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Abstract— The effects of quantization and coding on the
estimation quality of Gauss-Markov processes are considered,
with a special attention to the Ornstein-Uhlenbeck process.
Samples are acquired from the process, quantized, and then
encoded for transmission using either infinite incremental redun-
dancy (IIR) or fixed redundancy (FR) coding schemes. A fixed
processing time is consumed at the receiver for decoding and
sending feedback to the transmitter. Decoded messages are used
to construct a minimum mean square error (MMSE) estimate
of the process as a function of time. This is shown to be an
increasing functional of the age-of-information (AoI), defined
as the time elapsed since the sampling time pertaining to the
latest successfully decoded message. Such functional depends on
the quantization bits, codewords lengths and receiver processing
time. The goal, for each coding scheme, is to optimize sampling
times such that the long-term average MMSE is minimized.
This is then characterized in the setting of general increasing
functionals of AoI, not necessarily corresponding to MMSE,
which may be of independent interest in other contexts. We
first show that the optimal sampling policy for IIR is such that
a new sample is generated only if the AoI exceeds a certain
threshold, while for FR it is such that a new sample is delivered
just-in-time as the receiver finishes processing the previous one.
Enhanced transmissions schemes are then developed in order to
exploit the processing times to make new data available at the
receiver sooner. For both IIR and FR, it is shown that there exists
an optimal number of quantization bits that balances AoI and
quantization errors, and hence minimizes the MMSE. It is also
shown that for longer receiver processing times, the relatively
simpler FR scheme outperforms IIR.

Index Terms— Ornstein-Uhlenbeck process, general
age-penalty functional, infinite incremental redundancy,
fixed redundancy, receiver processing time.
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I. INTRODUCTION

RECENT works have drawn connections between remote
estimation of a time-varying process and the age-of-

information (AoI) metric, which assesses the timeliness and
freshness of the estimated data. While most works focus on
transmitting analog samples for the purpose of estimation, this
work focuses on using quantized and coded samples in that
regard. We present optimal sampling methods that minimize
the long-term average minimum mean square error (MMSE) of
a Gauss-Markov, namely Ornstein-Uhlenbeck (OU), process
under specific coding schemes, taking into consideration
receiver processing times consumed in decoding and sending
feedback. The OU process is the continuous-time analogue of
the first-order autoregressive process [2], [3], and is used to
model various physical phenomena, and has relevant appli-
cations in control and finance. Our goal in this work is
to devise practical sampling and coding schemes for the
purpose of real-time tracking of OU processes while taking
into consideration the effects of quantization, coding delays,
and receiver processing times.

AoI, or merely age, is a time-based metric that measures
information freshness by capturing delay from the receiver’s
perspective; it is defined as the time elapsed since the latest
received data at the destination has been generated at its
source. Hence, in general, to keep the data fresh, one needs
to keep the AoI low. An increasing number of works in
the recent literature have used AoI as a latency performance
metric in various contexts. These include queuing-theoretic
analyses of AoI for single and multiple sources [4]–[12],
scheduling and sampling for AoI minimization [13]–[17],
status updating under energy harvesting constraints [18]–[23],
AoI analysis in multihop networks [24], [25], source coding
for AoI minimization [26], and using AoI in other applications
such as fresh data pricing [27], cloud computing [28] and
federated learning [29], among others, see the recent survey
in [30].

There are two main lines of research in the AoI literature
that relate to this work. The first is the one pertaining to coding
over noisy channels for age minimization, e.g., [31]–[44].
These works can be categorized according to the structure
of the code being used to transmit the samples; references
[31]–[38] focus on analyzing the usage of (rateless) infinite
incremental redundancy (IIR) and fixed redundancy (FR) cod-
ing schemes and determined conditions in which both perform
relatively well; the works in [39]–[42] analyze the usage of
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hybrid ARQ (HARQ) coding schemes for AoI minimization;
while those in [43], [44] consider broadcast multi-user settings.
In IIR schemes, the transmitter sends its messages using a
codewords of some original length, and then adds incremen-
tal redundancy (IR) bits one by one when signaled by the
receiver until successful decoding is accomplished. This may
potentially take a very large number of IR bit transmissions,
hence the name IIR.1 In FR schemes, the transmitter sends its
messages using fixed-length codewords, with retransmissions
in case of decoding failures, i.e., without adding IR bits.
HARQ schemes feature an initial transmission followed by
subsequent transmissions (of possibly varying lengths) of
IR that are guided by feedback from the receiver to the
transmitter, but not necessarily at a granularity of a single bit
as in IIR. One main theme in the findings of works [31]–[44] is
that optimal codes should strike a balance between using long
codewords to minimize channel errors and using short ones
to minimize age. Our work in this paper primarily focuses
on evaluating the performances of using IIR and FR coding
schemes. However, different from all the works in [31]–[38],
we consider the additional presence of fixed non-zero receiver
processing times.

The second line of research related to this work is
related to evaluating the role of AoI in remote estimation,
e.g., [48]–[58]. The works in [48]–[50] characterize implicit
and explicit relationships between mean square error (MSE)
and AoI under different estimation contexts; references [51],
[52] consider the notion of the value of information (mainly
through MSE) and show that optimizing it can be differ-
ent from optimizing AoI; lossy source coding and distorted
updates for AoI minimization is considered in [53]–[55];
reference [56] adds more context to AoI by introducing
and analyzing a variant metric termed the age of incorrect
information (AoII) to capture error in updates; while the
works in [57], [58] consider sampling of Wiener and OU
processes for the purpose of remote estimation, and draw
connections between MSE and AoI. Our work in this paper
also focuses on characterizing the relationship of MSE and
AoI, yet with the additional presence of quantization errors.
It is worth noting that while studying optimal sampling
with distortion guarantees is a classical problem, it has been
recently approached differently in [59], which characterizes
the minimal sampling frequency required to achieve Shannon’s
rate-distortion function, and concludes that sub-Nyquist sam-
pling can attain the fundamental rate-distortion tradeoff if the
energy spectral density of the signal is non-uniform (see [59]
and the references therein).

While AoI is a time-based metric that has been originally
studied in queuing-theoretic frameworks to assess latency,
e.g., [4]–[6], it is relatively easier to analyze for process
tracking purposes compared to MSE, since AoI only takes the
statistics of the communication channel into consideration,

1A clear example of the IIR scheme is the family of fountain (rateless)
codes. In a rateless code, the encoder produces limitless (potentially infinite)
stream of coded symbols based on the � input symbols. The decoder
reconstructs the � bits after receiving any n correct symbols. One common
rateless code is the systematic Raptor code in [45], which is used in the
3GPP multimedia broadcast multicast services (MBMS), DVB-H IPDC, and
DVB-IPTV [46], [47].

unlike MSE that also takes the statistics of the process itself
into account to assess the quality of tracking. Under some
assumptions, MSE can be shown to have a very dependent
behavior on AoI, and hence, minimizing AoI becomes equiv-
alent to minimizing MSE. This is one main idea around which
this work revolves, and has been the focus of the works
in [57], [58], which are the most closely-related works to
ours. References [57], [58] derive optimal sampling methods
to minimize the long-term average MMSE for Wiener [57]
and OU [58] processes. In both works, the communication
channel introduces random delays, before perfect (distortion-
free) samples are received. It is shown that if sampling times
are independent of the instantaneous values of the process
(signal-independent sampling) the MMSE reduces to AoI in
case of Wiener [57], and to an increasing functional of AoI
(age-penalty) in case of OU [58]. It is then shown that the
optimal sampling policy has a threshold structure, in which
a new sample is acquired only if the expected AoI in case
of Wiener (or age-penalty in case of OU) surpasses a certain
value. In addition, signal-dependent optimal sampling policies
are also derived [57], [58].

In this work, we consider the transmission of quantized and
coded samples of an OU process through a noisy channel.
We note that we consider an OU process in our study since,
unlike the conventional Wiener process, it has a bounded vari-
ance, leading to bounded quantization error as well. Different
from [58], not every sample has guaranteed reception, and
received samples suffer from quantization noise. The receiver
uses the received samples to construct an MMSE estimate for
the OU process. Quantization and coding introduce a tradeoff:
few quantization levels and codeword bits would transmit
samples faster, yet with high distortion and probability of
error. An optimal choice, therefore, needs to be made, which
depends mainly on how fast the OU process varies as well
as the channel errors. Different from related works, effects of
having (fixed) non-zero receiver processing times, mainly due
to decoding and sending feedback, are also considered in this
work.

We focus on signal-independent sampling, together with an
MMSE quantizer, combined with either IIR or FR coding
schemes; see Fig. 1. The MMSE of the OU process is first
shown to be an increasing functional of AoI, as in [58],
parameterized directly by the number of quantization bits �,
and indirectly by the number of codeword bits n and the
receiver processing time β. We formulate two problems, one
for IIR and another for FR, to choose sampling times so
that the long-term average MMSE is minimized. Focusing on
stationary deterministic policies, we present optimal solutions
for both problems in the case of general increasing age-
penalties, not necessarily corresponding to MMSE, which may
be useful in other contexts in which IIR and FR coding
schemes are employed. The solution for IIR has a threshold
structure, as in [16], [58], while that for FR is a just-in-time
sampling policy that does not require receiver feedback.

We then present what we call enhanced IIR and FR
schemes, in which we leverage the processing time to our favor
through fine-tuning sampling and/or transmission times in such
a way that the receiver never waits for data when necessary.
This allows us to mitigate the negative effects of processing
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Fig. 1. System model considered for sampling, quantizing and encoding an OU process at the transmitter, and reconstructing it at the receiver.

times to the most extent possible, and produce timely estimates
that are able to track the OU process better. We finally discuss
how to select � and n, and show that the relatively simpler FR
scheme can outperform IIR for relatively large values of β.

The proposed joint optimization of sampling, quantization
and coding in this paper takes a step towards achieving the
notion of timely real-time tracking of random processes, which
can be applied in applications of communications, networks
and control. We summarize our main contributions as follows:

• Presenting a thorough analysis of the effects of quanti-
zation and coding (with specific focus on IIR and FR)
on the estimation error of Gauss-Markov processes (with
specific focus on the OU process). Specifically, we show
that there is an inherent relationship between the number
of quantization levels and codeword lengths used to
convey the samples and the OU process statistics (in
particular how fast it varies over time).

• Characterizing the optimal (signal-independent) sampling
strategy (MSE-minimal) for IIR and FR in this context.

• Introducing, for the first time in the AoI literature (to the
best of our knowledge), the effects of non-zero processing
delays at the receiver (for decoding and sending feed-
back), based on which we argue that one can enhance the
performance of both IIR and FR by carefully tailoring the
transmission times to the processing delays.

• Validating our theoretical results by conducting multiple
numerical studies and presenting examples that show
the effects of the OU process statistics on the optimal
quantization levels and coding lengths.

Compared to the conference version [1], this paper adds:
(1) novel thorough analyses of the enhanced schemes in
Section IV; (2) complete proofs for results and formulas that
were omitted in [1]; and (3) multiple numerical studies that
showcase the main results and intuitions.

II. SYSTEM MODEL

A. Quantization and Coding of the OU Process

We consider a sensor that acquires time-stamped samples
from an OU process. Given a value of Xs at time s, the OU
process evolves as follows [2], [3]:

Xt = Xse
−θ(t−s) +

σ√
2θ

e−θ(t−s)We2θ(t−s)−1, t ≥ s, (1)

where Wt denotes a Wiener process, while θ > 0 and σ > 0
are fixed parameters. The sensor acquires the ith sample at
time Si and feeds it to an MMSE quantizer that produces
an �-bit message ready for encoding. We will use the term
message to refer to a quantized sample of the OU process.

Let X̃Si represent the quantized version of the sample XSi ,
and let QSi denote the corresponding quantization error. Thus,

XSi = X̃Si + QSi. (2)

Each message is encoded and sent over a noisy channel
to the receiver. The receiver updates an MMSE estimate
of the OU process if decoding is successful. ACKs and
NACKs are fed back following each decoding attempt. A fixed
receiver processing time β time units is incurred per each
decoding attempt, which also includes the time to generate and
send feedback. Channel errors are independent and identically
distributed (i.i.d.) across time/messages.

Two channel coding schemes are investigated. The first
is IIR, in which a message transmission starts with an
n-bit codeword, n ≥ �, and then incremental redundancy (IR)
bits are added one-by-one if a NACK is received until the
message is eventually decoded and an ACK is fed back.
The second scheme is FR, in which a message is encoded into
fixed n-bit codewords, yet following a NACK the message in
transmission is discarded and a new sample is acquired and
used instead. Following ACKs, the transmitter may idly wait
before acquiring a new sample and sending a new message.2

B. Communication Channel

Let Di denote the reception time of the ith successfully
decoded message. For the IIR scheme, each message is even-
tually decoded, and therefore

Di = Si + Yi (3)

for some random variable Yi that represents the channel delay
incurred due to the IR bits added. Let Tb denote the time units
consumed per bit transmission. Hence,

Yi = nTb + β + ri(Tb + β), (4)

where the random variable ri ∈ {0, 1, 2, . . .} denotes the
number of IR bits used until the ith message is decoded.
Note that in the IIR scheme β is added for the original
n-bit codeword transmission, and then for each IR transmis-
sion until successful decoding. Let

n̄ � nTb + β (5)

2The main reason behind waiting, as will be shown in details in the sequel,
is that it leads to sending fresher samples, which can be more rewarding in
terms of the long-term average MMSE, and not the instantaneous MMSE.
Note that waiting policies have been generously used in previous works that
focus on minimizing average AoI, e.g., [14], [18], [21].
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for conciseness. Channel delays Yi’s are i.i.d. ∼ Y , where

P (Y = n̄) = p0, (6)

P (Y = n̄ + k(Tb + β)) =
k−1∏
j=0

(1 − pj)pk, k ≥ 1, (7)

with pj denoting the probability that an ACK is received when
ri = j. This depends on the channel code being used, and the
model of the channel errors, yet it holds that pj ≤ pj+1.

For the FR scheme, there can possibly be a number of
transmission attempts before a message is eventually decoded.
Let Mi denote the number of these attempts in between the
(i − 1)th and ith successfully decoded messages, and let Si,j

denote the sampling time pertaining to the jth attempt of
which, 1 ≤ j ≤ Mi. Therefore, only the Mith message is
successfully decoded, and the rest are all discarded. Since each
message is encoded using fixed n-bit codewords, we have

Di = Si,Mi + n̄, ∀i. (8)

Observe that in the FR scheme each successfully-decoded
message incurs only one β, since each decoding attempt occurs
on a message pertaining to a fresh sample. According to the
notation developed for the IIR channel delays above, Mi’s are
i.i.d. geometric random variables with parameter p0.

C. MMSE Estimation and AoI

Based on the above notation so far, the AoI at time t is
mathematically defined as follows:

AoI(t) � t − ui(t), Di ≤ t < Di+1, (9)

where ui(t) denotes the time stamp of the latest received
sample before time t. Thus, for Di ≤ t < Di+1, we have
ui(t) = Si for the IIR scheme, and ui(t) = Si,Mi for the FR
scheme.

Upon successfully decoding a message at time Di,
the receiver constructs an MMSE estimate for the OU process.
For the purpose of real-time tracking, do not allow retroactive
reconstruction of the process, and restrict our attention to
MMSE estimators that only use the latest-received informa-
tion.3 For the IIR scheme this is

X̂t = E
[
Xt

∣∣∣Si, X̃Si

]
, Di ≤ t < Di+1. (10)

Using (1) and (2), we have

X̂t = E

[
X̃Sie

−θ(t−Si) + QSie
−θ(t−Si)

+
σ√
2θ

e−θ(t−Si)W
e2θ(t−Si)−1

∣∣∣∣Si, X̃Si

]
(11)

= X̃Sie
−θ(t−Si), Di ≤ t < Di+1, (12)

where the last equality follows by independence of the Wiener
noise in [Di, t] from (Si, X̃Si), and that for the MMSE

3Note that the OU process is no longer Markov after quantization. The
implication of this is that the MMSE estimator in (10) is potentially suboptimal
since it focuses only on the latest received sample. It is, however, simple
enough in practice, and admits the analytical solutions derived in the paper.
Deriving an optimal MMSE estimator, or showing that considering only the
latest received quantized sample performs well enough, e.g., close to optimal,
is to be pursued in future work.

quantizer, the quantization error is zero-mean [60]. The MMSE
is now given as follows for Di ≤ t < Di+1:

mse (t, Si) = E

[(
Xt − X̂t

)2
]

(13)

= E
[
Q2

Si

]
e−2θ(t−Si) +

σ2

2θ

(
1 − e−2θ(t−Si)

)
.

(14)

We see from the above that even if Di−Si = 0, i.e., if the ith
sample is transmitted and received instantaneously, the MMSE
estimate at t = Di would still suffer from quantization errors.

In the sequel, we consider X0 = 0 without loss of gen-
erality, and hence, using (1), the variance of Xt is given by
E
[
X2

t

]
= σ2

2θ

(
1 − e−2θt

)
, t > 0. Following a rate-distortion

approach (note that Xt is Gaussian), the following relates
the number of bits � and the instantaneous mean square
quantization error [60]4:

E
[
Q2

t

]
=

σ2

2θ

(
1 − e−2θt

)
2−2�, t > 0. (15)

Using the above in (14) and rearranging, we get that

mse(t, Si)=
σ2

2θ

(
1−(1−2−2�

(
1−e−2θSi

))
e−2θ(t−Si)

)
, (16)

We note that as � → ∞, the above expression becomes
the same as that derived for the signal-independent sampling
scheme analyzed in [58]. However, since we consider practical
coding aspects in this work, as � → ∞, it holds that n → ∞
as well and no sample will be received.

We focus on dealing with the system in steady state, in
which both t and Si are relatively large. In this case, the mean
square quantization error in (15) becomes independent of time,
and only dependent upon the steady state variance of the OU
process σ2/2θ.5 Hence, in steady state, the MMSE becomes

mse (t, Si) =
σ2

2θ

(
1 − (

1 − 2−2�
)
e−2θ(t−Si)

)
(17)

� h� (t − Si) , Di ≤ t < Di+1, (18)

which is an increasing functional of the AoI t−Si in (9). One
can see from the MMSE expression above that there exists
a tension between the number quantization levels and AoI.
In particular, as � increases, the quantization noise decreases
and the samples transmitted become more precise. However,
this necessiates using a larger codeword length n, which in
turn increases the age-penalty. Hence, a tradeoff exists between
sending slow but precise samples and fast but less accurate
ones. We discuss how to optimally characterize this tradeoff
in Section V.

For the FR scheme, the analysis follows similarly, after
adding one more random variable denoting the number of

4There are other works in the literature that consider different kinds
of (practical) quantizers and study their effects on filtering stationary Gaussian
processes, see, e.g., the uniform quantizer treatment in [61], which may lead to
different quantization errors statistics. Our setting naturally focuses on MMSE
quantizers, which are relevant to the purpose of MMSE estimation.

5Equivalently, one can initiate the OU process by X0 ∼ N
�
0, σ2

2θ

�
,

whence E
�
X2

t

�
= σ2

2θ
, ∀t.
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transmissions, Mi. Specifically, it holds that

X̂t = X̃Si,Mi
e−θ(t−Si,Mi), (19)

mse (t, Si,Mi) = h� (t − Si,Mi) , Di ≤ t < Di+1. (20)

We see from (18) and (20) that there are two main con-
tributing factors to the MMSE. The first is due to quantization,
represented by the factor

(
1 − 2−2�

)
, and the second is due to

the channel delay, added mainly because of coding and errors,
represented by the AoI t − S.

III. OPTIMAL SAMPLING POLICIES:
GENERAL AGE-PENALTY

The main goal is to choose the sampling times, for given �, n
and β, such that the long-term average MMSE is minimized.
In this section, we formulate two problems to achieve such
goal: one for IIR and another for FR, and present their
solutions in the upcoming section. Later on in Section V,
we discuss how to choose the best � and n, as well as compare
the performances of IIR and FR in general.

For both coding schemes, let us denote by an epoch the time
elapsed in between two successfully received messages. Thus,
the ith epoch starts at Di−1 and ends at Di, with D0 ≡ 0.

Remark 1: Our analysis does not depend on the specific
structure of the MMSE functional h�(·); it extends to any dif-
ferentiable increasing age-penalty functional g(·). Therefore,
in what follows, we formulate our problems and present their
solutions for the case of minimizing a long-term average age-
penalty, making the results applicable in other contexts.

A. The IIR Scheme

For the IIR scheme, the problem is formulated as

min
{Si}

lim sup
l→∞

∑l
i=0 E

[∫ Di+1

Di
g (t − Si) dt

]
∑l

i=0 E [Di+1 − Di]
, (21)

where the numerator represents the total age-penalty (the
MMSE in case of the OU process estimation) across all
epochs, and the denominator represents the total time.

Let us define Wi as the waiting time at the beginning
of the ith epoch before acquiring the ith sample. That is,
Si = Di−1+Wi. Therefore, one can equivalently solve for the
waiting times Wi’s instead of sampling times Si’s. We focus
on a class of stationary deterministic policies in which

Wi = f (g (Di−1 − Si−1)) , ∀i. (22)

That is, the waiting time in the ith epoch is a determinis-
tic function of its starting age-penalty value. Such focus is
motivated by the fact that channel errors are i.i.d. and by
its optimality in similar frameworks, e.g., [14], [19], [21].
Defining w � f ◦ g and noting that Di−1 − Si−1 = Yi−1

we have

Wi = w (Yi−1) , (23)

which induces a stationary distribution of Di’s and the
age-penalty across all epochs. Due to stationarity, we can now
drop the epoch’s index i, and (re)define notations used in a
typical epoch. It starts at time D with AoI Y , and with the

latest sample acquired at time S, such that D = S +Y . Then,
a waiting time of w

(
Y
)

follows, after which a new sample
is acquired, quantized, and transmitted, taking Y time units to
reach the receiver at time D = D + w

(
Y
)
+ Y , which is the

epoch’s end time. Therefore, problem (21) now reduces to a
minimization over a single epoch as follows:

min
w(·)≥0

E

[∫ D+w(Y )+Y

D
g
(
t − S

)
dt

]
E
[
w
(
Y
)

+ Y
] . (24)

Given the realization of Y at time D, the transmitter decides
on the waiting time w

(
Y
)

that minimizes the long-term
average age-penalty demonstrated in the fractional program
above.6

We follow Dinkelbach’s approach to transform (24) into the
following auxiliary problem for fixed λ ≥ 0 [62]:

pIIR(λ) � min
w(·)≥0

E

[∫ D+w(Y )+Y

D

g
(
t − S

)
dt

]

−λE
[
w
(
Y
)

+ Y
]
. (25)

The optimal solution of (24) is then given by λ∗
IIR that

solves pIIR(λ∗
IIR) = 0, which can be found via bisection,

since pIIR(λ) is decreasing [62]. The following theorem
characterizes the solution of problem (25). The proof is in
Appendix A.

Theorem 1: The optimal solution of problem (25) is given
by

w∗(ȳ) =
[
G−1

ȳ (λ)
]+

, (26)

where [·]+ � max(·, 0), ȳ is the realization of the starting AoI
Ȳ , and Gȳ(x) � E [g (ȳ + x + Y )].

We note that the theorem can be shown using the result
reported in [16, Theorem 1]. Our proof approach, however,
is different, and is reported here for completeness. Such
approach is also used to show parts of Theorem 2 below.

The optimal waiting policy for IIR has a threshold structure:
a new sample is acquired only when the expected age-penalty
by the end of the epoch is at least λ. Note that the optimal λ∗

IIR

corresponds to the optimal long-term average age-penalty.

B. The FR Scheme

For the FR scheme, the formulated problem can be derived
similarly, with the addition of possible waiting times in
between retransmissions.7 Specifically, let Wi,j represent the
waiting time before the jth transmission attempt in the ith
epoch. A stationary deterministic policy8 here is such that
Wi,j is a determinisitc function w(·) of the instantaneous

6We now see explicitly how waiting can be beneficial. Since waiting
increases both the numerator and denominator of the objective function of
problem (24), its optimal value can be non-zero.

7This is only amenable for FR since waiting leads to acquiring a fresher
sample, and possibly reduced age-penalties. For IIR, waiting after a NACK is
clearly suboptimal since it elongates the channel delay for the same sample.

8We note that [48] shows the optimality of stationary policies in a
time-slotted system in which samples are conveyed through an erasure
channel. This resembles our FR model yet with no quantization or coding.
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age-penalty. This makes the waiting time before the first
transmission attempt given by

Wi,1 = f
(
g
(
Di−1 − Si−1,Mi−1

))
= w (n̄) ≡ w1, (27)

where Di−1−Si−1,Mi−1 = n̄ represents the starting AoI of the
ith (and every) epoch, following Mi−1 transmission attempts
in the previous one. The waiting time before the second
attempt, if needed, will then be given by

Wi,2 = w (n̄ + w1 + n̄) ≡ w2, (28)

since the AoI before the second attempt is given by the starting
AoI of the epoch in addition to the time needed to finish the
first transmission attempt. In general, the waiting time before
the jth attempt in the epoch is given by

Wi,j = w

(
j−1∑
l=1

wl + jn̄

)
≡ wj , (29)

and so on. Therefore, under the FR scheme, a stationary
deterministic policy reduces to a countable sequence {wj}.

Proceeding with the same notations for a given epoch as in
the IIR scheme, let us define M as the number of transmission
attempts in the epoch, M̄ as those in the previous epoch, and
SM̄ as the sampling time of the successful (last) transmission
attempt in the previous epoch. The problem now becomes

min
{wj≥0}

E

[∫D+
�M

j=1 wj+Mn̄

D
g
(
t − SM̄

)
dt

]

E
[∑M

j=1 wj + Mn̄
] . (30)

We follow a similar approach here as in the IIR scheme and
consider the following auxiliary problem:

pFR(λ)� min
{wj≥0}

E

[∫ D+
�M

j=1 wj+Mn̄

D

g
(
t − SM̄

)
dt

]

−λE

⎡
⎣ M∑

j=1

wj + Mn̄

⎤
⎦ . (31)

The optimal solution of problem (30) is now given by λ∗
FR

that solves pFR (λ∗
FR) = 0, which we will actually provide in

closed-form this time. The optimal waiting policy structure is
provided in the next theorem. The proof is in Appendix B.

Theorem 2: The optimal solution of problem (31) is given
by

w∗
1 =

[
G−1(λ)

]+
, (32)

w∗
j = 0, j ≥ 2, (33)

where G(x) � E [g (n̄ + x + Mn̄)]. In addition, the opti-
mal solution of problem (30), λ∗

FR, is such that w∗
1 =[

G−1 (λ∗
FR)

]+
= 0.

A closed-form expression for λ∗
FR can now be found via

substituting wj = 0, ∀j in (30).
Theorem 2 shows that zero-wait policies are optimal for FR,

which is quite intuitive. First, waiting is not optimal in between
retransmissions, even though it would lead to acquiring fresher
samples, since the AoI is already relatively high following
failures. Second, since the epoch always starts with the same

AoI, n̄, one can optimize the long-term average age-penalty
to make waiting not optimal at the beginning of the epoch as
well. We note, however, that such results do not follow from
[14, Theorem 5], since there can be multiple transmissions
in the same epoch. We also note that while zero-wait poli-
cies have been invoked in other works involving FR coding
schemes, e.g., [34], [37], Theorem 2 provides a proof of
their optimality for general increasing age-penalties. Finally,
we note that the results of Theorem 2 are related to those
reported in Propositions 3 and 6 in [48]. However, our proof
of the optimality of the threshold policy is based on a quite
different Lagrangian approach that works for continuous-time
systems (different from the time-slotted system considered
in [48]).

IV. ENHANCED TRANSMISSION SCHEMES

So far the analysis assumed that, naturally, the transmitter
must wait for feedback before taking new decisions, e.g., send-
ing IR bits in case of the IIR scheme or acquiring a new sample
in case of the FR scheme. In this section, we show that such
waiting for receiver processing is unnecessary. We basically
take advantage of the processing time β to send extra pieces
of information when possible, in order to maintain a smooth
information supply as the receiver decodes and processes
previous messages. We show that with proper timing, this
can lead to better results for both the IIR and FR schemes,
and hence the name enhanced schemes. One assumption here
is that the receiver has a (possibly-infinite) queue to store
unprocessed data.

A. Enhanced IIR Scheme

The enhanced IIR scheme works as follows. The transmitter
sends the original n-bit codeword, consuming nTb time units,
after which the receiver starts decoding. Then, instead of
waiting for the β time units processing time, the transmitter
goes ahead with transmitting IR bits continuously. This way,
if the original n-bit codeword is not successfully decoded,
the receiver would have some IR bits awaiting in its queue
ready for processing, which saves time. The continuous stream
of IR bits transmission stops whenever an ACK is fed back.
We note that if the ACK is received in the middle of a
bit transmission, this transmission is cut off and stopped
immediately.

The next lemma shows that the enhanced IIR scheme
described above experiences (almost surely) smaller chan-
nel delay for each message transmission. The proof is
in Appendix C.

Lemma 1: For a given value of ri, the enhanced IIR
scheme saves the following amount of time in channel delay
during the ith epoch:

ri min{β, Tb} + (ri − κi)β · �β≥Tb
, (34)

where κi is the smallest integer in {0, 1, . . . , ri} such that
�κiβ/Tb
 ≥ ri, with �x
 denoting the largest integer smaller
than or equal to x, and �A = 1 if event A is true and
0 otherwise.

Lemma 1 shows that the enhanced IIR scheme would
achieve smaller long-term average age-penalty relative to the

Authorized licensed use limited to: Princeton University. Downloaded on May 27,2022 at 01:43:57 UTC from IEEE Xplore.  Restrictions apply. 



ARAFA et al.: SAMPLE, QUANTIZE, AND ENCODE: TIMELY ESTIMATION OVER NOISY CHANNELS 6491

original IIR scheme discussed previously, owing to (34). The
intuition behind this is that once a new sample is generated,
its AoI counter starts to increase, and hence the faster it
reaches the destination the better. This is different from idle
waiting, however, since the waiting occurs before the sample
is generated.

Let Ỹi denote the channel delay experienced by the ith
message using the enhanced IIR scheme. Such Ỹi’s are i.i.d. Ỹ .
Using the same notation used to describe the distribution of
(the original channel delay) Y in (6) and (7), the enhanced
IIR channel delay Ỹ has the following distribution according
to Lemma 1:

P
(
Ỹ = n̄

)
= p0, (35)

P
(
Ỹ = n̄ + kTb

)
=

k−1∏
j=0

(1 − pj)pk, k ≥ 1, (36)

for β < Tb, and

P
(
Ỹ = n̄

)
= p0, (37)

P
(
Ỹ = n̄ + kβ

)
=

k−1∏
j=0

(
1 − p� (k−1)β

Tb

�
)

p�kβ
Tb

�, k ≥ 1,

(38)

for β ≥ Tb. One would then apply the results of Theorem 1 to
find the optimal waiting policy in accordance to the enhanced
IIR channel delay distribution Ỹ specified above.

B. Enhanced FR Scheme

For FR, since zero-waiting is optimal by Theorem 2, it could
be rewarding therefore, age-wise, to send a new message right
away after the previous one is delivered, i.e., after nTb time
units instead of n̄. However, this may not be optimal if β
is relatively large, since it would lead to accumulating stale
messages at the receiver’s end as they wait for decoding to
finish.

Let δ denote the waiting time following a message delivery
at which a new message is transmitted. In the original FR
scheme, by Theorem 2, we had δ = β. In general though,
δ ∈ [0, β] and should be optimized. The next lemma provides
a solution to the optimal δ∗. The proof is in Appendix D.

Lemma 2: In the FR scheme, it is optimal to send a new
message after the previous one’s delivery by δ∗ = [β − nTb]

+

time units.
Lemma 2 shows that just-in-time updating is optimal. For

β ≤ nTb, a new sample is acquired and transmitted just-
in-time as the previous message is delivered. While for β >
nTb, a new sample is acquired and transmitted such that it
is delivered just-in-time as the receiver finishes decoding the
previous message. This way, delivered samples are always
fresh, the receiver is never idle, and feedback is unnecessary.

V. PERFORMANCE EVALUATIONS AND COMPARISONS

In this section, we discuss how the IIR and FR schemes
perform relative to each other under variant system parameters
and channel conditions. We do so in the original context of OU

process estimation, i.e., when g(·) ≡ h�(·). We note that since
the FR scheme has an optimal waiting time of 0, according
to Theorem 2, it becomes equivalent to a uniform sampling
scheme with fixed sampling frequency that depends on �, n,
and β. In particular, the enhanced FR scheme generates a
new sample every nTb + [β − nTb]

+ = max {nTb, β} time
units. The optimal choice of � and n, therefore, implicitly
provides the optimal (uniform) sampling frequency. Due to
the wide use of uniform sampling schemes in practice, the FR
scheme serves as an implicit uniform sampling benchmark in
our evaluations.

Applying Theorem 1 and Lemma 1’s result, the optimal
waiting policy for enhanced IIR is

w∗(ȳ)=

⎡
⎣ 1

2θ
log

⎛
⎝ σ2

2θ

(
1 − 2−2�

)
E
[
e−2θỸ

]
σ2

2θ − λ∗
IIR

⎞
⎠− ȳ

⎤
⎦

+

,

(39)

where Ỹ is as defined following Lemma 1.9 In addition,
observing that σ2

2θ 2−2� ≤ h�

(
t − S

) ≤ σ2

2θ holds true ∀t ≥ S,

one can directly see that λ∗
IIR ∈

[
2−2� σ2

2θ , σ2

2θ

]
, facilitating

the bisection search. Applying Theorem 2 and Lemma 2’s
results, the optimal long-term average MMSE for enhanced
FR is given by

σ2

2θ

(
1−

(
1 − 2−2�

)
e−2θn̄p0

2θKn,β

1 − e−2θKn,β

1−(1 − p0)e−2θKn,β

)
, (40)

where Kn,β � max{β, nTb}. Derivation details for (39)
and (40) are in Appendix E.

We consider a binary symmetric channel (BSC) with
crossover probability ε ∈ (

0, 1
2

)
, and use maximum distance

separable (MDS) codes for transmission. This allows us to

write pj =
∑�n+j−�

2 �
l=0

(
n+j

l

)
εl(1 − ε)n+j−l. We set σ2 = 1,

and Tb = 0.05 time units. We refer to enhanced IIR and FR
without using the word enhanced throughout this section for
convenience.

A. Optimal (�, n): Effect of Memory Factor θ

For fixed β = 0.15, we vary � and numerically choose the
best n for IIR and FR. We plot the long-term average MMSE
for both IIR and FR versus � in Fig. 2. We do so for θ = 0.01
in Fig. 2a (slowly-varying OU process) and θ = 0.5 in Fig. 2b
(fast-varying OU process). For each value of �, the optimal n
is evaluated. For both values of θ, we repeat the analysis for
ε = 0.1 (in solid lines) and ε = 0.4 (in dotted lines).

In all of the cases considered, the optimal n∗ = �∗+2. While
the optimal �∗ itself depends on whether the OU processes is
slowly (θ = 0.01) or fast (θ = 0.5) varying. Specifically,
we notice that �∗ decreases with θ. This is intuitive since
for slowly-varying processes, one can tolerate larger waiting
times to get high quality estimates, and vice versa. It is also
shown in the figure that IIR performs better than FR for
slowly-varying processes, and vice versa for fast-varying ones.

9With a slight abuse of notation here, ȳ now represents the realization of Ỹ
that ended the previous epoch.
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Fig. 2. Performance comparison of IIR and FR vs. � for β = 0.15, with
θ = 0.01 in Fig. 2a (slowly-varying OU process) and θ = 0.5 in Fig. 2b
(fast-varying OU process). Solid lines: ε = 0.1, and dotted lines: ε = 0.4.
For θ = 0.01, the optimal (�, n) pair for both schemes is given by (5, 7) for
ε = 0.1 and by (4, 6) for ε = 0.4. While for θ = 0.5, the optimal (�, n)
pair for both schemes is given by (2, 4) for both values of ε.

This observation settles a goal that this paper is seeking
regarding whether one should send fast low-quality samples
or slow high-quality ones for the purpose of remote estimation
and tracking; it depends on the memory the time-varying
process possesses, abstracted by the variable θ in this case.
We also note that the relationship n∗ = �∗+2 does not always
hold, neither it is the case that the optimal (�∗, n∗) pairs are
the same for IIR and FR; it all depends on the parameters used
in the numerical evaluations. If, for instance, we set θ = 0.01,
ε = 0.4 and β = 1, we find that the optimal (�∗, n∗) pairs
are given by (4, 10) for IIR, and (4, 18) for FR. This can be
attributed to the fact that one is estimating a slowly-varying
process, over a channel that introduces errors with relatively
high rate, with an estimator that incurs a relatively large
processing delay (β = 20Tb).

B. IIR Vs. FR: Effect of Processing Time β

In Fig. 3, we fix θ = 0.25 and plot the long-term average
MMSE achieved by IIR and FR versus β. We do so for ε = 0.1

Fig. 3. Performance comparison of IIR and FR vs. β, with θ = 0.25.
Solid lines: ε = 0.1, and dotted lines: ε = 0.4. The processing time value
after which FR beats IIR, βsw , is marked in black squares, and is increasing
with ε.

(in solid lines) and ε = 0.4 (in dotted lines). We observe that
IIR performs better than FR for relatively lower values of β,
and then the performance switches after some βsw processing
time value, marked in black squares. We note that the reason
why the curves for ε = 0.4 are not very smooth is mainly
attributed to the �·
 (floor) function used in the enhanced
schemes’ channel delay calculations.

We notice that the value of βsw increases with ε, i.e., when
the channel becomes worse. However, the gain due to switch-
ing from IIR to FR also increases and becomes more rewarding
in this case too. As evident from Figs. 2 and 3, there is no
coding scheme that dominantly outperforms the other; it all
depends on the system parameters comprising the process,
the channel and the processing time.

C. Enhanced Vs. Non-Enhanced Schemes

We turn our attention to evaluating the gain achieved (i.e.,
the loss in MMSE) due to employing the enhanced schemes.
Specifically, for fixed θ = 0.25, let us denote by m̃mse(β)
and mmse(β) the long-term average MMSE achieved by
the enhanced and the non-enhanced schemes, respectively.
We define the enhancement ratio as

1 − m̃mse(β)
mmse(β)

, (41)

and so the higher this ratio is, the larger the gain due to
enhancement. In Fig. 4, we plot the enhancement ratio (in
percentage) for both IIR and FR versus β.

For the IIR case in Fig. 4a, we observe that: (1) the
enhancement ratio relatively increases with β (again,
the non-smoothness effect is mainly due to using the floor
function in calculations), because as β increases, one can
fit more data as the receiver decodes previous ones; and
(2) the gain is more apparent for worse channel conditions,
which is due to the ability of enhanced IIR to make more
data available for reprocessing at the receiver’s end following
decoding errors, compared to non-enhanced IIR.

Fig. 4b deals with FR, and exhibits some behavioral differ-
ences when compared to IIR. In particular, the enhancement
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Fig. 4. Evaluating the gain due to enhancement, with θ = 0.25. The enhance-
ment ratio is defined as the ratio between the long-term average MMSE of
the enhanced scheme to that of the non-enhanced scheme, subtracted from
unity.

ratio first increases then decreases with β. The reason for
such behavior is that for the enhanced FR scheme there
is only one extra codeword that can be transmitted as the
receiver finishes processing, regardless of the value of β.
Specifically, according to Lemma 2, the optimal inter-sampling
(and transmission) delay for the enhanced FR scheme is given
by β − nTb (for β > nTb). While for the non-enhanced FR
scheme, the inter-sampling delay is given by β. Hence, as β
becomes much larger than nTb, the two inter-sampling delays
become equivalent, and the performances of both schemes
(enhanced and non-enhanced) become similar. Therefore, for
the FR scheme, intermediate values of β (relative to nTb)
provide the highest gain from enhancement. As in the IIR
scheme, the enhancement gain is more apparent in worse
channel conditions.

In summary, this numerical calculation shows that the
enhancement effect is relatively more noticeable for FR
(≈18% gain) than it is for IIR (≈14% gain), and that it
would better serve both schemes in relatively worse channel
conditions.

Fig. 5. Tracking an OU sample path by generating an MMSE estimate using
IIR and FR. We fix β = 0.15, θ = 0.01 and ε = 0.1, and use (the optimal)
� = 5 and n = 7.

D. Timely Real-Time Tracking

We finally apply the techniques developed in this paper to
an example sample path of the OU process. In this particular
example we fix β = 0.15, θ = 0.01 and ε = 0.1. We first
generate an OU process sample path over t = 500 time units
(104 × Tb). Then, we pass it through an MMSE quantizer10

with � = 5 (which is the optimal �∗ in this case using Fig. 2a).
After that, we use either IIR or FR with n = 7 (again, this
is the optimal n∗ in this case) to send the quantized samples
through a BSC(0.1). We apply the optimal waiting policies
in accordance to the channel delay realizations and receiver
processing time.

The results are shown in Fig. 5. The full view in Fig. 5a
shows that both IIR and FR are able to allow the receiver to
produce MMSE estimates that closely-track the original OU
sample path. While the zoomed view in Fig. 5b shows the
specifics of how the MMSE estimates look like. Empirically,
the MSE for this sample path is ≈ 0.87 for IIR and ≈ 0.74 for

10We train a quantizer using 1000 different OU processes sample paths, each
over t ∈ [0, 500], using Lloyd’s algorithm to build this [60]. Each sample
path realization produces a particular code when Lloyd’s algorithm converges.
We then average over all the produced codes and use the averaged code to
generate the results of this subsection.
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FR, which are close to the theoretical values of the long-term
average MMSE evaluated in Fig. 2a. This shows the ability of
our techniques to achieve timely tracking of the process.

VI. CONCLUSIONS AND EXTENSIONS

A study of the effects of sampling, quantization and coding
over noisy channels on MMSE estimates of an OU process has
been presented. Focusing on MMSE quantizers, together with
IIR and FR codes, a joint optimization problem of when to take
new samples, how many quantization and codeword bits to use,
has been formulated and solved. A fixed non-zero processing
time has been considered at the receiver, modeling mainly
decoding and feedback transmission times. It is shown how
finely tuning the sampling and transmission times could make
us of the processing time to send new data in order to save time
in case decoding fails. Through numerical evaluations, it is
shown that IIR performs relatively better than FR with small
processing times, and vice versa, and so neither coding scheme
dominates. It is also shown that the techniques developed in
this paper can achieve timely tracking of the original process
at the receiver’s end.

In this work, the focus has been on signal-independent
sampling policies. As an extension, one could develop
techniques that work for signal-dependent sampling policies
instead, in which the state of the OU process is observable
to the sampler. While this is expected to produce better
results, this comes with the challenge of jointly designing
an MMSE quantizer and deriving an MMSE estimate at the
receiver in this case. More generally though, there has been
a separation-based quantization and coding methodology
followed in this work, with focusing on two relatively-simple
coding strategies. One could investigate the benefits of jointly
optimizing the quantizer and the transmission code being
used to convey the samples to the receiver with the smallest
MMSE, which can be done for either signal-independent
or signal-dependent sampling policies. Some structural
properties of the tracked process may also guide the joint
design in this case, as in, e.g., the sparse signal framework
of [63]. Finally, one can also extend the notion of fixed
processing times to more practical models that take into
consideration the code rate being used, together with noise in
the feedback channel. As a more direct extension focusing on
this point, one may consider random processing times, which
calls for the investigation of whether it is useful to generate
a new sample while an old one is still being processed if the
processing time becomes relatively large.

APPENDIX

A. Proof of Theorem 1
We introduce the following Lagrangian [64]11:

L = E

[∫ D+w(Y )+Y

D

g
(
t − S

)
dt

]
− λE

[
w
(
Y
)

+ Y
]

−
∑

ȳ

w(ȳ)η(ȳ), (42)

11Using the monotonicity of g(·), it can be shown that problem (25) is
convex.

where η(ȳ) is a Lagrange multiplier. Using Leibniz rule,
we take the functional derivative with respect to w(ȳ) and
equate to 0 to get

E [g (ȳ + w∗(ȳ) + Y )] = λ +
η(ȳ)

P
(
Y = ȳ

) . (43)

Since g is increasing, the left hand side above is therefore
an increasing function of w∗(ȳ), which we denote Gȳ (·) in
the theorem statement. Now, if λ ≤ Gȳ(0), then we must
have η(ȳ) > 0, and hence w∗(ȳ) = 0 by complementary
slackness [64]. Conversely, if λ > Gȳ(0), then we must have
w∗(ȳ) > 0, and hence η(ȳ) = 0 also by complementary
slackness. In the latter case, w∗(ȳ) = G−1

ȳ (λ). Finally, observe
that λ ≤ Gȳ(0) ⇐⇒ G−1

ȳ (λ) ≤ 0. This concludes the proof.

B. Proof of Theorem 2

We first simplify the terms of the objective function of (31).
Using iterated expectations, it can be shown that

E

⎡
⎣ M∑

j=1

wj + Mn̄

⎤
⎦ =

∞∑
j=1

wj(1 − p0)j−1 +
n̄

p0
. (44)

Now let us define

ζm (wm
1 ) �

∫ D+
�m

j=1 wj+mn̄

D

g
(
t − SM̄

)
dt (45)

and, leveraging iterated expectations on the first term of (31),
introduce the following Lagrangian12:

L =
∞∑

m=1

ζm (wm
1 ) (1 − p0)m−1p0 − λ

∞∑
j=1

wj(1 − p0)j−1

−λ
n̄

p0
−

∞∑
j=1

wjηj , (46)

where ηj’s are Lagrange multipliers. Now observe that, using
Leibniz rule, it holds for j ≤ m that

∂ζm (wm
1 )

∂wj
= g

⎛
⎝n̄ +

m∑
j=1

wj + mn̄

⎞
⎠ . (47)

Taking derivative of the Lagrangian with respect to wj and
equating to 0, we use the above to get

∞∑
m=j

g

⎛
⎝n̄ +

m∑
j=1

wj + mn̄

⎞
⎠(1 − p0)m−jp0 = λ+

ηj

(1−p0)j−1
.

(48)

Next, let us substitute j = k and j = k + 1 above, k ≥ 1,
subtract them from each other, and rearrange to get

g

⎛
⎝n̄ +

k∑
j=1

wj + kn̄

⎞
⎠ = λ +

ηk − ηk+1

(1 − p0)k−1p0
. (49)

Since g(·) is increasing, and λ is fixed,
{

ηk−ηk+1
(1−p0)k−1p0

}
is increasing. From there, one can conclude that ηj > 0,

12Again, as mentioned above, it can be shown that problem (31) is convex
using monotonicity of g(·).
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Fig. 6. Example sample path during the ith epoch using the enhanced IIR scheme when β ≤ Tb. In this example ri = 2, and so the third IR bit is non-used
and its remaining portion is cut off to start a new epoch. Red crosses denote failed decoding attempts and the green circle denotes success.

Fig. 7. Example sample path during the ith epoch using the enhanced IIR scheme when β > Tb. In this example ri = 2 and β = 1.5Tb, and so the
final two IR bits are non-used and the remaining bit portion is cut off to start a new epoch. Red crosses denote failed decoding attempts and the green circle
denotes success.

j ≥ 2 must hold. Hence, by complementary slackness,
w∗

j = 0, j ≥ 2 [64]. Using (48) for j = 1, the optimal
w∗

1 now solves

G (w∗
1) = λ + η1, (50)

where G(·) is as defined in the theorem statement. Observe
that G(·) is increasing and therefore the above has a unique
solution. Proceeding similarly as in the proof of Theorem 1,
if λ ≤ G(0), then we must have η1 > 0, and hence w∗

1 = 0 by
complementary slackness; conversely, if λ > G(0), then we
must have w∗

1 > 0, and hence η1 = 0 by complementary
slackness as well [64]. In the latter case, w∗

1 = G−1(λ).
Finally, observe that λ ≤ G(0) ⇐⇒ G−1(λ) ≤ 0. This
concludes the proof of the first part of the theorem.

To show the second part, all we need to prove now is that
G−1 (λ∗

FR) ≤ 0, or equivalently that λ∗
FR ≤ G(0). Toward

that end, observe that pFR(λ) is decreasing, and therefore if
pFR (G(0)) ≤ 0 then the premise follows. Now for λ = G(0)
we know from the first part of the proof that w∗

1 = 0. Thus,

pFR (G(0))

=
∞∑

m=1

ζm (0) (1 − p0)m−1p0 − G(0)
n̄

p0
(51)

= E

[∫ D+Mn̄

D

g
(
t − SM̄

)
dt

]
− G(0)E [M ] n̄ (52)

= E

[∫ Mn̄

0

g (n̄ + t) dt

]
− E

[∫ Mn̄

0

G(0)dt

]
(53)

= E

[∫ Mn̄

0

E [g (n̄ + t) − g (n̄ + Mn̄)] dt

]
, (54)

where (53) follows by change of variables and (54) follows
by definition of G(·). Finally, observe that by monotonicity of
g(·), (54) is non-positive. This concludes the proof.

C. Proof of Lemma 1

Let us consider the ith epoch. We prove the lemma by com-
puting the channel delay experienced by the enhanced scheme
for some realization of ri. The proof can be better-conveyed
graphically through Figs. 6 and 7 below. We will consider two
cases as follows.

1) β ≤ Tb: In this case, the first feedback following the
initial nTb time units is received while the first IR bit is still
being transmitted. If it is an ACK, then the transmitter stops
and cuts off the current IR bit transmission and ends the epoch
with a channel delay of nTb + β. Otherwise, if it is a NACK,
then the receiver will begin re-processing with a codeword of
length n + 1 after exactly Tb − β time units from the time
the feedback is received. Simultaneously, the transmitter will
send the second IR bit. The process is repeated till an ACK
is received.

In general, an ACK will be received after ri IR bits, and
the (ri + 1)th bit will be cut off (this bit will be a non-used
IR bit). This ends the epoch with a channel delay of exactly

nTb + riβ + ri(Tb − β) + β = n̄ + riTb, (55)

which saves riβ time units compared to the original IIR
scheme that waits for feedback before sending IR bits.
An example sample path is shown in Fig. 6.

2) β > Tb: Different from the β ≤ Tb case, the transmitter
can now possibly fit more than one IR bit while the receiver
is processing previously-received bits. Specifically, a total of
�β/Tb
 IR bits would be received by the end of the first
decoding attempt, a total of �2β/Tb
 IR bits would be received
by the end of the second decoding attempt, and so on.

Now let κi be as defined in the lemma. This way,
the required IR bits for successful decoding will be available
after exactly κiβ time units following the initial nTb time
units, and an ACK will be fed back β time units afterwards.
By the time an ACK is received, there would be already
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Fig. 8. Example sample path during an epoch using the enhanced FR scheme when β ≤ nTb. In this example M = 2, and so it takes two transmissions
to succeed. The red cross denotes a failed decoding attempt and green circles denote success.

some extra IR bits sent to the receiver that were not needed
in decoding (these will be non-used IR bits). In addition,
there could be an extra bit portion that needs to be cut off
belonging to an IR bit that is being transmitted while the ACK
is received; this occurs if (κi +1)β > �(κi +1)β/Tb
Tb. This
ends the epoch with a channel delay of exactly

nTb + κiβ + β = n̄ + κiβ (56)

which saves riTb +(ri −κi)β time units. An example sample
path is shown in Fig. 7.

D. Proof of Lemma 2

Let L denote the epoch length, and let Q denote the
cumulative age-penalty in the epoch given by

Q =
∫ D+L

D

g
(
t − SM̄

)
dt. (57)

Recalling the definition of δ, our goal is to characterize E[L]
and E[Q] in terms of δ and solve the following optimization
problem to find δ∗:

min
0≤δ≤β

E[Q]
E[L]

. (58)

Similar to the proof of Lemma 1 in Appendix C, our proof
methodology is made clearer through Figs. 8 and 9, and we
will consider two cases as follows.

1) β ≤ nTb: In this case, we need to show δ∗ = 0.
Right before the epoch starts, there would be �(β − δ)/Tb

bits (belonging to a new message) already available. The
first decoding attempt in the epoch, therefore, occurs after
nTb − β + δ time units from the epoch’s start time. If this
decoding attempt is successful, an ACK will be fed back after
β time units. Otherwise, a new message will be transmitted
through the same manner again, see Fig. 8. From the figure,
one can see that the epoch length is given by

L = ((nTb − β + δ) + β)M (59)

= (nTb + δ)M, (60)

and therefore

E[L] =
nTb + δ

p0
, (61)

E[Q] =
∞∑

m=1

(∫ D+(nTb+δ)m

D

g
(
t − SM̄

)
dt

)
(1 − p0)m−1p0.

(62)

Next, we follow Dinkelbach’s approach [62] to solve prob-
lem (58) and introduce the auxiliary problem

q(λ) � min
0≤δ≤β

E[Q] − λE[L] (63)

for some λ ≥ 0. We introduce the following Lagrangian for
such problem [64]:

L = E[Q] − λE[L] − ηδ + ω(δ − β), (64)

where η and ω are Lagrange multipliers. Now using (61)
and (62), we take the derivative with respect to δ to get

dL
dδ

=
∞∑

m=1

mg
(
D + (nTb + δ)m − SM̄

)
(1 − p0)m−1p0

− λ

p0
− η + ω (65)

=
∞∑

m=1

mg (n̄ + (nTb + δ)m) (1 − p0)m−1p0

− λ

p0
− η + ω (66)

� H(δ) − λ

p0
− η + ω. (67)

Therefore, the optimal δ∗ solves

H (δ∗) =
λ

p0
+ η − ω. (68)

Note that H(δ) is increasing in δ by monotonicity of g(·).
Hence, if λ < p0H(0) then we must have η > 0, which
implies by complementary slackness that δ∗ = 0.

We now proceed similarly as in the second part of the proof
of Theorem 2 in Appendix B. Specifically, since the optimal
λ∗ satisfies q(λ∗) = 0 and q(λ) is decreasing [62], it suffices
to show that q (p0H(0)) < 0. Towards that end, we have

q (p0H(0))

=
∞∑

m=1

(∫ D+nTbm

D

g
(
t − SM̄

)
dt

)
(1 − p0)m−1p0

−p0H(0)
nTb

p0
(69)

<

∞∑
m=1

nTbmg
(
D + nTbm − SM̄

)
(1 − p0)m−1p0

−H(0)nTb (70)

= 0, (71)

where the inequality follows by monotonicity of g(·), and the
last equality follows by definition of H(·).

2) β > nTb: In this case, we need to show
δ∗ = β − nTb. We first argue that δ∗ cannot be smaller than
β − nTb. To see this, observe that if δ∗ < β − nTb, then
there would be a codeword waiting in the receiver’s queue for
β−nTb−δ∗ time units after being completely received before
it gets processed. One can strictly decrease the age-penalty in
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Fig. 9. Example sample path during an epoch using the enhanced FR scheme when β > nTb. In this example M = 2, and so it takes two transmissions
to succeed. Light-red boxes represent the lower bound on δ (idle times). The red cross denotes a failed decoding attempt and green circles denote success.

this case by acquiring fresher sample instead of the current
one via pushing the sampling time exactly β − nTb − δ∗ time
units forward and avoid the unnecessary idle waiting at the
receiver. Thus, our goal now is to solve problem (58) over the
new bound δ ∈ [β − nTb, β].

As in the previous case, and now that δ ≥ β − nTb,
there would also be �(β − δ)/Tb
 bits available from a new
message right before the epoch starts, and the first decoding
attempt in the epoch would occur after nTb − β + δ time
units from the epoch’s start time. This repeats until an ACK
is fed back, see Fig. 9.

This gives rise to the exact same E[L] and E[Q] expressions
in (61) and (62), respectively. One can thus follow the same
analysis for the β ≤ nTb case to solve the optimization
problem and reach the conclusion that δ∗ should be equal to
its lower bound, β − nTb in this case.

E. Deriving Equations (39) and (40)

We derive the optimal waiting policy in (39) by solving
Gȳ (w∗(ȳ)) = λ∗

IIR with Gȳ(·) as defined in Theorem 1, with
g(·) ≡ h�(·), after replacing the random variable Y with Ỹ .
That is,

Gȳ (w∗(ȳ)) = E
[
h�

(
ȳ + w∗(ȳ) + Ỹ

)]
=

σ2

2θ

(
1−(1−2−2�

)
e−2θ(ȳ+w∗(ȳ))E

[
e−2θỸ

])
= λ∗

IIR, (72)

whence (39) directly follows by solving for w∗(ȳ) above and
taking the non-negative part.

Next, we derive the long-term average MMSE expression
in (40) through basically evaluating the optimal E[L] and
E[Q] in (61) and (62), respectively, with g(·) ≡ h�(·), after
substituting δ∗ = [β − nTb]

+. First, we have

E[L] =
nTb + [β − nTb]

+

p0

=
Kn,β

p0
. (73)

Next, we have

E[Q]

=
∞∑

m=1

(∫ D+(nTb+[β−nTb]
+)m

D

h�

(
t − SM̄

)
dt

)

×(1 − p0)m−1p0

=
∞∑

m=1

(∫ D+Kn,βm

D

σ2

2θ

(
1 − (

1 − 2−2�
)
e−2θ(t−SM̄)

)
dt

)

×(1 − p0)m−1p0

=
σ2

2θ

(
Kn,β

p0
−
(
1 − 2−2�

)
e−2θn̄

2θ

×
(

1 − p0e
−2θKn,β

1 − (1 − p0)e−2θKn,β

))

=
σ2

2θ

(
Kn,β

p0
−
(
1 − 2−2�

)
e−2θn̄

2θ

1 − e−2θKn,β

1 − (1 − p0)e−2θKn,β

)
.

(74)

Equation (40) now directly follows via dividing E[Q] above
by E[L].
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