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Abstract—Age-of-information (AoI) is a metric that quantifies
the freshness of gathered information. In this letter, we expand
the concept of AoI by introducing a metric called correlation-
aware AoI (CAAoI) to capture both the freshness and the
degree of correlation in gathered information. The CAAoI of an
information gathering system is evaluated when an unmanned
aerial vehicle gathers information about a set of physical
processes from a set of ground devices, such that each physi-
cal process is sensed by one or more devices. An optimization
problem is formulated to minimize the normalized weighted sum
of the time-average CAAoI in the considered information gather-
ing system. An ant colony optimization algorithm is developed to
solve the formulated problem. Simulation results illustrate that
the proposed CAAoI captures both the freshness and diversity
of the gathered information.

Index Terms—Age-of-information (AoI), ant colony
optimization (ACO), spatial and temporal correlation.

I. INTRODUCTION

AGE-OF-INFORMATION (AoI) has been introduced as
a metric to capture the freshness of information at

its destination, being defined as the time elapsed since the
most recently received information at the destination was
generated at the source device [1]. Consequently, the AoI
captures the freshness of the information and considers both
the generation time and transmission latency of the updates.
Freshness of information at the destination is essential for
real-time control, monitoring, and decision making systems.
As the number of updates at the destination increases, the
AoI decreases. However, repeated updating from a device con-
sumes its energy and raises the imbalanced load issue in the
network [2]. Moreover, in real-world applications, a physi-
cal process is monitored by one or more devices and the
updates about a physical process are very likely correlated.
Such correlation is either (1) spatial correlation, which is a
result of the spatial proximity between the devices observ-
ing the physical process, and increases as the inter-device
distance decreases [3]; or (2) temporal correlation, which is
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a result of consecutive observations of the physical process
from the same device, and increases as the time difference
between consecutive observations decreases [4]. This imposes
another important requirement for efficient information gath-
ering, namely diversity in the received information at the
destination.

Some existing studies of AoI have focused on developing
frameworks to minimize the AoI and maintain information
freshness at the destination [1], [2], [5], [6]. Other studies
have tried to capture the level of dissatisfaction with data stale-
ness [7], the value of the received information [8], and the cost
of update delay [9]. However, to the best of our knowledge, no
existing work has investigated the correlation in the received
data in this context, despite the fact that it is highly ineffi-
cient or even impractical to minimize the AoI using replicas
of updates from the same device and disregarding the fact that
a physical process can be monitored by one or more devices.

Ant colony optimization (ACO) algorithms are intelligent
evolutionary heuristic approaches, whose convergence toward
optimum solutions of combinatorial optimization problems
was proven in [10, Ch. 4.3]. ACO algorithms have efficiently
solved combinatorial optimization problems, such as the trav-
elling salesman problem [11], job-shop scheduling [12], role
assignment [13], and vehicle routing [14].

In this letter, we address the following question: Can we
usefully characterize both the freshness and diversity of the
received information in information gathering systems? This
question sheds light on a crucial gap in the conventional def-
inition of the AoI which assumes that a physical process is
measured using a single device; while it is known that a
physical process is monitored by one or more devices and
the correlation between the updates of the devices should be
considered. The main contributions of this letter are as follows.

• A novel metric referred to as correlation-aware AoI
(CAAoI) is introduced that not only captures the
information freshness at the receiver, but also reflects the
diversity in the gathered information.

• The CAAoI of an information gathering system is stud-
ied, in which an unmanned aerial vehicle (UAV) gathers
information about a set of physical processes; each
process can be measured by one or more ground devices.

• An ACO algorithm is developed to minimizes the nor-
malized weighted sum of the time-average CAAoI of the
observed processes.

The remainder of this letter is organized as follows.
Section II introduces the concepts of AoI and CAAoI.
Section III illustrates the considered information gather-
ing system model and Section IV shows the formulated
optimization problem. Section V presents the proposed ACO
approach. Section VI shows simulation results for performance
evaluation and Section VII concludes this letter.
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Fig. 1. AoI of the physical process pk with U k (T ) = 3 updates.

II. CORRELATION-AWARE AGE OF INFORMATION

To assess the freshness of the received updates at the des-
tination, Kaul et al. [1] define the instantaneous AoI of the
physical process pk at time instant t as

Δk (t) = t − uk (t), (1)

where Δk (0) = 0 and uk (t) is the time instant at which the
last update about pk was generated (also referred to as the
“timestamp” of the last update). An update with a timestamp
ukj reaches the destination at time instant τkj , such that τkj =

ukj + �kj , with �kj as the latency of transmitting the j -th update
from the source to the destination. Fig. 1 illustrates the AoI
of pk with a total number of updates U k (T ) = 3 over a time
duration T.

Note that the first update reduces the AoI by rk1 � τk1 −�k1 =
uk1 , the second update reduces the AoI by rk2 � τk2 −�k2−r1 =
uk2 − uk1 , while the third update reduces the AoI by rk3 �
τk3 − �k3 − r1− r2 = uk3 −uk2 . Consequently, the instantaneous
AoI of the physical process pk in (1) can be expressed as

Δk (t) = t −
U k (t)∑

j=1

(ukj − ukj−1), (2)

where uk0 = 0, ukj is the timestamp of the j-th update, and

U k (t) is the number of updates received before time instant t.
Measurements from spatially proximal devices or successive
measurements from the same device are correlated. To capture
this, we define the instantaneous CAAoI of a physical process
pk at time instant t as follows:

Γk (t) = t −
U k (t)∑

j=1

αkj (u
k
j − ukj−1), (3)

where 0 ≤ αkj ≤ 1 is the novelty factor, which reflects the
novelty of the j-th update with respect of the previous (j −1)
updates of the physical process pk , such that αk1 = 1 and αkj
is defined as

αkj = 1− ξs + ξt

ξs ḋj /ρks + ξt ṫj /ρ
k
t + ξsξt + 1

, (4)

with ρks and ρkt as constant parameters that represent the spa-
tial and temporal correlation extent in the physical process
pk , respectively, ḋj as the minimum distance between the
device that sends the j-th update and all the devices that have
sent the (j −1) updates of the physical process pk , and ṫj as
the time difference between the current update and the last
update about pk from the same device.1 Further, ξs and ξt are
introduced to give the decision maker the ability to consider
either spatial correlation (ξs = 1, ξt = 0), temporal correla-
tion (ξs = 0, ξt = 1), or both spatial and temporal correlation
(ξs = ξt = 1).

III. SYSTEM MODEL

In this work, we study a data gathering scenario in which a
UAV is given the mission of monitoring a set P = {pk}Pk=1
of P physical processes by gathering information from a set
N = {ni}Ni=1 of N devices. Each device is able to sense one
physical process; to represent the devices ability to observe
the processes, we define χ = [χik ]N×P such that

χik =

{
1, if ni observes pk ,
0, otherwise.

(5)

The UAV has a finite battery capacity and can only operate
for a finite time interval. Consequently, the total observation
time is T seconds. Initially, the UAV is placed at a docking
station ψ0 and the updates from devices are scheduled to keep
the UAV updated about the status of the physical processes P
during the observation time T. To gather information from
device ni , the UAV hovers at ψi = {xi , yi , h}, where (xi , yi )
represents the coordinates of device ni and h is the UAV’s
altitude.

Assuming additive white Gaussian noise (AWGN), the data
rate between device ni and UAV is

Ri = B log2

(
1 +

Pi

ϕ̄iPn

)
, (6)

where Pi is the transmit power of device ni , Pn is the power
of the AWGN, B is the bandwidth of the channel, and ϕ̄i
is the average channel path-loss between device ni and the
UAV. A probabilistic air-to-ground communication model is
considered [15], in which ϕ̄i is expressed as

ϕ̄i = Pri (LoS)ϕi (LoS) + [1− Pri (LoS)]ϕi (NLoS), (7)

where Pri (LoS) is the probability of a line-of-sight (LoS) con-
nection between device ni and the UAV, which is expressed
as [15]

Pri (LoS) =
1

1 + β1 exp(−β2[θi − β1])
, (8)

where β1 and β2 are constants depending on the type of envi-
ronment, either dense urban, urban, or rural, while θi is the
elevation angle of the UAV with respect to device ni dur-
ing communication. Since the UAV communicates with device
ni while hovering above it, θi = π

2 . Finally, ϕi (LoS) and
ϕi (NLoS) denote the path losses of the LoS and non-LoS
(NLoS) connections, respectively, and can be expressed as

ϕi (LoS) = PLi + ζLoS;ϕi (NLoS) = PLi + ζNLoS, (9)

1The initial value of ṫj is set to (1− ξs )ξ
−1
s .
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where ζLoS and ζNLoS represent the excessive path loss in LoS
and NLoS, respectively. Furthermore, PLi = 20 log10(

4πhfc
c )

is the free-space path loss, with fc as the carrier frequency and
c as the speed of light.

A scheduling policy is represented by (η,μ,u), such that
η = [ηi ]1×N with ηi as the number of updates from device
ni , μ = [μι]1×F with μι as the index of the device that
transmits the ι-th update and F =

∑N
i=1 ηi as the total number

of updates received at the UAV about P from N , and u =
[uι]1×F with uι as the timestamp of the ι-th update. The time
required for moving the UAV from the device that sends the
(ι− 1)-th update to the one that sends the ι-th update is T̄ι =
‖ψμι−1 − ψμι‖/v , where v is the speed of the UAV and ‖·‖
is the second norm. The required time for the UAV to receive

an update from device ni is Ti =
∑P

k=1 χik Ik
Ri

, where Ik (in
bits) is the payload size of an update of pk . Device ni has a
finite capacity battery of Emax

i and each time it is scheduled
to transmit an update to the UAV, its battery level shrinks by
PiTi .

IV. PROBLEM FORMULATION

The objective is to find a scheduling policy that minimizes
the time-average CAAoI of the processes of interest. The time-
average CAAoI of the physical process pk over time interval
T can be expressed as

〈Γk (t)〉T � 1

T

∫ T

0
Γk (t) dt

=
T

2
− 1

T

U k (T )∑

j=1

αkj (u
k
j − ukj−1)(T − τkj ), (10)

where U k (T ) is the total number of updates about the phys-
ical process pk during the observation interval T. It is worth
mentioning that the maximum value of 〈Γk (t)〉T is T/2 and∑P

k=1U
k (T ) = F . The objective function is a normalized

weighted sum of time-average CAAoI of the processes of
interest and the optimization problem is formulated as

P1 min
η,μ,u

O(μ,u) =
1

0.5T

P∑

k=1

λk 〈Γk (t)〉T , (11a)

s.t.

F∑

ι=1

(Tι + T̄ι) ≤ T , (11b)

PiTiηi ≤ Emax
i , ∀ni ∈ N , (11c)

ηi ∈ Z
+, ∀ni ∈ N , (11d)

μι ∈ {1, 2, . . . ,N }, (11e)

where λk is an importance weight for the physical process
pk , such that

∑P
k=1 λk = 1 and Z

+ represents the set of non-
negative integers. Constraint (11b) guarantees that the UAV
has enough time to travel and receive all the scheduled updates.
Constraint (11c) guarantees that each device is able to transmit
all its scheduled updates.

V. PROPOSED ANT COLONY OPTIMIZATION

ALGORITHM

ACO is a swarm intelligence approach, in which a set
of agents “artificial ants” cooperate to solve an optimization

Algorithm 1 ACO Algorithm for CAAoI Information Gathering

1: Input: N , T, Emax
i , λk , ρs , ρt , A, and I;

2: Initialize δil ; Calculate �il and Ti ;
3: O ←∞;
4: For Iteration = 1 to I do
5: O1 ←∞; O2 ←∞;
6: For a = 1 to A do
7: η(a) = 01×N ; μ(a) ← ∅; u(a) ← ∅; t(a) = 0; s(a) =

0N×N ;

8: Set i = 0; Evaluate ε
(a)
il and ε

(a)
l ∀1 ≤ l ≤ N

9: While
∏N

l=1(1− ε
(a)
il ) +

∏N
l=1(1− ε

(a)
l ) = 0 do

10: Select a device nl∗ using (12); t(a) = t(a)+Tl∗ + �il∗/v ;

11: s
(a)
il∗ = s

(a)
il∗ + 1; ; i = l∗;

12: η
(a)
i = η

(a)
i + 1; μ(a) = [μ(a) i ]; F (a) = F (a) + 1;

13: Re-evaluate ε
(a)
i and ε

(a)
il 1 ≤ l ≤ N ;

14: End While
15: Evaluate O(μ(a),u(a)) using (10) and (11a);
16: If O > O(η(a),μ(a),_μ(a))

17: η∗ ← η(a);μ∗ ← μ(a);u∗ ← u(a);
18: End if
19: If O1 > O(μ(a),u(a))

20: η(a1) ← η(a);μ(a1) ← μ(a);u(a1) ← u(a); s(a1) ←
s(a);

21: Else if O2 > O(μ(a),u(a))

22: η(a2) ← η(a);μ(a2) ← μ(a);u(a2) ← u(a); s(a2) ←
s(a);

23: End if
24: End for
25: Deposit pheromone of a1 and a2 using (17);
26: End for
27: Return η∗, μ∗, and u∗.

problem. The artificial ants mimic the foraging behavior of
their biological counterparts in finding a path to the food
by indirect communication manner, through depositing a sub-
stance called pheromone. Each ant constructs a solution by
traveling a tour through the search space of the optimization
problem and deposits pheromone to reflect the quality of the
corresponding solution. The tour path selection is a stochas-
tic procedure which depends on two parameters, namely the
attractiveness and trail pheromone. The points of the search
space with higher pheromone concentration will more likely
be chosen and thus reinforced.

The proposed ACO algorithm is presented as Algorithm 1,
in which a colony of A ants collaborate to solve P1. The
tour of each ant a ∈ A starts by setting the time indication
t(a) = 0 and s(a) = 0N×N , and the updates from the devices
are embedded in the scheduling policy (η(a),μ(a),u(a)) until
there is no time to receive more updates or none of the
devices has sufficient transmission energy. The probability of
scheduling the update from device nl after the current device
ni is

π
(a)
il =

ε
(a)
il ε

(a)
l (�

(a)
il )γ1(δil )

γ2

∑N
n=1
n �=l

ε
(a)
nl ε

(a)
n (�

(a)
il )γ1(δil )

γ2
. (12)

The parameters in (12) are as follows.
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• �
(a)
il is the attractiveness of scheduling the update from

device nl after the current device ni ; it is set to be2

�
(a)
il =

D
∑P

k=1 χlkλk

(1 + η
(a)
l )�il

, (13)

where �il = ‖ψi − ψl‖ is the distance between ni and
nl , and D is a constant [11]. �il in (13) suggests more
attractiveness to devices that monitor physical processes
with higher λk , are in close proximity to ni to mini-
mize the UAV’s traveling distances, and have less already
scheduled updates.

• δin is the trail pheromone.
• ε

(a)
il indicates that there is enough time to receive the

update from nl ; it is set to be

ε
(a)
il =

{
1, if t(a) + Tl + �il/v ≤ T ,
0, otherwise.

(14)

• ε
(a)
l indicates that nl has enough transmission energy; it

is set to be

ε
(a)
l =

{
1, if PlTlη

(a)
l ≤ Emax

l ,
0, otherwise.

(15)

• γ1 and γ2 control the influence of the attractiveness and
pheromone, respectively.

Once a device nl∗ is selected according to (12), the device
index l∗ is embedded to μ(a), t(a) = t(a)+ Tl∗ + �il∗/v , the
timestamp of the update is embedded to u(a), and F (a) and
the corresponding elements η(a)l∗ and s

(a)
il∗ ∈ s(a) increase by

one. The quality of a solution constructed by ant a is reflected
in the deposited pheromone �(a), which is set to be

�(a) � 1

O
(
μ(a),u(a)

) =
0.5T

∑P
k=1 λk 〈Γ

(a)
k (t)〉T

. (16)

A global updating rule is considered in the proposed
ACO, in which the algorithm repeats I colonies and in each
colony only two ants with highest and second-highest deposit
pheromone according to (16) are allowed to deposit their
pheromone [16]. The trail pheromone is updated as follows:

δil ← (1− σ)δil + s
(a)
il �(a), (17)

where σ is the pheromone evaporation coefficient.

A. Computational Complexity Analysis

The total number of updates that can be gathered by the
UAV over a time duration T is upper bounded by

F̃ =

⎡

⎢⎢⎢⎢

T

min1≤i ,l≤N
i �=l

{�il/v}+min1≤i≤N {Ti}

⎤

⎥⎥⎥⎥
. (18)

The denominator in (18) is the minimum required time
to travel between two devices plus the minimum required
time to receive an update from a device. The search space
of the optimization problem P1 is O(N (N − 1)F̃−1). An

2For the conventional AoI, �
(a)
il

=
D

∑P
k=1 χlkλk
�il

.

TABLE I
SIMULATION PARAMETERS

Fig. 2. CAAoI and conventional AoI of the considered system model versus
the time duration T with P = 3 process, ξs = 1, ξt = 1, ρks = 100, and
ρkt = 100.

ant a performs O(N 2F̃ ) operations to construct a solu-
tion and O(N F̃ 2 log(F̃ )) operations to evaluate the objective
function. Consequently, the computational complexity of the
ACO algorithm is O(IA[N 2F̃ + N F̃ 2 log(F̃ )] + IN 2) =
O(IA[N 2F̃ + N F̃ 2 log(F̃ )]); this is remarkably lower than
the complexity of the exhaustive search approach, which is
O(N 2(N − 1)F̃−1F̃ 2 log(F̃ )).

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the CAAoI of the consid-
ered system model, in which the devices are distributed in a
1× 1 km2 area and the main parameters are listed in Table I.

Figure 2 illustrates both the conventional AoI and CAAoI
of the considered system model with P = 3 physical processes
versus a range of the observation time T. It presents the ACO
algorithm solution and the optimal solution, obtained through
exhaustive search. It is seen that the proposed ACO algo-
rithm achieves near-optimum performance, and as T increases,
the gap difference between the CAAoI and conventional AoI
increases. This is attributed to the fact that increasing the time
to gather data from a fixed number of devices increases the
correlation in the gathered data, which increases the CAAoI.

Figure 3 illustrates both the conventional AoI and CAAoI
of the considered system model with P = 3 physical processes
that are monitored by spatially-correlated devices. It is seen
that as N increases, both the CAAoI and conventional AoI
reduce and the gap difference between them decreases as well.
This is attributed to the fact that increasing N increases the
diversity. Device diversity augments the diversity in the gath-
ered information, which reduces the CAAoI. While increasing
N, the inter-device distance also reduces, which enables the
UAV to gather updates about the three physical processes
more-frequently. To gain a deeper insight into such behav-
ior, the right-side y-axis of Fig. 3 illustrates the corresponding
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Fig. 3. CAAoI and conventional AoI of the considered system model versus
N with P = 3 process, ξs = 1, ξt = 0, and ρks = 100.

Fig. 4. CAAoI of the considered system model versus ρs = ρks and ρt = ρkt
with N = 20 devices, P = 3 process, ξs = 1, and ξt = 1.

total uncorrelated information gathered at the UAV, which
equals

∑3
k=1Hk (|Nk |), where Hk (|Nk |) is the uncorrelated

information of process pk ,3 Nk is the subset of devices sched-
uled to send updates about pk , and |Nk | is the number of
devices in Nk . Hk (|Nk |) can be estimated as Hk (|Nk |) =

Ik + Ik
∑|Nk |

j=2 [1 − 1
ḋj /ρks+1

] [3], [13], [17]. It can be seen

that the uncorrelated information corresponding to the conven-
tional AoI does not change versus N. This can be explained,
as in order to reduce the conventional AoI, the UAV gathers
data from the closest subset of devices and keeps receiv-
ing replicas from the same devices. On the other hand,
such replicas do not reduce the CAAoI. Thus, the UAV
tries to gather data from all the available devices to mini-
mize the CAAoI, which increases the gathered uncorrelated
information.

Figure 4 portrays the CAAoI versus ρkt and ρkt . It is
clear that as the correlation among the data decreases
(for small values of ρkt and ρkt ), the novelty of each
update increases, which reduces the CAAoI. The oppo-
site is also valid, i.e., as the correlation in the data
increases, the novelty of the updates decreases and the CAAoI
increases.

3The uncorrelated information of the physical process pk equals the joint-
entropy of the subset of devices scheduled to send updates about pk to the
UAV.

VII. CONCLUSION

In this letter, we have extended the AoI concept by intro-
ducing a new CAAoI metric to capture both the freshness
and diversity of gathered information. The CAAoI of an
information gathering scenario has been studied, in which
a UAV monitors a set of physical processes by gathering
information from a set of devices. An ACO algorithm has
been developed to minimize the CAAoI. Results have illus-
trated that the proposed CAAoI enables the UAV to maintain
the freshness and diversity of the gathered information.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often
should one update,” in Proc. IEEE INFOCOM, Orlando, FL, USA, 2012,
pp. 2731–2735.

[2] H. H. Yang, C. Xu, X. Wang, D. Feng, and T. Q. S. Quek,
“Understanding age of information in large-scale wireless networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 3196–3210,
May 2021.

[3] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact of spatial
correlation on routing with compression in wireless sensor networks,”
ACM Trans. Sens. Netw., vol. 4, no. 4, p. 24, Aug. 2008.

[4] M. C. Vuran, Ö. B. Akan, and I. F. Akyildiz, “Spatio-temporal corre-
lation: Theory and applications for wireless sensor networks,” Comput.
Netw., vol. 45, no. 3, pp. 245–259, Jun. 2004.

[5] X. Xie, H. Wang, L. Yu, and M. Weng, “Online algorithms for optimiz-
ing age of information in the IoT systems with multi-slot status delivery,”
IEEE Wireless Commun. Lett., vol. 10, no. 5, pp. 971–975, May 2021.

[6] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of information
with power constraints: Multi-user opportunistic scheduling in multi-
state time-varying channels,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 854–868, May 2020.

[7] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Aug. 2017.

[8] P. Gjanci, C. Petrioli, S. Basagni, C. A. Phillips, L. Bölöni, and
D. Turgut, “Path finding for maximum value of information in multi-
modal underwater wireless sensor networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 2, pp. 404–418, Feb. 2018.

[9] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The cost of
delay in status updates and their value: Non-linear ageing,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4905–4918, Aug. 2020.

[10] M. Dorigo and T. Stützle, Ant Colony Optimization, 1st ed. Cambridge,
MA, USA: Bradford Book, 2004.

[11] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[12] J. Zhang, X. Hu, X. Tan, J. H. Zhong, and Q. Huang, “Implementation of
an ant colony optimization technique for job shop scheduling problem,”
Trans. Inst. Meas. Control, vol. 28, no. 1, pp. 93–108, Mar. 2006.

[13] A. A. Al-Habob, O. A. Dobre, and H. V. Poor, “Role assignment
for spatially-correlated data aggregation using multi-sink Internet of
Underwater Things,” IEEE Trans. Green Commun. Netw., vol. 5, no. 3,
pp. 1570–1579, Sep. 2021.

[14] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques
for the vehicle routing problem,” Adv. Eng. Informat., vol. 18, no. 1,
pp. 41–48, Jan. 2004.

[15] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

[16] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer,
“Pareto ant colony optimization: A metaheuristic approach to
multiobjective portfolio selection,” Ann. Oper. Res., vol. 131, no. 1–4,
pp. 79–99, Oct. 2004.

[17] A. A. Al-habob, O. A. Dobre, and H. V. Poor, “Energy-efficient spatially-
correlated data aggregation using unmanned aerial vehicles,” in Proc.
31st Annu. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun.,
London, U.K., 2020, pp. 1–6.

Authorized licensed use limited to: Princeton University. Downloaded on May 27,2022 at 02:01:38 UTC from IEEE Xplore.  Restrictions apply. 


