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Abstract— A capacity result involves two parts: achievability
and converse. The achievability proof is usually non-constructive
and only the existence of capacity-achieving codes is shown
invoking probabilistic techniques. Recently, capacity-achieving
codes have been found for several channels demonstrating that
such codes can actually be constructed algorithmically. To this
end, each construction is designed for a pre-specified channel
so that the corresponding algorithm is specifically tailored to it.
This paper addresses the general question of whether or not it is
possible to find algorithms that can construct capacity-achieving
codes for a whole class of channels. To do so, the concept
of Turing machines is used which provides the fundamental
performance limits of digital computers and therewith fully
specifies which tasks are algorithmically feasible in principle.
It is shown that there exists no Turing machine that is able to
construct capacity-achieving codes for a whole class of channels,
where the channel realization from this class is given as an
input to the Turing machine. It is further shown that such an
algorithmic construction remains impossible when the optimality
condition is dropped and codes only need to achieve a fraction of
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the capacity. Finally, implications on channel-aware transmission,
link adaptation, and cross-layer optimization are discussed.

Index Terms— Algorithmic computability, Turing machine,
communication system, code construction.

I. INTRODUCTION

N 1948, Shannon’s seminal work “A Mathematical Theory

of Communication” [2] established the capacity of the
point-to-point channel characterizing the maximum transmis-
sion rate at which reliable communication is possible. Since
then, capacity results have been established for many (simple)
communication scenarios including the multiple access chan-
nel, degraded broadcast channel, wiretap channel, compound
channel, arbitrarily varying channel and others; see for exam-
ple [3]-[5] and references therein.

In information theory, proving a capacity result usually
involves two parts: achievability and converse which estab-
lish matching lower and upper bounds on the capacity. For
the achievability part however, the proof is in general non-
constructive in the sense that only the existence of good
(i.e., capacity-achieving) codes is shown. To make this
possible, Shannon developed probabilistic techniques which
lay the groundwork for today’s so-called random coding
technique. In particular, this approach does not impose any
requirements on whether or not these codes are effectively,
i.e., algorithmically, constructible.

Although the existence of optimal codes for many com-
munication scenarios has been known for a long time,
explicit code designs that actually achieve the capacity asymp-
totically have been found only recently; see for example
[6], [7] and references therein. Such good code constructions
include turbo codes, Reed-Muller codes, (spatially-coupled)
low-density parity check (LDPC) codes, and polar codes. The
latter two play a major role in today’s fifth generation (5G)
mobile networks, where polar codes are used in the control
channel with mid-sized blocklengths, whereas LDPC codes
are used for transmission with larger blocklengths; cf. for
example [8] and [9].

A crucial observation here is that all known effective
code constructions (such as [10] for polar codes) show a
strong dependency on the underlying channel. In general,
the channel of interest is fixed and the code construction is
designed beforehand for this particular channel. This means
that the corresponding algorithm only gets the blocklength n
as the input and then computes the corresponding encoder
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and decoder. Its sequence of code rates should approach the
capacity asymptotically. However, it would be of practical
relevance to further have algorithms that are able to construct
such sequences of capacity-achieving codes for a whole class
of channels rather than designing all code constructions sep-
arately each one tailored to one specific channel realization.
To be specific, for a practically relevant and interesting class
of channels, we want to have an algorithm that gets both
the channel realization (from the class of channels) and the
blocklength n as inputs and then computes for that channel and
that blocklength a suitable encoder and decoder. This would
enable channel-aware transmission, where the coding scheme
is algorithmically adapted to the quality of the underlying
channel.

To address this issue from a fundamental algorithmic point
of view, we use the concept of a Turing machine [11]-[13]
and the corresponding computability framework. The Turing
machine is a mathematical model of an abstract machine that
manipulates symbols on a strip of tape according to certain
given rules. It can simulate any given algorithm and therewith
provides a simple but very powerful model of computation.
Turing machines have no limitations on computational com-
plexity, unlimited computing capacity and storage, and execute
programs completely error-free. They are further equivalent to
the von Neumann-architecture without hardware limitations
and the theory of recursive functions, cf. also [14]-[18].
Accordingly, Turing machines provide fundamental perfor-
mance limits for today’s digital computers and are the ideal
concept to study whether or not such optimal codes can be
constructed algorithmically in principle.

Communication from a computability or algorithmic point
of view has attracted some attention recently. In [19] the
computability of the capacity functions of the wiretap channel
under channel uncertainty and adversarial attacks is studied.
The computability of the capacity of finite state channels
is studied in [20] and of non-i.i.d. channels in [21]. These
works have in common that they study capacity functions
of various communication scenarios and analyze the algorith-
mic computability of the capacity function itself. While for
discrete memoryless channels (DMCs) the capacity function
is a computable continuous function and therewith indeed
algorithmically computable [22], [23], this is no longer the
case for certain multi-user scenarios or channels with memory.
However, they do not consider actual code constructions
which, to the best of our knowledge, have not been studied so
far from a fundamental algorithmic point of view. In addition,
even if the capacity is computable, it is still not clear whether
or not it can be algorithmically approximated by capacity-
achieving codes (which are discrete objects by definition)
making this a non-trivial problem.

In this paper, we show that it is in general impossible to
find a Turing machine that is able to construct sequences of
capacity-achieving codes (and also sequences of sub-optimal
codes that achieve only a fraction of the capacity) for a
whole class of channels. To this end, we first introduce
the computability framework based on Turing machines in
Section II. The system model and precise problem formulation
are subsequently given in Section III. Then, in Section IV we
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demonstrate that already for the class of binary symmetric
channels (BSCs) such a Turing machine cannot exist. Sub-
sequently, in Section V this negative result is extended to
also hold for general DMCs. As a consequence, it follows
that known algorithms or code constructions are not recursive
in the channel and need to be specifically designed and
tailored to the particular channel of interest. As a consequence,
channel-aware transmission schemes with channel-dependent
code adaption cannot be algorithmically realized in general.
Finally, implications on resource allocation in combination
with cross-layer optimization are discussed in Section VI.

A. Notation

Discrete random variables are denoted by capital letters
and their realizations and ranges by lower case and script
letters, respectively; all logarithms and information quantities
are taken to the base 2; N, Q, R, and R, are the sets of
non-negative integers, rational numbers, real numbers, and
computable real numbers, respectively; P(X) denotes the set
of all probability distributions on X and CH(X;)) denotes
the set of all stochastic matrices (channels) X — P ().

II. COMPUTABILITY FRAMEWORK AND DIGITAL
HARDWARE PLATFORM

We first introduce the computability framework based on
Turing machines which provides the needed background. For
this we need some basic definitions and concepts of com-
putability which are briefly reviewed. The concept of com-
putability and computable real numbers was first introduced
by Turing in [11] and [12].

Recursive functions f: N — N map natural numbers into
natural numbers and are exactly those functions that are com-
putable by a Turing machine. They are the smallest class of
partial functions that includes the primitive functions (i.e., con-
stant function, successor function, and projection function)
and is further closed under composition, primitive recursion,
and minimization. For a detailed introduction, we refer the
reader to [24] and [22]. With this, we call a sequence of
rational numbers {r,, } ,en a computable sequence if there exist
recursive functions a, b, s: N — N with b(n) # 0 foralln € N
and

_ (_pym )

=y

cf. [24, Def. 2.1 and 2.2] for a detailed treatment. A real

number z is said to be computable if there exists a computable

sequence of rational numbers {r, } ,en and a recursive func-
tion ¢ such that we have for all M € N

|z — 1| <27M )

for all n > ¢(M). Thus, the computable real z is represented
by the pair ({rn}nen, ). This form of convergence with
a computable control of the approximation error is called
effective convergence. Note that if a computable sequence
of real numbers {z,},en converges effectively to a limit x,
then = is a computable real number, cf. [22]. Furthermore,
the set R. of all computable real numbers is closed for
addition, subtraction, multiplication, and division (excluding
the division by zero). A non-computable real number, for

neN; (1)
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example, is given by the Specker Sequence, which is discussed
in greater detail in Example 2, see also [25] for the detailed
construction. We denote the set of computable real numbers by
R.. Based on this, we define the set of computable probability
distributions P.(X) as the set of all probability distributions
Px € P(X) such that Px(z) € R., € X. Further, let
CH.(X;)) be the set of all computable channels, i.e., for a
channel W: X — P()) we have W(-|z) € P.()) for every
reX.

Definition 1: A function f: R, — R, is called Borel-Turing
computable if there exists an algorithm that gets for every x
an arbitrary representation ({ry, }nen, ) for it as input and
then computes a representation ({7, }nen, @) for f(x).

Turing’s definition of computability conforms to the defi-
nition of Borel computability above. Here, we particularly
consider the notion of a computable continuous function,
cf. [22, Def. A].

Definition 2 ([22]): Let I. = [0, 1] N R, be the computable
unit interval. A function f: I. — [0, 1] is called computable
continuous if:

1) f is sequentially computable, i.e., f maps every com-
putable sequence {x,}nen of points z, € I. into a
computable sequence {f(x,)}nen of real numbers,

2) f is effectively uniformly continuous, i.e., there is a
recursive function d: N — N such that for all z,y € I,
and all N € N with ||z — y|| < & it holds that

a(N)
1f(z) = f(y)] < 5%

Remark 1: There are other forms of computability such
as Markov computability and Banach-Mazur computability,
of which the latter one is the weakest form of computability.
In particular, Borel or Markov computability both imply
Banach-Mazur computability, but not vice versa. For an
overview of the logical relations between different notions of
computability we again refer to [14] and, for example, the
introductory textbook [13].

Definition 3: A subset {Wx}xep,y C CH(X;DY) is a
computable family of channels if there exist computable con-
tinuous functions f, ,: [0,1] — [0,1], z € X,y € ), such that
for all A € [0, 1] we have W) (y|z) = fu,(A) forall x € X
and y € ).

Some remarks are in order.

1) From this we observe that a computable family of chan-

nels is generated by computable continuous functions.

2) For X € [0,1]NRR, we always have f,,(\) € R, for all

x € X, y € Y. Therewith, we obtain Wy € CH.(X;))
for A € [0,1] N R..

We further need the concepts of a recursive set and a
recursively enumerable set as, for example, defined in [24].

Definition 4: A set A C N is called recursive if there exists
a computable function f such that f(z) = 1 if z € A and
f(x)=0if z ¢ A.

Definition 5: A set A C N is recursively enumerable if
there exists a recursive function whose range is exactly A.

We have the following properties which will be crucial later
for proving the desired results; cf. also [24] for further details.

o A is recursive is equivalent to A is recursively enumer-
able and A€ is recursively enumerable.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

o There exist recursively enumerable sets A C N that are
not recursive, i.e., A° is not recursively enumerable. This
means there are no computable, i.e., recursive, functions
fi N — A¢ with [f(N)] = A°.

Example 1: Here, we provide an example of a set that is not
recursive but is recursively enumerable. Let {¢,, }nen be the
set of recursive functions, where ¢,, is computed by the Turing
machine ¥,,. It can be shown that {¢,, }»en is a computable
sequence of recursive functions and that there exists a Turing
machine T, that takes (n,z) € N? as inputs and stops if and
only if ¢, (x) is defined and computes the value ¢,,(x). Then
the set A = {n € N: T,,(n) stops} is recursively enumerable,
but not recursive. We can find a Turing machine that either
stops or runs forever. It stops for n € N if and only if n € A
since for n € N we take ¢,, i.e.,, %¥,, and execute it until
% (n) stops. On the other hand, for the set \A° such a Turing
machine cannot exist since otherwise we would be able to
solve the famous halting problem, cf. [11] and [24].

Turing machines are extremely powerful compared to
state-of-the-art digital signal processing (DSP) and field gate
programmable array (FPGA) platforms and even current super-
computers. It is the most general computing model and is
even capable of performing arbitrary exhaustive search tasks
on arbitrary large but finite structures. The complexity can
even grow faster than double-exponentially with the set of
parameters of the underlying communication system (such as
time, frequencies, transmit power, modulation scheme, number
of antennas, etc.).

III. SYSTEM MODEL AND PROBLEM FORMULATION

Here, we introduce the communication scenario of interest
and formulate the main question of this work.

A. Communication System Model

We consider the most basic communication scenario of a
point-to-point channel with one transmitter and one receiver.
Let X and ) be finite input and output alphabets. Then the
channel is given by a stochastic matrix W € CH(X;Y) and
the DMC is given by W"(y"|z") := [[i_; W(ys|x;) for all
™ € X" and y" € Y.

Definition 6: An (M, Ey,, Dy,)-code C,(W) of block-
length n € N for the DMC W € CH(X;)) consists of
an encoder E,: M, — X™ at the transmitter with a set of
messages M, := {1,..., M,} and a decoder D,,: Y" — M.,
at the receiver.

The receiver needs to decode the transmitted message
reliably. For this purpose, we define the average error criterion

as
_ 1
€ = AL Z Z W™ (y"™|x,) 3)
"omeM,, y": Dy (y™)#m
and the maximum error criterion, respectively, as
— n n n
Cman = WAX Y Wy ) )

y": Dy (y™)#m

with 2", = FE,,(m) the codeword for message m € M,,.
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Remark 2: We can now also define an (M, E,, D, €)-
code C,(W,e) of blocklength n € N for the DMC W €
CH(X;Y) which is an (M,, E,, D,)-code of Definition 6
that further satisfies €,, < € (Or emax,n, < € respectively), cf. (3)
and (4).

Definition 7: A rate R > 0 is called achievable for the
DMC W if there exists a sequence {Cpn(W,é€,)}nen of
(M,,, E,,, D,,, €,)-codes such that we have %bgMn > R
and €, < €, (Or emax,n < €, respectively) with €, — 0 as
n — o0o. The capacity C(W) is given by the supremum of all
achievable rates R.

The capacity of the DMC goes back to the seminal work
of Shannon [2].

Theorem 1: The capacity C(W) of the DMC W under
both average and maximum error criteria is C(W) =
maxx I(X;Y).

The capacity characterizes the maximum transmission rate
at which the transmitter can reliably transmit a message to the
receiver with vanishing probability of decoding error. Note
that for DMCs there is no difference in capacity whether the
average probability of error or maximum probability of error
criterion is assumed.

Remark 3: Information theoretic formulas such as capac-
ity expressions are known for various communication sce-
narios including the point-to-point channel, multiple access
channel or bidirectional broadcast channel. These provide
the indispensable basis for resource allocation and therewith
enable cross-layer optimization for modern communication
systems [26]-[31].

In the networking community, resource allocation and cross-
layer questions are addressed with the help of optimization
techniques. The network utility functions of interest are then
given by information theoretic quantities specified by the
underlying channel parameters of the communication system.
In these approaches, it is implicitly assumed that the opti-
mization problem given the desired parameters such as power,
blocklength, beamforming coefficients, or frequencies, as well
as the channel conditions yields coding schemes that actually
achieve the corresponding information theoretic quantities.
This means that it is implicitly assumed that an effective
algorithmic solution exists for the achievability part. To date,
this problem is approached with the help of look-up tables,
in which the corresponding coding schemes have been pre-
computed and stored for specific channel parameters of interest
(see also the discussion in Section VI).

B. Problem Formulation

Proving the capacity of a channel usually involves two
parts: achievability also known as a coding theorem and a
corresponding (strong) converse. These parts establish match-
ing lower and upper bounds on the capacity. In the coding
theorem, it is proved that the rate given by the capacity can
actually be achieved by a coding scheme. This means that, for
sufficiently large blocklength, there are codes whose rates are
sufficiently close to the capacity. The most natural approach
for this would be the construction of an actual code that
achieves capacity.
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However, the proof of the coding theorem is usually non-
constructive in the sense that only the existence of such
coding schemes is shown by invoking probabilistic techniques.
In particular for DMCs the following is shown: For fixed
error € > 0, the coding theorem only yields the existence
of a function F: CH(X;)) x N — € that maps a channel
W € CH(X;Y) and a blocklength n € N into a
code C,(W,e) € € that guarantees the pre-specified error
0 <e<1,ie., for every W € CH(X;)) and every n € N
we have

F(W,n) =C,(W,e) 5)
with
Jim_ =~ log | F(W,m)| = C(). ©)

The coding theorem does not only yield the existence of
exactly one function F’ that satisfies (5)-(6), it rather allows the
existence of arbitrarily many of these functions. In particular,
every coding strategy that achieves the capacity asymptotically
may result in a different function F'. To this end, also in
Shannon’s seminal work, only the existence of such functions
has been shown and no requirements have been put on whether
or not such functions are effectively constructible.

Accordingly, the central question that arises is whether or
not this problem can be solved algorithmically. That is, does
a function F exist for which we can find a Turing machine
%, that yields T.(W,n) = F,(W,n) for all W € CH.(X;))
and all n € N? As we will see later, in general the answer to
this question is negative.

But before we continue, it is important to stress the fact that
even if some (mathematical) objects exist, this does not imme-
diately imply that they can be constructed or characterized
algorithmically; see for example the Specker Sequence [25] or
Fekete’s Lemma [32]. A detailed discussion can also be found
in [33] and we present the example of the Specker Sequence
in the following, since it is closely related to what we are
interested in.

Example 2 (Specker Sequence): We start with an arbitrary
computable sequence {ay }ren of rational numbers with ay, <
ar+1, k € N, and a, € [0,1]. It is clear that there exists
exactly one real number a, € [0, 1] such that limy_,o aj =
a. holds and the sequence {ay}ren converges monotonically
increasingly to a,. This means the error a, — ag, kK € N,
is monotonically decreasing with k& and converges to zero.

Already in 1949, Specker constructed such a sequence
{ak}ren for which the limit a. is not a computable real
number [25]. This number a, exists but is a transcendental
number, i.e., it has a unique binary representation

> 1
n=1

with b, € {0, 1}. However, there exists no algorithm that can
compute the coefficients b,,, n € N. The same result is also
true for the decimal representation of the number a..

This example has the following consequences. Whenever
it is proved that every uniformly bounded, monotonically
increasing sequence of real numbers has a limit, then this
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WeW—»f

neN (M, Ey, Dy, €)

IW,e

Fig. 1. Turing machine Tyy . for code construction. For a given tolerated
decoding error € € Q, € € (0,1), it takes the channel realization W € W
and blocklength n as inputs and outputs the desired (My,, En, Dy, €)-code
Cn(We).

proof shows only the existence of this limit. Specker’s example
above demonstrates that it is possible that this limit cannot be
algorithmically computed, i.e., there is no algorithm that takes
the sequence {ay }ren as input and outputs for any given n of
the binary representation of a. the corresponding coefficients
by (ax). Accordingly, such a Turing machine cannot exist.

From a practical point of view it would be desirable
to have a universal algorithm for a whole class of DMCs
W C CH(X;)Y) that takes the channel realization W €
W and the blocklength n as inputs and then computes an
(My, En, Dy, €)-code Cp(W,€) with limy, o0 +log M, =
C(W) for a given tolerated decoding error 0 < e < 1. This is
visualized in Fig. 1. Note that the strong converse holds for
DMCs so that the specific decoding error ¢ does not play a
role asymptotically. As a consequence, allowing a positive, but
non-vanishing decoding error does not increase the capacity,
ie., C(W) = C(W) forall 0 < e < 1 with C, the e-capacity
tolerating the error e.

From an algorithmic perspective, it is reasonable to restrict
the whole analysis to computable channels CH.(X’; )) as only
such channels are accepted and can be processed by Turing
machines. Let W C CH.(X;)) be a practically relevant
class (subset) of channels. We pose the following question:

Question 1: Let the tolerated probability of decoding
error € € Q, € € (0,1) be a rational number and fixed.
Is there an algorithm (or Turing machine) %y . that
takes W € W and n € N as inputs and computes an
(My, Ep, Dy, €)-code with

1
lim —log M,, = C(W)? @)

n—oo 1

Some discussion is in order:

1) From the coding theorem and the corresponding strong
converse result we know that for each channel W &
CH.(X;Y) there exists such a sequences of codes
with the mapping W — {(M,, E,, Dy, €)}nen that
satisfies (7). However, it is not clear which properties
this mapping has and the question is now whether or
not such a sequence of codes can actually be constructed
algorithmically. This question remains valid even if the
corresponding capacity functions C'(WW') are computable,
since this does not immediately imply that it can be
approximated by actual codes which are discrete math-
ematical objects.

2) If we consider the special case of |X| = |Y| = 2
and W = {BSC(p)} for one fixed computable real
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p € R.N[0, 1], i.e., the subset of channels contains only
a single BSC, then the answer to the question above
is “yes” as capacity-achieving code constructions are
known.

3) If we consider the set of BSCs W = UpeRcﬁ[O,l}
{BSC(p)}, then we only ask for the construction of
capacity-achieving codes for a practically relevant subset
of all channels. We will see that even this is algorithmi-
cally impossible.

IV. NON-CONSTRUCTABILITY FOR BSCs

In this section, we begin with showing that already for
simple classes (or sets) of DMCs WV the answer to Question 1
is negative.

Let S = {s1,52,...,5.} be a finite state set describing L
relevant states. Let I’ be a function that maps a subset W C
CH(X;Y) of channels to S, ie., F: W C CH(X;Y) — S.
The function F' need not necessarily be defined for all chan-
nels. Later, we will consider the set of all BSCs which is
a strict subset of all binary input channels. Next, we study
Question 1 not only for the set of computable channels, but
also for arbitrary computable families of channels according
to Definition 3. We need the following definition.

Definition 8: Let X and ) be arbitrary but finite alphabets
with |[X] > 2, [Y| > 2, and {Wi}rco, C CH(X;Y)
be an arbitrary computable family of channels. Further, let
F: {Wx}xeo,) — S = {s1,82,...,50} be a function that
maps every channel W € CH(X;)) to a corresponding
state (W) € S. A finite classification problem is said
to be non-trivial if there exist A1, A2 € [0,1] N R. and
corresponding channels W, := Wy, and Wy = Wy, with
Wi, Wa € {Wilaepo,) N CHe(X;D) that lead to different
states, i.e., F(Wl) # F(Wg)

Remark 4: If a classification task F' for a computable
family of channels {W}xg[o,1) is trivial, then there must
exists an s, € S such that for all A € [0,1] N R, we
always have F'(W)) = s.. Then, there would be nothing for
a Turing machine to do, since it would obtain only channels
Wi, A € [0,1]NR, as possible inputs, but for these inputs no
classification is needed.

For a fixed computable family of channels {Wj}xcjo,1)»
let ¥ be a Turing machine for the classification task F,
ie., Tp is defined for the set of channels {Wx}xcjo,1)nr. -
Note that T need not necessarily be defined for channels
from CH.(X;)) that are not in the computable family of
channels. The following result shows that in general there is
no Turing machine ¥ 5 or algorithm that can solve a non-trivial
classification problem F'.

Lemma 1: Let X and ) be arbitrary but finite alphabets
with |X| > 2, |y| > 2, and {WX}AE[O,I] C CH(X,y)
be an arbitrary computable family of channels. Every non-
trivial classification problem F: {Wx}xcjo,;) — S is not
algorithmically solvable, i.e., there exists no Turing machine
Tr: {Walreoa)nr., — S that takes the channel W ¢
{Wx}xe[o,1)nr. as an input and outputs the corresponding
state F'(W) € S.

Proof: We prove the desired result by contradiction.
We assume that for fixed and finite alphabets X and Y
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there is a computable family {Wy}xgo,1] of channels Wy €
CH(X;Y), an L € N, and a non-trivial classification problem
F:{Wx}xejo,1) — {51, .., 5L} such that there exists a Turing
machine T for which we have Tp(W) = F(W) for all
W e {W)\}AE[O,I] N CHC(X, y)

Further, for S = {s1,82,...,sp} with L > 2 we can
construct a Turing machine T 1 that solves a non-trivial binary
classification task as follows. For L > 2, there exist some
Ai,A; € [0,1] N R, and corresponding W; := W), and
W; = Wy, with W; € CH(X;Y) and W; € CH.(X;))
and F(W;) = s; # s; = F(W;). Now we choose the state
set S = § US, with S = {s1} and Sy = Ujzifsit
We have S NSy = (Z] and consider the classification problem
F. {W)\})\E[O,l — S with F( ) €S & F(W) = s; and
F(W) e Sy < F(W) = s; for 5; # s;. This yields a non-
trivial classification task for the binary case L = 2. Thus,
if there would exist a Turing machine T for L > 2, then the
modified Turing machine < £ with

&, () = {s if Tp(W) = s ®

s;  AfTp(W) € {s1,...,s.}\{s:}

would solve the corresponding binary problem. Without loss
of generality, we accordingly assume only L = 2 different
states, i.e., S = {s1, s2} in the following.

Now, we prove the binary case by contradiction,
i.e., we assume that there exist input and output alphabets
X and Y, and a non-trivial classification F: {Wx}e[o,1) —
{s1,s2} such that there exists a Turing machine T that
correctly outputs Tp (W) = F(W) for all W € {Wi}epo,1N

Hc(X;Y). Since F' is non-trivial, there must exist some
)\1,/\2 € [0,1] N R, and W, = Wy, and Wg = W), with
Wy, W € {Wiatreo,1) NCH(X;Y) and F(W,) # F(Wz)

Without loss of generahty, we assume 0 < Ay <
A2 < 1 and consider the computable family of channels
{Wityes, 5, We  inductively construct two computable

sequences {W\™ },.cn and {W.™},en of computable chan-
nels where the Turing machine T plays a crucial role. As an
initialization step, we set AL = % Since 5\1 < 5\2,
it holds that ;\1 < 2 < 5\2 and we compute the output
Tr(W5q)) of the Turing machine T for which we must have
either Tp(W5q)) = 51 or Tp(W5a)) = s2 since we consider
the binary case with S = {1, s2}. In the former case, we set
the first element of the sequences to

Wil = W5, and WiV = W )

and further set
5\1 + 5\2

/\gl) = and /\él) ="

In the latter case, we set the first element of the sequences to

Wit = Wy and WiV = Wy, (10)
and further set
A - A+ A
)\gl) = Ay and )\él) =0 =2 —g =y
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Note that we always have /\(1) < )\(1). Further, these
choices satisfy Wl(l) (1) € CH(X;Y) N {Wx}aelo,1) and

1) (1
AV A e R...

To specify the following elements, we proceed accordingly.
Assume that for n € N we have already computed the channels
Wl(k),WQ(k) and the numbers )\(k),)\ék) forall 1 < k < n.

- (n) n)
We then set A\(ntD) = 21 th  apq compute the output
Tp(W5m+1) ) of the Turing machine Tr. We either must have
Tr(W5 <n+1>) = 51 0f Tp(W5(m+1)) = s2. In the former case,

we set W1( S(n+1) and Wi = Wi as well as
Al ;\(”“) M and A" = Al In the
latter case, we set W(n+1) W(") and W(n+1) S(n41)
as well as )| (n+1) )\(" and \; () = Nt = %

Note that we always have )\(n+1) < )\(2"4_1). This procedure

defines the sequences {W™ }nen, {WE" ber, (A }aen,
and {)\én)}neN inductively. Since T is a Turing machine,
(W™ en and {WS™},cn are computable sequences of
computable channels and {)\gn)}neN and {)\(2")}7161\; are com-
putable sequences of computable real numbers.

We have {Wln)}neN C {Wx}xep,1) and {Wg(n)}neN C

{Wix}repo,1)- For A € [0,1], the function W: [0,1] —
CH(X;)) defined by
fia(d) Nxra(Y)
o= s
Friv) fix, 1A

with f; ,(A) = Wi (y|x), cf. Definition 3, is a computable
continuous function. Thus, the set {Wx}xcjo,1) is a closed
set in CH(X'; ). Due to the constructions of the sequences
{)\(ITL)}neN and {)\(2")}7161\; we have )\(1") < )\gn+1) and
)\gnﬂ) < )\én) for all n € N. Furthermore, it holds that

AT AT = pax (ALY - XD XD\ (D)
B )\én) . )\(ln)
N 2
so that
)\(2n+1) )\(n-i-l) < — (}\2 - )\1)

- 2”

Since {/\ )}neN is a monotomcally increasing sequence
and A\ € R, the sequence {)\( tnen converges effectively
to A. Similar arguments hold for the computable sequence
(A e, ef. [22] and [20].

Let D(W1, W) = maxzex D, cy [Wi(ylz) — Wa(y|x)| be
the distance between the channels W7 € CH(X;)) and W5 €
CH(X;Y). Since ¥ is a computable continuous function,
we have W(A) = Wy and it holds lim,, .., D(W;, W) =
lim,, oo D(WS, WQ(”)) = 0 where the convergence is effec-
tive so that Wi € CH.(X;)). We also have W; €
{Wx}xeo,1) so that Wy is a valid input for Tr and we either
obtain Tr(W5) = s1 or Tp(Wy) = s2.

We define the sets

= {xe i, e NRy: TR(W,
= {xe i, e NRy: TR(W,

SEr
—52}
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Next, we consider the case for which \e M holds and
analyze the sequence {)\én)}. For this purpose, let A C N
be an arbitrary recursively enumerable set such that A is not
recursive, i.e., A¢ is not a recursively enumerable set. With
the definition of recursively enumerable sets, cf. Definition 5,
we can construct a total function g, i.e., domain(g) = N, such
that the range of ¢ is range(g) = A° and g is recursive and
therewith a computable function. Furthermore, without loss
of generality, we can require that g: N — A is a one-to-one
mapping from N to A.

Next, we use a similar construction as in [34] and [23]
which relies on a construction of Pour-El, cf. Case I on
page 336 in [35]. For every (n,m) € N x N we define the
computable function ¢: N x N — N as

g(n,m)= 2 ¢ {9(0) (2m+2)}
| ' n € te(0)..- ’9(2"’”)} and g(r) = n
(1D

Note that r above is unique. Since A is recursively enu-
merable, the function ¢ is indeed recursive and therewith
computable.

For n € N we define the sequence {\(™},,cy with

=20
Aa

Note that for n € A there can only be a single  with g(r) = n.

Next, we consider the double sequence {)\g("’m)}neN,meN.
Note that this is only a suitable variation of the computable
sequence {)\(2")}7161\; which is effectively computable since ¢
is a recursive function. In the following we show that the
sequence {/\Q(n Y enmen effectively converges in (n, m) €
N x N to A ¢ R.. In the following, we show that for all
n € N and m € N we always have

if n e A°
ifne Aand g(r) =

A — A < o
This implies then that {\(™},cy is indeed a computable
sequence of computable real numbers.

For n € A let mg be the smallest natural number such that
n € {g(0),...,g(2m*2)}. Then, g(r) = n is satisfied for
exactly one r € N. Now, for all m > mg we have ¢(n,m) =r
and therewith also )\Q(" m — )\(r) for all m > myg. Since

n € A, we have )\( =\ 5o that

1

A _
| o

/\q m,m) |=0< —
for all m > mg.

If n € A but m < mg, then we have n ¢
{g( ), ...,g(2m+2)} so that g(n,m) = 2™*2 and therewith

)\q mm) - /\( . But this implies

2m+2)|

= MO = A =
~ ~ m+2
S PR W S
27n+2)|

A=A+ A=A
1 1

A

IN

IN
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Since n ¢ {g(0),...,9(2™*2)} and g(r) = n, we must have
r > 2™%2 for all m < mg. Accordingly, we have

1 1 2 1 1
<z

or—1 + 92m+2_1 < 92m+2 _ | = 92m 22 om (12)
since for m > 1 we always have 2m+2 -2 > m. As a
consequence, we always have |A(") — /\q nm) | < 5, ie., for
all n € A and m € N we have

<o , 1
AP =25 < o (13)

Now we consider the case n € A°. Here we have g(n, m) =
2m+2 5o that

|5\(n) _ /\g(”vm)l < 1 1 (14)

S T < g

From (13) and (14) we conclude that for all n € N and
m € N we have |A(") — /\g(”’m)| < . This implies
that the corresponding sequence {X(")}neN is computable
as well so that {W;, }nen is a computable sequence of
computable channels from {Wy}¢[o,1]- This further implies
that the sequence {Tr (W) }nen of outputs of the Turing
machine Tr is also a computable sequence with values in
{51, s2}. Based on this, we can now construct an algorithm
that decides for every k € N whether k € A or k € A°. This
construction is as follows:

We compute Tp(Wiw). If Tp(Wiw) = s2. then we
have k € A. Otherwise, if Tp(W;u)) = s1, then we have
k € A¢, since for k € A we must have \(®¥) € M,, so
that Tp(Wiw)) = s2. Accordingly, if & € A°, we have
PONC M, . This yields the desired algorithm.

Since A is recursively enumerable but not recursive, such
an algorithm cannot exist, which is a contradiction proving the
desired result for this case. Note that we actually showed that
the function F' is not Banach-Mazur computable, which then
implies it is also not Turing computable.

We continue with the other case \ € M,. Here, we con-
sider {)\(1")}neN and follow the same arguments for the first
case above which proves the desired result for the second
case. |

Remark 5: A crucial step in the proof is the construction of
the sequence {5\n}neN that needs to be a computable sequence
of computable real numbers in the interval [0, 1]. For this
purpose, we modified the sequence {)\én)}neN in a suitable
way. In particular, on the recursively enumerable set A, Am)
needs to interpolate the sequence {)\é")}neN appropriately.
This is ensured by the second condition in (8). On the set
A€ that is not recursively enumerable, the limit \ needs to
be stable so that the sequence {5\n}neN actually remains
computable. This is ensured by the first condition in (8).

Now, the general result given in Lemma 1 allows us to prove
the following result.

Theorem 2: Let the tolerated probability of decoding error
e € Q ¢ € (0,1), be fixed. For |X| = |Y| = 2 and
W = U, er.no1{BSC(p)} there is no Turing machine Tyy
that takes W € W and n € N as inputs and computes an
(M,,, E,, Dy, €)-code with lim,,_, o, %1og M, = C(W).

Proof: The desired result is proved by contradiction.
Therefore, we assume that for the set W = UpERCﬂ[O,l]
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{BSC(p)} there exists such a Turing machine Ty . that
takes W € W and n € N as inputs and computes an
(M,,, E,, Dy, ¢)-code. Then, for n € N and W € W we
consider the function f,(W) = Llog M, (W). Note that the
function f,, depends also on ¢, but € is fixed and we study
how the sequence { f,,(W)},en depends on the channel W.
Since the strong converse holds, we have

Jim_ £,(0) = C(W),

For BSC(0) we denote the corresponding channel by Wy and
we have C(W;) = 1. For BSC(%) we denote the correspond-
ing channel by W, and we have C(Wy) = 0. Therefore,
it holds that lim,,_,o fn(Wp) = 1 and lim,,_, fn(W%) =0

and, as a consequence, there exists an ng such that for all
n > ng we have

W ew.

1

< -.
) 4

For n > ny fixed, we can define the Turing machine ¥ (W) =

Tw,(W,n), W € W, that only obtains the channel W €

W as input and computes for W an (M, E,, D,, €)-code.

We further define the Turing machine

fn(Wo) > Z and f,(W

1
2

5)

which can be seen as a subpart of the Turing machine
Iw,e(W,n) = (M, E,, Dy, e), W € W, n € N, that outputs
the first component of Tyy .. We have X (W) = 27/+(W) and
with this we obtain i:(W%) < 2% and TF(Wy) > 21" so
that f;‘l(Wé ) # %,,(Wp). Furthermore, from (15) we see that

TEW = {1, X"}, X" < o (16)

as the total number of possible sequences in | X'|™ is a trivial
upper bound on the number of codewords M,,.

Now, we can apply Lemma 1 to establish the desired
contradiction proving the result, since for n > ng the Turing
machine ffl yields a non-trivial classification due to (16). M

Remark 6: The proof of Theorem 2 can be extended to the
case of arbitrary finite alphabets X, ), and W € CH.(X; D).

Remark 7: This result shows that we have the same behav-
ior as for the Specker Sequence and Fekete’s Lemma. Thus,
we know that for every DMC W there must exist a channel-
dependent sequence of codes whose sequence of rates con-
verges to the capacity C'(W'). However, this sequence of codes
cannot be constructed recursively in dependence on W.

Remark 8: Note that this remains true even for a com-
putable family of channels where all channels have the same
capacity value. To this end, we can consider a sequence of
rates that is capacity-achieving for this computable family
of channels. For these, we can accordingly choose for all
sufficiently large n encoders and decoders depending on the
channel that result in a classification problem as in Lemma 1.
More precisely, for fixed n, the set of all possible encodings
can be interpreted as the state sets in Lemma 1 and so can
the set of all possible decodings. Note that input and output
alphabets are finite so that the resulting state set is finite as
well. If these mappings do not yield the same codebook for
all channels, then the corresponding classification problem is
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non-trivial and the corresponding encoder and decoder cannot
be constructed algorithmically. This shows that the discrete
structure of the code (i.e., the encoder and decoder) causes
the algorithmic non-constructability.

One may think that the negative result of Theorem 2 and
the non-existence of the desired Turing machine stems from
the “large” class of channels (in Theorem 2 the set of channels
W actually contains all possible BSCs). However, as we will
see in the following theorem, restricting the set of channels
does not change the result.

Theorem 3: Let the tolerated probability of decoding error
e € Q ¢ € (0,1), be fixed. Further, let pi,ps €
R, N [0,1] with p1 < po arbitrary and define the set
Woipe = Uper,ps,po) {BSC(D)}. Then Theorem 2 remains

true, i.e., there is no Turing machine sz,mﬁ that takes
W € Wy p, and n € N as inputs and computes an
(M,,, E,, Dy, €)-code with lim,,_, o, %1og M, = C(W).
Proof: We first consider the case 0 < p; < ps < %
Let W; = BSC(p;), i = 1,2, and we have C(W;) >
C(W3). The result is proved by contradiction and, therefore,
we assume that there exists a Turing machine Tyy, . that
can compute the desired code. For n € N we consider
the function f,,(W) = Llog M, (W), W € W, p,. Since
lim, oo fr(W;) = C(W;), @ = 1,2, there exists a natural
number ng = no(p1,p2) such that for all n > ny we have

Fu( W) < C(wy) 4 L CTTR)

and

(W) > o) — €0V = COP2).

4
Now, with the Turing machine Ty, . we can immediately
find a Turing machine as in the proof of Theorem 2 that yields
a non-trivial classification problem according to Lemma 1.
This proves the desired result for the case 0 < p; < p2 < %
For 0 < p1 < % and p2 > 5 we only have to look at the
case 0 < p; < % and p3 = % so that this case is also proved.
If p > 1, then with p) =1 —p; and p) = 1 — po we can
reduce this case to the first case so that this is also proved. B
As these results provide negative answers to the initial
Question 1, it is reasonable to study what happens if the

requirements are weakened. Therefore, we ask the following:

Question 2: Let the tolerated probability of decoding
error € € Q, € € (0,1), be fixed. Is there an o € (0, 1)
such that there exists an algorithm (or Turing machine)
Tw,a,c that takes W € W and n € N as inputs and
computes an (M, E,,, D,,, €)-code with

a7

n—oo

lim inf 1 log M,, > aC(W)?
n

Also for this question, we obtain a negative answer which
follows from the following result.

Theorem 4: Let ¢ € Q, ¢ € (0,1), and a € (0,1
be arbitrary and fixed. For |X| = |Y| = 2 and W
Uper.njo,1){BSC(p)} there is no Turing machine Tyy q.c that

~—
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takes W € W and n € N as inputs and computes an
(My, En, Dy, €)-code with liminf, .. L log M, > aC(W).

Proof: The result is proved by contradiction. For this
purpose, we assume that there exists an & € (0,1), & € R,,
such that there exists a Turing machine Tyy 4, with the desired
properties. We consider the function f,,(W) = & log M, (W),
W € W, from the proof of Theorem 2. Then it holds that
lim,, 00 fn(W%) =0 and liminf,,_ . f,(W) > « and there
exists an ng = no(a) such that for all n > ng(«) we have

« 3
fn(Wi) < 1 and  f,(Wo) > 1%

Now, with the Turing machine ¥yy 4, we can proceed exactly
as in the proof of Theorem 2 to find a Turing machine
that yields a non-trivial classification problem according to
Lemma 1, since {J,¢o1){BSC(p)} is a computable family
of channels. This is a contradiction which proves the desired
result. [ ]

1
2

V. NON-CONSTRUCTABILITY FOR GENERAL CHANNELS

Let & and Y be arbitrary finite input and output alphabets.
Further let W C CH.(X;)) be an arbitrary set of channels
of interest for which we would like to find capacity-achieving
encoder and decoder algorithmically depending on the actual
channel W € W and the desired blocklength n. We obtain
the following result which generalizes our previous findings
for BSCs in Theorem 2.

Theorem 5: Let the tolerated probability of decoding error
e €Q, €€ (0,1), be fixed. Further, let X and ) be arbitrary
finite alphabets and let W C CH.(X;)) be an arbitrary set
of channels. Suppose there is a computable family of channels
{Witrepo,1) with Wy € W, A € [0,1]N R, such that

min C'(Wy) < )\rél[%ﬁ] C(Wy).

(13)
A€0,1]

Then, for the set of channels VV there is no Turing machine
T, that takes W € W and n € N as inputs and computes
an (My, By, Dy, €)-code with lim,, . ~ log M,, = C(W).

Proof: 'We prove the result by contradiction. Therefore,
we assume that for the set of channels W C CH.(X;)) there
exists a Turing machine ¥yy . with the desired properties as
stated above. This particularly means that the Turing machine
is able to solve the task for the set {Wx}xcjo,1)rr. -

We consider for A € [0,1] NR,, W), and n € N the
corresponding output of the Turing machine Ty (Wi, n) =
(M, (N), E,,(N), Dyy(N),€). Since (18) holds, the function
gn(N) = LlogM,()\) converges for n — oo to C(Wy)
for all ¢ € Q N (0,1). Note that ¢g(\) = C(Wy), A\ €
[0,1], is a computable continuous function. Let A € [0,1]
and A € [0,1] be such that C(W,) = minyep,1 C(W)
and C(W5) = maxygjo,1) C(Wy). Furthermore, we have
inf,\e[071]ch C(W)\) = C(WA) and Sup)\e[()’l]ch C(W)\) =
C(Wx) since A € [0,1]NIR. is dense in [0, 1] and all rational
numbers are computable. Then, there exists A1, A2 € [0, 1]NR,
with C(Wy,) < C(Wy,). In addition, we can find an ng =
no(e) such that for all n > ng we have

C(sz) - C(Wk1 )
4

gn(A1) < C(Wy,) +
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and also

gn(A2) > C(Wa,) — CWha) ; C(Wx)

Next, we can adapt the proof of Theorem 2 to find a Turing
machine T.: [0,1]] "R, — S with S being a finite set of
natural numbers, that yields a non-trivial mapping. The proof
of Lemma 1 further yields that such a non-trivial mapping,
which is Turing computable, cannot exist. The establishes the
desired contradiction completing the proof. [ ]

In the following, we want to study a similar question as in
Theorem 4, i.e., we are interested in understanding whether
or not it is possible to algorithmically construct codes such
that these approach asymptotically at least aC'(WW) for some
a € (0,1), « € R.. We obtain the following negative result.

Theorem 6: Let the tolerated probability of decoding error
e €Q, €€ (0,1), be fixed. Further, let X and ) be arbitrary
finite alphabets and let VW C CH.(X;)) be an arbitrary set
of channels. Suppose there is a computable family of channels
{Witrejo,1rr. € W and that

1> ae minyeo,1) C(Wi)

a= f . (19)
{Wilae,1)nr. CW MaXxe(0,1] C(Wy)

Then, for all a € (a,1) N R, there is no Turing machine
Tw,a,e that takes W € W and n € N as inputs and computes
an (My, E,,, D,,, €)-code with

1
liminf — log M,, > aC(W).

n—oo N

(20)

Proof: We prove the result by contradiction. Therefore,
we assume that for the set ¥V there exists an & € (o, 1) NRR,
such that a corresponding Turing machine Ty 4 exists for
which (20) is true. Then, there exists a computable family
{WA}AE[O,I]QRC C W such that

, ~ Miiepo. C(Wh)
max,\e[OJ] C(W)\)
By assumption, for every channel W,\, A € ]0,1]NR. we have
SW,&,E(W)\7 TL) = (Mn(A)v En(A)v Dn(A)v E)
with
1 .
liminf —log M,,(A) > aC(Wy).
n—oo N
Now, let § > 0 be arbitrary. There exists a A; € [0,1] N R,
with C(W),) < minye(o,1) C(Wx)+6 and there exists further
a\s € [0,1]NR, with C(Wx,) > maxyep,1) C(W»x) —d. But
this implies that

1 _
lim inf —log M, (As) > &C (W5, ) > a(

n—oo 1,

)\Iél[%ﬁ] C(Wy) = 9).

Due to the strong converse, we further have

1 A .
limsup — log M, (As5) < C(Wy,) < )\m[in C(Wy) + 0.
€10,

n—oo T 0,1]

As a consequence, we can find an ng such that

1 - )
oo log My (35) > af Jmax O(Wh) — )
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and

1 . )
- log M, (A5) < i, C(Wx) +6
hold.
We also have
i C(Wx) > min C(W,
@y U > i e
so that we an find a dp > 0 such that for all 0 € (0,dy) we
have

a(;él[%ﬁ] C(Wy) —6) > Arerl[%){ll] C(Wy) + 0.

This means that for § € (0, ) arbitrary, we have
1 — 1
— log My, (As) > — log My, (As)-
no no

Now we are in the position to use the proof of Theorem 4 to
prove the desired result. This completes the proof. [ ]

Remark 9: In Theorem 6 we required that the set of chan-
nels W contains a computable family of channels. Note that
;1;22‘;—1% in (19) is always smaller than or
equal to 1. It is equal to 1 if the capacity C'(Wy ) is constant for
all computable families of channels {W}xcjo,1. We require
it to be strictly smaller than 1 which is only true if and only if
the capacity C'(W) ) is not constant for all computable families
of channels {W}¢(0,1]-

Next, we want to show that the previous result in Theorem 6
is actually sharp, which is done in the following theorem.

Theorem 7: Let the tolerated probability of decoding error
e € Q e (0,1), be fixed. For |X| = |Y| = 2 there exists
a set of channels W = {Wx}xejo,1nr. With {Wx}acjo,1) @
computable family of channels such that for

the ratio

~ minyejo) C(Wh)

maxiejo,1] C(WA)

there is a Turing machine %y o that takes W € W and
n € N as inputs and computes an (M,,, Ey,, D,,, €)-code with

1
lim inf — log M,, > aC(W).
n—oo N
Proof: Let p € (0,1) NQ be a rational number and we
consider the sets
w,= U

0<p<p,peR.

BSC(p)

and
Wihrepa = J BSCOw)
X€0,1]
Then we have {Wi}xcjo,1jnr. = Wp. It holds that

C(Wy) =1
e (W)

and

i = =1- .
/\ren[ér?ll] C(Wy) =C(Wh) ha(p)

For p we can find a Turing machine ‘€, that computes
for every n € N an (M, (p), En(p), Dn(p),€)-code with
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limy, oo = log My, (p) = C(W1) = 1 — ha(p). We observe
that the code designed for p also yields a code with average
probability of error not larger than e for all channels W € W,
since the channel W is always degraded with respect to W.
Therefore, we can set Ty, o, (W,n) = Tp(n) for W € W,
With this, we have M, (W) = M, (p) for all W € W, and
n € N. As a consequence, for W € W, arbitrary, we always
have

lim 1 log M,,(W) = C(W1) = @ max C(W)) > aC(W)

n—oo N A€[0,1]

which proves the desired result. |

VI. DISCUSSION

To meet demanding requirements on spectral efficiency,
modern communication systems aim at adapting the trans-
mission rate according to the current channel quality. For
example, resource allocation in orthogonal frequency division
multiplexing (OFDM) relies on so-called “bit loading” where
each carrier is optimized based on its individual channel
quality. In communication scenarios with multiple users, the
resource allocation is additionally optimized across the users
according to their respective channel qualities (this may even
result in the extreme case for some users to be scheduled to not
transmit at all). As outlined in Section III-A, this optimization
also includes the used coding scheme since this needs to enable
the overall rate requirements.

For the simple scenario of a point-to-point DMC with one
transmitter and one receiver as introduced in Section III,
the task of resource allocation reduces to the design of a
coding scheme that is adapted according to the quality of
the underlying channel. This means that depending on the
desired blocklength, the optimal (or near-optimal) encoding at
the transmitter and therewith also the corresponding optimal
(or near-optimal) rate as well as the decoding at the receiver is
chosen. Today, this is usually done via lookup tables in which
a set of previously designed codebooks are stored for a class
of channel quality values. This is shown in Fig. 2(a).

In the end, this means that the underlying channel and its
quality control the encoder and decoder. In the framework
developed above, this can now be mapped to and realized by
a Turing machine. The question of interest is then whether or
not it is possible to algorithmically construct optimal channel-
dependent coding schemes for desired blocklengths as shown
in Fig. 2(b).

For a fixed channel, it has been demonstrated in the liter-
ature that optimal codes can be algorithmically constructed.
Thus, there exists an optimal code for each channel in the
whole class of channels. However, in this paper we have
shown that the optimal code does not depend recursively on
the channel and, as a consequence, there cannot be a universal
algorithm that is able to construct capacity-achieving codes
for a whole class of channels (which can further be a quite
restricted set as demonstrated in Theorem 3). This necessitates
a particular code design for each specific channel realization
and provides a negative answer to the question of whether
or not such a channel-dependent code design as shown in
Fig. 2(b) can be algorithmically realized.
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(a) Code adaptation via lookup tables

Fig. 2.

(b) Algorithmic code adaptation based on Turing machines

(a) Code adaptation in today’s communication systems based on lookup tables. Based on the available channel knowledge W and the desired

blocklength n, the encoder E,, and decoder D, are usually chosen from a set of previously designed codebooks. (b) Desired code adaption realized by Turing
machines Tgye and Tpec. Based on the channel knowledge W and the desired blocklength n, the Turing machines algorithmically determine the optimal

coding scheme.

For the channel-dependent code construction we thus
observe the same behavior regarding the mathematical exis-
tence of certain objects and their algorithmic constructabil-
ity as for the Specker Sequence discussed in detail in
Section III-B. Sequences of capacity-achieving codes exist for
all channels, but these cannot algorithmically be computed as
a function of the computable channel and the blocklength.
The Specker Sequence demonstrates such a behavior for a
computable monotonically increasing but bounded sequence
of rational numbers that converges to a finite limit, which is
not computable in general.

The existence of a channel-aware code construction is a
practically relevant question as it would provide a natural
extension to today’s channel adaptive transmission schemes.
However, from the proof of Theorem 2 it follows that such a
hypothetical Turing machine solving this problem would also
allow one to solve the famous halting problem which is known
to be not solvable by a Turing machine.

It is clear that this has further consequences on resource
allocation and cross-layer optimization problems. This
includes, for example, the stability region of networks, i.e., the
region of maximum arrival rates of data packets for differ-
ent transmitters. Then, a resource allocation is desired that
stabilizes the queuing system depending on the channel and
interference constraints. The physical transmission must be
adapted accordingly already for short time intervals [26]—-[30].
As already mentioned, these optimization problems assume
that the corresponding coding schemes can be constructed
according to the underlying conditions. The results established
in this paper however show that such a desired solution is
in general not possible, since it is not possible to solve this
problem algorithmically based on the channel parameters and
the desired parameter requirements.

We observe an interesting effect. Our question on the code
construction dependent on the channel as input is a natural and
practically relevant question. As discussed above, a hypothet-
ical Turing machine that solves this question would provide
a natural extension to today’s channel adaptive transmission
scheme. From the proof of Theorem 2 follows then if such a
Turing machine would exist, it would further solve the Halting
problem. This is of course not possible.

This reveals that certain inherent structures in informa-
tion theory allow the formulation of very natural informa-
tion theoretic questions that are algorithmically not solvable.
In particular the structure of computable channels immediately

yields such a problem formulation that is not algorithmically
solvable. This is interesting as the logical statement here shows
no self-relation as, for example, in the formulation of the
halting problem where a Turing machine takes another Turing
machine as input and which then has to decide whether or not
the Turing machine that has been given as input stops.
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