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Shallow Reinforcement Learning for Energy
Harvesting Communications With Imperfect
Channel Knowledge
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Abstract—This study aims to address the power allocation prob-
lem to maximize the sum of the generalized mutual information,
which refers to the achievable rate with imperfect channel state
information, through a reinforcement learning (RL) approach in
energy harvesting communications. In contrast to the conventional
deep RL applications, which incur a large computational load on
the devices due to the use of deep neural networks, we adopt shallow
RL architectures involving the optimal structural properties per-
taining to the optimal power allocation policy. To design the shallow
architectures that can fully capture the desired power allocation
policy, we derive the partial monotonicity of and bounds on the
policy and value functions. These structural properties represent
mathematical bases on which to construct the shallow architecture.
We use a deterministic policy gradient method with monotoni-
cally shape-constrained approximators that allow us to avoid using
overly complicated deep neural networks, which are not suitable
for low-power devices. Through various experiments, we visualize
the solutions derived from the proposed shallow architectures and
demonstrate that the proposed method outperforms existing power
allocation policies and exhibits a greater robustness due to optimal
structural properties.

Index Terms—Energy harvesting communications,
reinforcement learning, power allocation, shallow neural network,
generalized mutual information, rate maximization.
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I. INTRODUCTION

ITH the advent of the Internet of Things (IoT) and the

hyper-connectivity era, the number of networks has
increased significantly, thereby necessitating the development
of economical communication methods for use in 5 G and more
advanced networks. Since the advent of information theory,
considerable progress has been made in increasing information
transmission efficiency. In the context of signal analysis, coding
theory has led to the development of near-optimal codes for
additive white Gaussian noise (AWGN) channels to achieve
close to the boundary of the Shannon capacity region. Moreover,
to maximize the long term rate in communication systems,
algorithms that optimally use the limited resources, such as
bandwidth and transmission power, have been developed.
In particular, the use of signal scheduling through power
allocation in energy harvesting communications is emerging as
a promising strategy for networks that are self-sustainable and
energy-efficient. However, various realistic constraints such
as those pertaining to limited energy, finite-sized battery, and
time-varying channels impart randomness to the system model,
hindering the development of power allocation policies for
efficient communications. To overcome this complexity and
randomness, policies involving learning-based algorithms have
been developed. In particular, learning-theoretic approaches
based on deep neural networks have demonstrated considerable
potential in many optimization problems in communication
fields. However, end-user devices may not have sufficient
resources to support deep neural networks.

Multi-layered deep neural networks, well-known for having
powerful representational capability, have been favored in vari-
ous studies when information about the representational capabil-
ity that function approximators should have is difficult to obtain.
In contrast to these approaches, in this paper we use 2-layer
shallow function approximators, which are relatively shallow
in comparison to multi-layered deep neural networks that are
widely used when information about the exact complexity of
target functions is not available. Here, we provide proofs that
are the basis for using such approximators, and exploit them
with reinforcement learning techniques, which is a shallow
reinforcement learning approach that we propose in this paper.

In more detail, we mathematically demonstrate the optimal
structural properties of the desired policy, in contrast to the con-
ventional ways of designing deep neural networks heuristically.
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Based on the structural properties, shape-constrained function
approximators are designed and trained with the deterministic
policy gradient method. For training, the actor-critic architecture
is built with the shape-constrained policy approximator and
action-value function approximator, which is lightweight and
robust. Since we use function approximators with monotonic
constraints and the deterministic policy gradient method simul-
taneously, we call the proposed method DPGMC.

A. Related Work

Efficient power allocation policies are essential in design-
ing energy harvesting communication systems, in which an
insufficient power supply and self-sustainability are the key
issues. If a transmitter has information regarding future chan-
nels or energy arrivals, then optimal policies are referred to
as offline policies. These offline policies can only be obtained
in ideal or static environments (in which the transmitter can
easily forecast the channel states or energy arrivals). Also, they
provide information on the maximum performance achievable
in such energy harvesting communications environments. There
has been relevant prior work on designing offline transmission
policies to maximize throughput and minimize transmission
completion time [1]. The previous works in [2], [3] considered
the offline scenario along with battery constraints. Moreover,
a recursive water-filling algorithm was developed in [4], and
a fading channel was considered for an offline scenario. A
power and rate allocation strategy for throughput maximization
was proposed in the context of Gaussian relay channel in [5].
In addition, in an offline scenario, optimal power allocation
strategies were investigated in a broadcast channel setting in
[6].

In contrast to offline scenarios, the transmitters do not have in-
formation regarding future channels or energy arrivals in online
scenarios. Baknina ez al. [7] developed a closed-form expression
for an online power allocation policy in a fixed channel envi-
ronment with a finite-sized battery under Karush-Kuhn-Tucker
conditions. Moreover, the Lyapunov optimization method was
adopted to solve the throughput maximization problem in [8].
For these scenarios, energy harvesting communications systems
are often modeled using a Markov decision process (MDP) [9],
and iterative methods are used to overcome the randomness
and lack of information. In an existing study, learning-based
packet scheduling methods were proposed [10], and Q-learning,
a popular method for tabular-based RL, was adopted. A value-
based RL approach was used in [11] to develop an online policy.
Realistic channel assumptions, including imperfect channel state
feedback, were adopted in [12], and an online policy with value
iteration was proposed.

However, table-based RL approaches consume considerable
time to learn the target policies and require large storage
space to store the state information generated in the system
model. Gradient-based approaches for RL such as the policy
gradient [13] and value-based approaches [14] can overcome
the problem of the curse of dimensionality by using function ap-
proximators. In particular, gradient-based RL methods involving
state-action-reward-state-action (SARSA) algorithms [15], [16]
or policy gradient [17] have been used to manage a large number
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of states in communication systems. Multi-layered neural
networks with gradient-based RL approaches have demonstrated
excellent performance in complex tasks [14], [18] due to their
representational capability. When implementing gradient-based
RL, instead of storing all the system states in a tabular memory,
appropriate function approximators can be designed and used;
in this regard, deep neural networks are widely used due to
their excellent representational capability. Moreover, these
approaches have also been used in power allocation techniques
for energy harvesting transmitters [19] and energy harvesting
management systems [20]. The authors in [21] used the
gradient-based deep Q-learning approach to solve a power
allocation problem involving a modulation level adjustment.
The use of highly complex function approximators makes
it challenging to interpret the obtained solutions and causes
the transmitter to suffer heavy computational loads. In com-
putational learning theory [22], the use of complex function
approximators such as deep neural networks may degrade the
generalization performance and lead to overfitting problems.
These problems can occur not only in supervised learning but
also in RL [23]. In this regard, to avoid the indiscriminate use of
deep neural networks for power allocation problems, we derive
the optimal structural properties of and bounds on the desired
functions. In the same way as in [17], [24], which demonstrate
the need for a monotonic lightweight neural network for power
allocation policies with perfect channel state information, we
develop interpretable shallow actor-critic architectures based
on the structural properties to learn the optimal power alloca-
tion policy. Moreover, in contrast to the previous studies that
involved complete channel information and one-layer neural
networks [17], [24], we consider imperfect channel state in-
formation (CSI) and adopt the concept of generalized mutual
information to define the reward at each time slot. Reinforcement
learning agents learn the policy based on the reward, which
indicates the achievable rate based on the imperfect CSI. In
this setting, this paper focuses on the monotone increasing
properties of the optimal power allocation policy maximizing
the discounted sum of generalized mutual information with the
bounds on the optimal action-value function and the optimal
policy. To show the stability of the increasing function approxi-
mators for the optimal policy maximizing the discounted sum of
generalized mutual information, various simulation results are
provided for the random communication environments.

B. Contributions

In this study, the optimal structural properties are derived,
showing how to interact between the partial monotonicity and
limited bounds of the power allocation policy and value function
corresponding to the actor and critic, respectively. Based on
these properties, the shallow actor-critic architecture is devel-
oped, which has only sufficient representational capability to
reflect the optimal structural properties for the optimal policy,
as shown in Fig. 1. The shallow actor-critic architecture, which
consists of shape-constrained function approximators, allows
the RL agent to learn the target functions stably by preventing the
framework from learning the non-optimal structural properties
even under wireless communication environments with harsh
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Fig. 1. Unlike the conventional optimization methods that indiscriminately
use a deep neural network, the proposed method enables robust learning by
exploiting optimal structural properties and bounds to construct optimized
function approximators.

randomness. The contributions of this work can be summarized
as follows:

® To solve the practical power allocation problem of maxi-

mizing the sum of the generalized mutual information, we
consider energy-constrained systems with imperfect CSI
and generalized mutual information on the infinite hori-
zon. Moreover, we specify several lemmas and theorems
without any prior knowledge of the distributions of the
channel gain and energy arrival, which indicates that the
proposed system model can be applied to any independent
and identically distributed (i.i.d.) channel models and per-
fect or imperfect CSI models.

® We demonstrate that the optimal power allocation policy

and optimal action-value function that constitute the actor-
critic architecture are limited and increasing functions of
the harvested energy, imperfect channel gain, and energy
reserves. Based on the mathematical proofs of the optimal
structural properties, we build up shallow architectures,
which involve rapid computations and impose a small
computational load on the transmitter. This differs from
the conventional approaches, which employ deep neural
networks that can lead to the problems of overfitting and
impose large loads on the transmitter without any knowl-
edge of the structural properties of the target function.

® We compare the performance of the proposed shallow

architecture and deep neural networks and initialization
methods, which are widely used in the field of learning
theory, and demonstrate that the proposed shallow archi-
tecture not only achieves a greater average rate but is also
stable and reliable.

To the best of our knowledge, this approach represents the
first technique to solve the generalized mutual information
maximization problem by using shallow architectures that can
provide a robust solution both theoretically and practically. Un-
like naive-learning-based or iterative approaches, we provide an
interpretable learning-theoretic approach based on the optimal
structural properties of the target functions, which correspond
to the criteria to construct the feasible function approximators.

C. Organization

The remaining paper is organized as follows. First, the gen-
eralized mutual information with imperfect CSI is introduced,
and the MDP problem in the infinite horizon to maximize the
generalized mutual information is formulated in Section II.
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Fig. 2. An energy harvesting communications system where the transmitter
has a finite-sized battery. Realistic time-varying channels and imperfect CSI are
assumed. Under the conditions, our goal is to find the optimal power allocation
policy 7* that optimally uses the available remaining battery every time slot.

Section III provides the proof for the optimal power allocation
policy being an increasing function of the incoming energy,
estimated channel gain, and remaining battery. Additionally, we
prove that the value function, which refers to the discounted sum
of the generalized mutual information, is an increasing function.
The structural properties of the optimal policy and optimal
value function are exploited to construct the shallow actor-critic
architecture, as described in Section IV. The robustness and
performance of the proposed approach are highlighted in Section
V through numerical results. Concluding remarks are presented
in Section VI, followed by appendices with the proofs of certain
lemmas.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an AWGN channel in which a transmitter har-
vests energy from external sources and transmits messages to
a receiver using the harvested energy as represented in Fig. 2.
The transmitter in the energy harvesting system is equipped with
a finite-sized rechargeable battery with a maximum capacity of
bmax. When the transmission time is 7T, the transmitter consumes
energy p; 1" at the beginning of each time slot, where p; is the
transmission power in time-slot <. The transmission power p; can
not exceed the remaining battery b; /T at time slot ¢. We denote
the harvested energy in time-slot 7 as E; and the battery causality
can then be calculated as b;11 = min{b; — p;T + E;, bmax }-
The variables are in bounded discrete spaces B,&, and P as
b € B, E; € £, and p; € P(s;), respectively, for all ¢ where
P(si) =0, b;] N P. The channel coefficient between the energy
harvesting transmitter and receiver is denoted as h; = [,c;,
where [, = d~*¢ is the path loss coefficient with a distance
d and path loss exponent «g. ¢; is the channel coefficient of
the distribution model, which is time-varying. Here, H; = |h;|?
is the accurate channel gain of the transmitter in time-slot <. To
consider arealistic simulation environment, it is assumed that the
transmitters only have information regarding the imperfect esti-
mated channel gain |h;|? = H; before sending a message, and
H; € H is the estimated channel gain in time-slot ¢, where H is
discrete and in bounded space. We express the state information
to which the transmitter corresponds toas s; = (E;, H i, 0i) €S,
where S = £ x H x B is the state space that is bounded and
discrete. The dth element of vector s can be expressed as s[d].
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The generalized mutual information should be applied to
measure the achievable rate in the imperfect CSI [25], [26]. We
denote the relationship between the accurate channel state at
time slot 4, h;, and estimated channel state at time slot 7, fzi, as
follows.

hi=h +e (1)

The expectation of the channel estimation error e is zero, that is,
E[e] = 0 and E[h] = h. When the transmitter uses the trans-
mission power p; in time-slot ¢, the immediate rate can be
determined using the generalized mutual information formula
as

Hp

I(Szapz) - 10g2 (1 + ]EHGP}p + 0_2) (2)
where p is transmission power for time slot 7, o2 is the noise
density of the Gaussian channel, and E[|e|?] = o7 is variance of
the channel error. If the perfect CSI is assumed, E[|e|?] = 0 and
H=H (no error in channel estimation). In this case, (2) can be
simplified as the well-known Shannon’s capacity [27] which is
described as

H
R(si, pi) = logs(1+ ). 3

For the definition of generalized mutual information [28], we do
not consider the case where the variance of channel estimation
error goes to infinity, and we assume that E[(|h| — E[|R]])?] <
oo. In addition, it is assumed that the input has a Gaussian
distribution, and a nearest neighbor decoder is used.

The key problem addressed in this study is to maximize the
sum of the generalized mutual information from a long-term
perspective, which is a practical form to be applied to the trans-
mitter that operates continuously. Let us consider that the goal is
to maximize the amount of information transmitted during the
total time slot 7, with ZiTéo I(s;,p;). The transmission power in
time slot ¢, p, is determined by the power allocation deterministic
policy 7, with 7(s;) = p;. The expected value of the achievable
rate in 7}, can be represented as

To
ZI(Snpi)SoJTH : “

V(S) =E ]ETO

=0

The objective time interval T}, can be varied and we assume that
T, follows the geometric distribution with a mean of 1/(1 — ).
In this case, problem (4) can be interpreted as an optimization
problem on the infinite horizon with a discount factor , with
(0 <y < 1) [9, Proposition 5.3.1]. It indicates that the rate
maximization problem on the finite horizon 7 can be formulated
as a discounted sum of instantaneous rate maximization problem
on the infinite horizon. The objective is to maximize the rate on
the infinite horizon, which is defined as

V(is)=E

Zvif(si,mls(),vr] : (5)
1=0

V is referred to as the value function as it measures the value of
state s. This system model for problem (5) can be modeled as
an MDP, which consists of a five-element tuple (S, P, ps, 7, )
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where p; is the state transition probability function of the trans-
mitter, and ps(s;4+1]si,pi) is the probability of the next state
si+1 for a given s; and p;. The optimal stationary deterministic
policy m* maximizes the expected discounted reward sum (5) in
the environment and can be defined as

o0
7" = arg max, . E lz v 1(si, pi)|so, 7T‘| (6)
i=0

where I1 is the set of feasible policies in the MDP. By following
the optimal policy 7* and allocation power, the optimal value
function V* can be obtained, which is a perfectly measure of
the maximum achievable rate from state s. In this study, we
primarily derive the structural properties of the optimal station-
ary deterministic policy 7* and the optimal value function V*
and use these values to build optimized and shallow function
approximators. Using the tailored function approximators with
gradient-based RL, the key goal is to obtain 7* and V*.

III. STRUCTURAL PROPERTIES OF THE OPTIMAL POLICY AND
VALUE FUNCTION

In this section, we demonstrate that 7* is an increasing
function of E, H, and b. This property is valid for the sys-
tem under any i.i.d. channel distribution and energy arrival
distribution. Using the monotonically increasing property, we
design a function approximator optimized for 7*, as described
in the previous section. To enhance the readability, we omit the
time slot notation in this section. Before proving the increasing
property of 7*, we introduce the key features of the generalized
mutual information. Subsequently, we define the optimal value
function V* and demonstrate the increasing property of the value
function. Lemmas and theorems in this section are provided to
demonstrate monotonicity of the optimal policy and the optimal
value function for each input element.

A. Supermodularity of the Generalized Mutual Information

In this subsection, we demonstrate that the generalized mutual
information of the estimated channel gain |ﬁ | and transmission
power p is supermodular.

We define the meet operation min{x[d], y[d] } and join opera-
tion max{z[d], y[d]} as (x A y)[d] and (x V y)[d], respectively.
The bounded discrete space £L = H x P1is alattice where 2 A v,
xVy € L for every x,y € L. The generalized mutual infor-
mation I : £+ R is supermodular if I(z A ') + I(z V') >
I(z)+ I(2') for all z,2’ € L. When a two-dimensional real
value space domain for [ is considered instaed of S, the partial
derivatives of I with respect to p can be represented as follows.

OI(H,p) _ (0*H)
p In(2)(0? + E[le|]p) (0 + p(H + E[le[?]))’
(N
Moreover, the expression can be continuously and partially
differentiated twice, as follows.
O%I(H, p) B o?
OHOp  2((H +E[le[2])p+02)2

®)
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If (8) is non-negative, it can be considered that [ is supermodu-
lar [29], in a trivial manner as the denominator and numerator in
the right-hand-side term of equation (8) are positive values. This
characteristic of generalized mutual information can be easily
interpreted as an increasing difference, which implies that the
marginal gain of information from increasing His larger when
the transmission power p is larger, as follows:

I(ﬁ’/p/)—l(ﬁ7p/)zl(ﬁ,/p)—l(ﬁ,p) (9)

This valuable property of the generalized mutual information is
exploited in the various proofs introduced in the next subsection.

B. Increasing Properties of the Value Function

The objective function (5) is the discounted reward sum on the
infinite horizon. By using Bellman’s equation, the maximized
discounted reward sum through the optimal policy 7* can be
represented in a recursive manner, as follows.

V*(E, H,b)

{I(S,p) +7Egﬁﬁ[V*(Evﬁ7m(bvpﬂ E))]} - (10)

= max
peP(s)
Considering the compact domain .S, which is a bounded dis-
crete space, the upper bound of the reward function (generalized
mutual information) can be identified as follows.
Corollary 1: The value function V' (s) is finite for all s € S.
Proof: The generalized mutual information has an upper
bound because H and B are lattice domains with upper
bounds max #H and max B, respectively. According to (2), 1
is an increasing function for H and p with an upper bound

max . The maximum value of 7 in H X P is Iy = logy(1 4+
max H max B ) and
E[le|?] max B+o2

o0
V(s)=E lz “Yif(syt,pz‘)soﬂfl < 1Imax <oo. (11
i=0 -
|

An optimal stationary deterministic policy, which maximizes
the long-term discounted reward sum V/, exists in the system
model (S, P, ps, r,7), because the state space and action space
are compact spaces and the reward function, which is I in the
proposed system model, is bounded, as shown in Corollary 1 [9,
Th. 6.2.10].

The value iteration algorithm can be used to obtain the optimal
value function V'*, and the stationary deterministic optimal pol-
icy can be extracted from the optimal value function. The value
converges to the optimal value function for a bounded discrete
state and an action space with a bounded reward function. The
update process of the value iteration can be represented as
follows.

Forall s € S,V 11(5)

{I(sm) +9E5 i [Val(E, ﬁ,m(b,p,E))]} (12)

= max
pEP(s)
where V;, represents the value function after the nth update.
This update process requires considerable time when the state
space is large because the process must be performed for all
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s € §. Consequently, we adopt a gradient-based method with
the policy gradient theorem, instead of using the value iteration
method. Nevertheless, we extract the valuable structural prop-
erties by using the convergence property of the value iteration
update (12).

Lemma 1: The optimal value function V* is an increasing
function of the estimated channel gain H for a given E and b.

Proof: We define the optimal action p* for s, which maxi-
mizes the nth value function, as

= arg maxycp(y) {1(5.p) +7E [V (B, H,m(bp, )] }
(i3

The same logic can be applied to state s' = (E, H,'b) and we
denote the optimal action p'* for the state s’ and H' > H. Let us
assume that the nth value function V;, is an increasing function
for H, V,,(s) < V,,(s'). Then, V,,(s') can be updated through
(12), and

Varn(s) = 1(s0) + 3B jy [Vl B, H,m(b.p", 2)]
(14)

>

> (s p) + 9By [Va(B L m(b,p', )| (15)

> I(5,0") + 1B, g [Va(E, H,m(b,p", )| (16)

= Vat1(s). (17)

The inequality between (14) and (15) holds because p’* is the
optimal action for state s’ although it is not necessary that
p* is the optimal action for state s’. Moreover, the inequality
between (15) and (16) is satisfied because I is an increasing
function of H, as the partial derivative of I for His non-negative

alél;;p) _ 1n2(p(il+£[\e\2])+a?) > 0. Lastly, according
to the definition of the value iteration update in (12), the equality
between (16) and (17) holds. When n — oo, V,, — V*. The
shape of the value function can be initialized with the inequality
Vo(s") > Vo(s) and the initialization does not affect the conver-
gence property of the value iteration. Through mathematical
induction, V* is an increasing function of H for a given F
and b. |

By using a similar approach as that to prove Lemma 1, we
can demonstrate that the optimal value function has increasing
properties for both E and b.

Lemma 2: The optimal value function V* is an increasing
function for the incoming energy E for a given H and b.

Lemma 3: The optimal value function V* is an increasing
function for b for a given F and H.

The proofs of Lemma 2 and 3 are omitted to avoid repetition
since the lemma can be proved in a similar way to the proof of
1. Combining Lemmas 1, 2, and 3, we can obtain the following
theorem.

Theorem 1: Let us assume that 2’ dominates x if «'[d] >
x[d] for all d in 1 < d < D. The optimal value function V*,
which is the maximum discounted sum of the generalized mutual
information, is an increasing function as V*(s') > V*(s) where
s’ dominates s.

because
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C. Increasing Properties of the Optimal Policy

The optimal policy exhibits increasing properties in terms
of its input features. In this subsection, Lemma 4, 5, and 6 are
provided to show the monotone increasing property according to
channel gain, remaining battery, and harvested energy, respec-
tively. The three lemmas are based on Topkis’ monotonicity
theorem in [30, Th. 1] with the proof techniques from [12],
which are also used in the previous studies [17], [24]. To show
the monotone increasing properties of the function with arg max
operator, the sufficient conditions for Topkis’ monotonicity the-
orem are introduced and we show that the conditions are true. We
first demonstrate the increasing property of the optimal policy
for the estimated channel gain.

Lemma 4: The optimal policy 7*(E, H,b) is an increasing
function for the observed channel gain H for any given F
and b.

Proof: The optimal policy 7* can be represented as

7(s) = min {]5 € arg max,c p(y)
{16998 [v*(B Ao, )] . a9

In other words, if there are multiple p that can maximize the
expected discounted reward sum from the given state s, it is best
to choose the smallest value. The proof for the new definition
of 7*(s) can be omitted due to its clarity. To show that (18) is
increasing for H, Topkis’ monotonicity theorem [30, Th. 1] is
adopted. We define the function F', which is the term inside the
arg max operation pertaining to (18) as

F(va):I(svp)+’y]EE7ﬁ V(E,H,m(b,p,E))| (19)
where E and b are fixed. According to the monotonicity theo-
rem [30, Th. 1], when the following two conditions are satisfied,
it can be considered that (18) is an increasing function of H.m

Condition 1: F(H,p) exhibits increasing differences in
(f[ ,p). Note that an increasing difference on (H , p) indicates
that the additional gain of function F' when H increases is greater
for a larger p.

Condition 2: The lower bound of the feasible action space
of state s, Pj(s), and the upper bound of the feasible action
space of state s, Py;(s), are increasing functions of s with the
following constraint: Py, (s) < Pyy(s).

The increasing differences of F in (H, p) can be defined

F(ﬁ,,p/) —F([A{,/p) Z F(ﬁ,p,) —F(ﬁ,p)

< I(S,,p/) - I(S,p,) > I(S,/p) - I(S,p)

(20)
2L

where H' > H, s' = (E,H,'b), and p' > p. The equivalence
between (20) and (21) indicates that (20) is true because the
supermodularity and increasing difference of the generalized
mutual information in (9) have been proved. The only remaining
condition to prove that (18) is an increasing function of H is to
prove that Condition 2 is true. The feasible action space for state
s1is P(s), and it does not depend on the observed channel gain.
Consequently, the lower and upper bounds of P(s) and P(s’) are
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identical and set as constant. This fact satisfies Py,(s) < Pyp(s)
with equality, as well as Py (s) < Ppp(s), Pup(s) < Pup(s).

Because it is demonstrated that conditions 1 and 2 are satisfied
by the supermodularity of the generalized mutual information
and properties of the feasible action space, Topkis’ monotonicity
theorem [30, Th. 1] can be adopted as follows: To realize
the proof by contradiction, we assume that the optimal power
allocation policy 7* is not an increasing function of H. Then,
7 (s') < w*(s) for a certain s,8’ € S, ' > s. We define the
optimal action for H' as p”*, which maximizes F'; then

0> F(H/p)—F(H, p") (22)
> F(H,p") — F(H,p") (23)
> (24)

The inequality (22) holds because of the definition of the optimal
actions p* and p™ and this aspect indicates that p’* is the optimal
action for H’. The inequality between (22) and (23) is true
according to Condition 1. The inequality between (23) and (24)
holds according to the definitions of the optimal actions. The in-
equalities implies that (22), (23), and (24) must hold by equality,
and thus, p’* is an optimal action for H. As we already assume
that 7*(s') < 7*(s) < p"* < p*, p* = arg minF" appears to be
a contradiction because there exists another optimal action p™*
that is smaller than p*. Therefore, the optimal policy 7* is an
increasing function of H for any given F and b.

Specifically, Lemma 4 indicates that even if the estimated
channel is imperfect, for a higher estimated channel gain, more
power must be used.

In a similar approach as that used to process Lemma 4, the
increasing properties of the optimal policy for the remaining
battery b and harvested energy E can be demonstrated.

Lemma 5: The optimal policy 7*(E, H,b) is an increasing
function for the remaining battery b for any given E and H.

Proof: See Appendix A. |

Lemma 6: The optimal policy 7*(E, H,b) is an increasing
function for the harvested energy F for any given b and H.

Proof of Lemma 6 is omitted to avoid repetition since the
lemma can be proved in a similar way to the proof of Lemma
5. Combining Lemma 4, 5, and 6, we can obtain the following
theorem.

Theorem 2: The optimal policy 7* is an increasing function
as 7 (s') > 7*(s) where s’ dominates s.

Theorems 1 and 2 correspond to the structural properties of the
target functions, optimal power allocation policy 7* and optimal
value function V*. As described in Sec IV-B, in contrast to the
heuristic function approximator design, we build shallow func-
tion approximators which can reflect the optimal properties even
before the learning begins. Note that these structural properties
are derived without using any prior knowledge of the distribu-
tion of the channel gain and energy arrivals except that these
aspects are i.i.d.. By exploiting Topkis Theorem [30] and the
convergence property of the value iteration [9] in the same way
to [17], [24], Theorems 1 and 2 reveal the structural properties
of the policy and the value function. We have expanded on the
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previous work by dealing with the concept of generalized mutual
information.

IV. DETERMINISTIC POLICY GRADIENT WITH SHALLOW
ARCHITECTURE BASED ON THE OPTIMAL STRUCTURAL
PROPERTIES

A. Actor-Critic Framework With Deterministic Policy
Gradient

Before building the shallow function approximators, we de-
scribe the gradient-based RL algorithm with the actor-critic
framework, which consists of the policy network and action-
value function network. Unlike traditional stochastic optimiza-
tion methods including value iteration and tabular-based rein-
forcement learning approaches, gradient-based reinforcement
learning is suitable for handling a large number of states. In
particular, value iteration, a well-known dynamic programming
method, requires perfect knowledge of the state transition prob-
ability, and storage that can store more than the number of states.
Therefore, continuous state spaces cannot be dealt with by the
tabular-based method. Since we aim to deal with large discrete
spaces, storing values for many states in traditional ways is
inefficient and so we adopt a gradient-based learning method
for the given problem with the monotone increasing properties
of the optimal policy.

We adopt the Wolpertinger policy (WP) method, which is a
deterministic policy gradient method for discrete spaces [31],
consisting of the policy approximator mg~ and action-value
function approximator (Qye. The two networks that compose
the actor-critic framework are connected, and the weights in
the networks are updated with different gradient directions. The
optimal action-value function Q*, which indicates the maximum
achievable rate when the agent select action p at state s, satisfies
the Bellman’s optimality equation as

Q*(E,H,b,p)

= I(5,0) +1E, 5 [V*(E, H,m(b,p, E))| . (25)

The goal of this model-free RL algorithm is to obtain the function
approximators that have completed training as mg~ ~ 7* and
Qge ~ Q*. The actor (policy) network of the WP method maps
continuous policy values from the function approximator fy= (s)
to the feasible discrete space as

o= (830) = arg min,cp o [p — fo= (s)[2- (26)

The weights in 7 can be updated in the direction to maximize
the following gradient

VorJ = E[Vgr for (5)VQpa (s, )]

where p = fy=(s). To use the fixed-Q target technique, which
was proposed in [14] for a stable learning process, two function
approximators must be constructed to approximate a target
function, which have the same structure. We term the two
approximators as the evaluation network and target network.
During each learning process, the parameters of the evaluation
network are updated at every step; however, the parameters
of the target network are updated from the parameters of the

27
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evaluation network by considering a certain ratio 7. Let us define
0% and 0™ as the set of parameters in the target action-value net-
work and target policy network, respectively. The critic network
(action-value function approximator) is updated in the direction
to minimize the following mean squared loss.

L =E[(Qpe(si,pi) —1i — ’YQgQ/(SiHﬂTew’(5i+1)))2]'

(28)

The gradient values for the policy and action-value function
approximators are calculated using n**“"-sized mini-batches
generated from the replay memory [14], which is a storage space
for (s;,pi, 74, Si+1) data pairs.

B. Shallow Actor-Critic Architecture Based on the Optimal
Structural Properties

This subsection describes the establishment of the actor-critic
framework as a shallow architecture based on the structural
properties of the optimal policy and optimal value function
demonstrated in Theorems 1 and 2. Using these theorems, the
size of the feasible set of parameters that constitute the function
approximators that the learning agent must consider can be
considerably reduced. To realize a more efficient reduction, we
set upper and lower bounds for the output of each network.

Based on Theorem 1, we build the policy network 67 as a
monotonically increasing function in terms of its input features,
incoming energy, estimated channel gain, and remaining battery.
To effectively enforce the increasing property of the optimal
policy to the function approximator, we adopt the piecewise
linear calibration and interpolation method with a shape con-
straint [32]. This approach can provide a function approximator
with various desirable structural properties by controlling a
limited number of parameters. The notations used in [32, Sec.
9.3] are directly followed to describe the calibration function.
The calibration function is described as ¢4 (s[d]; o(?)), where s is
the input vector, s[d] is the dth element of s, and (%) is the set of
parameters in the calibration function for the dth element. The
range of s[d] is divided into Cj — 2 parts and linearly scaled
(piecewise linear approximation) to the unit range. We use a
linear transformation layer with the calibrated input vector as

c(s;a) = (er(E;a)), eo(H;a®) e3(b;0®)))  (29)

where « is the set of all trainable parameters in the calibration
layer. The calibrated state ¢(s; «v) is the input of the interpolation
layer which is denoted as ¢. Specifically, we adopt the multi-
linear interpolation method [32, Sec. 3.1] and follow the same
notations; this method involves linearly interpolating the output
values according to the values of several input features with
only a limited number of vertices. ¢ takes a D = 3-dimensional
feature as an input vector, and the output is an M = II;My
dimensional vector where M is the number of vertices for dth
feature as ¢(s) € [0, 1]™. In particular, the kth component of ¢

can be expressed as follows [32, 2].
S1.(s) = L ys[d] 19 (1 — s[d])' 1) (30)

where v;, € {0, 1} is the kth vertex of the interpolation lattice.
¢ is not a trainable function approximator, and the interpolation
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level can be adjusted by M -dimensional vector W™, whose
elements are known as lattice parameters. The lattice parameters
can be trained, and the interpolation layer [(s) is represented as

I(s) = W™ (s). (31

By using the calibration layer, the input feature can be calibrated
and the actor network (policy approximator) can be represented
as follows.

for (s) = W g(c(s; ).

In summary, the input state s = (E, H,b) can be calibrated
through the calibration layer, and the calibrated feature vector
is the input vector of the interpolation layer. We exploit the
structural properties demonstrated in the previous section to
ensure that the calibration and interpolation layers have shape
constraints. Specifically, the calibration and interpolation layers
are expected to be increasing functions for their input features,
and consequently, the policy approximator fy~(s) is an increas-
ing function for its input features due to Theorem 1 as

Wl (e(s'; @) = W (c(s; a))

(32)

(33)

where s’ dominates s. Additionally, the transmission power is
non-negative and cannot exceed the maximum battery capacity
bmax; consequently,

0 < W™ g(c(s;@)) < bmax- (34)

This design scheme enables the two-layer function approximator
(calibration and interpolation) [32] to possess the optimal struc-
tural properties derived from the optimal power allocation policy
that is bounded and an increasing function of the corresponding
input features.

In a similar manner, we can apply shape constraints to
the action-value function approximator. The calibration layer
c(s,p; a?) and interpolation layer W@ ¢ are adopted to con-
struct the critic network. We have

(s, p;a9)
= (c1(B;aM), co(H; a@), c3(b;a), es(p;a)), (35)

where @ is the set of all trainable parameters in the calibration
layer and the s[d] is divided into C;Q-Z parts for the action-
value function. The action-value function approximator can be
represented as

Qoa(s,p) = W ¢(c(s,p;a?)).

According to Theorem 2, the optimal action-value function Q*
is a partially and monotonically increasing function for s.
Corollary 2: The optimal action-value function Q* is a par-
tially and monotonically increasing function for s, which indi-
cates that Q*(s,” p) > Q*(s,p) for s’ > s,8/s € S.
Proof: 1 is an increasing function for H as the derivative of
I with respect to Hisa non-negative value as

(36)

o1 (f{ ) _ P . 37
0H In(2)(E[|e|?]p + Hp + 02)
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Fig. 3. Proposed actor-critic architecture. The actor (policy) network consists
of the monotonic calibrators and monotonic interpolation function, and the critic
network (action-value function) consists of the partially monotonic calibrators
and interpolation function. This shallow structure forces the actor and critic
networks to possess the optimal structural properties with only a two-layer
framework.

In Theorem 1, the optimal value function V* is an increasing
function. For given p, (25) can be interpreted as a sum of the
increasing functions, I and V'*. ]

Consequently, the critic network exhibits a partial monotonic-
ity for the state s and not for the transmission power p as

W g(c(s) p;a?)) > W g(c(s,p;a?)). (38

Furthermore, the action-value function is bounded, with the
lower and upper bounds defined as

0 < W g(e(s,2:09)) < 3 7 inax. (39)
i=0

The overall actor-critic architecture is illustrated in Fig. 3.
Through the optimal shape constraints specified in (33), (34),
(38), and (39), we can efficiently reduce the feasible space of
the parameters in the function approximators.

The algorithm for the overall training phase is specified as
Algorithm 1. First, the parameters in the actor and critic networks
are randomly initialized. State s; is observed, and the feasible
action p; is selected. During the training phase, p; is generated
from the current policy m with the Gaussian noise as p; ~
N (m(s;i),a2) for exploration. Action p; is applied, and the next
state s;41 can be obtained with areward r;. The data in the single
loop of the training phase (s;, p;, i, $;+1) are stored in the replay
memory, and they can be used to approximate the gradient values
in (27) and (28) through mini-batch sampling. The realization
of the gradient update with the constraints specified in lines 7
and 8 in Algorithm 1 is based on the method described in [32,
Sec 3.1]. The parameters constituting the networks are updated
considering the ratio of 7. If no performance improvement
occurs during 10 updates in Algorithm 1, the training phase
is stopped early.

The calibration and the interpolation require only a small
number of scalar products and summations. That calibration
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Algorithm 1: Deterministic Policy Gradient With Shape
Constraints.
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TABLE I
SYSTEM MODEL AND HYPERPARAMETER SETTINGS

1: Initialize the network weights 6™, 0™, 9% and 9%’
2: while training phase do
3:  Observe state s; and select p;
Apply action p; and get s;+1, 1
Store data (s;, p;, i, Si+1) in replay memory
Sample n°*“P_sized batch from replay memory
Update 6™ with the gradient ascent using (27) with
shape constraints (33), (34)

8: Update A% by minimizing the loss (28) with shape

constraints (38), (39)

9: 0™« (1 —7)0" + 707,09 « (1 —1)09 + 769
10: S; < Si+1
11: end while

A A

layer performs a piecewise linear transformation for each input
element. Since we only have 3 input elements, a total of 3
linear transformations are performed. The interpolation function
performs 3 scalar multiplications 8 times to calculate the 23
dimensional output. Finally, the single elementwise multipli-
cation of the 8 dimensional vectors, W™ and ¢(c(s; «)), are
required for the forward propagation. Since the proposed policy
approximator is based on the optimal structural properties, we
can construct the approximator with only two different layers
and the first calibration layer does not increase the dimension-
ality of the input vector. If function approximators such as deep
neural networks whose representational capabilities or structural
properties are difficult to analyze are applied, we cannot arbi-
trarily reduce the size or depth of the function approximators to
reduce computation complexity.

V. DISCUSSION
A. Simulation Environment

The transmitter is equipped with a finite-sized recharge-
able battery with a capacity by, and Rician fading is as-
sumed, whose probability density function (as a function of
variable x) is xexp(—M)Io@Kx) where Iy(2Kz) =

2
Yoreo %7!);/4)]\, which corresponds to the modified Bessel

function with zero order. The random variables from the distri-
bution is scaled by 0.36. Before training, the neplay-sized replay
memory is filled with (s;, p;,7;, S;+1) pairs, generated from
random actions. For the gradient updates, Adam optimizer [33]
is adopted. To exploit the convergence property of the value
iteration algorithm, Theorems 1 and 2 are provided with a
discrete state space, and they hold regardless of the size of the
state space. We perform the experiment in discrete environments
in which the numbers are represented with 24-bit precision,
corresponding to a nearly continuous, but discrete accuracy.
Since our proposed method exploits function approximators,
rather than a value table, where all the values for each state are
stored, it works for such discrete, but almost continuous, inputs.
Note that the traditional table-based and naive RL approaches
(Q-learning or value iteration) cannot be used in the case of a

Description [| Notation [| Value |
Rice shape parameter 2K 2.35
battery capacity bmax 2.0
energy harvesting probability pl 0.5
maximum harvested energy max 2.0
transmission time T 1
noise density o? 1
replay memory Treplay 1024
batch size Tbatch 128
target update ratio T 0.01
standard deviation of the exploration strategy Oe 0.1
actor learning rate - le —3
critic learning rate - le —3

Random training environment

- R 2.0
2.5 — estimated channel gain H H

—— energy arrival F
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Fig. 4. Randomly generated training dataset (top) and power allocation poli-
cies after the training phase, obtained from the deep neural network (bottom left)
and proposed shape-constrained network (bottom right). The uninterpretable
structural properties, which an optimal policy should not have, emerge in the
policy derived from the deep neural network built without deliberation.

large state space, because a large number of states must be stored
in the device memory to realize the iterative update. The various
simulation parameters are listed in Table L.

B. Numerical Results

We name the proposed approach as the deterministic pol-
icy gradient method with the monotonic shape constraints
(DPGMC). This technique is an online approach as the transmit-
ter has no a priori information regarding the energy arrivals or
channel gains. Fig. 4 illustrates the sample trajectory (training
data sample) of the energy arrival and estimated channel gain.
To demonstrate the overcomplexity of deep neural networks for
the considered problem, deep neural networks with two hidden
layers (256 and 128) were used for both the actor and critic
networks, and the corresponding weights were initialized by a
Gaussian distribution with zero mean and a standard deviation of
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Fig. 5. Histograms of the performance of DPGMC and deep neural networks.
In the harsh random environment, the randomness of the wireless communication
environments and neural network initialization causes a large performance
difference even if the same algorithm is used (results from deep neural net-
works). However, the proposed method demonstrates robustness in terms of the
achievable rate with a low variance.

16. The power allocation policy obtained using this deep neural
network is shown in the bottom left of Fig. 4. In the bottom right
of Fig. 4, the power allocation policy after the training phase, as
derived from the proposed architecture, is illustrated. In the harsh
random communication environment involving a time-varying
channel and energy arrival, the deep neural networks were
overfitted to the partial data and thus could not represent the
complete domain of the power allocation policy (bottom left).
In contrast, the proposed shape-constrained network does not
violate the optimal structural properties of the optimal policy.
The overfitted policy from the deep neural network and the
policy from the lattice network achieved values of approximately
0.68 bps and 0.79 bps, respectively. The objective of Fig. 4 is
not to highlight that deep neural networks always lead to a lower
performance, but to reflect that the optimal structural properties
or bounds of the desired function must be accompanied at the
application level. Figure 5 provides the statistical observation
of the effect of the vulnerability of the overly complex neural
networks to the overfitting problem in terms of the learning
results. Specifically, Fig. 5 shows the histograms of the final
performance (achieved rate) achieved from several actor-critic
architectures. To evaluate the stability of the learning algorithm
for different actor-critic architectures, we tested the same struc-
ture 500 times with random initializations. We evaluate the
performance of our proposed actor-critic architecture for three
different settings. The first setting is named Config-I in Fig. 5,
and we set C; to 8 for the calibration layer of the actor and
C’fi? = 16 for the calibration layer of the critic. In addition, we
set Cy = 8 and Cf = 8 for Config-II and we set Cy = 16 and
C’ff = 16 for Config-1II. Note that the greater C'; or C(? are,
the greater representational capability the function approximator
contains. Fig. 5 shows that the performance of the implemented
architectures does not change more than 0.05 bps in 500 tests,
demonstrating the robustness of proposed method. Although the
representational capability of the architectures is changed due
to the change in the size of Cy or c9, they still contain the
monotonicity constraints. Due to these constraints, the average
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Fig. 6. Expected rate according to the harvesting probability p’.

value of each achieved rate distribution is approximately the
same, even if the experiment is performed multiple times with
different settings. It can also be observed that the variance of
the achieved rate distribution, which is obtained from all the
implemented DPGMC, is 1.6 x 107° or less.

Contrasting experimental results are observed when using
deep artificial neural networks designed without considering
system models. Deep neural network-I, which involved fully
connected layers with two hidden layers, as shown in Fig. 4,
was tested 500 times. The deep neural networks and weight
initializer were designed without considering the system model,
and these frameworks exhibited considerably different perfor-
mances in each experiment (0.59 to 0.725 bps). The Glorot
initialization method [34], which is a widely used initialization
method in the learning theory field, was implemented for deep
neural network-II. However, even when the same method was
applied to the deep neural networks, and the average perfor-
mance was improved, the performance corresponding to the
setting ranged from 0.70 to 0.80 bps, and the variance of the
achievable performance distribution compared to the previous
setting was only slightly reduced. In contrast, the performance
achieved using the proposed framework exhibited high mean
values and low variances during the hundreds of experiments
(0.78 to 0.81 bps). These experimental results are observed
in all of Config-I, II, and III, which confirms the robustness
of our proposed actor-critic architecture. As shown in Fig. 5,
the variances of the achieved rate distributions of DPGMC are
1.6 x 1072, 1.2 x 107°, and 1.5 x 1075, for Config-1, II, and
III, respectively, which are smaller than the variance of the
achieved rate distribution from untailored deep neural networks.
This finding clearly demonstrates that the function approximator
design based on the structural properties considerably enhances
the learning stability and ultimate average performance. Fig. 6
illustrates the comparison of the performance of the proposed
approach and greedy approach, to clarify the rate increase that
can be obtained through long-term scheduling. Since the ex-
periment proceeds in a discrete environment that is nearly con-
tinuous, we adopt the Soft-Actor-Critic method (SAC)[35] for
performance comparison, which is a state-of-the-art model-free
reinforcement learning algorithm. Based on the gradient-based
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Fig. 7. Expected rate according to the battery capacity bmax-

reinforcement learning method and the soft MDP [35], SAC
learns the stochastic policy that also maximizes the entropy of
the policy with the expected sum of rewards for exploration.
The implementation details are provided in Appendix C. In
addition, we test a greedy policy on the environment, which
consumes p; = b; /T at time slot 4 to achieve the maximum rate
for time slot . We use this greedy policy as a lower bound of the
performance. Higher p” values indicate that the transmitter may
have a chance to obtain energy more often. All the approaches
exhibited an enhanced performance as p” increased. Regardless
of the assumed channel estimation error, the proposed approach
outperformed the SAC and greedy method. The performance
of SAC achieves between the performance of DPGMC and the
greedy policy. When p” = 0, all the algorithms operated in an
environment in which no information could be transmitted, and
thus, they exhibited the same performance with 0 bps. p" = 1.0
refers to a situation in which the energy equal to the battery level
is harvested in every time slot. In this case, because it was optimal
to consume all the energy each time, all the algorithms achieved
the same performance. Moreover, as shown in Fig. 7, a larger
battery capacity corresponds to a larger achievable expected rate.
All the tested algorithms achieved lower rates as the variance
of the channel estimation error was increased. In all cases, we
observe that DPGMC achieves better performance than SAC and
the greedy policy. Figure 8 shows that a larger harvested energy
corresponds to a greater achievable expected rate. Similar to
the aspects observed in Figs. 6 and 7, the long-term scheduling
approaches including DPGMC and SAC achieved a higher rate
than that achieved by the greedy policy.

VI. CONCLUSION

In this study, the power allocation problem for rate maximiza-
tion has been addressed using RL. We have proposed an online
power allocation policy with a deterministic policy gradient by
using function approximators. We have mainly proved that the
deterministic online optimal policy, which adopts the harvested
energy, estimated channel gain, and remaining battery as the
input features, is a monotonically increasing function. We have
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also shown that the optimal action-value function is an increas-
ing function for certain input features through the convergence
property of the value iteration algorithm. By leveraging the
optimized function approximators, we can avoid using overly
complex neural networks, which are typically constructed in a
heurisitc manner without considering the system model. In the
simulations, the deep neural networks violated the structural
properties that an optimal policy should possess, whereas when
using the proposed method, robust learning could be realized
with the optimal structural properties even in harsh random
environments. The numerical results demonstrated that the pro-
posed approach using the optimal structural properties could
outperform the existing methods and improve the achievable
rate in long-term operation.

It is important to note that, when implementing learning-
theoretic approaches for optimization problems in communi-
cation systems, the function approximator designs must be
carefully considered. Using the proposed method, the instability
and problems associated with the large computation load caused
by the use of deep neural networks, which have been highlighted
in several existing studies, can be overcome. Future directions
of this study involve analyzing performance guarantees for the
tailored policy approximators. Moreover, the proposed approach
can be applied to more complex and advanced communication
system models including non-orthogonal multiple access-based
broadcast channels that require explainable artificial intelligence
technologies.

APPENDIX A
PROOF OF LEMMA 5

We assume that b’ > bforallb,’ b € Bandp' > pforallp, p €
P. We define F}, as follows.

Fy(b,p) = 1(s,p) +7E ; 5 |V*(B, H,m(b.p, )] . @40)

The controllable parameters for Fj, are b and p, and the other
variables are fixed to demonstrate the increasing property of b.
Topkis’ monotonicity theorem [30, Th. 1] is adpoted to show the
increasing property of the optimal policy for b by deriving the
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increasing difference of Fj, which is equivalent to

B 5 |V (B Hom(b) p! E))|
B g V(B Hom(b p.E))] @)
> 9B 4 |V (B Hm(b,p) E))|
—Eg g [VIEHmb,p.E)]. @)

We can show that the inequality between (41) and (42) holds
by following the proof in [12, Th. 2], which was used in [17],
[24]; we provide the further proof following the logic in [12, Th.
2] for readability. According to the definition of m, b and p in
(41) and (42) can be combined to form a single variable, and the
inequality can be simplified as

VHE,H Y —p +E)—VE,Hb—p +E)

>VE,HV —p+E)—V*(E,Hb—p+E). (43
Inequality (43) indicates that demonstrating the concavity of V'*
for the lastinput variable b is sufficient to highlight the increasing
difference of Fj, because b/ —p' + E >b—p +E, UV —p+
E > b—p+ E, and (43) is the difference in the rate change of
V* according to b' — b.

Lemma 7: The optimal value function V* is a concave func-
tion of b for any given E and H.

Proof: See Appendix B. |

Next, we demonstrate that the lower and upper bounds of the
action space P(s) are increasing functions for b. P(s) can be
represented as [0, b], and both the lower bound 0 and upper bound
b can be interpreted as increasing functions for b. Subsequently,
Topkis’ monotonicity theorem can be adopted to demonstrate
the increasing property of the optimal policy, and the remaining
proof is omitted due to its similarity with the proof of Lemma 4.

APPENDIX B
PROOF OF LEMMA 7

We consider mathematical induction to prove the concavity
of the optimal value function V* at b and the proof structure
is similar to that of [12, Lemma. 3]. Let us assume that V/, is
nondecreasing and concave for the remaining battery b. Next,
we examine whether the concavity of the value function for b is
preserved even after being updated through the value iteration.
For by and by (by # by and by, bo € B), p1 and po are the optimal
actions for the remaining battery levels b; and bo, respectively
as

p1 = arg max {I(sl,p) +~E [VH(E, H,m(by, p, E))} } ,
pEP(s1)
(44)

P = arg max {1(32,;0) +E [Vn(E_‘, f[,m(bg,p, E))} } .
pEP(s2)
(45)
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The second derivative of function (s, p) for p is obtained in the
interval [0, by,y| as follows.

O°1(H,p) _ —Ho®(2E[|e]’)(Ele[’)p + o® + Hp) + o*H)
op* m2((Ele|2))p + o2)2(Ellef2]p + 0 + Hp)?
(46)

As the numerator and denominator in (46) are negative and

positive values, respectively, for any E[|e|?](> 0) and o%(> 0),
I is a concave function of p as

M (s,p1) + (1= 2)I(s,p2) < I(s,px) 47

where p, = Ap1 + (1 — A)p2 for 0 < A < 1. According to the
assumption and Lemma 3, the nondecreasing property of V,
is preserved through the value iteration and m is a concave
function for b. Notably, V,,(E, H, m(by, p, E)) is concave for
b1 — p because V,, is a nondecreasing and concave function,
and m is a concave function. By using the definition of the value
iteration and the concavity of I and V,,, we can obtain

AV (B H by ) 4 (1 — M)Vt (B, H, by)

=M (s,p1) + AEs

—

V(B H,m(by,pr, )|

+ (1 =21)I(s,p2) (48)
+ (L= A)1Es [Va(E. H,m(ba, pa, E)| (49)
< I(s,p2) +1Es [Val B, H,m(by, s, E)| (50)
= o5,
{I(s,p) +AE; [Vn(E, H,m(bs, ps., E))} } . 6D

The inequality between (50) and (51) holds because the opti-
mal action that satisfies the maximum operator in (51) ranges
in [0,b;] and p, < by. The inequality between (48) and (51)
indicates that the concavity of the value function is preserved
during the value iteration update. The value iteration converges
to the optimal point regardless of the initial function V. We can
initialize the value function V{, as a nondecreasing concave func-
tion for b, whereas the optimal value function lim,, ,, V,, = V*
is still a concave function for b.

APPENDIX C
SOFT-ACTOR-CRITIC IMPLEMENTATION FOR
PERFORMANCE COMPARISON

This appendix is provided as a summary of the SAC imple-
mentation in [35]. All formulas and notation are directly adopted
from [35]. The SAC algorithm aims at maximizing the maximum
entropy objective function with a stochastic policy. Policy, value
function, and action-value function are required to implement
the algorithm. Since the algorithm deals with soft MDP [36],
the objective function is defined with the expected entropy of
the power allocation policy as follows.

T

T = S By [I(50,90) + 0° 7 (5 ()]
1=0

(52)
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where 7* is stochastic policy, 77 is entropy operator, and o is
a parameter that indicates the importance of the entropy of the
policy. The soft value function, V', is defined as follows:

Ve(s) = E[Q°(s, p) — log 7*(pls)].

where QQ°(s, p) is the soft action-value function. By the set of
parameters, 1, the soft value function is approximated as V;
and the estimated gradient can be calculated as follows:

Vydve (1) = Vi Vi (s)(Vi(s) — Qos(s,p) + log 5. (als))
(54

(33)

where the 6° is the set of parameters for the soft action-value
function approximation and ¢° is the set of parameters for the
soft policy 7. (as). The soft action-value function also updated
in the direction of minimizing mean squared error as follows:
s 1 A

T+ (0°) = E[5(Qo: (5,p) = Qo+ (5,p))?] (55)
where Qg- (s, p) is a target soft action-value function which is
defined as

Qo=(s,p) = I(s,p) + 1Es[V5. (5)].

The set of parameters 1)* consists of the target soft value function
and it is updated by 7°-ratio every gradient update iteration. The
stochastic policy can be updated by gradient update as

Ve e (¢°) = Vo log mhe (pls)
+ (Vplog e (pls) — VpQos (5,0)) Vs fge (€,5)  (5T)

where fys is a reparametrized policy. The learning rates for the
soft policy, value function, and the action value function are set
as 0.001, and all the function approximators are constructed as
neural network with 256-256 sized hidden layers. Each hidden
layer has ReLu activation functions for its output. The soft policy
approximator also has 256-256 sized hidden layers with ReLu
activation functions. The output of the neural network consists
of two elements that include the mean of the power and the
standard deviation of the power. To implement fs, we multiply
a single variable that follows a Gaussian distribution, which
has zero mean and unit variance, to the output representing the
standard deviation of the power. The Gaussian stochastic policy
is constructed based on the mean and the standard deviation
values. o® is set as 0.2 and 7° is 0.01. The training phase of
SAC is directly followed by Algorithm 1 in [35] and we halt
the training phase when there is no performance improvement
during 10 gradient-based updates.

(56)
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