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The derivation of a theory of systems engineering has long been complicated by the fact that
there is little consensus within the systems engineering community regarding precisely what
systems engineering is, what systems engineers do, and what might constitute reasonable
systems engineering practices. To date, attempts at theories fail to accommodate even a
sizable fraction of the current systems engineering community, and they fail to present a

test of validity of systems theories, analytical methods, procedures, or practices. This
article presents a more theoretical and more abstract approach to the derivation of a
theory of systems engineering that has the potential to accommodate a broad segment of

the systems engineering community and present a validity test. It is based on a simple pref-
erence statement: “I want the best system I can get.” From this statement, it is argued that a

very rich theory can be obtained. However, most engineering disciplines are framed around
a core set of widely accepted physical laws; to the authors’ knowledge, this is the first
attempt to frame an engineering discipline around a preference.
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Introduction

Systems engineering has been recognized as an emerging subdis-
cipline of engineering for at least 50 years. Still, the systems engi-
neering community has not reached agreement either on what
constitutes systems engineering or a disciplinary basis for systems
engineering. Kasser et al. [1] suggest that “a discipline generally
matures when an overriding axiom is presented and accepted by
the majority of practitioners.” They then present seven principles
for system-engineered solution systems. While these principles
fall short of comprising an axiom, the first is rather provocative:
“There shall be a clear, singular objective or goal.”
A goal of the International Council on Systems Engineering

(INCOSE) has long been to create a theory or theories of
systems engineering. A step toward this goal is exemplified in a
recently issued white paper entitled “Systems Engineering Princi-
ples” [2]. This white paper presents seven criteria for a theory of
systems engineering: (1) transcends lifecycle, (2) transcends
system types, (3) transcends context, (4) informs a world view
on systems engineering, (5) not a how-to statement, (6) supported
by literature and/or widely accepted in profession, and
(7) economy of principle. Strangely, however, this list does not
include the concept that an underlying theory should provide a
validity or consistency test, which would seem to be a key require-
ment of any such theory.
In the 1990s, Hazelrigg [3–6] proposed to the engineering design

and systems engineering communities that design and systems
engineering are decision-making processes and that decisions are
optimizations requiring objective functions or preferences. This
concept reinforces the notion of Kasser and Hitchings that
systems engineering needs a clear, singular objective and also
hints to the notion that theories of systems engineering are more
likely to be preference-based than based on physical principles or
“laws of nature” as have been other engineering disciplines.
In keeping fully with the criteria of INCOSE and the notion that

systems emerge as the consequence of the decisions that define
them, we propose a preference-based theory with a more intuitive

objective, “I want the best system I can get.”1 We contend that
this preference should be widely accepted given that the definition
of “best” is left entirely to the project manager or systems engineer
to specify. Our principal goal for this theory is to create distinctions
among methods, approaches, procedures, or practices that support
this preference versus those that fail to support it, thus leading to
a fundamental theory of systems engineering.2 The preference state-
ment itself provides a basis for mathematical proof of certain
methods that lead to choices supporting the preference, while it
also identifies methods, approaches, procedures, or practices that
fail to support this preference, for example: (1) by virtue of faulty
mathematics, (2) by their use outside the boundaries of their valid-
ity, (3) by their ability to create path dependencies where given
inputs can yield multiple results with radical differences in system
performance, or (4) by leading to unwanted and/or unnecessary
reductions in system performance.

Prior Work

As noted in the review by Sage [7], prior research seeking to
develop a theory of systems engineering has been ongoing for
over 50 years. This research has taken two distinctly different
paths, a descriptive path (how systems engineering is performed)
and a normative path (how systems engineering should be per-
formed). Consider the example of arithmetic. A descriptive study
of arithmetic might examine how children learn to add numbers.
The knowledge gained from such a study could prove useful in
determining how to teach addition to both accelerate the learning
process and minimize mistakes. A normative study, on the other
hand, would examine the theory of addition, leading to an under-
standing of what to teach, that is, what rules or procedures lead to
correct results. The theory of systems engineering presented here
is normative. Its focus is on how systems engineering should be
done. Hence, we shall concentrate our review of prior work on
this research path.
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1The concept of a “best system” is conditioned by “I can get” to make it clear that
we acknowledge that there may be constraints imposed on a project that prevent the
realization of an unconstrained or absolute best system.

2We refer here to systems engineering in the broadest context of any engineering
activities related to the design, development, manufacture, operation, maintenance,
and disposal of an engineered product, device, or system of any scale.
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The earliest concepts of value under uncertainty and risk were for-
mulated by Daniel Bernoulli in the early 1700s [8], and the funda-
mental concepts of decision theory were laid down by Dodgson in
the book, Alice’s Adventures in Wonderland [9], written for children
in 1865.3 In Alice’s encounter with the Cheshire Cat, the Cat pro-
vides Alice with the fundamental axioms of decision-making [6].
In the 1940s, these axioms were extended by John von Neumann
and Oskar Morgenstern [10] to the case where outcomes are uncer-
tain. Their mathematic is referred to as utility theory, and they also,
in the same reference, lay out the foundations of game theory. Inter-
estingly, the derivation provided by von Neumann and Morgenstern
offers a proof of the existence of “utility” as a valid measure of pref-
erence under uncertainty and, within the context of a well-argued set
of axioms, shows that it is the only mathematically consistent
measure. Accepting this proof demands that a rigorous theory of
systems engineering must be consistent with the utility theory.
The applicability of decision theory to systems engineering has

been recognized for at least 50 years. An early application by Miles
at the Jet Propulsion Lab considered the design of the science of a
Mars mission. Miles also contributed to the application of decision
theory for other missions [11–13]. In addition, Sage [7,14] and
Tribus [15] clearly recognized the role of decision theory in engineer-
ing design. Both Sage and Tribus outline utility theory as a tool for
engineering design under uncertainty. In the early 1970s, Hazelrigg,
under support by theNASAPlanetaryOffice, applied utility theory to
the study of rationality in NASA’s planetary missions, resulting in a
master’s thesis by Brigadier [16]. For the past 50 years, Howard [17–
19] has been a major contributor to the foundations and teaching of
decision theory. He has fostered the application of decision theory
in many areas of business and engineering. By the late 1990s,
ABET (the Accreditation Board for Engineering and Technology)
formally recognized this.4 Also, in 1996, Hazelrigg [20] recognized
the relevance of howArrow’s Impossibility Theorem establishes that
certain approaches used in engineering design and systems engineer-
ing cannot lead to optimal choices.Yet, despite the extensive research
and application of decision theory to engineering design, there has
been no attempt to use decision theory as a basis for the derivation
of a theory of systems engineering. That is the unique challenge
addressed here.
The proposed approach is not the first attempt to mathematize

engineering design and systems engineering, however. About 30
years ago, Suh [21] published his work on axiomatic design. In
so doing, he recognized the value of a mathematically rigorous axi-
omatic approach to the establishment of a science of design. But his
approach was not based on the mathematics of decision theory, and
he did not posit his theory as being based on a preference. Axiom-
atic design is based on two design axioms, the information axiom–

minimize the information content of the design, and the indepen-
dence axiom–maintain independence of functional requirements.
Mathematically, these axioms describe a constrained optimization
framework.5 The preference (or objective) of Suh’s framework is
less information is better. But this dictates to the decision maker a
preference that he or she most likely does not hold, nor is it intui-
tively obvious that it is a preference that he or she should hold.
As noted by Dodgson [9], no person nor method should dictate pref-
erences to a decision maker.6

A second problem with Suh’s axiomatic design lies with the inde-
pendence axiom. This axiom is actually a constraint. Constraints

never improve optimal results. They are either inactive or active.
Constraints that are inactive are satisfied automatically by the
optimal solution and have no impact on the result. In effect, they
are not constraints at all. Constraints that are active only degrade
the performance of the system—they never improve it. As a
result, it is generally desirable to impose as few constraints as pos-
sible on the design of a system.
Despite these shortcomings of Suh’s axiomatic design, much

work has been done to derive operative theorems from Suh’s
“axioms.” Although not meaningful in the context of a rigorous
framework, this work nonetheless shows the potential for a
preference-driven theory of systems engineering.
Many systems engineering decision-making approaches have

been posited and published over the past 50 years. Among these
are such widely used approaches as analytical hierarchy process
(AHP) [22,23], axiomatic design [21,24], Taguchi [25], robust
design [26], Pahl and Beitz [27], the Pugh method [28,29], Physical
Programming [30], Quality Function Deployment (QFD) [31], and
Six Sigma [32]. It would seem reasonable to subject methods such
as these to a validity test, particularly as the extant evidence for their
efficacy is largely anecdotal. High on this list is the notion of
systems thinking [33,34]. Many researchers, authors, and practition-
ers of systems engineering advocate systems thinking–thinking in
terms of the big picture—as a rigorous approach to system
design. It would seem reasonable to challenge this view.

Goals for a Theory of Systems Engineering

A clear goal for a theory of systems engineering is to give credibil-
ity to Systems Engineering as an engineering discipline. In this
context, a discipline may be defined as a field of study or branch of
knowledge, a set of rules, or code of behavior. We view an engineer-
ing discipline as an agreed upon and demonstrably valid set of fun-
damental rules, laws, processes, procedures, or methods that define
a field of study. The rules and laws of the discipline distinguish
between processes, procedures, or methods that are deemed valid
and those that are deemed not valid. For example, we would not con-
sider a person who does not accept the first, second, and third laws of
thermodynamics to be a thermodynamicist. Without such distinc-
tions, there is no way to distinguish a person who is an expert
versus onewho is a complete neophyte or even a rebel to a discipline.
Systems engineering has lacked such distinctions, and we believe
that this is a key reason that it has yet to emerge as a maturing
discipline.
To show that a theory, method, practice, or procedure is valid, it

must be proven to be valid in all relevant cases or the boundaries of
its validity must be clearly distinguished. For example, to show that
the laws of addition are valid, it must be shown that they are valid
for all possible combinations of cardinal numbers. To show that a
theory, method, practice, or procedure is not valid, it is necessary
to show that it is not valid in only one relevant case7 or to show
that it violates an accepted underlying premise.8 To show that a
theory, method, practice, or procedure is subject to path dependen-
cies, it must be shown only that path dependencies may occur in at
least one case, unless those cases can be specifically excluded by
some rules or mechanisms.
Recognizing that engineered systems emerge as a consequence of

the set of decisions that determine the system, a theory of systems
engineering should provide a mechanism to distinguish between
methods, approaches, procedures, or practices that support
decision-making that improves overall system performance and
methods that degrade system performance.9 In addition, a theory

3Dodgson studied and later taught mathematics at Oxford and was recognized for
his work on decision theory.

4The ABET definition of design is: “Engineering design is the process of devising a
system, component, or process to meet desired needs. It is a decision-making process
(often iterative), in which the basic sciences, mathematics, and engineering sciences are
applied to convert resources optimally to meet a stated objective. Among the funda-
mental elements of the design process are the establishment of objectives and criteria,
synthesis, analysis, construction, testing, and evaluation.”

5As indeed all decision frameworks must be, as rational decisions are always
optimizations.

6In Alice’s interaction with the Cheshire Cat, Dodgson uses the Cat to emphasize to
Alice that it is her preferences that matter, and no one else’s.

7Note that, while the laws of division exclude division by zero, we know in advance
that we must exclude the use of division for this case. Thus, division is valid for all
divisors excluding zero.

8An example is that people must be free to state their own preferences.
9For example, the processes of requirements flowdown and continuous improve-

ment can be shown to have the potential to degrade system performance [35].
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of systems engineering should have clearly defined boundaries,
namely, a well-defined set of conditions, within which the theory
is provably always valid.

The Concept of “Best”

We begin our derivation of a theory of systems engineering with
the concept of “best” as expressed in the preference statement,
I want the best system I can get. So long as the relevant decision
maker is allowed to define “best” in any way he or she wishes, it
would seem that this would be a universally acceptable preference.
Conceivable alternatives to this preference might be, “I want the
worst system I can get,” or simply, “I don’t want the best system
I can get.” The former preference statement merely redefines best
to be “worst” and so is the same as our proposed preference. The
latter alternative simply eliminates one system alternative, the
best one, and fails to distinguish between all others. To enforce
this preference, we first must define best to be sure to exclude it,
and then, we must be indifferent to all other outcomes. This leads
us to a final alternative, I don’t care how good the system is. But
this statement would render systems engineering valueless.
As general and meaningless as this preference statement may

seem, the word “best” itself imposes a number of mathematical con-
ditions that serve to underpin the mathematics of systems engineer-
ing. First, “best” requires the existence of a decision maker who has
a preference. A preference is a statement made by a decision maker
that rank orders outcomes by desirability in the mind of the decision
maker.10 It is entirely subjective. Mathematically, the existence of a
preference is stated as follows. Given any two outcomes x and y,
one and only one of the following conditions must apply:

x ≻ y, y ≻ x or x ∼ y (1)

Namely, x must be preferred to y, y must be preferred to x, or the
decision maker must be indifferent between x and y, and this pref-
erence must be clear and distinct, which infers that it must be deter-
ministic. Without such a preference, the concept of “best” does not
exist.
The second condition necessary for the existence of a “best”

outcome is, given a set of outcomes xi, the outcome xo is best if
and only if

xo ≻∼ xi for all i ≠ o (2)

Clearly, this condition can be violated if, for outcomes x, y, and z,
x ≻ y ≻ z ≻ x as, in this case, for each outcome, there is a better
outcome. Any preference that obeys the transitivity condition, if x ≻
y and y ≻ z, then x ≻ z, or the weaker negative transitivity condi-
tion, if x⊁ y and y⊁ z, then x⊁ z, does not preclude the existence
of a “best” outcome.
A third condition is that the set of allowable alternatives be

closed. For example, if a requirement is that the system must
weigh less than w pounds, and if the system performance improves
with weight, then (mathematically) there will be no “best” design
because there is no weight that is closest to but less than w
pounds. Alternatively, a “best” system may exist if the requirement
is stated. “the system may not weigh more than w pounds,” as this
requirement yields a closed alternative set. Under these conditions,
it should be immediately clear that a simple preference statement
such as, “I like money and more is better,” enables the existence
of a “best” outcome.
Where there is a single decision maker or a dictator who deter-

mines the preference that defines “best,” we can argue that the tran-
sitivity condition must be met, particularly in the case of
well-considered decisions such as system design decisions. A
person who has an intransitive preference is subject to a “money
pump” [36], which subjects the person to a circular series of trades

that drain the person of his or her wealth with no resulting benefit.
But, beyond this, to be irrational, a person must know that they are
being irrational.11 For example, the person must be presented two
alternatives, A and B, each with a clear and distinct outcome such
that the person clearly prefers one, say A, over the other, yet con-
sciously chooses B. It would appear inconceivable how this could
happen. For example, suppose the person is presented with two
stacks of money from which he may choose one. Stack A contains
$1,000, stack B contains $100, the person is clearly aware of these
amounts, and the person clearly wants more money rather than
less, yet consciously chooses stack B. Perhaps the person simply
doesn’t, for whatever reason, want to take the choice that most satis-
fies his preference formoney. For example, perhaps hewants to leave
themoney on the table for another person. But this want overrides the
preference for more money, and the person winds up choosing
according to his real preference at thatmoment. There is no irrational-
ity in this decision although, to an observer, the decision may appear
to be irrational.12 Furthermore, given the seriousness of systems
engineering decisions, it would make sense that well-considered
and rational decisions are to be preferred.
It is important to note here that we do not suggest that all systems

engineering theories, approaches, etc. either do or must adhere to
the conditions for the existence of a best design, nor do we limit our-
selves to such cases. Rather we have examined the necessary and
sufficient conditions for the existence of a best design in order
that we can definitively identify theories, methods, approaches, pro-
cedures, or practices that fail to meet these conditions, examine their
impact on system performance and propose corrective or ameliora-
tive actions. We have already done this in the cases of continuous
improvement and requirements flowdown processes, and the
breadth of this theory will be demonstrated by the range of its appli-
cability to such cases.

Relevant Mathematics

Unlike engineering subdisciplines that have their bases in laws
of nature, the theory of systems engineering that we propose
derives from mathematics, independent of the physical world.
Accordingly, the validation of such a theory is obtained through
rigorous derivation and the presentation of mathematical proofs
rather than experimental or anecdotal evidence. Axioms comprise
the basis for such proofs and, although there is no “correct” set of
underlying axioms such that we could conclude that all other sets
are incorrect or inappropriate, the object of the axioms that under-
lie much of mathematical theory is that they be self-evident and
well argued. For example, such is the case for the axioms of arith-
metic [37]. A mathematical theory is comprised of the set of con-
clusions (theorems) that one can draw from a given set of axioms.
While one has considerable freedom to choose the axioms that
enable the derivation of a particular mathematical theory, it is
strongly preferred that axioms chosen comprise a parsimonious
set and mandatory that they comprise a self-consistent set. That
is, no axiom in the set may contradict any other axiom in the
set. Furthermore, when one mathematical theory builds on, com-
bines with or adds to another, any additional axioms that enable
the composite theory must also be entirely consistent with all
other axioms spanning the entire range of the resulting theory. It
is not a valid practice to combine mathematical theories whose
validity depend on axiomatic bases that are in conflict with each
other. Where such conflicts occur in current systems engineering
practice, we shall strive to point them out and offer evidence of
errors that result from their use.

10An outcome is the result of a decision, particularly as viewed in terms of the pref-
erence of a decision maker.

11In part because of possible exposure to a money pump, a person with intransitive
preferences is often referred to as “irrational.”

12It is also the case that differences in perceptions or beliefs between the decision
maker and observer may lead the observer to the conclusion that the decision maker
is irrational. However, the decision maker is irrational only if he consciously makes
a decision contrary to his beliefs.
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It is also necessary to recognize that it is not sufficient to merely
provide the derivation of a solution procedure to a problem to assure
that the procedure is valid. To assure validity, one must also provide
an existence proof of the solution itself. That is, to assure that an
answer to a problem is correct, we first must be certain that a solu-
tion actually exists [38]. Note that, in the absence of the existence of
a solution, it is ipso facto that the solution is incorrect.
Another matter of which we must be aware is that certain proce-

dures may enable path-dependent results, that is, results that depend
on the particular sequence of computations or the path taken to
obtain the results [35]. A rigorous theory of systems engineering
must either avoid such possibilities or devise a plan to efficiently
handle this difficulty.
In some instances, it may prove difficult or even impossible to

avoid analytical or computational procedures that enable manifesta-
tions of the above behaviors. In cases such as these, it will be our
goal either to derive conditions under which a procedure can be
trusted to produce the desired result or to provide alternative proce-
dures that bound the unwanted behavior.
The specific branches of mathematics that we draw upon most

heavily in this work include probability theory as defined by the
Kolmogorov axioms, optimization theory, decision theory, von
Neumann-Morgenstern utility theory, and social choice theory.

A Fundamental Principle of Systems Engineering

We begin with the assumption that a system preference exists at
least in the mind of some entity responsible for the overall system.
For example, one might assert the preference, “I like money, and
more is better.” This statement rank orders all monetary outcomes
for this particular decision entity, and the resulting ranking is
entirely independent of any perception of which outcomes may or
may not be possible. Preferences are independent of outcomes. Fur-
thermore, preference statements are particularly powerful as they
divulge the goal of the decision-making entity.
Our implementation of the system preference shall start by repla-

cing the preference statement with a more precise mathematical
expression. We begin by defining some terms. Let X be a set of
statements that fully describe a system through its entire life cycle
with the objective of facilitating a prediction of system perfor-
mance, especially as measured in terms of a preference. This set
may include statements regarding sizes, shapes, colors, dimensions,
procedures, practices, and even beliefs, that is, probabilistic state-
ments. We then denote by Xi the ith instantiation (namely, the ith
specific system description) of X. A complete system description
X enables estimation of the outcome of a choice to instantiate X.
We shall denote the outcome by the symbol Ω(X) or, for the ith
instantiation of X, by Ωi(Xi) or simply Ωi. Ωi may be numeric or
nonnumeric or both, and it may comprise a set of statements that
describe an outcome.
For the moment, let us assume that Ω(X) is predicted with preci-

sion and certainty. Without regard to any particular instantiation, we
may then define a scalar measure on the set of conceivable out-
comes, v(Ω), such that if, for all i and j, j≠ i,

Ωi ≻ Ω j, vi > vj (3)

or if

Ωi ∼ Ω j, vi = vj (4)

We note, however, with this determination of v, v exists only if pref-
erences are rational, that is, only if they satisfy the transitivity condi-
tion. Namely, if Ωi ≻ Ω j ≻ Ωk , then it must be that Ωi ≻ Ωk [39]. If
this condition were not enforced, we could encounter a preference
that requires vi > vj > vk> vi, which is clearly impossible. Conversely,
a given utility function defines a transitive relationship; it imposes an
ordering over elements. Because a given utility function reflects our
theme of enacting a given preference, this is what we do. Given this

definition, v becomes a measure on the real number line, R1, that
represents a preference such that instantiation Xi ≻

∼
Xj iff vi≥ vj.

13

That is, the choice of Xi is preferred or at least indifferent to the
choice of X j iff vi≥ vj. It follows that the most preferred or “best”
instantiation ofX, namely,Xo, satisfies the condition ∀j ≠ o, vo ≥ vj.
We note again that the transitivity condition on preferences

demands that preferences be deterministic. This is because transitiv-
ity cannot be guaranteed otherwise. The rationale for acceptance of
this condition in the case of a single decisionmaker is that preferences
are in theheadof andbelong to the decisionmaker and are thus known
precisely to the decision maker. Accordingly, preferences must be
clear and distinct. This means that the decision maker knows his or
her preferenceswithout question and therefore does not requiremath-
ematical aids for their determination. It follows that these aids are at
best superfluous or, more likely, misleading. Optimization theory
rests heavily on this condition. So, failure to accept this condition
invalidates much of optimization theory.14 The conditions imposed
here are necessary for the existence of a best system design, and
they accordingly invite investigation into cases where a transitive
preference would appear not to exist.
If, as is the usual case, there is uncertainty on the determination of

Ω(X), v must satisfy an additional condition that accommodates the
decision maker’s risk preference15 and that is determined by pre-
senting the decision maker with a choice between two alternatives
where one alternative is a lottery with two possible outcomes and
the other alternative is deterministic. This is referred to as a von
Neumann–Morgenstern lottery [10]. The decision maker is faced
with a choice between Xa and Xb, where there are two possible
outcomes of Xa, Ωa1 with probability p and Ωa2 with probability
(1− p), while Ωb is deterministic, and where Ωa1 ≻ Ωb ≻ Ωa2 ,
then, since va1 > vb > va2 , there exists a p, 0≥ p≥ 1, such that

vb = p va1 + (1 − p) va2 (5)

where p is determined by the decision maker as that probability of
achieving the more preferred outcome of alternative Xa that renders
him indifferent between alternative Xa and alternative Xb. Nomi-
nally, when we use the symbol v to represent a preference value,
we do so in the case when outcomes are deterministic. In the case
that outcomes are nondeterministic, and when we invoke the
above condition on the determination of v, we distinguish this as
a nondeterministic case by use of the symbol u, and we refer to
this quantity as utility.16 Thus, u encodes both the basic preference,
for example, “I like money, and more is better,” and the decision
maker’s risk preference. A key difference between v, which in
general does not satisfy the above lottery condition, and u is that
v may be an ordinal measure,17 whereas u is always a cardinal
measure. This means that we cannot in general perform arithmetical
operations on v, whereas we can on u.
Making use of numerical operations on u and drawing on the

utility axioms of Luce and Raiffa [40], we can derive a decision
rule for the choice of X when there is uncertainty in the prediction
of the outcome of X, Ω(X).18 The resulting decision rule for Xo is

Xo ≻∼ Xj ∀ j ≠ o iff E {uo} ≥ E {uj} ∀ j ≠ o (6)

13Note that v is unique only to the extent of an ordinal ranking.
14As used here, optimization theory is taken to be a logical framework that enables

selection of alternatives that provide the most preferred outcomes achievable.
15Also, as there is uncertainty in the outcomes Ω(X), this would yield a probability

distribution on v, which could lead to cases where there is no clearly defined best
outcome. Thus, we must find an outcome preference measure that is deterministic
even in the case of uncertainty on Ω(X). Utility theory does this.

16Note that u may encode not only the basic preference and a risk preference but
also include a time preference as well.

17Ordinal preference measures such as v merely order outcomes in terms of desir-
ability, and they do not measure the strength of the preference relative to other out-
comes. Ordinal preference measures suffice to enable optimization in the case of
deterministic outcomes. Cardinal measures provide both preference order and strength
of preference. Cardinal measures of preference are required to rank alternatives whose
outcomes are nondeterministic.

18There are alternative axioms from which we can obtain the same result, for
example, Bernardo and Smith [41] or Savage [42]. We refer to the Luce and Raiffa
axioms here as they are quite easy to understand and because we can easily see that
they lead to a unique result.
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where E{u} is the expected utility of the uncertain outcome Ω.
Clearly, this fundamental rule of systems engineering, which we
shall refer to as the decision rule, holds provided that u(Ω) exists
and that we hold beliefs (probabilities) on the set of possible out-
comes. The necessary conditions for the existence of u(Ω) are the
same as the existence conditions for v(Ω), namely, that preferences
must exist and they must be transitive. We have already argued that
these conditions are met as long as there is only a single decision
maker, that is, that the project has only one manager who is also
the design engineer.

Conditions That Impede Application of the Decision Rule

We have already alluded to certain conditions that would impede
or preclude application of the decision rule. These would include,
for example, the nonexistence of a transitive system preference,
nonexistence of beliefs on system outcomes, reliance on choice
resulting from group interactions, design by multiple persons each
of whom is acting on their personal preferences rather than the
overall system preference, and inconsistent belief systems (proba-
bility estimations) across system decision makers. These all offer
to induce choices that lower overall system performance. Acknowl-
edging these impediments to optimal system design decision-
making, the decision rule leads to the following theorems.
THEOREM 1. System choices made against preferences other than

the overall system preference cannot result in performance better
than that achievable if all choices are made against the system pref-
erence and, in general, they will result in lower performance.
Proof. Let f (Ω) be an overall system preference, and g(Ω) be an
alternative preference. Let Xfo be the optimal solution for the pref-
erence f (Ω), and Xgo be the optimal solution for the preference g(Ω).
Since Xfo maximizes f (Ω), Xgo cannot provide a greater maximum,
and it will provide an equal maximum only in the case that Xgo

equals a value of Xfo that maximizes f (Ω). For any other values
of Xgo, the system performance will be less than f (Ωo). ▪

THEOREM 2. Every component of an optimal system must itself be
optimal as measured by the same preference under which the
system is optimized.
Proof. Let Xf = [Xfa, Xfb] where Xfb is the specification of compo-
nent b and where, for the optimal solution, Xfo = [Xfao, Xfbo]. If the
component described by Xfb ≠ Xfbo, then f (Ω)≤ f (Ωo) and, hence,
the system performance cannot exceed the performance obtained by
the design Xo and, in order that f (Ω)= f (Ωo), Xfb must render Xf

optimal with respect to f (Ω). ▪

While this theorem may appear to be evident and trivial, it is not.
Subtle implications of this result are described in the Appendix. Fur-
thermore, in light of Theorem 2, lexicographic ordering can be
viewed as a form of organizational design. The ranking on this order-
ing is imposed by the transitivity condition as required byTheorem2.
As a result of these theorems, we see that failure of all system

decision makers to use a common system preference as the basis
for their system choices cannot result in system performance
better than that achievable using only the common system prefer-
ence and, in general, will result in a loss of performance as mea-
sured by the common system performance. This conclusion
applies at all levels of systems engineering in a project. It is also
the case that, to achieve system optimality, system choices must
be based not only on a common system preference, but also on a
common set of beliefs (namely, probabilities on all system uncer-
tainties). Achieving these conditions will pose formidable problems
in the formation of such things as incentives that promote coopera-
tive decision-making.

The Impact of Constraints on Optimal System Choices

Consider the constrained optimization problem, maximize J =
f (X) subject to constraints g(X) ≤ b, where g(X) comprise a
vector of constraints imposed on the optimization of the scalar
objective f (X).

THEOREM 3. Constraints imposed on an objective function never
lead to an optimal solution of greater performance than the solution

to the unconstrained objective function and, if active, always result
in an optimal solution of lower performance.
Proof. Let Xo denote the value of X that maximizes f (X). Then, if
Xo is also the maximizing solution to the preference J = f (X) while
satisfying the conditions g(X) ≤ b, the constraints are satisfied by
the unconstrained optimal solution, and the performance of the con-
strained problem is equal to the performance of the unconstrained
problem. In this case, we say that the constraints are inactive. On
the other hand, if Xc ≠ Xo is the maximizing solution to J = f (X)
while enforcing the constraints g(X) ≤ b, we say that the constraints
are active and, since Xc does not equal Xo, we know that the con-
strained performance must be lower than the unconstrained
performance. ▪

Alternatively, we note that constraints do not add alternatives to
the set of available choices. They only serve to remove alternatives
from this set and, if they remove the unconstrained optimal
choice(s), performance must be reduced. Some constraints, such
as laws of nature, may be unavoidable and must be applied. But
others, requirements for example [43], may inhibit alternatives
when designing a system and may be avoided by better choice of
the system preference. For instance, a requirement that the design
of a telephone must connect by wire to the telecommunication
system precludes the possibility of designing a cell phone.
Thus, we know that constraints never lead to improved perfor-

mance as measured by the objective f (X) and, if the constraints
are active, they always result in lowered performance as measured
by this objective. As a result, we see that we must be aware of pro-
cedures that impose arbitrary constraints on system design and find
ways to prevent such constraints from penalizing system perfor-
mance or eliminate them altogether.
It is important that we understand the difference between the

system objective or preference and constraints. Constraints are
not and never can be thought of as an objective. Objective func-
tions or preferences rank order system design choice outcomes,
thus enabling design optimization whereas constraints define
choices that are not allowed. Constraints do not provide informa-
tion necessary to rank outcomes, and they do not enable design
optimization. A good definition of a constraint is, it is something
that we don’t get to decide about. Laws of nature (F=ma, for
example) are an example of something we don’t get to decide
about, and they legitimately constrain system design choices.
Unfortunately, common systems engineering procedures often
arbitrarily assign constraints (for example, requirements [43]) to
facilitate the engineering process. As we see from the aforemen-
tioned proof, arbitrary constraints never enable the achievement
of higher levels of performance than when such constraints are
not imposed. In this regard, it should be noted that the need for
requirements can often be avoided by proper selection of the
system preference.

Review of Underlying Assumptions and Rationale

Before proceeding, it is worth reviewing the assumptions upon
which this theory is based:

(1) Engineered systems emerge as the consequence of a set of
choices made largely by the system design workforce, and

the environment, structure, and rules within which the work-
force performs its design tasks. Beginning in the 1960s and
continuing since, engineering design and systems engineer-
ing have become increasingly viewed as a decision-making
process. Decision theory, game theory, and social choice
theory [44] have emerged as the important mathematics of
design and systems engineering.

(2) Preferences exist. Rational system design is not possible in
the absence of a preference relating to system performance.
In the absence of a system preference, there can be no
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distinction in performance between alternative system
designs and, hence, there would be no need for systems
engineering.

(3) Uncertainty is a significant factor in the systems engineering

process. Engineers have a tendency to consider uncertainty
in systems engineering decision-making as being applicable
only to their ability to predict system behavior as a function
of system design. But this is only one source of uncertainty
and often far from the largest. There is also uncertainty on
manufacturability, system reliability, demand for the
system, and uncertainty in the environment within which
the system will function such as future fuel prices and regu-
lations. It is the nonengineering uncertainties that often dom-
inate system design considerations.

(4) Mathematical integrity is a necessity. Mathematics is the
“science” of consistency. It is crucial that consistency of
thought be maintained throughout as a basis for a rigorous
derivation of a normative theory of system engineering.

These premises are not only reasonable but also necessary for the
formulation of a normative theory of system engineering.

Fundamental Principles of Systems Engineering

The system preference, “I want the best system I can get,” and the
theorems proven earlier lead to the following fundamental princi-
ples of systems engineering:

(1) The concepts of better and best exist only in the context of
system preferences. In the absence of a system preference,
there is no performance distinction between system alterna-
tives and no rational basis for design choices.

(2) System decisions based on preferences other than the
common system preference can result in degraded perfor-

mance as measured by the common system performance.
This principle results from Theorem 2 and infers that
system decisions made at all levels and by all system deci-
sion makers should adhere to a specified common system
preference.

(3) No theory or method should constrain a system preference in
any way. The relevant project management or oversight
authority should be free to define the system preference.

(4) A theory of systems engineering should apply to all system
choices throughout the life cycle of a system. Every
element of a theory of systems engineering must apply to
all phases of the life cycle of a system unless clear and math-
ematically provable distinctions are made as to when this is
not the case.

(5) The imposition of arbitrary constraints
19

should be mini-
mized. Theorem 3 shows that constraints never result in
improved system performance. Hence, methods or proce-
dures of systems engineering should strive to minimize the
imposition of arbitrary constraints.

(6) Kolmogorov probability
20

is a valid mathematic of beliefs.
The Dutch Book Argument offers strong assurance that all
alternatives to Kolmogorov probability pose inconsistencies
that invalidate them.

(7) Methods, processes, or procedures that lead to path depen-
dencies should be avoided were possible, and where they
cannot be avoided, procedures should be sought to handle

them efficiently and to prevent them from reducing system
performance. Methods or procedures that result in path
dependencies can lead to system designs that differ according
to the path taken to get them (for example, the order of
decision-making), and they can have significantly different

levels of performance with no indication of nonoptimality
[35].

(8) System decision makers exercise their own preference and
beliefs in making system decisions; their decisions are not

necessarily aligned with the common system preference.
This reality generally results in a degradation of system per-
formance. Therefore, a goal of systems engineering manage-
ment should be to provide incentives that align systems
engineers’ preferences with the common system preference.

(9) Existence proofs are a necessary component of the validation
of a systems engineering analysis, method, process, or pro-
cedure. While the need for existence proofs is well under-
stood in the mathematics community, it has not been
equally recognized in the systems engineering community
[38].21

Conclusions

The key contribution of this article is to show that fundamental
principles of systems engineering can be obtained from the prefer-
ence statement, “I want the best system I can get.” It is argued that
this should be a universally acceptable system preference, particu-
larly given that the definition of best is left entirely to the project
manager or systems engineer. Nine fundamental principles of
systems engineering resulting from this preference statement are
presented. They provide a mathematically sound basis for a compre-
hensive and overarching theory of systems engineering. It is not so
much that these principles are new or unexpected that is the key
contribution, but rather that it is shown that they derive from a fun-
damentally sound argument based on a preference. Nor is it our
intent to infer that a theory of systems engineering exists only
within the context of all conditions that enable the existence of a
best system design. Rather, the principles are intended to underlie
and guide the further development of systems theory and, wherever
such conditions are not met, caution that actions should be taken to
limit penalties to system performance if complete resolution is
impossible.
It is clear from the nine fundamental principles that the resulting

theory will enable the derivation of validity tests based at a
minimum on the following classes of extant systems engineering
methods, processes and procedures:

(1) Methods, processes, or procedures that are mathematically
consistent with the fundamental principles of systems engi-
neering and are therefore valid, and

(2) Methods, processes, or procedures that are mathematically
inconsistent with the fundamental principles of systems engi-
neering and are therefore not valid.

The work that now remains to be done is to critique extant
systems engineering principles, theories, processes, and procedures
to validate those that are mathematically sound and to provide
insights into why other systems engineering principles, theories,
processes, and procedures lead to less-than-optimal results and,
perhaps, to offer suggestions that will correct or enhance these prin-
ciples, theories, processes, and procedures. Some such processes
and procedures are noted above. Work also remains to be done to
find methods that extend our ability to optimize systems engineer-
ing decision-making taking into account the diversity of factors
that work to inhibit optimal decision-making, particularly in
large-scale projects. Such topics include:

(1) Reduction of the negative impact of the requirements flow-
down process,

(2) Setting flowdown requirements optimally in the presence of
uncertainty,

19Arbitrary constraints are taken to be constraints that are imposed as a choice of a
system designer as opposed to being imposed upon the system designer.

20Kolmogorov probability is a framework for the logical or self-consistent consid-
eration of beliefs based on the Kolmogorov axioms.

21To assure correctness, before presenting a solution to a problem it is necessary that
one prove that a solution exists. In cases where a solution does not exist, no solution
can be correct. For example, solve for the largest positive integer. No such integer
exists. Ergo, no solution that might be presented can be correct.
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(3) The derivation of incentives to assure that project engineers
align their decision-making with the common system
preference,

(4) Finding approaches to setting a system preference in a case
where there are multiple project managers with conflicting
goals,

(5) Creating a theory to enable the optimal assignment and man-
agement of tasks (e.g., subcontracts), and

(6) Deriving methods for effective use of survey data.

To the extent that work is successful, we expect that it will estab-
lish a basis for systems engineering as a mathematically rigorous
engineering discipline.
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Nomenclature

= is equal to, is the same as, x= y reads x equals or is the same as
y

≠ is not equal to, is not the same as, x≠ y reads x is not equal to y
∀ for all, ∀i ≠ j reads for all i not equal to j
< is less than, x< y reads x is less than y
> is greater than, x> y reads x is greater than y
≤ is less than or equal to, x≤ y reads x is less than or equal to y

≥ is greater than or equal to, x≥ y reads x is greater than or equal
to y

≻ is preferred to, A ≻ B reads A is preferred to B
⊁ Is not preferred to, A⊁B reads A is not preferred to B
∼ is indifferent to, A∼B reads A is indifferent to B
≻
∼

is preferred or indifferent to, A≻
∼
B reads A is preferred or

indifferent to B
iff if and only if

Appendix: The Impact of Theorem 2

Theorem 2 may appear to be obvious, but it carries a subtle
important message. Its strength can be appreciated by applying
it to Arrow’s Theorem; by doing so, Arrow’s negative assertion
disappears. To illustrate, according to Arrow’s Theorem, the
majority vote rankings of pairs need not result in a transitive
outcome. For instance, suppose of 15 voters, six have the
ranking A ≻ B ≻ C, five have B ≻ C ≻ A, and four have C ≻ A ≻

B. The outcome is a cycle where A ≻ B by 10:5, B ≻ C by 11:4,
and C ≻ A by 9:6. Each pair’s ranking is computed precisely, but
the approach violates Theorem 2. This is because the tallying
method is not compatible with the intent of having transitive
conclusions.
To satisfy Theorem 2, the tallying method must be consistent

with the global objective. This means the method must incorporate
transitivity information. Doing so is simple, this is because with the
transitive ranking A ≻ B ≻ C, not only is A ≻ C, but A is listed two
above C; express this as (A ≻ C,2). More generally, let “IIIA,” the
“intensity of IIA” (Arrow’s Independence of Irrelevant Alterna-
tives), be where the ranking of a pair within a transitive ranking spe-
cifies how far the top-ranked alternative is listed above the other
one; e.g., (A ≻ D,4) means that A is listed four alternatives higher
than D. In the above example, six voters have (A ≻ C,2), five

have (C ≻ A,1) and four have (C ≻ A,1). Computing a pair’s
ranking by summing intensity levels leads to A ≻ C by 12:9,
which comes from 6 × 2 : (5 × 1)+ (4 × 1). By using this intensity
approach, which reflects the requirements of Theorem 2, the
paired rankings now define the transitive A ∼ B ≻ C with A∼B
by 10:10, B ≻ C by 11:8, and A ≻ C by 9:6.
The difference between IIA and IIIA is that IIA does not include

intensity information. This missing term drops information about
the transitivity objective; this is what violates Theorem 2. The
general result proved by Saari [45, Theorem 3.4.3] and [46] is
that by exchanging Arrow’s Independence of Irrelevant Alterna-
tives (IIA) with IIIA, Arrow’s negative assertion is replaced with
a positive conclusion. The result follows.
THEOREM 4 (Saari, [45]). For n≥ 3 alternatives and a≥ 2 voters,

there exists a decision method satisfying the following: (1) The voter

preferences over the n alternatives are complete and transitive. (2)
All outcomes are complete and transitive. (3) For each pair, the

outcomes are not constant. That is, there exist at least two profiles
(a list of voter preferences) where each has a different outcome for
the pair. (4) All outcomes are not decided by the preferences of a

single voter. (5) The voting procedure satisfies IIIA. That is, for
any pair suppose there are two profiles where each voter has the

same IIIA ranking of the pair. The pair’s ranking is the same for
each profile.
One decision rule with this property is the Borda Count where

ballots are tallied by assigning n− j points for the jth ranked
alternative.
This theorem captures the intent of Theorem 2. More generally,

should a decision approach fail Theorem 2, even if the contributions
made by the subsystems reach a high level of excellence (as deter-
mined by the isolated subsystem), it could be incompatible with the
general objective.
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