
tension between the quality and agility of the process as two
opposing measures (improving one penalizes the other one).
The agility of the process is captured by the average delay in
reaching a decision, i.e., E{τn}, and the decision quality is
captured by the frequency of erroneous decisions denoted by

P0
n

�= P0(δn = 1), and P1
n

�= P1(δn = 0). (7)

To formalize the quickest reliable decision, we control the
quality of the decision and minimize the average number of
samples over all possible combinations of Φn = (τn, δn, ψτn

n ).

1We remark that the subscript n is included in all decision rules to signify
the effect of graph size.
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An optimal sampling strategy of interest is a solution to

P(α, β) �=

⎧⎪⎨
⎪⎩

infΦn E{τn}
s.t. P0

n ≤ e−nα

P1
n ≤ e−nβ

, (8)

where α, β ∈ R+ control the error probability terms P0
n

and P1
n, respectively, and are selected such that the problem

P(α, β) is feasible.

III. NETWORK-GUIDED ACTIVE SAMPLING

The core element in characterizing the decision tuple Φn =
(τn, δn, ψτn

n ) is the data-adaptive and sequential sampling
process ψn(t). The structure of this process is strongly
shaped by the two MRFs specified under H0 and H1. In
this section, we characterize a data-adaptive and sequential
sampling process and show that this process, in conjunction
with a thresholding rule for the stopping time and a likelihood
ratio detection rule, constitutes an optimal solution to (8).
Optimality properties, performance analysis, and complexity
analysis are provided in Section IV.

A. Terminal Decision Rules

Before providing the details of the core process (node
selection rule), we briefly discuss the terminal decision rules.
For this purpose, define2

Λt
�= ln

f1(Y t;ψt)
f0(Y t;ψt)

, (9)

as the log-likelihood ratio (LLR) of the samples collected up
to time t. It can be readily verified that

Λt+1 = Λt + ln
f1(Yt+1;ψ(t+ 1) | Ft)
f0(Yt+1;ψ(t+ 1) | Ft)

. (10)

Stopping Rule: To specify the stopping rule of the sampling
process, we define

γL
n

�= −nβ, and γU
n

�= nα, (11)

and specify the stopping time through the following sequential
likelihood ratio test:

τ∗n
�= inf

{
t : Λt /∈ (γL

n , γ
U
n ) or t = n

}
. (12)

This is a truncated sequential probability ratio test (SPRT),
in which the delay is bounded by the total number of samples
possibly available. If we drop the condition t = n, the
stopping rule simplifies to that of the canonical SPRT. We note
that depending on the context, there exist other variations of
truncated SPRT as well [79].

Detection Rule: At the stopping time, we decide on the
model according to

δ∗n
�=

{
0, if Λτ∗

n
< 0

1, if Λτ∗
n
≥ 0

. (13)

Based on (12) and (13), the sampling process resumes as
long as Λt ∈ (γL

n , γ
U
n ) and terminates once Λt falls outside this

2For simplicity in notations, throughout the rest of the paper, we omit the
subscript n in terms ψt

n, ψn(t), and ϕt
n.

band or we exhaust all the samples, i.e., t = n. Furthermore,
if Λt exits this interval from the upper threshold γU

n the set
{X1, . . . , Xn} is deemed to form a Markov network with
model P1, and if it falls below the lower threshold γL

n we
make a decision in favor of P0. We remark this decision rule
is different from that of the SPRT. Specifically, our thresholds
are constants, while those of the SPRT are controlled by the
target error probabilities according to

δ∗SPRT =

{
0, if ΛτSPRT < γL

n

1, if ΛτSPRT ≥ γU
n

. (14)

We also note that the SPRT continues as long as γL
n < Λt <

γU
n .

B. Dynamic Sampling

At any time t ∈ {1, . . . , τn}, prior to the stopping time,
based on the information accumulated up to time (t − 1) the
sampling process dynamically identifies and takes a sample
from one unobserved node that is expected to provide the
most relevant information about the true hypothesis. In this
subsection, we provide two approaches to dynamic node
selection. First, we provide the design of the selection rule
based on Chernoff’s principle, as the widely used approach for
various controlled (active) sensing decisions. Its widespread
use is mainly due to its computational simplicity and the
fact that it admits asymptotic optimality in a wide range of
settings. Next, we discuss the shortcomings of Chernoff’s
rule, mainly because it loses its optimality (even in the
asymptotic regime) for the problem at hand. Motivated by
this, we finally offer an alternative rule to circumvent Chernoff
rule’s shortcomings. We remark that discussing Chernoff’s
rule serves a two-fold purpose: it furnishes some of the
elements for designing the optimal approach and serves as
the baseline for assessing the performance of the proposed
rule.

1) Chernoff’s Principle: In the context of the problem
studied in this paper, at any time t and based on the filtration
Ft, Chernoff’s rule first forms the maximum likelihood (ML)
decision about the true model of the data T ∈ {H0,H1}. By
denoting the ML decision about the true hypothesis at time t
by δML(t) we have

δML(t) �=

{
H0, if Λt < 0

H1, if Λt ≥ 0
. (15)

Next, based on this decision, Chernoff’s rule at time t
selects and samples the node whose sample is expected to
maximally reinforce that the decision δML(t) becomes also
the decision at time (t + 1). We define ψch(t) as the node
selected by Chernoff’s rule at time t, and accordingly define
the ordered set ψtch = {ψch(1), . . . , ψch(t)}. To formalize
Chernoff’s rule in the context of the hypothesis testing problem
considered in this paper, and in order to quantify the informa-
tion gained from each sample, we define the following two
measures:

Di
0(t)

�= J0({i}, ψt−1
ch ), (16)

and Di
1(t)

�= J1({i}, ψt−1
ch ), (17)
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where J0 and J1 are defined in (5) and (6), respectively.
Measure Di

�(t) quantifies the information gained by observing
node i at time t when the true hypothesis is H�.

Chernoff’s rule selects the node that maximizes the distance
between f� and its alternative when the ML decision is in
favor of H�. Therefore, we obtain the following node selection
function:

ψch(t) �=

⎧⎪⎨
⎪⎩

argmax
i∈ϕt

Di
0(t), if δML(t− 1) = H0

argmax
i∈ϕt

Di
1(t), if δML(t− 1) = H1

. (18)

To avoid any ambiguities, whenever arg maxi∈ϕt
n
Di
�(t)

is not unique (for instance, at the beginning of the sampling
process), we select one node randomly according to a uniform
distribution. Chernoff’s rule minimizes the average delay in
the asymptote of a low rate of erroneous decisions if all
the selection actions are independent [57], [62], which in the
context of this paper translates to testing for two distributions
without any correlation structures. In this paper, however,
the available actions, i.e., selecting unobserved nodes, are
co-dependent due to the underlying MRF’s correlation struc-
ture. Therefore, Chernoff’s rule, which ignores such corre-
lation, naturally fails to leverage the correlation structure in
forming the sampling decisions. Specifically, by selecting the
best immediate action, Chernoff’s rule ignores the perspective
of the decisions and the impact of the current decision on the
future ones.

We provide an example in Section V-C through which
we show that designing the node selection rule based on
Chernoff’s principle is not optimal (even asymptotically). Our
analyses show that incorporating the impact of the decisions on
future actions improves the agility of the process significantly.
This, in turn, brings about computational complexities, which
we will show can be reduced considerably by leveraging the
MRF structures. In the context of the problem analyzed in this
paper, another disadvantage of Chernoff’s rule is for settings
in which the MRFs are comprised of multiple disconnected
subgraphs. In such cases, the sampling strategy will be trapped
in one subgraph until it exhausts all the nodes in that subgraph
before moving to another one. This limits the flexibility of
the sampling strategy for freely navigating the entire graph.
Another shortcoming of Chernoff’s rule that penalizes the
quickness significantly is when the highly correlated nodes
(random variables) are concentrated in a cluster with a size
considerably smaller than that of the graph n. In such cases,
our proposed selection rule approaches the cluster more
rapidly.

2) Active Sampling Rule: We start by introducing infor-
mation measures that link the node selection decisions over
time. This enables dynamically incorporating the impact of
the decision at any given time on all possible future ones.
We select these measures to facilitate selecting the nodes, the
samples of which maximize the combination of immediate
information, and future expected information. To this end, at
time t and for each node i ∈ ϕt we define the set Ri

t as the
set of all subsets of ϕt that contain i, i.e.,

Ri
t

�= {S : S ⊆ ϕt and i ∈ S}. (19)

Corresponding to the samples collected from the nodes in
the set S ∈ Ri

t, under H0 and H1 we define the following
information measures:

M i
0(t,S) �= J0(S, ψt−1) (20)

= E0

{
ln
f0(XS ;S |Ft−1)
f1(XS ;S |Ft−1)

}
, (21)

and M i
1(t,S) �= J1(S, ψt−1) (22)

= E1

{
ln
f1(XS ;S |Ft−1)
f0(XS ;S |Ft−1)

}
. (23)

The terms M i
�(t,S) capture the information content of |S|

samples. Hence, the normalized terms 1
|S|M

i
�(t,S) account

for the average information content per sample. Based
on these two normalized measures, an optimal action is
to select the node that maximizes the average informa-
tion over all possible future decisions. Therefore, the node
selection function is the solution of the following opti-
mization problem over all combinations of the unobserved
nodes:

ψ∗(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

argmax
i∈ϕt

max
S∈Ri

t

M i
0(t,S)
|S| , if δML(t− 1) = H0

argmax
i∈ϕt

max
S∈Ri

t

M i
1(t,S)
|S| , if δML(t− 1) = H1

.

(24)

In this selection rule, an ML decision about the true
hypothesis is formed based on the collected data, and the
node that maximizes the average information over all possible
future sequences of samples is selected. We note that the sets
S are selected such that they i) contain node i, which is a
candidate to be observed at time t, and ii) contain possibly
additional nodes that will be observed in the future. Mimick-
ing this decomposition of S, for S ∈ Ri

t, the information
measure M i

�(t,S) for � ∈ {0, 1} can be also decomposed
according to

M i
�(t,S) = J�({i}, ψt−1) + J�(S\{i}, ψt−1). (25)

In this expansion, the first term in the decomposition,
i.e., J�({i}, ψt−1) defined in (5) and (6), accounts for the
information gained by observing node i at time t. Similarly,
the second term J�(S\{i}, ψt−1) is the expected information
gained from future samples from the nodes contained in
S\{i} when ψ(t) = i. This second term constitutes the
key distinction of the proposed rule compared to Chernoff’s
rule, which accounts for incorporating every possible future
action. Finding the optimal node i and set S in (24) involves
an exhaustive search over all the remaining nodes, which
can become computationally prohibitive. In the next subsec-
tion, we show that by leveraging the Markov properties of
an MRF, and a certain acyclic dependency assumption, the
exhaustive search for an optimal S ∈ Ri

t can be simplified
significantly. Based on the stopping rule specified in (12),
the terminal decision rule given in (13), and the sampling
rule specified in (73), Algorithm 1 provides the detailed steps
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Algorithm 1 Network-guided active sampling for quickest
detection of Markov networks

for detecting a Markov network with a certain correlation
structure.

IV. MAIN RESULTS

In this section, we provide performance guarantees for
the proposed network-guided active sampling procedure in
Algorithm 1. Specifically, we analyze the accuracy of the
decision in Section IV-A; the delay (sample complexity) of the
algorithm in Section IV-B; the error exponents in Section IV-C;
and the complexity of the node-selection rule in Section IV-D.

A. Decision Reliability
Problem P(α, β) by design faces a hard constraint on the

number of available samples n. This, in turn, acts as a hard
constraint on the stopping time τn. Under such a constraint,
the error probabilities P0

n and P1
n cannot necessarily be made

arbitrarily small simultaneously. Hence, a decision algorithm
provides a feasible solution to P(α, β) only if it satisfies the
constraints enforced on P0

n and P1
n while not requiring more

than n samples.
Definition 1 ((α, β)-Accuracy): We say that a decision tuple

Φn
�= (τn, δn, ψτn

n ) is (α, β)-accurate if it ensures P0
n ≤

e−nα and P1
n ≤ e−nβ . First, we establish that the decisions

generated by Algorithm 1 satisfy the performance guarantees
of the problem.

In this subsection, we examine the problem (8) in both
the asymptotic and non-asymptotic regime with respect to
the size of the network n, and characterize conditions on α
and β under which Algorithm 1 is guaranteed to generate
(α, β)-accurate decisions. To this end, note that the sampling
process terminates if i) the LLR Λt exits the band (γL

n , γ
U
n )

at some t ∈ V , or ii) we exhaust all the samples, i.e., τn = n.
For establishing the conditions for ensuring (α, β)-accuracy,
in the first step, we show that if the process terminates by
exiting the band (γL

n , γ
U
n ), then the decision is (α, β)-accurate.

In the second step, we evaluate the probability of Λt exiting
the band (γL

n , γ
U
n ) prior to exhaustive all n samples. These two

steps, collectively, establish a sufficient condition for ensuring
(α, β)-accuracy of Algorithm 1. For this purpose, we denote
the Bhattacharyya coefficient, as a measure of similarity of the

two distributions, by

Bn(f0, f1)
�=
∫ √

f0(x;V )f1(x;V ) dx. (26)

Accordingly, we denote the normalized Bhattacharyya dis-
tance by

κ(f0, f1)
�= − lim

n→∞
1
n

ln Bn(f0, f1). (27)

The following theorem establishes a sufficient condition
under which Algorithm 1 generates (α, β)-accurate solutions.

Theorem 1 (Non-Asymptotic (α, β)-Accuracy): For a given
network size n, Algorithm 1 generates an (α, β)-accurate
solution with a probability at least

1 − Bn(f0, f1)
[
ε0 exp

(
nβ

2

)
+ ε1 exp

(nα
2

)]
. (28)

Proof: See Appendix A.
We will evaluate the probability term in (28) in

Section V-A through an illustrative example and in Section VI
through numerical evaluations. We will show that for widely
used MRF models (e.g., Gaussian MRFs), this probability
approaches 1 in all practical ranges of n and error probabilities,
rendering the Algorithm 1 (α, β)-accurate almost surely even
in the non-asymptotic regime. By leveraging the result of
Theorem 1, we can readily provide a sufficient condition for
(α, β)-accuracy in the asymptote of large network sizes.

Corollary 1 (Asymptotic (α, β)-Accuracy): Algorithm 1
generates (α, β)-accurate solutions almost surely in the asymp-
tote of large networks if

max{α, β} < 2κ(f0, f1). (29)

Proof: The proof follows from finding a sufficient condi-
tion that ensures probability in (28) approaches 1 as n→ ∞.

B. Delay Analysis

In this subsection, we analyze the performance of the
proposed selection rule in the asymptote of large networks
sizes, i.e., when n → ∞, i.e., V = N. We note that the
proposed network-guided node selection rule capitalizes on
the discrepancies in the information measures corresponding
to selecting different nodes. In general, a wider range of
information measures leads to more effectively distinguishing
the most informative nodes to sample. This, in turn, reduces
the average delay for reaching a sufficiently confident decision.
In order to analyze the performance, corresponding to any
subset of nodes U ⊆ N we define normalized LLR measures
as follows:

nLLR0(XU ;U) �=
1
|U | ln

f0(XU ;U)
f1(XU ;U

,

when (X1, . . . , Xn) ∼ P0, (30)

and nLLR1(XU ;U) �=
1
|U | ln

f1(XU ;U)
f0(XU ;U)

,

when (X1, . . . , Xn) ∼ P1. (31)

These log-likelihood ratios play pivotal roles in charac-
terizing the performance of sequential methods. When the
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random variables {Xi : i ∈ V } are independent and iden-
tically distributed (i.i.d.), according to the strong law of large
numbers, the measures nLLR�(Y t;ψt) converge almost surely
to the KL divergence terms as |U | → ∞. While in an i.i.d.
setting these measures are well-defined and can have tangible
interpretations (e.g., being random walks), in a non-i.i.d.
setting, they are not as well-defined, and their convergence
can be guaranteed only under stronger conditions. A relevant
notion of convergence for non-i.i.d. settings that is especially
widely used in sequential detection is complete convergence
(introduced in [80], a good overview in [81], and used in the
context of sequential detection in [31] and [83]).3 For this
purpose, corresponding to the set of nodes V we define

S(V ) �= {∀A ⊆ V : |A| ≥ g(n)}, (32)

where n = |V | and g(x) is an arbitrary function that satisfies
g(x) x→∞−−−−→ ∞. Hence, S(V ) is the collection of all subsets
of V whose cardinality is at least g(n).

Definition 2 (Complete Convergence): Corresponding to
any possible sampling sequence ψ∞ ∈ S(N), we say that
the normalized log-likelihood ratios nLLR�(Y t;ψt) converge
completely to a constant I�(ψ∞) when

∞∑
t=1

P�

{∣∣nLLR�(Y t;ψt) − I�(ψ∞)
∣∣ > h

}
< +∞, ∀h > 0.

(33)

It can be readily verified that the condition in (33) is
equivalent to

E�[T�(h, ψ∞)] < +∞, ∀h > 0, (34)

where we have defined

T�(h, ψ∞) (35)
�= sup

{
t ∈ N :

∣∣∣nLLR�(XUt ;U t) − I�(ψ∞)
∣∣∣ ≥ h

}
.

The term T�(h, ψ∞) denotes the last time that the sequence
{nLLR�(Y t;ψt)} leaves the interval

[I�(ψ∞) − h, I�(ψ∞) + h]. (36)

Next, we define two types of networks, depending on how
the LLR sequences converge.

Definition 3 (Homogeneous Network): We say that an MRF
is homogeneous when I�(ψ∞) exists and it is the same for all
possible sets ψ∞. When we have a homogeneous structure,
we replace I�(ψ∞) by the shorthand I�, which emphasizes a
lack of dependence on ψ∞.

The critical property of homogeneous networks is that
observing any subsequence of nodes provides the same aver-
age amount of information in the long run.

Example 1: Consider a setting in which the samples are
i.i.d. under H0 and they form a Gauss-Markov random field
(GMRF) under H1 with the same marginal distributions as the
ones under H0. If under H1 the nodes form a line graph with

3In some literature it is also called 1-quick convergence (see [83]) with
generalizations to stronger r-quickness convergence in [31].

correlation coefficients a 
= ±1, then we have a homogeneous
network in which

I0 = ln(1 − a2) +
2a2

1 − a2
, and I1 = ln

1
1 − a2

. (37)

Definition 4 (Heterogeneous Network): We say that an
MRF is heterogeneous when the two information measures
I�(ψ∞) exist and vary for different permutations ψ∞. In such
networks, we define

I∗�
�= sup
ψ∞∈S(N)

I�(ψ∞), for � ∈ {0, 1}. (38)

Example 2: Consider a setting in which the samples are
i.i.d. under H0, and they form a GMRF under H1 with the
same marginal distributions as the ones under H0. Under H1

the dependency graph consists of two line subgraphs defined
over two distinct sets of nodes denoted by

ψ∞
1 = {2k − 1 : k ∈ N} and ψ∞

2 = {2k : k ∈ N}, (39)

where the elements in ψ∞
i have constant correlation coeffi-

cients ai 
= ±1. Assuming |a1| > |a2| we have

I0(ψ∞
i ) = ln(1 − a2

i ) +
2a2
i

1 − a2
i

, (40)

I1(ψ∞
i ) = ln

1
1 − a2

i

, (41)

and for the supremum of these two measures we have

I∗0 = ln(1 − a2
1) +

2a2
1

1 − a2
1

, (42)

I∗1 = ln
1

1 − a2
1

. (43)

We remark that, in general, GMRFs have heterogeneous
structures. One well-known example is in social networks
where it has been shown that both weak and strong ties exist
and they play very different roles in the dynamics of the
network [84]. More generally, it has been shown that a wide
range of connection strengths among members of a network
is possible [85], [86]. Based on the measures I� and I∗� in
homogeneous and heterogeneous settings, respectively, next,
we analyze the average stopping time. We first focus on the
homogeneous setting and establish the optimality of stopping
and terminal decision rules characterized in (11)–(13) and
then generalize the results to the heterogeneous setting. The
following lemma will be instrumental in evaluating the average
stopping time.

Lemma 1: For the choices of α and β that satisfy (29),
in the homogeneous and heterogeneous networks we almost
surely have

max{α, β} ≤ min{I0, I1}, (44)

and max{α, β} ≤ min{I∗0 , I∗1 }. (45)

Proof: See Appendix B.
This is in accordance with the results from the binary

hypothesis testing literature for both i.i.d. and non-i.i.d. sam-
ples, where it has been shown that the error exponents of type
I and type II errors are identical to the KL divergence from
one distribution to the other [29], [32]. The following theorem
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provides a universal (algorithm-independent) lower bound on
the average delay for any feasible solution to problem (8) when
the network has a homogeneous dependency structure.

Theorem 2 (Homogeneous Structures – Delay Converse):
In a homogeneous network with information constants I0 and
I1, any feasible solution of problem (8) with the stopping time
τn satisfies

lim
n→∞

E0{τn}
n

≥ β

I0
, and lim

n→∞
E1{τn}
n

≥ α

I1
. (46)

Proof: See Appendix C.
We show that any selection rule combined with the likeli-

hood ratio test given in (11)–(13) achieves these lower bounds.
Theorem 3 (Homogeneous Structures – Delay Achievabil-

ity): In a homogeneous network, for the stopping and terminal
decision rules specified in (11)–(13) and an arbitrary sampling
rule, in the asymptote of large n we have

lim
n→∞

E0{τ∗n}
n

≤ β

I0
, and lim

n→∞
E1{τ∗n}
n

≤ α

I1
. (47)

Proof: See Appendix D.
The last two theorems, collectively, establish that when

the network has a homogeneous structure, irrespectively of
how the nodes are selected and sampled over time, the
stopping and terminal decision rules specified in (11)–(13)
render asymptotically optimal decisions. The optimality of
the decisions being independent of the node selection rule
signifies that in homogeneous structures, all sequences of
nodes, asymptotically, contain the same average amount of
information, and the overall performance does not critically
depend on the sampling path. Next, we show that the obser-
vation above is not necessarily valid for the networks with
heterogeneous structures, and the optimality of decisions in
those networks critically depends on the sampling path. By
leveraging Theorem 2, in the next corollary, we first provide
algorithm-independent lower bounds on the average delay in
heterogeneous networks.

Corollary 2 (Heterogeneous Structures – Delay Converse):
In a heterogeneous network with information constants I∗0 and
I∗1 , any feasible solution of problem (8) with the stopping time
τn satisfies

lim
n→∞

E0{τn}
n

≥ β

I∗0
, and lim

n→∞
E1{τn}
n

≥ α

I∗1
. (48)

Proof: By following the same line of argument as in
the proof of Theorem 2 we can show that for any arbitrary
sampling path ψ∞ ∈ N we have

lim
n→∞

E0{τn}
n

≥ β

I0(ψ∞)
, (49)

and lim
n→∞

E1{τn}
n

≥ α

I1(ψ∞)
. (50)

Since (49) is true for any set ψ∞, subsequently, we have

lim
n→∞

E0{τn}
n

≥ inf
ψ∞∈N

β

I0(ψ∞)
(38)=

β

I∗0
, (51)

and lim
n→∞

E1{τn}
n

≥ inf
ψ∞∈N

α

I1(ψ∞)
(38)=

α

I∗1
. (52)

Next, we provide the proof for the optimality of the deci-
sions produced by Algorithm 1, and especially the optimality
of the proposed dynamic node selection rule when facing
heterogeneous networks. This result will also be instrumental
in characterizing the performance gap between the proposed
sampling strategy and Chernoff’s rule. By characterizing this
gap, through an example in Section V-C, we will show
that Chernoff’s rule loses its optimality for the correlation
detection problem in networks. To prove the upper bounds
on the average delay, we define the random variable τ̂n as the
first time instant after which the ML decision about the true
hypothesis specified in (15) is always correct, i.e.,

τ̂n
�= inf{u : δML(t) = T, ∀t ≥ u}, (53)

where we adopt the convention that the infimum of an empty
set is +∞. We emphasize that τ̂n is not a stopping time,
but rather a term that, as we will show, is dominated by the
stopping time. In order to establish the desired upper bounds,
we show the following two properties for τ̂n:

1) Ei{τ̂n} is upper bounded by a constant.
2) 1

nEi{τ∗n − τ̂n} is upper bounded according to

lim
n→∞

E0{τ∗n − τ̂n}
n

≤ β

I∗0
, (54)

and lim
n→∞

E1{τ∗n − τ̂n}
n

≤ α

I∗1
. (55)

In order to prove that Ei{τ̂n} is finite, we first provide
the following lemma, which establishes that the probability
Pi(τ̂n ≥ t) decays exponentially with respect to time t.

Lemma 2: Ei{τ̂n} is upper bounded by a constant.
Proof: See Appendix E.

Next, in order to prove (54), we define

U∞ �= arg max
ψ∞∈S(N)

I1(ψ∞), (56)

corresponding to which we have I1(U∞) = I∗1 . When there
are more than one choice for U∞, we select it to be the
largest such set. Based on this definition, we provide the
following lemma showing that the number of times that we
sample from a set other than U∞ is, on average, finite. This
property follows from the assumption of complete convergence
in heterogeneous networks.

Lemma 3: Let us define

Ht
�= {s ∈ {τ̂n + 1, . . . , t} : ψ∗(s) /∈ U∞}. (57)

Then, limt→∞ 1
t |Ht| = 0.

Proof: See Appendix F.
This establishes that by the stopping time, the samples

collected are taken dominantly from the set U∞. By leveraging
Lemma 3, we next provide the final ingredient for character-
izing the achievable average delay.

Lemma 4: 1
nEi{τ∗n − τ̂n} is upper bounded according

to (54).
Proof: See Appendix G.

Theorem 4 (Heterogeneous Structures – Delay Achievabil-
ity): Algorithm 1 generates decisions that are asymptotically
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optimal solutions to problem (8). Specifically

lim
n→∞

E0{τ∗n}
n

≤ β

I∗0
, and lim

n→∞
E1{τ∗n}
n

≤ α

I∗1
. (58)

Proof: By combining the results of Lemma 2 and
Lemma 4 we obtain

α

I∗1

(54)
≥ lim

n→∞
E1{τ∗n − τ̂n}

n
(59)

≥ lim
n→∞

E1{τ∗n}
n

− lim
n→∞

B

n(1 − e−c)
(60)

= lim
n→∞

E1{τ∗n}
n

, (61)

which concludes the proof for the upper bound on 1
nE1{τ∗n}.

The proof of the upper bound on 1
nE0{τ∗n} follows the same

line of argument.

C. Error Exponents

In this subsection, we characterize the gain obtained from
the data-adaptive stopping time. To this end, we compare the
performance of sequential sampling procedures with that of
the fixed-sample-size setting in terms of their associated error
exponents. In the fixed-sample-size counterpart of the binary
testing problem considered in this paper, the optimal decision
rule is the Neyman-Pearson (NP) rule, where its associated
error exponents are characterized in [21]. By denoting the NP
decision rule by δNP, we define

P0
NP

�= P0(δNP = 1), and P1
NP

�= P1(δNP = 0), (62)

as the frequencies of erroneous decisions by the NP test based
on n samples. Accordingly, we define

E0
NP

�= − lim
n→∞

1
n

ln P0
NP, (63)

and E1
NP

�= − lim
n→∞

1
n

ln P1
NP, (64)

as the associated error exponents. Similarly, we define

E0
n

�= − lim
n→∞

1
r1

ln P0
n(r1), (65)

and E1
n

�= − lim
n→∞

1
r0

ln P1
n(r0), (66)

as the error exponents of the sequential detection approach,
where P0

n(r1) and P1
n(r0) are the error probabilities of sequen-

tial sampling when the average number of samples (i.e., the
stopping time) is r� � E�{τ∗n}. The connections between
the error exponents of the NP test and sequential sampling
strategies are established in the following theorem.

Theorem 5 (Gain of Adaptivity): The error exponents of the
decision rules in Algorithm 1 are related to those of the NP
rule through

E1
n = I0 and E0

n = I1, (67)

E1
NP = I0 and E0

NP = 0. (68)

Proof: See Appendix H.

D. Search Complexity Analysis

In this subsection, we show that under certain connectivity
structures for the given MRFs, by judiciously leveraging the
structures, the complexity of the search for the optimal node
selection path over time can be reduced significantly. For this
purpose, based on the given graphs G0(V,E1) and G1(V,E2)
we construct the graph G(V,E) such that

E
�= E0 ∪ E1. (69)

Based on this, we define the neighborhood of node i ∈ V
according to

Ni
�= {j ∈ V : j 
= i , (i, j) ∈ E}. (70)

We will show that when G is acyclic, for each node i, the
optimal set S is restricted to only contain the neighbors of i
that are not observed prior to time t, i.e., S ⊆ Lit where

Lit
�= {i} ∪ {Ni ∩ ϕt}. (71)

This indicates that for determining the node to select at each
time, it is sufficient to consider a significantly shorter future
sampling path for each node. The cardinality of the set of
subsets of Lit is significantly smaller than that of ϕt, which
translates to a substantial reduction in the complexity of char-
acterizing the optimal selection functions. This observation is
formalized in the following theorem.

Theorem 6: For an acyclic dependency graph G, at each
time t and for � ∈ {0, 1} we have

arg max
i∈ϕt

max
S∈Ri

t

M i
�(t,S)
|S| = arg max

i∈ϕt

max
S⊆Li

t

M i
�(t,S)
|S| . (72)

Proof: See Appendix I.
Based on this theorem, the selection function given in (24)

simplifies to

ψ∗(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg max
i∈ϕt

max
S⊆Li

t

M i
0(t,S)
|S| , if δML(t − 1) = H0

arg max
i∈ϕt

max
S⊆Li

t

M i
1(t,S)
|S| , if δML(t − 1) = H1

.

(73)

By further leveraging the Markov property, computing

max
S⊆Li

t

M i
�(t,S)
|S| (74)

can be further simplified. Specifically, by recalling the defini-
tion of M i

�(t,S) given in (20) and (22) we have

M i
�(t,S) (75)

= DKL

(
f�(XS |Ft−1) ‖ f1−�(XS |Ft−1)

)
(76)

= DKL

(
f�(Xi|Ft−1) ‖ f1−�(Xi|Ft−1)

)
(77)

+
∑

j∈S\{i}
DKL

(
f�(Xj |Xi,Ft−1) ‖ f1−�(Xj |XiFt−1)

)
= DKL

(
f�(Xi|Xψ∗(t−1)) ‖ f1−�(Xi|Xψ∗(t−1))

)
(78)

+
∑

j∈S\{i}
DKL

(
f�(Xj |Xi) ‖ f1−�(Xj |Xi

)
, (79)
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where the transition from (77) to (78) is due to the graph being
acyclic and Markov. Hence, for computing the information
measures M i

�(t,S) we need to compute only the marginal
distributions of the form f�(Xi|Xj).

V. SPECIAL CASES AND ILLUSTRATIVE EXAMPLES

In this section, we consider a few special cases, for each
of which we present more specialized results. First, for
gaining further insight into the tightness of the probabilis-
tic (α, β)-accuracy guarantee in the non-asymptotic regime
(Theorem 1), we provide an illustrative example showing the
achievable ranges of error probabilities for a given network
size. Next, we consider the setting in which both distrib-
utions are Gaussian and characterize measures defined for
designing the sampling strategy in terms of the covariance
matrices of the distributions. Built on these results, next, we
provide a counterexample establishing that Chernoff’s rule
is not asymptotically optimal for carrying out the detection
decisions in the MRFs considered in this paper. Finally, we
consider detecting whether a given MRF contains a cluster
of nodes whose data form a given correlation model. In all
the special cases, we quantify the performance gaps between
our network-guided active sampling strategy and Chernoff’s
rule.

A. Non-Asymptotic Detection Performance

In this subsection, we provide an illustrative example to
assess the sufficient condition for (α, β)-accuracy of Algo-
rithm 1 in the non-asymptotic regime, which was established
in Theorem 1. We consider testing correlation versus indepen-
dence when both distributions are Gaussian, i.e.,

H0 : (X1, . . . , Xn) ∼ N (θ, I),
H1 : (X1, . . . , Xn) ∼ N (θ,Σ), (80)

where I is the identity matrix and Σ is an arbitrary correlation
matrix such that Σii = 1. Hence, the Bhattacharyya distance,
which we denote by κn(f0, f1), is given by

κn(f0, f1)
�= − lnBn(f0, f1) (81)

=
1
2

ln
1√

detΣ
· det

(
I + Σ

2

)
(82)

=
1
2

ln
n∏
i=1

1 + λi

2
√
λi
, (83)

where {λi}ni=1 are the distinct eigenvalues of the symmetric
positive definite matrix Σ. Accordingly, the Bhattacharyya
coefficient is given by

Bn(f0, f1) = exp (−κn(f0, f1)) =
n∏
i=1

√
2
√
λi

1 + λi
. (84)

By noting that Σii = 1 for all i ∈ V , according to
Gershgorin circle theorem all the eigenvalues {λi}ni=1 lie in
closed discs centered at 1. Select ξ > 0 such that at least half
of the eigenvalues {λi}ni=1 lie outside the interval[(√

1 + ξ −
√
ξ
)2
,
(√

1 + ξ +
√
ξ
)2]

. (85)

It can be readily verified that if

λi /∈
[(√

1 + ξ −
√
ξ
)2
,
(√

1 + ξ +
√
ξ
)2]

, (86)

then

2
√
λi

1 + λi
<

1√
1 + ξ

. (87)

Hence, we have the following upper bound on the Bhat-
tacharyya coefficient:

Bn(f0, f1) ≤ (1 + ξ)−
n
8 . (88)

Therefore, for all the error probability exponents α and β
that satisfy

1
4

ln(1 + ξ) > max{α, β}, (89)

according to Theorem 1 Algorithm 1 is (α, β)-accurate almost
surely in the non-asymptotic regime. For instance, for n =
200, ξ = 0.2, α = β = 0.02, Algorithm 1 is (α, β)-accurate
with probability at least 0.999.

B. Gauss-Markov Random Fields

In this subsection, we specialize the general results to
GMRF, where we assume that

H0 : (X1, . . . , Xn) ∼ N (θ, I),
H1 : (X1, . . . , Xn) ∼ N (θ,Σ), (90)

where Σii = 1 for all i ∈ V . This test is generally known
as the problem of testing against independence. The graphical
model associated with H0 consists of n nodes without any
edges, and we denote the graphical model associated with
H1 by G(V,E). A GMRF with covariance matrix Σ is non-
degenerate if Σ is positive-definite, in which case, the potential
matrix associated with the GMRF is denoted by J

�= Σ−1.
The non-zero elements of the potential matrix have a one-to-
one correspondence with the edges of the dependency graph
in the sense that

Juv = 0 ⇔ (u, v) /∈ E. (91)

In a GMRF, the properties of the network are strongly influ-
enced by the structure of the underlying dependency graph.
GMRFs with acyclic dependency represent an important class
of GMRFs in which there exists at most one path between any
pair of nodes, and consequently, the cross-covariance value
between any two non-neighbor nodes in the graph is related
to the cross-covariance values of the nodes connecting them.
Specifically, corresponding to any two edges (i, j) ∈ E and
(i, k) ∈ E, which share node i ∈ V , we have

Σjk = ΣjiΣ−1
ii Σik, for all {j, k} ⊆ Ni. (92)

In a GMRF with an acyclic graph, the elements and the
determinant of the potential matrix can be expressed explicitly
in terms of the elements of the covariance matrix.
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Fig. 2. Toy example for the evolution of Gt(Vt, Et) over time for ψ3 =
{1, 4, 3}.

Theorem 7 ( [21], Theorem 1): For a GMRF with an acyclic
dependency graph G = (V,E) and covariance matrix Σ, the
elements of the potential matrix are given by

Jii =
1

Σii

⎛
⎝1 +

∑
j∈Ni

Σ2
ij

ΣiiΣjj − Σ2
ij

⎞
⎠ , ∀i ∈ V, (93)

and

Jij =

⎧⎪⎨
⎪⎩

−Σij
ΣiiΣjj − Σ2

ij

if (i, j) ∈ E

0 if (i, j) /∈ E

. (94)

Furthermore, the determinant of the potential matrix is also
given by

det(J) =
∏
i∈V

Σdeg(i)−1
ii

∏
(i,j)∈E

[ΣiiΣjj − Σ2
ij ]

− 1
2 , (95)

where deg(i) is the degree of node i.
We leverage the properties of the GMRFs to obtain closed-

form expressions for the information measures defined in (16)
and (20)–(22), as well as the node selection rules characterized
in Section III-B. In order to describe the effect of the sequential
sampling process on different measures that we use, we
sequentially construct the sequence of graphs {Gt(Vt, Et) :
t ∈ {1, . . . , τ∗n}} such that the graph Gt(Vt, Et) at time t is
adapted to the nodes observed up to time t. Specifically, we
set Vt = ψt, and for each pair of nodes i, j ∈ Vt we include
an edge (i, j) ∈ Et if and only if either (i, j) ∈ E, or there
exists a path between nodes i and j in the original graph
G(V,E) such that none of the nodes on this path has been
observed up to time t (except for i and j). Figure 2 depicts
a toy example on the evolution of Gt(Vt, Et) over time for
t ∈ {1, 2, 3} corresponding to an underlying graph G(V,E).
Furthermore, for any (i, j) ∈ Et we define

LLR(i, j) �=
1
2

[
ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
X2
i +X2

j

)]
+

Σij
1 − Σ2

ij

XiXj . (96)

Under these definitions and by assuming that Gt(Vt, Et)
remains acyclic at time t, for the LLR of the samples up to
time t defined in (9) we have

Λt =
∑
i∈Vt

∑
j∈N t

i

LLR(i, j), (97)

where Xi is the sample taken from node i and N t
i

�= {j ∈
Vt : (i, j) ∈ Et}. Next, by invoking the GMRF structure and
leveraging the results in Theorem 7, the information measures
defined for Chernoff’s rule in (16) for any i ∈ ϕt can be
further simplified and expressed in terms of the correlation
coefficients. Specifically, corresponding to Chernoff’s rule and
its associated sampling sequence ψτcch we have4

Di
0(t) =

1
2

∑
j∈N t

i

[
ln(1 − Σ2

ij) +
Σ2
ij

1 − Σ2
ij

(
X2
j + 1

)]
,

(98)

and Di
1(t) =

1
2

∑
j∈N t

i

[
ln

1
1 − Σ2

ij

+ Σ2
ij

(
X2
j − 1

)]
. (99)

Furthermore, by defining

Δi
t

�= {(j, k) : j, k ∈ N t
i }, (100)

from (5) and (6) and by leveraging the results in Theorem 7,
for the proposed node selection rule we have5

J0({i}, ψt−1)

=
1
2

∑
j∈N t

i

ln(1 − Σ2
ij) +

1
2

∑
j∈N t

i

Σ2
ij

1 − Σ2
ij

(
X2
j + 1

)
+

∑
(j,k)∈Δi

t

LLR(j, k), (101)

and

J1({i}, ψt−1)

=
1
2

∑
j∈N t

i

ln
1

1 − Σ2
ij

− 1
2

∑
(j,k)∈Δt

i

ln
1

1 − Σ2
jk

+
1
2

[ ∑
j∈N t

i

Σ2
ij

1 − Σ2
ij

(
X2
j − 1

)
+

∑
(j,k)∈Δi

t

LLR(j, k)
]

×
∏
j∈N t

i
(1 − Σ2

ij)∏
(j,k)∈Δi

t
(1 − Σ2

jk)
. (102)

Similarly, by leveraging the result of Theorem 6, for any
S ∈ Lit we find

J0(S\{i}, ψt−1) =
1
2

∑
j∈S\{i}

[
ln(1 − Σ2

ij) +
2Σ2

ij

1 − Σ2
ij

]
,

J1(S\{i}, ψt−1) =
1
2

∑
j∈S\{i}

[
ln

1
1 − Σ2

ij

]
. (103)

Subsequently, based on (25), the closed-form expression of
M i
�(t,S) for � ∈ {0, 1} is obtained from

M i
�(t,S) = J�({i}, ψt−1) + J�(S\{i}, ψt−1). (104)

These closed-form expressions of the information measures
in terms of the covariance matrix entries and the depen-
dency graph structure substantially reduces the computational
complexities involved in calculating these measures from the
expected values in (16) and (20)–(22).

4Derivations of Di
0(t) and Di

1(t) are provided in Appendix L.
5Derivations of J0({i}, ψt−1) and J1({i}, ψt−1) are provided in

Appendix L.
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Fig. 3. A GMRF consisting of two line graphs.

C. Counter Example for the Optimality of Chernoff’s Rule

Building on the results for the GMRF, in this subsection,
we provide an example of a heterogeneous network for which
Chernoff’s rule is not asymptotically optimal, and quantify the
gap between its performance and that of our proposed rule.
For this purpose, we consider a setting in which the random
variables XV = {Xi : i ∈ V } are independent under H0,
while under H1 they form a GMRF with covariance matrix
Σ. As depicted in Fig. 3, the dependency graph of the GMRF
consists of two disjoint line graphs corresponding to the nodes
in sets A and B = V \A. By denoting the covariance matrix
of the random variables generated by sets A and B by ΣA

and ΣB , respectively, we assume that for any (i, j) ∈ E we
have

|ΣAij | > a, and |ΣBij | < b, (105)

where a > b. This means that the random variables generated
by the nodes in set A are more strongly correlated than those
generated by the nodes in set B. For such a network, the
performance gap between the proposed rule and Chernoff’s
rule is established in terms of a and b in the following theorem.

Theorem 8: Consider testing independence in (90), where
the GMRF consists of two disjoint line graphs corresponding
to the sets of nodes in A and B. If the correlation coefficient
values between the neighbors in set A are greater than a, while
in set B they are less than b and |A| = p = o(n), then as n
grows for � ∈ {0, 1}

lim
n→∞

E�{τc}
E�{τ∗n}

=
I�(A)
I�(B)

≥
(a
b

)2

> 1, (106)

where τc and τ∗n are the stopping times of the strategies based
on Chernoff’s rule and Algorithm 1, respectively.

Proof: See Appendix J.
This theorem establishes that Chernoff’s rule is not nec-

essarily an asymptotically optimal sampling strategy when
selection decisions are statistically dependent.

D. Cluster Detection

In this subsection, we analyze cases in which the two
statistical models under H0 and H1 are all similar except for
a small cluster of nodes that exhibit two different correlation
models. Specifically, we first consider a model in which there
is a subset of nodes B ⊆ V such that random variables XB

�=
{Xi : i ∈ B} are statistically independent under both models
H0 and H1. This indicates that the correlation models under

Fig. 4. Independence versus a MRF consisting of one cluster and independent
random variables.

H0 and H1 differ only in their distributions over the random
variables from nodes A

�= V \B, as depicted in Fig. 4. Also,
we assume that the random variables XA

�= {Xi : i ∈ A}
form a homogeneous correlation structure, which means that
observing any subsequence of the nodes in set A, on average,
provides the same amount of information. Clearly, for any set
of nodes U ⊆ B, we have

∀U ⊆ B : I�(U) = 0. (107)

In this setting, we show that there is a constant gap
between the expected stopping times of the proposed rule and
Chernoff’s rule. This gap stems from the fact that our proposed
approach directly starts from sampling the nodes in A, and
does not waste any sampling time by taking samples from set
B. However, Chernoff’s rule, on average, takes a number of
samples from B before sampling from A. The gap between
the stopping times is formulated in the next theorem.

Theorem 9: In a network of size n, when there exists
a subset of nodes A with size p forming an MRF with
a connected graph, while the rest of the network generate
independent random variables, we have

0 ≤ E�{τc} − E�{τ∗n} = Θ
(n
p

)
, for � ∈ {0, 1}, (108)

where τc and τ∗n are the stopping times of the strategies
based on Chernoff’s rule and the proposed selection rule,
respectively.

Proof: See Appendix K.
This theorem establishes the zero-order asymptotic gain

of the proposed strategy over Chernoff’s rule in a special
setting. Note that as p (the size of A) becomes smaller, which
leads to more similar and less distinguishable models under
H0 and H1, the performance gap increases according to n

p .
Next, we further generalize the above setting to one in which
under H1, besides XA, random variables XB also form a
homogeneous correlation structure (not independent anymore)
with a connected dependency graph, i.e., for � ∈ {0, 1} and
∀U ⊆ B we have I�(U) = I�(B). This setting is depicted
in Fig. 5. If for set A we have |A| = o(n), then Chernoff’s
rule starts the sampling process from set B almost surely,
and it remains in set B until it exhausts all the nodes of B,
while our rule always identifies the most informative nodes to
sample. The following theorem characterizes the performance
gap between Chernoff’s and our rule in this setting.

Theorem 10: Consider a network of size n partitioned into
sets A and B specified in Fig. 5. In the asymptote of large n,
if the dependency graphs of the nodes in both A and B are
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Fig. 5. Independence versus a MRF consisting of two clusters.

Fig. 6. Lower bound on the probability of (α, β)-accuracy.

connected and |A| = o(n), then

lim
n→∞

E0{τc}
E0{τ∗n}

=
max{I0(A), I0(B)}

I0(B)
, (109)

and lim
n→∞

E1{τc}
E1{τ∗n}

=
max{I1(A), I1(B)}

I1(B)
. (110)

Proof: When p = o(n) Chernoff’s rule starts the sampling
process from set B with probability 1. By invoking the results
of Theorem 3, Corollary 2, and Theorem 4 we conclude the
proof.

According to the theorem above, when the size of A is
sufficiently small such that most of the time, Chernoff’s rule
starts the sampling process from set B, it loses its first-
order asymptotic optimality, as shown in the counterexample
in Section V-C. The settings discussed in this subsection
highlight the advantages of the proposed selection rule by
quantifying two main gains; the gain of selecting the best
node at the beginning of the sampling process, and the
gain obtained from freely navigating throughout the entire
network by jumping across subgraphs in order to find the
most informative nodes. Although these settings are special
cases, the gain of the proposed rule for a general network is
a combination of these two gains.

VI. NUMERICAL EVALUATIONS

In this section, we evaluate the performance of the pro-
posed sampling strategy by comparing it with those of the
existing approaches through simulations. First, we examine
the (α, β)-accuracy conditions. We consider Gaussian dis-
tributions N (θ,Σ0) and N (θ,Σ1) under models H0 and

Fig. 7. Average delay versus error probability in a homogeneous network.

Fig. 8. Average delay versus error probability in a heterogeneous network.

H1, respectively. The covariance matrices Σ0 and Σ1 have
all their diagonal elements equal to 1, and the off-diagonal
elements randomly take values in the range [−1, 1], such that
the overall combinations constitute valid covariance matrices.
Figure 6 shows the variations of the lower bound on the (α, β)-
accuracy probability established in Theorem 1 with respect to
increasing network size n for four different levels of reliability
constraints. It is observed that for reliabilities as small as
10−8, (α, β)-accuracy is guaranteed almost surely when the
network size is as small as 100 nodes. We remark that for
each reliability level, we evaluate two distinct settings. in one
setting, the covariance matrices Σ0 and Σ1 are generated
completely randomly (solid curves) and in the other setting
half of the n Gaussian random variables, i.e., {X1, . . . , Xn

2
}

have the same joint distribution (dashed curves).
For the rest of the numerical evaluations and simulations,

we use the NP test as the fixed sample-size approach, and for
the sequential sampling, we consider random (non-adaptive)
sampling order and Chernoff’s rule. We consider zero-mean
Gaussian distributions for data, and test covariance matrix
under H1 versus In under H0. We also set ε0 = ε1 =
0.5. As the first comparison, we consider the nearest neigh-
bor dependency graph for uniformly distributed nodes in a
two-dimensional space, for which the cross-covariance value
between two nearest neighbors is a function of their distance.
We denote the distance between nodes i and j by Rij and
set the correlation coefficient between nodes i and j to Σij =
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Fig. 9. Average delay versus M .

Me−aRij , where a,M ∈ R+. Under H0 we set M = 0, which
corresponds to independent samples. Under H1 as M increases
the KL divergence between the distributions corresponding to
f0 and f1 grows. In Fig. 7, we set M = 0.1, a = 0, and
βn = e−nβ = 0.1 and compare the performance of different
approaches. To this end, for different values of n we find P0

n

associated with the NP test (i.e., the false alarm probability),
based on which we design the sequential sampling strategy
for Chernoff’s and proposed selection rules and find the
average delay. It is observed that the proposed sampling
procedure outperforms both the NP test and Chernoff’s rule in
terms of the reliability-agility trade-off. We also compare the
performance of the proposed strategy with that of Chernoff’s
rule and the random selection rule in a heterogeneous network.
For this purpose, we generate a subgraph with three nodes and
two edges, in which the cross-covariance values between the
neighbors are 0.5 and 0.1. We use 500 copies of this subgraph
as the building block for a network consisting of 1500 nodes.
For such a network, the optimal rule is to select the nodes
with larger cross-covariance values. Figure 8 demonstrates
the average delay before reaching a confident decision for
different target accuracies and the selection rules when α =
β. By comparing Fig. 7 and Fig. 8, it is observed that
in heterogeneous networks, the proposed strategy improves
significantly compared to Chernoff’s rule. The reason is the
larger discrepancy in the amount of information gained from
different nodes.

In order to compare the performance of different selection
rules for different levels of correlation strength, Fig. 9 com-
pares the average delays incurred by the proposed approach,
Chernoff’s rule, and a random selection rule for different
values of M when n = 1000, α = β = 1.6×10−3, and a = 1.
It is observed that both Chernoff’s rule and the proposed
approach outperform the random selection rule, and as the
KL divergence grows by increasing M , the improvement is
more significant. Furthermore, in Fig. 10 the error exponents
are compared where it is observed that the proposed strategy
has an error exponent twice as large as that of Chernoff’s rule
and both of them outperform the strategy based on a random
selection of nodes.

In order to verify the results of Theorem 9, we consider
a network with n = 30000 nodes, in which only a subset

Fig. 10. Error exponent vs. error probability.

Fig. 11. The average delay difference between Chernoff’s rule and tnetwork-
guided active sampling.

Fig. 12. The ratio of the expected delay of Chernoff’s rule and network-
guided active sampling.

A consisting of p nodes generate correlated random variables
under one of the two hypotheses, while the random variables
generated by the rest of the nodes are independent under
both hypotheses. Figure 11 demonstrates the average delay
of Chernoff’s rule in taking its first sample from set A. The
upper bound and lower bound obtained in Theorem 9 are also
shown for comparison. It is observed that the delay difference
is always between the obtained bounds, which confirms that
it is Θ(np ).
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Finally, we consider a network with 10000 nodes, from
which 50 nodes, denoted by set A, are strongly correlated, i.e.,
the cross-covariance values between the neighbors in set A,
denoted by ΣAij , are greater than a ∈ (0.3, 0.6), while the rest
of the nodes, denoted by set B, also form a connected graph
with cross-covariance values ΣBij less than b = 0.2. In Fig. 12
the ratio between the average delay of the proposed sampling
strategy is compared with the lower bound (ab )

2 obtained in
Theorem 8 for different values of a. We also include the ratio
between the average delays for the setting in which the cross-
covariance values in sets A and B are equal to a and b,
respectively, for which it is observed that the lower bound
is tighter.

VII. CONCLUSION

We have considered the quickest detection of a correlation
structure in a Markov network, with the objective of deter-
mining the true model governing the samples generated by
different nodes in the network. After discussing the widely
used Chernoff’s rule and its shortcomings, we have designed
a sequential and data-adaptive sampling strategy to determine
the true correlation structure with the fewest average number
of samples while, in parallel, the final decision is controlled to
meet target reliability. The proposed sampling strategy, which
judiciously incorporates the network’s correlation structure
into its decision rules, involves dynamically deciding whether
to terminate the sampling process or to continue collecting fur-
ther evidence, and prior to terminating the process, which node
to observe at each time. We have established the optimality
properties of the proposed sampling strategy and leveraged the
Markov properties of the network to reduce the computational
complexities involved in its implementation. We have provided
an example for which Chernoff’s rule is not optimal. Finally,
we have quantified the advantages of the proposed rule over
Chernoff’s rule for some special cases.

NOTATION USED THROUGHOUT THE PROOFS

For convenience, throughout the proofs we drop the sub-
script n in ϕtn, ψtn, γL

n , γU
n .

APPENDIX A
PROOF OF THEOREM 1

We start by showing that if

∃t ∈ V such that Λt /∈ (γL
n , γ

U
n ), (111)

then any sequential decision algorithm with the stopping rule
τ∗n and the detection rule δ∗n specified in (12) and (13), respec-
tively, is (α, β)-accurate. Given the structure of the stopping
time, according to which the sampling process terminates as
soon as Λt exits the band (γL, γU), the assumption in (111)
is equivalent to having

Λτ∗ /∈ (γL, γU). (112)

Therefore, for P0
n we have

P0
n = P0(δ∗n = 1) (113)

=
n∑
k=1

P0(δ∗n = 1, τ∗n = k) (114)

(13), (112)
=

n∑
k=1

P0(Λτ∗
n
≥ γU, τ∗n = k) (115)

(112)=
n∑
k=1

P0(Λτ∗
n
≥ γU, τ∗n = k) (116)

=
n∑
k=1

∫
(Λk≥γU,τ∗

n=k)

f0(Y k;ψk) dY k (117)

(9)=
n∑
k=1

∫
(Λk≥γU,τ∗

n=k)

exp(−Λk)f1(Y k;ψk) dY k (118)

≤
n∑
k=1

∫
(Λk≥γU,τ∗

n=k)

exp(−γU)f1(Y k;ψk) dY k (119)

(11)= e−nα
n∑
k=1

∫
(Λk≥γU,τ∗

n=k)

f1(Y k;ψk) dY k (120)

= e−nα
n∑
k=1

P1(δ∗n = 1, τ∗n = k) (121)

= e−nα · P1(δ∗n = 1) (122)

≤ e−nα, (123)

where (115) holds according to the definition of the terminal
decision rule in (13), (116) holds due to the assumption
in (112), (118) holds due to the definition of LLR in (9),
and (119) holds due to the structure of the region over which
the integral is computed. Finally (121) holds by noting that
the decision rule δ∗n = 1 specifies that Λτ∗

n
> 0, which by

taking into account (112) and the fact that γL < 0, becomes
equivalent to Λτ∗

n
≥ γU. By following the same line of

argument for P1
n we obtain

P1
n ≤ eγ

L · P1(δ∗n = 0) (124)

= e−nβ · P1(δ∗n = 0) (125)

≤ e−nβ . (126)

Next, we analyze the likelihood of the condition in (111)
being valid, which establishes a probabilistic guarantee for
Algorithm 1 generating (α, β)-accurate solutions to P(α, β).

1 − P
(
∃t ∈ V s.t. Λt /∈ (γL, γU)

)
(127)

= P
(
Λt ∈ (γL, γU), ∀t ∈ V

)
(128)

≤ P
(
Λn ∈ (γL, γU)

)
(129)

=
1∑
i=0

εiPi
(
Λn ∈ (γL, γU)

)
. (130)

Next, for the probability terms in the right hand side we
have

P0(Λn ∈ (γL, γU)) ≤ P0(Λn > γL) (131)

≤ 1√
exp(γL)

· E0{
√

exp(Λn)} (132)
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(26)=
1√

exp(γL)
· Bn(f0, f1) (133)

(11)= exp
(
nβ

2

)
· Bn(f0, f1), (134)

where (132) follows the Markov inequality. By following a
similar line of argument we obtain

P1(Λn ∈ (γL, γU)) ≤ exp
(nα

2

)
· Bn(f0, f1). (135)

Hence, from (130), (134), and (135) we obtain

P
(
∃t ∈ V s.t. Λt /∈ (γL, γU)

)
(136)

≥ 1 − Bn(f0, f1)
[
ε0 exp

(
nβ

2

)
+ ε1 exp

(nα
2

)]
.

(137)

APPENDIX B
PROOF OF LEMMA 1

From the definition of κ(f0, f1) in (27) we have

2κ(f0, f1) = − lim
n→∞

2
n

ln Bn(f0, f1) (138)

(26)= − lim
n→∞

2
n

ln
∫ √

f0(x;V )f1(x;V ) dx (139)

= − lim
n→∞

2
n

ln
∫ √

f0(x;V )
f1(x;V )

f1(x;V ) dx (140)

≤ − lim
n→∞

2
n

∫
ln

(√
f0(x;V )
f1(x;V )

)
f1(x;V ) dx

(141)

= lim
n→∞

∫
1
n

ln
(
f1(x;V )
f0(x;V )

)
f1(x;V ) dx (142)

(31)= lim
n→∞ E1 [nLLR1(XV ;V )] , (143)

where (141) holds due to Jensen’s inequality. By definition,
in a homogeneous network, when the limit exists, the term
nLLR1(XV ;V ) converges completely to I1. This, in turn,
implies that E1 [nLLR1(XV ;V )] also converges completely
to I1, which, subsequently, converges almost surely to I1
(complete convergence implies almost sure convergence [81]).
Hence, in homogeneous networks

2κ(f0, f1) ≤ lim
n→∞ E1 [nLLR1(XV ;V )] a.s.−−→ I1. (144)

For the heterogeneous networks, we will follow the same
line of argument to show that

2κ(f0, f1) ≤ lim
n→∞ E1 [nLLR1(XV ;V )] a.s.−−→ I1(V )

(38)
≤ I∗1 .

(145)

A similar line of argument also shows that almost surely
2κ(f0, f1) ≤ I0 and 2κ(f0, f1) ≤ I∗0 in homogeneous and het-
erogeneous networks. By noting the assumption max{α, β} ≤
2κ(f0, f1), the desired conclusion is established.

APPENDIX C
PROOF OF THEOREM 2

In order to prove (46), we show that for any feasible solution
to (8) and for all ε > 0 we have

lim
n→∞ P1

(
τn
n
>

α

I1 + ε

)
= 1. (146)

This property, in turn, establishes the desired result
in (46). Specifically, by applying the Markov inequality we
obtain

lim
n→∞ E1

{
τn
n

· I1
α

}
≥ lim
n→∞

I1
I1 + ε

· P1

(
τn
n

· I1
α
>

I1
I1 + ε

)
(146)=

I1
I1 + ε

, ∀ε > 0. (147)

Since the inequality in (147) is valid for all ε > 0 we have

lim
n→∞ E1

{
τn
n

· I1
α

}
≥ sup

ε>0

I1
I1 + ε

= 1, (148)

which concludes (46). To prove (146), for i ∈ {0, 1} and
L ∈ {2, . . . , n− 1}, and corresponding to any (α, β)-accurate
algorithm with stopping time τn and decision rule δn let us
define the event

A(i, L) �= {δn = i, τn ≤ L}. (149)

Then, for any ζ > 0,for the error probability term P0
n

when the stopping time is τn and the decision rule is δn,
we have

P0
n = P0(δn = 1) (150)

= E0{1{δn=1}} (151)

= E1{1{δn=1} exp(−Λτn)} (152)

≥ E1{1{A(1,L),Λτn<ζ} exp(−Λτn)} (153)

≥ e−ζ P1(A(1, L),Λτn < ζ) (154)

≥ e−ζ P1

(
A(1, L), sup

t<L
Λt < ζ

)
(155)

≥ e−ζ
[
P1(A(1, L)) − P1

(
sup
t<L

Λt ≥ ζ
)]

(156)

≥ e−ζ
[
P1δn = 1) − P1(τn > L) − P1

(
sup
t<L

Λt ≥ ζ
)]
,

(157)

where (152) holds by changing the probability measure, (153)
holds by noting that the event {A(1, L),Λτn < ζ} is a
subset of the event {δn = 1}, and (156) and (157) hold due
to basic set operations properties. By rearranging the terms
in (150) and (157) and invoking P0(δn = 1) ≤ e−nα and
P1(δn = 0) ≤ e−nβ (the decision rules are (α, β)-accurate) we
obtain

P1(τn > L) ≥ P1(δn = 1) − eζ P0(δn = 1)
− P1

(
sup
t<L

Λt ≥ ζ
)

(158)

= 1 − P1
n − eζ P0

n − P1

(
sup
t<L

Λt ≥ ζ
)

(159)

(8)
≥ 1 − e−nβ − eζ e−nα − P1

(
sup
t<L

Λt ≥ ζ
)
.

(160)
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Note that (160) holds for any ζ > 0. Next, we set ζ
�= cLI1

where

c � 1 +
ε

2I1
. (161)

Hence, for any K ∈ {2, . . . , L−1} for the last term in (160)
we have

P1

(
sup
t<L

Λt ≥ ζ
)

(162)

= P1

(
sup
t<L

Λt ≥ cLI1

)
(163)

≤ P1

(
sup
t<K

Λt + sup
K≤t<L

Λt ≥ cLI1

)
(164)

≤ P1

(
sup
t<K

Λt + sup
K≤t<L

{L
t
Λt
}
≥ cLI1

)
(165)

= P1

( 1
L

sup
t<K

Λt + sup
K≤t<L

{Λt
t

− I1

}
≥ (c− 1)I1

)
(166)

≤ P1

( 1
L

sup
t<K

Λt + sup
t≥K

∣∣∣Λt
t

− I1

∣∣∣ ≥ (c− 1)I1
)

(167)

(161)
= P1

( 1
L

sup
t<K

Λt + sup
t≥K

∣∣∣Λt
t

− I1

∣∣∣ ≥ ε

2

)
(168)

≤ P1

( 1
L

sup
t<K

Λt ≥
ε

4

)
+ P

(
sup
t>K

∣∣∣Λt
t

− I1

∣∣∣ > ε

4

)
.

(169)

We show that both probability terms in (169) diminish as
n grows. From the second term in (169) note that from the
definition of T�(h, ψ∞) in (35) we know that corresponding
to any given sampling path ψ∞ we have

∀t ≥ T�

( ε
4
, ψ∞

)
:

∣∣∣Λt
t

− I1

∣∣∣ ≤ ε

4
. (170)

This indicates that by setting K = T�( ε4 , ψ
∞), it can be

readily verified that

lim
n→∞ P

(
sup
t>K

∣∣∣Λt
t

− I1

∣∣∣ > ε

4

)
= 0. (171)

As a result, for K = T�(ε/4, ψ∞) from (162)-(169) we
obtain

lim
n→∞ P1

(
sup
t<L

Λt ≥ cLI1

)
≤ lim

n→∞ P1

( 1
L

sup
t≤K

Λt ≥
ε

4

)
.

(172)

For the right hand side of (172) we find that for any ε > 0

P1

( 1
L

sup
t<K

Λt ≥
ε

4

)
≤ P1

( 1
L

K∑
t=1

Λt ≥
ε

4

)
(173)

≤ 4
ε
· 1
L

E1

[
K∑
t=1

Λt

]
(174)

=
4
ε
· 1
L

E1

[
K∑
t=1

E1[Λt]

]
(175)

≤ 4
ε
· 1
L

E1[K] max
1≤t≤K

E1[Λt], (176)

where (174) holds due to Markov’s inequality and (175)
follows from Wald’s identity (general form). Next, we set

L =
⌈

nα

I1 + ε

⌉
. (177)

By recalling Lemma 1 we know that for sufficiently large
n, we have L ≤ n. Hence, based on (172) and (176) we get

lim
n→∞ P1

(
sup
t<L

Λt ≥ cLI1

)
≤ lim

n→∞
4
ε
· 1
L

E1[K] max
1≤t≤K

E1[Λt] (178)

(177)
≤ 4

ε
· I1 + ε

α
lim
n→∞

1
n

E1[K] max
1≤t≤K

E1[Λt] (179)

= 0, (180)

where the last step holds by noting that E�[K] =
E�[T�(ε/4, ψ∞)] < +∞ specified in (34). Subsequently,
from (162), (169), (171), (178), and (180) we have

lim
n→∞ P1

(
sup
t<L

Λt ≥ ζ
)

= 0. (181)

As a result, from (158)-(160) we obtain

lim
n→∞P1

(
τn
n
>

α

I1 + ε

)
(177)= lim

n→∞ P1 (τn > L) (182)

(160)
(181)= lim

n→∞

[
1 − exp(−nβ) − exp

(
− nα · ε

2I1 + ε

)]
(183)

= 1, (184)

which proves (146). Since this is always valid irrespectively
of the sampling procedure and the stopping rule, we conclude
that (46) is always valid, establishing

lim
n→∞

E1{τn}
n

≥ α

I1
. (185)

We can prove

lim
n→∞

E0{τn}
n

≥ β

I0
, (186)

by following the same line of argument.

APPENDIX D
PROOF OF THEOREM 3

Following the definition of T1(h, ψ∞) in (35), we provide
a truncated counterpart of it for a network with n nodes (non-
asymptotic regime) as follows.

R1(h, ψn)
�= sup

{
t ≤ n :

∣∣∣Λt
t

− I1

∣∣∣ > h
}
, ∀h > 0,

(187)

where we adopt the convention that the supremum of an empty
set is +∞. Obviously,

lim
n→∞R1(h, ψn) = T1(h, ψ∞). (188)

According to the definition of the stopping time in (12), at
the instance prior to stopping, i.e., at time τ∗n − 1, we always
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have Λτ∗
n−1 ∈ (γL, γU). We start the proof by comparing

Λτ∗
n−1 with these two bounds. First, consider the following

relationship

Λτ∗
n−1 < γU. (189)

Based on the definition of R1(h, ψn) in (187), if
R1(h, ψτ

∗
n) < τ∗n − 1, then for t = τ∗n − 1 we have∣∣∣Λτ∗

n−1

τ∗n − 1
− I1

∣∣∣ ≤ h, ∀h > 0, (190)

which indicates that for all h ∈ (0, I1) we have

τ∗n ≤
Λτ∗

n−1

I1 − h
+ 1

(189)
≤ γU

I1 − h
+ 1. (191)

Hence, from (191) for all h ∈ (0, I1) we have

τ∗n = τ∗n · 1{τ∗
n>R1(h,ψτ∗

n)+1} + τ∗n · 1{τ∗
n≤R1(h,ψ

τ∗
n )+1}︸ ︷︷ ︸

≤R1(h,ψτ∗
n)+1

(192)
(191)
≤
[

γU

I1 − h
+ 1
]
· 1{τ∗

n>R1(h,ψτ∗
n)+1} +R1(h, ψτ

∗
n) + 1

(193)

≤ 2 +
γU

I1 − h
+R1(h, ψτ

∗
n). (194)

Subsequently,

τ∗n ≤ 2 + inf
h∈(0,I1)

γU

I1 − h
+R1(h, ψτ

∗
n) (195)

≤ 2 +
γU

I1
+R1(h, ψτ

∗
n). (196)

Since

E1{T1(h, ψ∞)} < +∞, ∀h > 0, (197)

by recalling that γU = nα, from (188) and (195)-(196) we
obtain

lim
n→∞

E1{τ∗n}
n

≤ α

I1
. (198)

Similarly, by also considering

Λτ∗
n−1 > γL (199)

and following the same line of argument we obtain

lim
n→∞

E0{τ∗n}
n

≤ β

I0
, (200)

which concludes the proof.

APPENDIX E
PROOF OF LEMMA 2

We start by showing that there exist positive constants B
and c such that for all t ∈ V

P1(τ̂n ≥ t) ≤ Be−ct. (201)

For this purpose, note that

P1(τ̂n ≥ t) =
n∑
u=t

P1(τ̂n = u) (202)

=
n∑
u=t

P1

(
δML(u− 1) = H0,

δML(u) = · · · = δML(n) = H1

)
(203)

≤
n∑
u=t

P1(δML(u− 1) = H0) (204)

(15)=
n−1∑
u=t−1

P1(Λu < 0). (205)

Next, we find an upper bound on P1(Λu < 0). For this
purpose, note that for any s ∈ R we have

P1(Λt < 0) · E1

{
exp{sΛt} | 1{Λt<0}

}
(206)

= E1

{
exp{sΛt}1{Λt<0}

}
(207)

≤ E1

{
exp{sΛt}

}
. (208)

Furthermore, for any s < 0 we have

E1

{
exp{sΛt} | 1{Λt<0}

}
≥ 1. (209)

By combining (206)–(209) we find that for any s < 0

P1(Λt < 0) ≤ E1

{
exp{sΛt}

}
. (210)

The right hand side of (210) can be expanded by using the
towering property of expectation as follows:

E1

{
exp{sΛt}

}
(211)

(9)= E1

{
exp{sΛt−1} · E1

{[f1(Yt;ψ(t)|Ft−1)
f0(Yt;ψ(t)|Ft−1)

]s ∣∣∣ Ft−1

}}
.

(212)

Now, consider the inner expectation and define

ξt(s)
�= E1

{[f1(Yt;ψ(t)|Ft−1)
f0(Yt;ψ(t)|Ft−1)

]s ∣∣∣ Ft−1

}
. (213)

It can be ready verified that ξt(s) is convex in s and satisfies

ξt(−1) = ξt(0) = 1. (214)

ξt(s) can have two possible behaviors in the range s ∈ (−1, 0):
Case 1: ξt(s) = 1, ∀s ∈ (−1, 0). This occurs only when

the likelihood ratio inside the expectation is equal to 1, i.e., the
sample taken at time t has the same likelihood values under
both hypotheses. This event has measure zero. As a result, the
probability of this case occurring is 0.

Case 2: ξt(s) < 1, ∀s ∈ (−1, 0). It means that in this case
there exists a constant c > 0 such that for some s∗ ∈ (−1, 0)
and ∀t ≤ τ∗n

ξt(s∗) ≤ e−c < 1. (215)

By successively applying the towering property as in (211),
and accounting for Case 1 we obtain

P1(Λt < 0)
(210)
≤ E1

{
exp{s∗Λt}

}
≤ e−ct. (216)
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Next, by combining (205) and (216) we obtain

P1(τ̂n ≥ t) ≤
n−1∑
u=t−1

e−cu (217)

≤
∞∑

u=t−1

e−cu (218)

=
ec

1 − e−c
e−ct (219)

= b · e−ct, (220)

where we have defined b
�= 1

1−e−c . By using this result, it can
be ready verified that E1{τ̂n} is finite. Specifically,

E1{τ̂n} =
∞∑
t=1

P(τ̂n ≥ t) ≤
∞∑
t=0

be−ct =
b

1 − e−c
, (221)

which shows that E1{τ̂n} is asymptotically upper bounded by
a constant. The proof for E0{τ̂n} being bounded by a constant
follows a similar line of argument.

APPENDIX F
PROOF OF LEMMA 3

We prove the lemma by contradiction. Specifically, we show
that if limt→∞ 1

t |Ht| is bounded away from zero, then for
the sequence W t �= {ψ∗(1), . . . , ψ∗(t)} we have I�(W∞) >
I�(U∞), contradicting the definition of U∞ in (56). For this
purpose, for t > τ̂n consider the expansion

E�

[
1
t

ln
f�(Y t;W t)
f1−�(Y t;W t)

]

=
1
t

t∑
s=1

E�

[
ln

f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]
(222)

=
1
t
E�

[
τ̂n∑
s=1

ln
f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]

+
1
t
E�

[ ∑
s/∈Ht

ln
f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]

+
1
t
E�

[ ∑
s∈Ht

ln
f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]
. (223)

Corresponding to the three summands in (223) we show the
following three properties:

1
t

τ̂n∑
s=1

E�

[
ln

f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]
≥ 0, (224)

1
t

∑
s/∈Ht

E�

[
ln

f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]
≥ t− |Ht|

t
· I�(U∞),

(225)

1
t

∑
s∈Ht

E�

[
ln

f�(Ys;ψ∗(s)|Fs−1)
f1−�(Ys;ψ∗(s)|Fs−1)

]
≥ |Ht|

t
[I�(U∞) + ε],

(226)

where ε ∈ R
+ is a positive constant. These three inequalities

in conjunction with (223) establish that

E�

[
1
t

ln
f�(Y t;W t)
f1−�(Y t;W t)

]
≥ I�(U∞) +

|Ht|
t

· ε. (227)

Hence, when limt→∞ 1
t |Ht| is bounded away from zero we

have

I�(W∞) = lim
t→∞ E�

[
1
t

ln
f�(Y t;W t)
f1−�(Y t;W t)

]
> I�(U∞),

(228)

which contradicts the definition of U∞. By noting that (224)
follows the non-negativity of the KL divergence, next we prove
the inequalities in (225) and (226).

We complete the proof in four steps. In the first step, we
show that for any set A ⊆ U∞ ∩ S(N), the normalized
log-likelihood ratio of the random variables in the set A
converges to I�(U∞). In the second step, we leverage this
property to establish that the information measure of each node
j ∈ U∞ ∩ ϕt is greater than or equal to I�(U∞). In the third
step, we show that the contribution of any node in H(t) to
the normalized log-likelihood ratio is greater than I�(U∞).
Finally, in the fourth step we show that if limt→∞

|H(t)|
t > 0,

then for the set Û
�= U∞ ∪H(t) we have I�(Û) > I�(U∞).

Step 1: We prove that for any set A ⊆ U∞ ∩ S(N), the
normalized log-likelihood ratio of any infinite subsequence of
the set A converges to I�(U∞). From the definition of the set
U∞ and complete convergence in (33), for any sequence of
nodes ψ∞ ⊆ U∞ and ∀h > 0, we have

∞∑
t=1

P�

( ∣∣nLLR�(Y t;ψt) − I�(U∞)
∣∣ > h

)
<∞. (229)

Since (229) holds for any infinite subsequence of U∞, it
holds for any subsequence ψ̂∞ ⊆ A ⊆ U∞ as well. Hence,

∞∑
t=1

P�

( ∣∣∣nLLR�(Y t; ψ̂t) − I�(U∞)
∣∣∣ > h

)
<∞, (230)

which proves the complete convergence of nLLR�(Y t; ψ̂t) to
I�(U∞) for any set A ⊆ U∞ ∩ S(N).

Step 2: By leveraging the property established in Step 1,
we show that at any time t ≥ τ̂n, if the ML decision at time
t− 1 is H�, i.e., δML(t− 1) = H�, then for any node j ∈ U∞

we have

max
S∈Rj

t

E�

{
1
|S| ln

f�(XS ;S |Ft−1)
f1−�(XS ;S |Ft−1)

}
≥ I�(U∞). (231)

We first show this property for t = τ̂n. For this purpose,
expand the left hand side of (231) as in (232)–(238), shown at
the bottom of the next page, where (233) is due to shrinking
the feasible set of the maximization problem, expressions
in (234) and (236) are due to the properties of conditional
pdfs, (235) and (237) follow Lemma 2, which states that τ̂n
is upper bounded by a constant, while we have S ∈ S(N)
dictating that |S| = ∞, and (238) follows from the definition
of U∞ and applying Step 1. From (233)–(238) we observe
that for any node j ∈ U∞ we have

max
S∈Rj

t∩ S(N)
E�

{
1
|S| ln

f�(XS ;S |Fτ̂n−1)
f1−�(XS ;S |Fτ̂n−1)

}
≥ I�(U∞).

(239)
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Furthermore, by noting that we are restricting S to belong
to S(N), the inequality will hold with equality, i.e.

max
S∈Rj

t∩ S(N)
E�

{
1
|S| ln

f�(XS ;S |Fτ̂n−1)
f1−�(XS ;S |Fτ̂n−1)

}
= I�(U∞).

(240)

By following a similar line of argument, we generalize
this property to any t > τ̂n. By defining V �= {ψ(s) :
τ̂n ≤ s ≤ t},6 for the left hand side of (231) we have
what follows in (241)–(244), shown at the bottom of the next
page, where (242) follows as in (234), the expansion of the
conditional pdf gives (243), and (244) holds due to τ̂n being
upper bounded by a constant. Finally, if |V| is finite, the second
term in (244) is 0 because the conditional KL divergence is
finite and |S| = ∞ and (244) is lower bounded by I�(U∞)
as shown in (235)–(238). On the other hand, if |V| → ∞,
from (244) we have (245)–(247), shown at the bottom of the
next page, where (246) is due to replacing the second term
in (245) from (240), and (247) is due to the definition of U∞

and Step 1. Hence, the proof for (231) is concluded.
Step 3: In Step 2, we proved that at any time t ≥ τ̂n there
exists a node from U∞ for which the information measure
is greater than or equal to I�(U∞). Next, we prove that
the contribution of any node in H(t) to the normalized log-
likelihood ratio is greater than I�(U∞). To this end, we note
that for any s ∈ H(t) there exists some S ∈ Rψ(s)

s such that

1
|S|E�

{
ln

f�(XS ;S |Fs−1)
f1−�(XS ;S |Fs−1)

}
> I�(U∞), (249)

because otherwise, according to Step 2, one node from the set
U∞ should have been selected. By defining S̄ �= S \ {ψ(s)}

6In principle, set V should be indexed by t. However, for clarity in notations,
we drop index t.

and expanding the joint pdfs we obtain

E�

{
ln

f�(XS ;S |Fs−1)
f1−�(XS ;S |Fs−1)

}
(250)

= E�

{
ln

f�(Ys;ψ(s) | Fs−1)
f1−�(Ys;ψ(s) | Fs−1)

}
(251)

+ E�

{
ln

f�(XS̄ ; S̄ | Fs−1, Ys)
f1−�(XS̄ ; S̄ | Fs−1, Ys)

}
. (252)

If the first term on the right-hand side of (250) is not greater
than I�(U∞), the from (249) we conclude that the second term
in (250) must be greater than |S̄| ·I�(U∞). Thus, for any node
in S̄ we have

1
|S̄|E�

{
ln

f�(XS̄ ; S̄ | Fs−1, Ys)
f1−�(XS̄ ; S̄ | Fs−1, Ys)

}
> I�(U∞). (253)

Hence, one node from S̄ is selected at time s+1. Therefore,
by sequentially applying this principle, by construction

∀s ∈H(t), ∃S̄ ⊆ ψt : (254)

1
|S̄|E�

{
ln

f�(XS̃ ; S̄ | Fs−1)
f1−�(XS̄ ; S̄ | Fs−1)

}
> I�(U∞). (255)

Step 4: Finally, we prove the if limt→∞
|H(t)|
t = 0 does not

hold, it contradicts the definition of U∞. For this purpose,
suppose that we have

lim
t→∞

|H(t)|
t

≥ c > 0, (256)

for some constant c > 0. Then, we can expand the log-
likelihood ratio of the samples up to time t ∈ N according

max
S∈Rj

t

E�

{
1
|S| ln

f�(XS ;S |Fτ̂n−1)
f1−�(XS ;S |Fτ̂n−1)

}
(232)

≥ max
S∈Rj

t∩ S(N)
E�

{
1
|S| ln

f�(XS ;S |Fτ̂n−1)
f1−�(XS ;S |Fτ̂n−1)

}
(233)

= max
S∈Rj

t∩ S(N)

[
|S| + τ̂n − 1

|S| E�{nLLR(XS∪ψτ̂n−1 ;S ∪ ψτ̂n−1)} − τ̂n − 1
|S| E�{nLLR(Xψτ̂n−1 ;ψτ̂n−1)}︸ ︷︷ ︸

=0 (Lemma 2)

]
(234)

= max
S∈Rj

t∩ S(N)

|S| + τ̂n − 1
|S| E�

{
nLLR(XS∪ψτ̂n−1 ;S ∪ ψτ̂n−1)

}
(235)

= max
S∈Rj

t∩ S(N)

[
E�{nLLR(XS ;S)} +

1
|S|E�

{
ln

f�(Y τ̂n−1;ψτ̂n−1|XS ;S)
f1−�(Y τ̂n−1;ψτ̂n−1|XS ;S)

}
︸ ︷︷ ︸

=0 (Lemma 2)

]
(236)

= max
S∈Rj

t∩ S(N)
E�{nLLR(XS ;S)} (237)

= I�(U∞). (238)
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to

1
t

ln
f�(Y t;ψt)
f1−�(Yt;ψt)

(257)

=
1
t

t∑
s=1

ln
f�(Ys;ψ(s)|Fs−1)
f1−�(Ys;ψ(s)|Fs−1)

(258)

=
1
t

∑
s∈H(t)

ln
f�(Ys;ψ(s)|Fs−1)
f1−�(Ys;ψ(s)|Fs−1)︸ ︷︷ ︸

(254)
> |H(t)|·I�(U∞)

(259)

+
1
t

∑
s≤t,s/∈H(t)

ln
f�(Ys;ψ(s)|Fs−1)
f1−�(Ys;ψ(s)|Fs−1)︸ ︷︷ ︸

(231)
≥ (t−|H(t)|)·I�(U∞)

(260)

>
|H(t)|
t

I�(U∞) +
t− |H(t)|

t
I�(U∞) (261)

> I�(U∞). (262)

This inequality holds for t → ∞, which means that we
have found a subset of nodes ψt for which the information
measure I�(ψt) is greater than that of the set U∞ under H�,
contradicting the definition of the set U∞. Hence,

lim
t→∞

|H(t)|
t

= 0. (263)

APPENDIX G
PROOF OF LEMMA 4

Following the definition of T1(h, ψ∞) in (35) for hetero-
geneous networks, we provide a truncated counterpart for it
defined as follows. For this purpose, ∀h > 0 we denote the
first n elements of U∞ by Un.

R1(h, Un)
�= sup

{
t ≤ n :

∣∣∣Λt
t

− I∗1
∣∣∣ > h

}
, (264)

where clearly

lim
n→∞R1(h, Un) = T1(h, U∞). (265)

Hence, by accounting for the first τ̂n samples, some of
which may have been observed from nodes not included in
the first τ̂n elements of U∞, the last time that the normalized
log-likelihood ratios Λt

t leaves the interval [I∗1 − h, I∗1 + h]
will happen no later than R1(h, Un) + τ̂n + |H(n)|. In other
words,

∀t ≥ R1(h, Un) + τ̂n + |H(n)| : (266)

− h ≤ Λt − Λτ̂n

(t− τ̂n)
− I∗1 ≤ h, ∀h > 0. (267)

If τ∗n > R1(h, Un) + τ̂n + |H(n)|, then for all h ∈ (0, I∗1 )
we have

τ∗n − τ̂n ≤ γU − Λτ̂n

I∗1 − h
+ 1. (268)

max
S∈Rj

t

E�

{
1
|S| ln

f�(XS ;S |Ft−1)
f1−�(XS ;S |Ft−1)

}
(241)

≥ max
S∈Rj

t∩ S(N)
E�

{
1
|S| ln

f�(XS ;S |Ft−1)
f1−�(XS ;S |Ft−1)

}
(242)

= max
S∈Rj

t∩ S(N)

[
|S| + |V| + τ̂n − 1

|S| E�{nLLR(XS∪ψt−1 ;S ∪ ψt−1)}

− E�

{
1
|S| ln

f�(XV ;V |Fτ̂n−1)
f1−�(XV ;V |Fτ̂n−1)

}
− τ̂n − 1

|S|︸ ︷︷ ︸
=0 (Lemma 2)

E�{nLLR(Xψτ̂n−1 ;ψτ̂n−1)}
]

(243)

= max
S∈Rj

t∩ S(N)

[
|S| + |V| + τ̂n − 1

|S| E�{nLLR(XS∪ψt−1 ;S ∪ ψt−1)} − 1
|S|E�

{
ln

f�(XV ;V |Fτ̂n−1)
f1−�(XV ;V |Fτ̂n−1)

}]
, (244)

max
S∈Rj

t∩ S(N)

[
|S| + |V| + τ̂n − 1

|S| E�{nLLR(XS∪ψt−1 ;S ∪ ψt−1)} − E�

{
1
|S| ln

f�(XV ;V |Fτ̂n−1)
f1−�(XV ;V |Fτ̂n−1)

}]
(245)

= max
S∈Rj

t∩ S(N)

[
|S| + |V| + τ̂n − 1

|S| E�{nLLR(XS∪ψt−1 ;S ∪ ψt−1)} − |V|
|S|I�(U

∞)

]
(246)

≥ max
S∈Rj

t∩ S(N)

[
|S| + |V| + τ̂n − 1

|S| I�(U∞) − |V|
|S|I�(U

∞)

]
(247)

= I�(U∞), (248)
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Hence, for all h ∈ (0, I∗1 ) we have

τ∗n − τ̂n = (τ∗n − τ̂n) · 1{τ∗
n>R1(h,Un)+τ̂n+|H(n)|} (269)

+ (τ∗n − τ̂n) · 1{τ∗
n≤R1(h,Un)+τ̂n+|H(n)|}︸ ︷︷ ︸

≤R1(h,Un)+|H(n)|

(270)

(268)
≤
[
γU − Λτ̂n

I∗1 − h
+ 1
]
· 1{τ∗

n>R1(h,Un)+τ̂n+|H(n)|}

(271)

+R1(h, Un) + |H(n)| (272)

≤ γU − Λτ̂n

I∗1 − h
+R1(h, Un) + |H(n)| + 1. (273)

Hence,

τ∗n − τ̂n ≤ 1 + inf
h∈(0,I∗1 )

γU − Λτ̂n

I∗1 − h
+R1(h, Un) + |H(n)|

(274)

= 1 +
γU − Λτ̂n

I∗1
+R1(h, Un) + |H(n)|. (275)

Since the convergence of the nLLR is complete, we can
conclude the proof of (54) by combining (11) and (274)–(275)
to obtain

lim
n→∞

E1{τ∗n − τ̂n}
n

≤ α

I∗1
− lim
n→∞

E1{Λτ̂n}
nI∗1

(276)

+ lim
n→∞

E1[R1(h, Un)]
n

(277)

+ lim
n→∞

E1{|H(n)|}
n

(278)

≤ α

I∗1
+ lim
n→∞

E1[T1(h, U∞)]
n

(279)

+ lim
n→∞

E1{|H(n)|}
n

(280)

=
α

I∗1
, (281)

where (276) holds since E1{Λτ̂n} is a KL divergence term
and it is non-negative, and (279) holds due to the dom-
inated convergence theorem and the fact that by defin-
ition R1(h, Un) ≤ T1(h, U∞), ∀n, and (281) holds by
leveraging Lemma 3 and noting that E1{T1(h, U∞)} is
finite.

APPENDIX H
PROOF OF THEOREM 5

The error exponents of the NP test are studied in [87],
where it is shown that when P0

NP is fixed, which is equivalent
to an error exponent of 0, the error exponent of P1

n is the
convergence limit of nLLR0(Y n;ψn) as n grows under the
assumption that {Y1, . . . , Yn} are drawn from distribution f0.
This is equivalent to the definition of I0. Hence, for the NP
test we have E1

NP = I0 and E0
NP = 0. For the sequential

sampling setting, based on the analysis of the average delay
in Theorems 2 and 3 we have

and lim
n→∞

E1{τ∗n}
n

=
α

I1
. (282)

For the error exponent of P0
n yielded by Algorithm 1 we

have

E0
n = − lim

n→∞
1
r1

ln P0
n(r1) (283)

≥ − lim
n→∞−nα

r1
(284)

= lim
n→∞

n

E1{τ∗n}
· α (285)

(282)= I1, (286)

where (284) follows from Algorithm 1 generating (α, β)-
accurate decisions. Next, we define Δ �= E0

n − I1 ≥ 0, based
on which we have

− lnP0
n(r1)

(283)= r1E
0
n + o(n) = r1Δ + r1I1 + o(n). (287)

On the other hand, we observe that in the proof of Theo-
rem 2, P0

n has been replaced by its upper bound. By keeping
P0
n throughout the proof it can be readily shown that

lim
n→∞

E1{τ∗n}
n

≥ | ln P0
n(r1)|
nI1

. (288)

By combining (287) and (288) we obtain

lim
n→∞

E1{τ∗n}
n

≥ lim
n→∞

|r1Δ + r1I1 + o(n)|
nI1

(289)

= lim
n→∞

r1
n

· Δ + I1
I1

(290)

(282)=
α

I1
· Δ + I1

I1
. (291)

On the other hand, from Theorem 3 we have

lim
n→∞

E1{τ∗n}
n

≤ α

I1
. (292)

By comparing (291) and (292) and noting that Δ ≥ 0,
in the asymptote of large n we should have Δ = 0, and
consequently, E0

n = I1. The error exponent of P1
n can be

obtained by following the same line of argument.

APPENDIX I
PROOF OF THEOREM 6

Without loss of generality assume that at time t − 1 we
have δML(t−1) = H�. By recalling the definition of Ri

t given
in (19), corresponding to any unobserved node i ∈ ϕt at time t
we define S̄it ∈ Ri

t as the smallest set of nodes that maximizes
the normalized information measure assigned to node i ∈ ϕt

at time t, i.e.,

S̄it
�= arg max

S∈Ri
t

M i
�(t,S)
|S| . (293)

Also, we define

u
�= argmax

i

M i
�(t, S̄it)
|S̄it |

, (294)

as the index of the node that exhibits the largest normalized
information measure,7 selected by the selection rule specified
in (24). Hence, the optimal sampling path is the set S̄ut .

7For convenience in notation, we suppressed the dependence of u on t, �,
and the past samples.
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In order to prove the theorem, we show that the maximum
normalized information measure achieved by the set S̄ut is
equal to the normalized information measure achieved by only
the members of S̄it ∈ Ri

t that are neighbors of u. In other
words, by defining

T u
t

�= S̄ut ∩ Lut , (295)

we show that

Mu
� (t, S̄ut )
|S̄ut |

=
Mu
� (t, T u

t )
|T u
t | . (296)

We prove this identity by removing the nodes not neighbor-
ing u in four steps, and in each step showing that removing
those nodes does not penalize Mu

� (t,S̄u
t )

|S̄u
t | .

1) Removing any node in S̄ut that belongs to a subgraph
of G different from the subgraph that contains u, does
not decrease Mu

� (t,S̄u
t )

|S̄u
t | .

2) Furthermore, removing any node of S̄ut whose path to
u contains a node that has been observed earlier, does
not decrease Mu

� (t,S̄u
t )

|S̄u
t | .

3) Moreover, removing any node of S̄ut whose path to u
contains an unobserved node that does not belong to S̄ut ,
does not decrease Mu

� (t,S̄u
t )

|S̄u
t | .

4) Finally, removing any remaining node that is not a
neighbor of u does not decrease Mu

� (t,S̄u
t )

|S̄u
t | .

Step 1: First we show that removing the nodes from all
subgraphs of G other than the one that containing node u,
does not increase the information measure of node u. For this
purpose, we partition S̄ut according to

S̄ut = A ∪ Ā, and A ∩ Ā = φ, (297)

where A ⊆ S̄ut is the set of nodes that belong to the same
subgraph as u, and Ā

�= S̄ut \ A. We expand the information
measure of u as follows:

Mu
� (t, S̄ut )
|S̄ut |

=
DKL

(
f�(XĀ|Ft−1) ‖ f1−�(XĀ|Ft−1)

)
|S̄ut |

(298)

+
DKL

(
f�(XA|Ft−1) ‖ f1−�(XA|Ft−1)

)
|S̄ut |

.

(299)

We note that A is non-empty since u ∈ A. We show that if
Ā is not empty, removing it does not decrease the information
measure of node u. Suppose otherwise, i.e., Ā is non-empty
and

DKL

(
f�(XA|Ft−1) ‖ f1−�(XA|Ft−1)

)
|A| <

Mu
� (t, S̄ut )
|S̄ut |

.

(300)

Then, in order for (298)–(299) to hold, we must have

DKL

(
f�(XĀ|Ft−1) ‖ f1−�(XĀ|Ft−1)

)
|Ā| >

Mu
� (t, S̄ut )
|S̄ut |

.

(301)

Denote one of the members of Ā by v. Then, by noting that
Ā ⊆ Svt and invoking the definition of u, we have

DKL

(
f�(XĀ|Ft−1) ‖ f1−�(XĀ|Ft−1)

)
|Ā| (302)

(293)
≤ max

S∈Rv
t

Mv
� (t,S)
|S| (303)

(294)
≤ Mu

� (t, S̄ut )
|S̄ut |

, (304)

which contradicts (300). Hence, we remove all the nodes that
do not belong to the subgraph of G that contains u, and assume
that the optimal set S̄ut is free of such nodes. In the next steps,
we focus only on the nodes that belong to the same subgraph
that u lies in.

Step 2: Next, we show that further removing the nodes
whose path to u contains a node that has been observed
earlier, does not increase the information measure of u. For
this purpose, we partition S̄ut according to

S̄ut = B ∪ B̄, and B ∩ B̄ = φ, (305)

where B ⊆ S̄ut is the set of nodes whose paths to u includes
an observed node, i.e. an element of ψt−1

n . According to the
global Markov property we have

B ⊥⊥ B̄
∣∣ Ft−1, (306)

Hence, we have the decomposition

Mu
� (t, S̄ut )
|S̄ut |

=
DKL

(
f�(XB |Ft−1) ‖ f1−�(XB|Ft−1)

)
|S̄ut |

(307)

+
DKL

(
f�(XB̄ |Ft−1) ‖ f1−�(XB̄|Ft−1)

)
|S̄ut |

.

(308)

We can follow the exact same line of argument as in Step 1,
to prove that removing the nodes in B does not decrease the
information measure of node u, and consequently, the selected
node.

Step 3: In the next step, we show that further removing any
node of Sut whose path to u contains an unobserved node that
does not belong to Sut can be also removed without penalizing
the desired information measure. For this purpose, we partition
the set S̄ut according to

S̄ut = C ∪ C̄, and C ∩ C̄ = φ, (309)

where C̄ is the set of nodes whose paths to u contains at least
one node that does not belong to S̄ut . Let us also define the set
Cj as a subset of C̄ whose paths to u contains the unobserved
node j /∈ Sut . Since the graph is acyclic, the sets {Cj} are
disjoint and partition C̄ , i.e.

C̄ =
⋃
j∈J

Cj , and Cj ∩ Cj
′
= φ, ∀j, j′ ∈ J, (310)

where we have defined J as the smallest set that separates
C and C̄ . Then, we expand the information measure of u
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as follows in (311)–(314), shown at the bottom of the page,
where we have defined

Mj
�= Nj ∩ C. (315)

We prove this step by contradiction. Suppose that

Mu
� (t, S̄ut )
|S̄ut |

>
DKL

(
f�(XC |Ft−1) ‖ f1−�(XC |Ft−1)

)
|C| .

(316)

Hence, for (311)–(314) to hold, we should have (317),
shown at the bottom of the next page, indicating that there
exists at least one j ∈ J such that (318), shown at the bottom
of the next page, holds. Next, by defining C̄j

�= Cj ∪ {j}, we
consider the following two different expansions for

DKL

(
f�(XC̄j

|XMj ,Ft−1) ‖ f1−�(XC̄j
|XMj ,Ft−1)

)
.

(319)

Specifically, on one hand we have

DKL

(
f�(XC̄j

|XMj ,Ft−1) ‖ f1−�(XC̄j
|XMj ,Ft−1)

)
(320)

= DKL

(
f�(Xj |XMj ,Ft−1) ‖ f1−�(Xj |XMj ,Ft−1)

)
(321)

+DKL

(
f�(XCj |Xj ,Ft−1) ‖ f1−�(XCj |Xj ,Ft−1)

)
,

(322)

and on the other hand we have (323) and (325), shown at the
bottom of the next page. Since the KL divergence is a convex
function in both of its arguments and f�(Xj |XMj ,Ft−1) is
the average of f�(Xj |XMj , XCj ,Ft−1), by applying Jensen’s
inequality we obtain (326), shown at the bottom of the next
page. By combining (320)–(326) we get

DKL

(
f�(XCj |Xj ,Ft−1) ‖ f1−�(XCj |Xj ,Ft−1)

)
≥ DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
,

(327)

which in conjunction with (318) yields (328), shown at the
bottom of the next page. This identity, however, contradicts
the optimality of u, that is u is the node with the largest
information measure.

Step 4: The first three steps, collectively, establish that based
on the definition of S̄ut (being the smallest set that maximizes
the information measure), the graph formed by the set of nodes
in S̄ut is connected and is not separated by any subset of nodes

in V \ S̄ut . This indicates that so far we have shown that S̄ut
should contain only neighbors of u or other nodes that are
connected to u via a neighbor of u. In the final stage we
show cannot contain any node other than the neighbors of u.
By contradiction, suppose that S̄ut contains at least one node
that is not a neighbor of u. We denote this node by k. By
defining

Sut
�= S̄ut \ {k}, (329)

we have (330), shown at the bottom of the next page, where
we have defined

Mk
�= Nk ∩ Sut . (331)

Since S̄ut maximizes the normalized information content of
u, we have

Mu
� (t, S̄ut )
|S̄ut |

>
Mu
� (t,Sut )
|Sut |

, (332)

and, consequently, in order for (330) to hold we should have

DKL

(
f�(Xk|XMk

,Ft−1) ‖ f1−�(Xk|XMk
,Ft−1)

)
>
Mu
� (t, S̄ut )
|S̄ut |

. (333)

On the other hand, we have

DKL

(
f�(Xk|XMk

,Ft−1) ‖ f1−�(Xk|XMk
,Ft−1)

)
<
Mk
� (t, S̄kt )
|S̄kt |

, (334)

which combined with (333) indicates

Mu
� (t, S̄ut )
|S̄ut |

<
Mk
� (t, S̄kt )
|S̄kt |

. (335)

This contradicts the optimality of u, and as a result S̄ut
cannot contain any node that is not a neighbor of u. This
completes the proof.

APPENDIX J
PROOF OF THEOREM 8

For a GMRF with an underlying line dependency graph,
when Σij = σ among the neighboring nodes, we have a
homogeneous networks in which

I0 = ln(1 − σ2) +
2σ2

1 − σ2
, (336)

and I1 = ln
1

1 − σ2
. (337)

Mu
� (t, S̄ut )
|S̄ut |

=
DKL

(
f�(XC |Ft−1) ‖ f1−�(XC |Ft−1)

)
|S̄ut |

(311)

+
∑
j∈J

DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
|S̄ut |

(312)

≤ max

{
DKL

(
f�(XC |Ft−1) ‖ f1−�(XC |Ft−1)

)
|C| , (313)

max
j∈J

DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
|Cj |

}
, (314)
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By applying these identities to sets A and B in which
σ > a and σ < b, respectively, and noting that I0 and I1
are monotonically increasing functions of |σ| we have

I0(A)
I0(B)

(338)

≥
ln(1 − a2) + 2a2

1−a2

ln(1 − b2) + 2b2

1−b2
(339)

=
−a2 − a4

2 − a6

3 − o(a6) + 2a2
(
1 + a2 + a4 + o(a4)

)
−b2 − b4

2 − b6

3 − o(b6) + 2b2
(
1 + b2 + b4 + o(b4)

)
(340)

=
a2 + 3

2a
4 + 5

6a
6 + o(a6)

b2 + 3
2b

4 + 5
6b

6 + o(b6)
(341)

≥ a2

b2
, (342)

where the last inequality holds since a > b. Similarly, for the
expected delays under H1 we have

I1(A)
I1(B)

≥ − ln(1 − a2)
− ln(1 − b2)

(343)

=
a2 + a4

2 + a6

3 o(a
6)

b2 + b4

2 + b6

3 + o(b6)
(344)

=
a2(1 + 1

2a
2 + 1

3a
4 + o(a4)

b2(1 + 1
2b

2 + 1
3b

4 + o(b4)
(345)

≥ a2

b2
. (346)

When |A| = o(n), Chernoff’s rule starts the sampling
process from set B with probability 1 and since the graph
is connected stays in set B until it exhaust all its nodes.
By invoking the results of Theorem 3, we can conclude
that the expected delay of Chernoff’s rule under H� is
inversely proportional to I�(B). Furthermore, from Corollary 2
and Theorem 4 the expected delay of our strategy under
H� is inversely proportional to I�(A), which concludes the
proof

APPENDIX K
PROOF OF THEOREM 9

We define τd � τc − τ∗n . The optimal sampling strategy
starts by directly sampling from set A. For Chernoff’s rule,
however, there is a chance that it starts sampling fromB before
entering A. We define τAc and τBc as the number of samples
that Chernoff’s rule spends on sets A and B, respectively. We
show that

E�{τAc } ≥ E�{τ∗n}, and E�{τBc } = Θ
(
n

p

)
, (347)

which indicates the desires result, i.e.,

0 ≤ E�{τd} = E�{τAc } + E�{τBc } − E�{τ∗n} ≥ Θ
(
n

p

)
.

(348)

Mu
� (t, S̄ut )
|S̄ut |

< max
j∈J

DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
|Cj |

, (317)

Mu
� (t, S̄ut )
|S̄ut |

<
DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
|Cj |

. (318)

DKL

(
f�(XC̄j

|XMj ,Ft−1) ‖ f1−�(XC̄j
|XMj ,Ft−1)

)
(323)

= DKL

(
f�(XCj |XMj ,Ft−1) ‖ f1−�(XCj |XMj ,Ft−1)

)
(324)

+DKL

(
f�(Xj |XMj , XCj ,Ft−1) ‖ f1−�(Xj |XMj , XCj ,Ft−1)

)
. (325)

DKL

(
f�(Xj |XMj , XCj ,Ft−1) ‖ f1−�(Xj |XMj , XCj ,Ft−1)

)
≥ DKL

(
f�(Xj |XMj ,Ft−1) ‖ f1−�(Xj |XMj ,Ft−1)

)
. (326)

Mu
� (t, S̄ut )
|S̄ut |

<
DKL

(
f�(XCj |Xj ,Ft−1) ‖ f1−�(XCj |Xj ,Ft−1)

)
|Cj |

≤ Mu
� (t, Cj)
|Cj |

. (328)

Mu
� (t, S̄ut )
|S̄ut |

=
Mu
� (t,Sut )
|S̄ut |

+
DKL

(
f�(Xk|XMk

,Ft−1) ‖ f1−�(Xk|XMk
,Ft−1)

)
|S̄ut |

, (330)
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The first identity in (347) follows the optimality of τ∗n.
Specifically, the optimal rule starts by sampling from A and
stays inside A until the stopping time τ∗n . On the other hand,
Chernoff’s rule might start from sampling B, but once it
enters A it remains there until it takes τAc samples. By noting
the optimality of τ∗n , we immediately have the first identity
in (347). In order to establish the second identity in (347),
we provide lower and upper bounds on the asymptotic value
of E�{τBc }. By definition, any sampling rule can take at most
(n−p) samples from set B. Hence, we obtain an upper bound
as follows:

E�{τBc } =
n−p∑
k=0

k · P�(τBc = k) (349)

=
n−p∑
k=0

k ·
(
n−p
k

)(
n
k

) · p

n− k
(350)

=
n−p∑
k=1

k · p
n
· (n− p)!
(n− p− k)!

· (n− k − 1)!
(n− 1)!

(351)

=
n−p∑
k=1

k · p
n

k−1∏
i=0

n− p− i

n− 1 − i︸ ︷︷ ︸
≤n−p

n−1

(352)

≤ p

n

n−p∑
k=1

k ·
(

1 − p− 1
n− 1

)k
. (353)

Hence, by noting that p = o(n) we obtain

lim
n→∞

E�{τBc }
n
p

≤ lim
n→∞

( p
n

)2
n−p∑
k=1

k ·
(

1 − p− 1
n− 1

)k
(354)

= lim
n→∞

( p
n

)2
(
n− 1
p− 1

)2

= 1. (355)

For the lower bound, from (352) we have

E{τd} =
n−p∑
k=1

k · p
n

k−1∏
i=0

n− p− i

n− 1 − i
(356)

≥
�n−p

2 
∑
k=1

k · p
n

k−1∏
i=0

n− p− i

n− 1 − i
(357)

≥
�n−p

2 
∑
k=1

k · p
n

k−1∏
i=0

n− p− �n−p2 �
n− 1 − �n−p2 �

(358)

≥
�n−p

2 
∑
k=1

k · p
n

k−1∏
i=0

n−p
2

n+p
2

(359)

=
p

n

�n−p
2 
∑

k=1

k

(
n− p

n+ p

)k
(360)

=
p

n

�n−p
2 
∑

k=1

k

(
1 − 2p

n+ p

)k
. (361)

Hence, by noting that p = o(n) we obtain

lim
n→∞

E�{τBc }
n
p

≥ lim
n→∞

( p
n

)2
�n−p

2 
∑
k=1

k

(
1 − 2p

n+ p

)k
(362)

= lim
n→∞

( p
n

)2
(
n+ p

2p

)2

(363)

=
1
4
. (364)

Hence, from (354) and (364) we have

E�{τBc } = Θ
(
n

p

)
, (365)

which completes the proof.

APPENDIX L
DERIVATIONS OF Di

�(t) AND J�({i}, ψt−1)

By leveraging (97) we have

Di
0(t) = −E0

⎧⎨
⎩∑
j∈N t

i

LLR(i, j)
∣∣∣∣ Ft−1

⎫⎬
⎭ , (366)

where by replacing LLR(i, j) from (96) and noting that Cher-
noff’s rule first observes the neighbors of already-observed
nodes due to its information measure structure, we have the
derivation in (367)–(370), shown at the bottom of the page.

Derivation of Di
1(t) follows the same line of argument, as

shown in (371)–(374), at the top of the next page.

Di
0(t) = −1

2

∑
j∈N t

i

E0

{
ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
X2
i +X2

j

)
+

2Σij
1 − Σ2

ij

XiXj

∣∣∣∣ Ft−1

}
(367)

= −1
2

∑
j∈N t

i

⎡
⎢⎣ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
E0{X2

i | Ft−1}︸ ︷︷ ︸
=E0{X2

i }=1

+X2
j

)
+

2Σij
1 − Σ2

ij

Xj E0{Xi | Ft−1}︸ ︷︷ ︸
=E0{Xi}=0

⎤
⎥⎦ (368)

= −1
2

∑
j∈N t

i

[
ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
X2
j + 1

)]
(369)

=
1
2

∑
j∈N t

i

[
ln(1 − Σ2

ij) +
Σ2
ij

1 − Σ2
ij

(
X2
j + 1

)]
. (370)
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Di
1(t) =

1
2

∑
j∈N t

i

E1

{
ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
X2
i +X2

j

)
+

2Σij
1 − Σ2

ij

XiXj

∣∣∣∣ Ft−1

}
(371)

=
1
2

∑
j∈N t

i

⎡
⎢⎢⎣ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
E1{X2

i | Ft−1}︸ ︷︷ ︸
=E1{X2

i |Xj}=1+Σ2
ij(X2

j −1)

+X2
j

)
+

2Σij
1 − Σ2

ij

Xj E1{Xi | Ft−1}︸ ︷︷ ︸
=E1{Xi|Xj}=ΣijXj

⎤
⎥⎥⎦ (372)

=
1
2

∑
j∈N t

i

[
ln

1
1 − Σ2

ij

−
Σ2
ij

1 − Σ2
ij

(
1 + Σ2

ij(X
2
j − 1) +X2

j

)
+

2Σ2
ij

1 − Σ2
ij

X2
j

]
(373)

=
1
2

∑
j∈N t

i

[
ln

1
1 − Σ2

ij

+ Σ2
ij

(
X2
j − 1

)]
. (374)

In order to derive J0({i}, ψt−1), besides the terms in
Di

0(t), we must account for the nodes that have been observed
prior to sampling node i and are neighbors in G(Vt−1, Et−1)
but non-neighbors in G(Vt, Et), similar to what occurs in the
toy example in Fig. 2 when transitioning from t = 2 to t = 3,
i.e., some edges in G(Vt, Et) for t = 2 are removed at a
later time t = 3. Therefore, the terms associated with those
edges that are removed at time t by sampling node i should
be subtracted from the information measure, i.e.,

J0({i}, ψt−1) = Di
0(t) −

∑
(j,k)∈Δi

t

−LLR(j, k) (375)

= Di
0(t) +

∑
(j,k)∈Δi

t

LLR(j, k), (376)

where, according to the definition of Δi
t in (100), the second

term removes the edges (j, k) that have been removed from
the graph at time t. We can find J1({i}, ψt−1) similarly.
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