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Abstract

Advances in imaging acquisition techniques allow multiple imaging modalities to be
collected from the same subject. Each individual modality offers limited yet unique
views of the functional, structural, or dynamic temporal features of the brain. Multi-
modal fusion provides effective ways to leverage these complementary perspectives
from multiple modalities. However, the majority of current multimodal fusion
approaches involving functional magnetic resonance imaging (fMRI) are limited to 3D
feature summaries that do not incorporate its rich temporal information. Thus, we
propose a novel three-way parallel group independent component analysis (pGICA)
fusion method that incorporates the first-level 4D fMRI data (temporal information
included) by parallelizing group ICA into parallel ICA via a unified optimization frame-
work. A new variability matrix was defined to capture subject-wise functional vari-
ability and then link it to the mixing matrices of the other two modalities. Simulation
results show that the three-way pGICA provides highly accurate cross-modality link-
age estimation under both weakly and strongly correlated conditions, as well as com-
parable source estimation under different noise levels. Results using real brain
imaging data identified one linked functional-structural-diffusion component associ-
ated to differences between schizophrenia and controls. This was replicated in an
independent cohort, and the identified components were also correlated with major
cognitive domains. Functional network connectivity revealed visual-subcortical and
default mode-cerebellum pairs that discriminate between schizophrenia and controls.

Overall, both simulation and real data results support the use of three-way pGICA to
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1 | INTRODUCTION

Advances in brain imaging acquisition technologies have enabled the
collection of more than one imaging modality from each subject, for
example, magnetoencephalography (MEG), positron emission tomog-
raphy, and magnetic resonance imaging (MRI), which includes struc-
tural MRI (sMRI), functional MRI (fMRI), and diffusion MRI (dMRI).
Each of them provides limited yet unique views of the functional,
structural or dynamic temporal features of the brain. For example,
sMRI provides higher spatial resolution on specific brain tissue types
(e.g., gray matter, white matter, cerebrospinal fluid) but lacks temporal
information, while MEG measures brain electrical activity with high
temporal resolution, fair spatial resolution, but no tissue specificity.
The limitations of each individual modality and their evident mutual
complementarities suggest that advances in multimodal data fusion
could be key to maximizing clinical and scientific benefit from large
multimodal imaging studies (Baltrusaitis, Ahuja, & Morency, 2019;
X. Zhang, Pan, et al., 2020).

Several multimodal fusion methods have been proposed with the
purpose of taking full advantage of complementary brain imaging
modalities (Sui, Adali, Yu, Chen, & Calhoun, 2012). A representative
two-modality (two-way) fusion approach named parallel independent
component analysis (pICA) (Liu et al., 2009) maximizes both intra-
modality independence and intermodality correlation to identify
linked independent component (IC) pairs between two modalities. An
important feature of pICA is that each modality is characterized by its
own mixing matrix. For three-way fusion, joint ICA (jICA) (Calhoun
et al, 2006) maximizes the independence among the concatenated
multimodal features but generates the same mixing matrix for all
modalities. Multiset canonical correlation analysis (mCCA) (Li Yiou,
Wang, & Calhoun, 2009) maximizes intersubject covariation across
any number of modalities but without an independence constraint,
and limited to orthogonal features, which is extended to grouped
sparse CCA (X. Zhang, Pan, et al, 2020). The mCCA + jICA (Sui
et al., 2011) method maximizes intramodality independence and inter-
subject covariation by combining mCCA and jICA using a two-step
process, where mCCA acts as preprocessing for jICA. Another two-
stage fusion is multiple regression (De Martino et al., 2010), in
which source separation was performed first, then followed by a
cross-modality regression. Linked ICA (Groves, Beckmann, Smith, &
Woolrich, 2011) is based on Bayesian framework, which is extend
to identify phenotypes from large population sample (W. K. Gong,
Beckmann, & Smith, 2021) and to extract spatially and temporally
shared components of complex-valued fMRI by shift-invariant

identify multimodal spatiotemporal links and to pursue the study of brain disorders

under a single unifying multimodal framework.

4D fMRI, group ICA, independent component analysis (ICA), parallel ICA, three-way multimodal

canonical polyadic decomposition (X. F. Gong, Lin, Cong, & De
Lathauwer, 2018; Kuang et al., 2020). Meanwhile, the three-way
pICA (Vergara et al.,, 2014) method maximizes intramodality inde-
pendence and intermodality correlation under a unified optimiza-
tion framework. Another multiway fusion method, multidataset
independent subspace analysis (Silva, Plis, Adali, Pattichis, &
Calhoun, 2020) accomplishes the fusion aim from a subspace inde-
pendence perspective.

While the aforementioned methods use an unsupervised fusion
paradigm, supervised models also exist, offering alternative models for
hypothesis testing. The pICA with reference (Chen et al, 2013)
imposes an additional constraint upon spatial maps to minimize the
distance between an IC and the reference. The reference-based
mCCAR + jICA (Qi, Calhoun, et al., 2018) method adds a correlation
constraint on the mixing matrix that can identify underlying co-
varying patterns that correlate with the reference (Qi, Yang,
et al,, 2018; Qi et al., 2020; Qi, Schumann, et al., 2021). Supervised
big FMRIB's linked ICA can use multiple nonimage derived pheno-
types to supervise multimodal MRI fusion (Gong Weikang, Ying-Qiu,
Smith Stephen, & Beckmann Christian, 2021). Importantly, all the
fusion methods mentioned so far are restricted to second-level fMRI
features (e.g., 3D regional homogeneity or connectivity maps,
subjects x imaging variables), rather than first-level 4D fMRI
(subjects x voxels x time points) (Plis et al., 2018). Under this 3D
framework, the valuable temporal dynamic information in fMRI data
cannot be fully utilized.

The temporal variation conveys important information in fMRI
signal (Yan et al., 2019). However, most multimodal methods rely on
preprocessing fMRI with dimensionality reduction approaches that
collapse the temporal information and yield 3D images. Reducing 4D
fMRI to 3D spatial data in such manner before data fusion does not
guarantee a full, efficient utilization of the temporal information dur-
ing the fusion step. Although there are methods incorporating the first
level 4D fMRI in single subject case which assume concurrent
EEG/fMRI data (Martinez-Montes, Valdes-Sosa,
Goldman, & Cohen, 2004; Van Eyndhoven et al., 2021) and multi-
subject case (Chatzichristos, Davies, Escudero, Kofidis, &
Theodoridis, 2018; Christos Chatzichristos, De Lathauwer,
Theodoridis, & Van Huel, 2020; Jonmohamadi et al., 2020), most of
them are limited to fusion of EEG and fMRI. We previously proposed

Miwakeichi,

a two-way parallel GICA + ICA (Qi et al., 2019) to incorporate first-
level 4D fMRI data by parallelizing group ICA (GICA) and ICA, aiming
to enable direct fusion of first-level fMRI features, but it was limited
to two modalities. In this study, we extended parallel GICA + ICA to
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enable three-way fusion by integrating GICA into a three-way pICA
framework.

In addition to denoising the BOLD fMRI signal in preprocessing
(Churchill, Raamana, Spring, & Strother, 2017), ICA can further isolate
artifact components from fMRI (Du et al., 2016; X. F. Gong, Wang, &
Lin, 2015; Niu et al.,, 2021). This is particularly noticeable in GICA
(Calhoun, Adali, Pearlson, & Pekar, 2001), which deal with 4D fMRI
from multiple subjects and not only extracts subject- and group-level
ICs but also their time courses. In contrast, three-way pICA identifies
linked component triangles among all three modalities by simulta-
neously maximizing both intermodality association (at the subject
expression level) and intramodality independence (at the group com-
ponent level). Building on this three-way framework, we exploit
GICA's success with temporal information by letting it take the place
of the customary ICA of 3D fMRI data from traditional three-way
plICA. Fittingly, our approach enables analysis of temporal information
included 4D fMRI together with the other two 3D modality features,
in a single three-way plCA setting, thus keeping the original properties
of both GICA and three-way pICA.

In order to combine GICA and plICA within a single model, a vari-
ability matrix that calculate the L2-distance between subject-specific
and group maps was defined. We then maximize the correlation
among variability matrices estimated from each of the three modali-
ties in a three-way parallel ICA decomposition. The summarized vari-
ability matrices of each modality portray how much the subject-
specific components different from group-common maps. In turn,
direct correlations can be measured between every modality pair to
achieve data fusion of 4D fMRI (subjects x voxels x time points), plus
two other 3D modality features, which in this work are gray matter
volume (GMV) from sMRI and fractional anisotropy (FA) from dMRI
(both subjects x voxels). Based on this intuition, a novel three-way
parallel GICA (three-way pGICA) method that leverages the temporal
information from 4D fMRI ensues, enabling the identification of a
linked fMRI-sMRI-dMRI component triangle was proposed.

Notably, the fMRI decomposition obtained with the proposed
three-way pGICA is imbued with knowledge from the other two
modalities and, naturally, differs from that obtained with simple GICA.
Therefore, we can also evaluate its functional network connectivity
(FNC) (Damaraju et al., 2014; Gonzalez-Castillo & Bandettini, 2018;
Karahanoglu & Van De Ville, 2015; Preti, Bolton, & Van De
Ville, 2017; Y. Zhang, Zhang, et al., 2020) to identify abnormal cross-
network FNCs that are also related with diffusion and structural
covariations. In this study, we verified the effectiveness of three-way
pGICA in both simulation and human brain data. The Function Bio-
medical Informatics Research Network (fBIRN) dataset (N = 254)
(Keator et al., 2016) was used as a discovery and the Center for Bio-
medical Research Excellence (Jorge Nocedal, 1999) (COBRE, N = 89)
was an independent replication. Results show that three-way pGICA
can generate a linked fMRI-sMRI-dMRI component triangle in both
simulation and human brain data that can be validated in an indepen-
dent cohort. These results support the use of three-way pGICA for
stable identification of reliable spatiotemporal intermodality linkage

among three modalities to study brain disorders under a single unify-

ing multimodal framework.

2 | METHODS AND MATERIALS

21 | GICA of fMRI

X1 =[X1;X2;..;Xn] represents concatenated 4D fMRI over subjects (N)
in the temporal direction (T), where x; is the T x V1 data matrix of sub-
ject i, V1 represents the number of voxels, and X; has dimensions of
NT x V1. The mean was removed from each subject data x; before
principal component analysis (PCA). PCA is used to reduce subject-
and group-level dimensions for fMRI. Let P;=F; -x; be the reduced
data matrix (L x V1) of subject i, where F; is whitening matrix (L x T)
obtained by PCA decomposition at subject-level (the notation indi-
cates that F; is the pseudoinverse of the rank L subject dewhitening
matrix F; :D,»A;i/z, based on the top L eigenvalues of the eigenvalue
decomposition EVD(Z*)= D,»A;D,»T of the TxT subject-specific
covariance matrix £*), and L represents the rank from PCA decompo-
sition. Then, the PCA-reduced data P; is concatenated over subjects
along the temporal dimension. After that, a group-level PCA is per-
formed to further reduce the concatenated group data to the number
of components (M), as in (1):

FI'Xl

F!?l - XN

where G; is the M x NL group-level whitening matrix generated from
group-level PCA (G; is the pseudoinverse of the rank M group
dewhitening matrix G1), and Z; is the M x V reduced fMRI matrix.
Following ICA decomposition of Z; (details provided further
below), we get Z1 =A1 X Sgroup, Where Sgroyp is the estimated M x V4
aggregate group-level fMRI IC matrix (one component per row) and
A1 is the estimated M x M mixing matrix. Substituting Zq = A1 X Sgroup
into (1) and multiplying G1 (group-level dewhitening matrix) on both

sides, we obtain the rank M approximation:

FI X1
GlAlsgroup g (2)

FN XN

The group dewhitening matrix G1 can be partitioned by subject, as in
the following equation:

Gi1 Fi-x1
Alsgroup

Gin F,Tl XN

Iz
©
L
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Taking each partition i, we can write the following least-squares

approximation for subject-specific ICs:

G1,~A1$5ub‘. = F,_ X Xj (4)
Seu, = (G1iA1) F xX; (5)

where gsubi consists of spatial fMRI ICs specific to subject i and ()~
indicates the pseudoinverse. Likewise, multiplying two sides of (4) by
F; (subject-level dewhitening matrix) yields the final data reconstruc-
tion approximation for subject i by least squares:

Xi = FiG1iA1Ssup, (6)

which reveals the final ICA decomposition of x; by means of its least
squares approximation (x;). The MxV; Sgy matrix contains M
subject-specific ICs, while the T x M F;G;A1 mixing matrix contains
the corresponding subject-specific time courses. These are the classic

linear back-reconstruction equations from GICA1 (Calhoun
et al., 2001).
2.2 | Three-way parallel GICA

In order to take advantage of the first-level temporal fMRI dynam-
ics in a combined GICA and pICA framework, we define a variability

matrix (Cq) for three-way parallel fusion that captures component-

(b) (©) 3-way paralle] GICA
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wise subject-level functional variability to link with the other two
modalities (Qi et al., 2019; Qi, Plis, et al., 2021). Specifically, each ele-
ment C’f is defined for the ith subject as the L,-distance between the
jth group-level IC (Sgroupj) and the jth subject-level IC (Sqy, ), where
i=12,.,N,j=12,..,
to A, and A3 (subject expression profiles) from sMRI and dMRI,

M. Naturally, the dimensionality of C; is equal

respectively. Following the three-way plCA framework (8), we maxi-
mize the independence within each modality while also adding con-
straint terms that maximize the modality linkage among functional
(C1) and structural (A,, As) variabilities (Figure 1c).

The intersubject functional variability matrix C; is estimated as

F_-X1 2
~WiGF i (7)

Fry - xn 2

[N

C‘11 = HsgroupJ *ssube”i = W}iGI

where Wy =A;! and W/ is the jth row of Wy. C; is normalized as
C1/norm(Cy) to avoid the component scaling.

Suppose that the N x V, matrix X, and the N x V3 matrix X3 rep-
resent the sSMRI and dMRI data, respectively (V, and V3 represent the
number of voxels in each modality). Akin to fMRI, the mean was also
removed from sMRI (X2) and dMRI (X3) modality. A PCA reduction
step (Z, =G, x X, for sMRI, Zs =G5 x X3 for dMRI) followed by
ICA decomposition yields the following for the remaining modalities
(assuming the subject-level data accounts for only one row of X,
or X3):

(d) Group-level (e) Subject-level

Sub 1”

Ty N

IP (C1:A3) M__, @

A (f) Post FNC analysis
s
1p%(A2,C1) S I

.P (A3, A3) NM_'

Framework of three-way parallel group independent component analysis (GICA) fusion method. (a) Preprocessed first-level

spatiotemporal 4D functional magnetic resonance imaging (fMRI) (X1), and second-level voxelwise gray matter volume (GMV) from 3D structural
MRI (sMRI) (X,) and voxelwise FA from 3D diffusion MRI (dMRI) (X3). (b) Feature matrix for each modality. (c) Three-way parallel GICA (pGICA)
that maximize the independence for all the three modalities based on independent component analysis (ICA) and GICA portions individually, and
maximize the correlation between subject expression profiles of sSMRI and dMRI from ICA and the variability matrix of fMRI from GICA. (d,e)
Group-level and subject-level variability matrix and spatial components generated from GICA and ICA portions. (f) Functional network
connectivity (FNC) analysis for time courses of fMRI modality. GPCA: group-level PCA; GICA: group ICA; G1: fMRI dewhitening matrix from
GPCA,; F;: fMRI dewhitening matrix generated from subject-level PCA (sPCA); G, and G3: sMRI and dMRI dewhitening matrix from PCA,

respectively; Sgroupj: jth group component; Sqp, j: jth component of subject i; C1: variability matrix for fMRI; A, and As: mixing matrix for sMRI and
dMRI. AW jnto, AW3 nto, and AW o represent the Infomax gradient. AWqc1, AW2 a2, and AW3 a3 are the between-modality linkage-regularized
gradient



284 | WILEY.

Ql ET AL

Xo= (G2 x W) xSp, A =Go x W3

Xo = (Gax W;") x Sa, Ag=Gg x W

where G, and G3 are the N x M group-level dewhitening matrices, Z,
and Z3 are the MxV, and M x V3 reduced matrices for sMRI and
dMR], respectively, and likewise for the corresponding N x M A, and
A3z mixing matrices. Here, S, (MxV,) and S3 (MxV3) are the
modality-specific IC matrices, each with M components.

We then formulate the cost function of the proposed three-way
parallel GICA method as:

max_H(Y1)+H(Y2)+H(Y3) +a1Corr(Cyj, Agm)?

W1,W, W3
+azCorr(Cy;, Ag)? +azCorr(Agm, Az ) ®)
where
H(Yl) _ _E[ln fy(Yl)] _ E[In fy(YZ)] - E[In fy(y3)] (10)
_ Cov(Cy, Azm)
Corr(Cyj, Az2m) "~ Std(Cy)) - Std(Azm)
Corr(Cy, Azk) 7 Std(Cy) - Std(As) Y
~ Cov(Aom, As)
CorrAam As) = Stqa, - Std(Asy)
and

Y1 =sigmoid(Us), Uy =Wq xZ; +Wiox 1", Ay =W;!
Y, =sigmoid(Uy), Uy =Wy x Zo + Woo x 17, By =W;! (12)
Y3 =sigmoid(Us), Us =W3 xZ3 + W30 x 1. B3 =W;*

with sigmoid(Uy) = 172

Y; are in dimension of M x V;. H(-) is the differential entropy, E(-) is

computed element-wise (q=1,2,3), U; and

the expected value, and Corr(-) is the Pearson correlation coefficient.
{I,m,k} are the IC indices for the components selected (the top corre-
lated component pair were selected) in each optimization iteration.
fy(Yq) is the probability density function of Y, and Wy represents
the bias vector for each modality.

Note that the objective function (9) looks like the three-way pICA
(Vergara et al., 2014); however, H(Y1) represent GICA portion on 4D
fMRI, but not the ICA on 3D fMRI. Moreover, we redefined C’l’ (vari-
ability matrix as in Equation (7)) for fMRI to link with sMRI and dMRI.
This C‘i’ estimates how much the subject component different from
the group-common component. Thus, whether this difference is asso-
ciated with the other two modalities can be investigated. While in tra-
ditional three-way pICA, the three modalities are linked by maximizing
the correlation among mixing matrices A; generated from each ICA
portion. The first three terms in (9) are solved parallel by the Infomax
(Makeig, Bell, Jung, & Sejnowski, 1996). The last three regularization
terms (correlation among selected columns of the variability matrices,

based on selected ICs) are optimized using the steepest ascent

method. Finally, based on the definitions given above, we obtain the
following updating rules.

For the first three terms (major updates for Wy, W5, and W3,
using the relative gradient (Amari, 1998; Zarzoso & Hyvérinen, 2010)):

L OH(YY) ,

AWs =i T 7/11[l+(172Y1)U1}><W1
L OH(Ys) .

AW = 12 7 7/12[I+(172Y2)U2}><W2 (13)
. OH(Ys) .

AW = 4575 7/13[I+(172Y3)U3}><W3

and correspondingly for the bias weights:

AW10 :/11(1 — 2Y1)
AWao = 12(1—2Y3) (14)
AWgo = A3(1—2Y3)

where 4 is the learning rate, which is annealed periodically. For the
last three terms (minor updates for W’l, W7, and Wg based on Cy,
Azm, and Ag):

AW'i :Acl.al.{vwli Corr(Cyy, Azm)2 +Vwr1 Corr(Cy, A3k)2}
2COI’F(C1,, A2m) 2COI’F(C1,, Agk)

_ 2Corr(Cyi, Aom) 1 2Corr(Cap, Ask) (o1
= G €St (A T QAT G Std (A < K X Q
(15)
where
B —— Cov(Cy, Azm)(Cy—Cy))
= o= Aam) = ()
. Cov(Cy, Ag)(Cy—C
K= (Ao —Ag) — (Cy, As)(Cy—Cy))

Var(Cl,)
a-gwiz, ¢|(2)

WiGLiFy - xa

1>

3 (I1=1,2,...M)

W4 Gy Fy Xy

and Ay, represents the mean of the mth column of A, (likewise for

Az below),

AAs, = Aco.az {VAZm COI’I’(Azm, C11)2 + VA2m COI’I’(AQm, Ag,k)2 }

2Cort(Agm, Cy) 2Cort(Agm, Ask) (16)

e\ 2m, M) T AT\ 2m, M3k T
Std(Agm)Std(Cy) <L 422 Seqim, std(Ag) < T

=Ac2.002.

where

. Cov(Am,Cy)(Asm —A
L=(Cy—Cy) - (2mVa:8‘\(2m2)m !
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Cov(Azm, Asc) (Aom —Azm)

P=(Ag—As) - Var(Aam)

and

AAz = Acz.a3 {VABk COfT(A3k, Cll)z +Vag COfT(Agk, Azm)2

2Corr(Agc, Cy)) 2Corr(Asc, Azm) (17)

o 2 VT g SO T2m  RT
Std(Az)Std(Ca) <Y TP S (AL IStd (Agm)

:/1C3.(l3.

where

. Cov(Asz, C1)(Aa, —A
V=(Cy—Cy) - Bt Valrl()"islj\)3k =

— Cov(As, Aom)(Ask—As)
R= (A2m _A2m) - Var'(nAgk)

Following the updates on Ay, and Az, W, and W3 are updated
as W, =A;'Gy, and W3 =A;'G;. Thus, the above updated on Az,
and Az, eventually becomes an update on W5, and W3, due to the
relationship between A, and W, (A, =W, and Az =W;31). 4, is the
learning rate for H(-) terms of fMRI, sMRI, dMRI and 1, is the step
size of Corr(-) terms. In summary, there are two different procedures
to update Wy, W;, and W3, one is from the regular Infomax frame-
work and the other is from the intermodality correlation regularizer.
We adaptively tune the values of 1, and g in Equations (13)-(17) to
control the weight in the cross-modality correlation regularizer. The
criterion is that when the maximum value in W; is larger than 1.0 x
108 (the predefined maximum weight), then annealing is triggered
with the update 1,y =0.95- 1 (likewise for a,) to prevent values in
W; from blowing up. All in all, our approach adds a further small
adjustment on Wy, W;, and W3 by maximizing the cross-modality cor-
relations. Hence, the proposed three-way pGICA is using an “alternat-
ing” approach to optimize (9), that is, it iteratively alternates between
Infomax and Correlation optimization. Note that AW, and AW,
(corresponding to H(-) terms) are updated in mini-batches. Following,
at the end of each epoch, AW’l, AA,,, and AAgz (corresponding to
Corr(-) terms) are evaluated once in a single full batch update. The
number of mini-batches is the same for all modalities and the stopping
criteria is whether all modalities converge or W; meets the maxi-
mum (1.0 x 108).

2.3 | Simulation

In this simulation, a comparison among the proposed three-way
pGICA, separate GICA/ICA, and separate GICA/pICA was conducted
to estimate the ability of source separation accuracy and cross-
modality linkage detection. Eight nonoverlapping spatial brain maps
were generated by the simTB toolbox (Erhardt, Allen, Wei, Eichele, &
Calhoun, 2012) (https://trendscenter.org/software/SimTB) for fMRI
and sMRI. Eight fiber bundles from the Johns Hopkins University
white matter atlas were selected to simulate dMRI. Thus, the true

sources Sq; for fMRI in dimension of 100 x 100, S, for sMRI in dimen-
sion of 150 x 150, and S3 for dMRI in dimension of 200 x 200 were
generated. The number of time points was set to 100. 100 x 8 time
course matrices were generated from simTB. Mixing matrices A,
(sMRI) and A3z (dMRI) were normally distributed elements in a size of
100 x 8. FMRI variability matrix C, is generated by the L, distance
between subject- and group-level brain maps. The simulated connec-
tions among the three modalities were carefully designed by selecting
one column (the third, fifth, and eighth columns for fMRI, sMRI, and
dMRI, respectively) from each of C4, A, and A3 to be correlated under
certain noise conditions. Therefore, the simulated data contains only
one linkage triangle, and all other components are not linked.

Here, we used two ways to design the simulation. One is fixing
noise: under peak signal-to-noise ratio (PSNR) = 5, the linkage between
modalities were varied from weak (r = .2) to strong (r = .9) for both fMRI
with sMRI and fMRI with dMRI pairs, with a fixed strong correlation
between sMRI and dMRI (r = .8). The other one is fixing modality link-
ages: r = .7 between fMRI and sMRI, r = .18 (not statistically significant
at uncorrected p > .05) between sMRI and dMRI, and r = .6 between
fMRI and dMRI, and changing noise levels to PSNR values from —10 to
17 dB. The final observation data matrices result from the linear combi-
nation of sources and mixing matrices plus a noise term: X=A-S+N.
For fMRI, each x; is generated by x; = TC;S1sup, +N; (i=1,2,...N). This
resulted in 100 simulated subjects, with 10,000; 22,500; and 40,000
voxels for fMRI, sMRI, and dMRI, respectively.

24 | Realbrain data

In real data application, two independent cohorts were used. For the
discovery dataset we used fBIRN (Keator et al., 2016), including
123 SZ patients (38.8 + 11.7, 30F/93M) and 131 gender-age matched
healthy controls (HCs) (36.8 + 10.9, 39F/92M). FBIRN demographic
and cognitive scores are available in Supplementary Table 1. All partic-
ipants are adults between 18 and 60 years. DSM-IV (SCID)
(M. B. First, Spitzer, Gibbon, & Williams, 2002) was used to diagnose
SZ patients. Cognition was measured by the Computerized Multi-
phasic Interactive Neurocognitive System (CMINDS) (van Erp
et al., 2015). There is no gender (p = .30) or age (p = .17) differences
between HC and SZ for the discovery fBIRN.

We also included a validation dataset called COBRE (Aine
et al.,, 2017) consisting of 47 SZs (39.6 + 13.1, 12F/35M) and 42 gen-
der-age matched HCs (37.0 + 11.8, 10F/32M). Cognition was esti-
mated by the Measurement and Treatment Research to Improve
Cognition in Schizophrenia Consensus Cognitive Battery (MCCB)
(Green, Kern, & Heaton, 2004). COBRE demographic and cognitive
scores are shown in Supplementary Table 2. There were no gender
(b =.85) or age (p = .32) differences in the COBRE data. Written
informed consent was obtained for both fBIRN and COBRE which is
approved by the Institutional Review Boards. Resting fMRI, sMRI, and
dMRI were collected for fBIRN and COBRE. Preprocessing steps and
imaging parameters are in Supplementary “Imaging preprocessing.”
sMRI GMV and dMRI FA were used as features for the fusion input.
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3 | RESULTS

3.1 | Results of simulation

The proposed three-way pGICA (red) was compared with separate
GICA/ICA (green), separate GICA/pICA (blue) on simulated data to
test the ability in detecting between modality linkages. Figure 2a-c
shows the results for detecting intermodality association under
fixed noise levels PSNR = 5 for different methods. The black lines
in Figure 2a-c represent the true modality linkage (fMRI-sMRI and
fMRI-dMRI: [0.2-0.9]; sMRI-dMRI: 0.8). Results show that three-
way pGICA can get relatively high cross-modality linkage estimation
comparing with separate GICA/ICA, and separate GICA/pICA with-
out fusion. Separate GICA/ICA gets the worst linkage estimation
(Figure 2c), since there is no linkage regularization between sMRI
and dMRI in separate GICA/ICA without fusion. Due to the lack of
regularization between fMRI and the other two modalities, the link-
age estimation accuracy is lower for fMRI-sMRI (Figure 2a) and
fMRI-dMRI (Figure 2c) than three-way pGICA when comparing sep-
arate GICA/ICA, separate GICA/pICA. Figure 2d-f shows the
source accuracy estimation for fMRI, sMRI, and dMRI under chang-
ing modality linkages. The correlation between the true sources and
the estimated components was used as source estimation accuracy.
It is evident that the proposed three-way pGICA can achieve

comparable source estimation accuracy relative to separate GICA/
pICA, and relative to separate GICA/ICA. This means that without
losing the source separation ability in ICA portions, three-way
pGICA can get more accurate modality linkage estimation, indicat-
ing the benefit of the proposed method. Collectively, these results
show that three-way pGICA provides accurate intermodality link-
age detection under both weak and strong correlations with com-
parable source decomposition.

We also compared three-way pGICA with its alternatives when
fixing the modality linkage but changing noise levels, as shown in
Figure 3. It is clear that three-way pGICA can achieve higher estima-
tion accuracy of between modality linkages (Figure 3a-c), and compa-
rable estimation accuracy for source separation (Figure 3d-f) under
different noise levels. As expected, estimation accuracy decreases as

noise level increases.

3.2 | Results on real data application

3.21 | Linked fMRI-sMRI-dMRI triangle

In the fBIRN data application, the preprocessed T x V; images from
resting-state fMRI, GMV from sMRI and FA from dMRI were used as
feature input for the proposed three-way pGICA to identify three-
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Simulated three-way data fusion comparison between three-way parallel group independent component analysis (GICA) (red),

separate GICA/independent component analysis (ICA) (green), and separate GICA/parallel ICA (pICA) (blue). (a-c) Modality linkage estimation
under fixed noise (peak signal-to-noise ratio [PSNR] = 5) with different level of associations (r = .2-.9). (d-f) Source estimation under different
modality linkage. The black lines in (a-c) represent the true simulated modality linkage
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FIGURE 3 Comparison of modality linkage and source separation under different noise levels with fixed intermodality correlation among
three-way parallel group independent component analysis (GICA) (red), separate GICA/independent component analysis (ICA) (green), and
separate GICA/parallel ICA (pICA) (blue). The black lines in (a-c) represent the true simulated modality linkage

way linked fMRI-sMRI-dMRI components. The component number
at subject-level (L) was set to 80 given the higher dimensionality of
the fMRI data, and the group-level component number (M) was set to
20 based on the MDL criterion (Li, Adali, & Calhoun, 2007) for the
fMRI modality. Following the three-way pGICA decomposition, two-
sample t tests were applied on the estimated mixing matrix within
each modality to compare group differences between patients of SZ
and HC within the identified component triangle.

Among the 20 generated ICs, the seventh fMRI IC, the sixth sMRI
IC, and second dMRI IC (Figure 4a) were the linked components trian-
gle (r = .25, p = 4.0e-05* between fMRI_IC7 and GM_ICé; r = .30,
p = 9.1e-07* between fMRI_IC7 and FA _IC2; r = .58, p = 9.1e-53*
between GM _IC6 and FA _IC2, Figure 4b). The symbol * means FDR
correction for multiple comparisons. The loadings of the component
triangle also show significant group difference (p = 7.9e-05%
p = 1.3e-07*, p = 1.6e-04*, Figure 4c) for fMRI_IC7, GM _IC6, and
FA_IC2, respectively. For the aggregate fMRI component fMRI_IC7,
the red regions indicate a higher variability in HCs than SZs and the
blue regions are opposite. For sMRI and dMRI, the red brain regions
indicate a higher contribution weight in HCs than SZs. In SZ, higher
functional activity in thalamus, para-hippocampus, with lower activity
in cerebellum, are accompanied with lower GMV in anterior cingulate
cortex (ACC), insula, prefrontal and para-hippocampus, plus lower FA
in forceps major and forceps minor. Detailed anatomical information
of the identified multimodal brain regions is summarized in Supple-

mentary Table 3.

3.2.2 | Modality specific component

Apart from the linked three-way fMRI-sMRI-dMRI components, we also
identified one fMRI component (fMRI_IC18, Figure 5), containing the left
attention network, whose time courses were anticorrelated with atten-
tion scores (r = —.2, p = .004). This result highlights the ability of the
proposed method in detecting both linked multimodal components as

well as modality specific component within the joint model.

3.2.3 | Correlation with cognition

We found that the loadings of the identified linked GM_ICé and
FA_IC2 are also correlated with major cognitive domains, including
speed of processing (r = .40, p = 2.2e-10* for GM; r = .30, p = 2.4e-
06* for FA), working memory (r = .33, p = 3.2e-07* for GM), verbal
learning (r = .35, p = 5.0e-08* for GM; r = .30, p = 2.1e-06* for FA),
visual (VIS) learning (r = .36, p = 1.7e-08* for GM; r = .31, p = 1.0e-
06* for FA) and composite scores (r =.39, p = 1.1e-09* for GM,;
r = .34, p = 1.4e-07* for FA), as displayed in Figure 6.

3.24 | FNCanalysis

One of the advantages of the proposed three-way pGICA compared
with traditional three-way fusion methods is that, we can also
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calculate FNC by subject-specific time courses of the identified fMRI
components after the fusion analysis. These fMRI components were
then manually classified into seven categories: cerebellar, auditory, VIS,
sensorimotor, default-mode network (DMN), subcortical (SC), and cogni-
tive control (CC) networks based on the brain regions in the compo-
nents. The mean FNC matrices of SZ and HC are displayed in Figure 7a,
b. The group difference FNC matrix between SZ and HC is displayed in
Figure 7c. Values in Figure 7c are presented as —log10(p) x sign(t).

Results show that the VIS-SC (fMRI_IC7, Figure 4c) and DMN-CC
are group discriminating FNC pairs (p <.001, FDR corrected).

3.2.5 | Linkage replication in COBRE dataset

Here, we further tested the stability of our proposed method in
detecting modality linkage, that is, whether the linkage among
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fMRI_IC7, sMRI_IC6, and dMRI_IC2 extracted in fBIRN can be (F;I,BflhkleRly'xffflml

replicated in the independent COBRE dataset, by performing BIRN BIRNY ~

cross-site linear projection analysis. Starting with sMRI, XERN — Zivarr = (GfMRI ) E, (18)

APBIRN » STBIRN in the fBIRN cohort. For the validation cohort, we (Ff\,?},’f,,'\,‘;,) XNIMRI

obtained the mixing matrix by linear projection as:

ASBRE — XCOBRE (Siﬂ';fz)i. The same approach was used for dMRI  where Z/SRN (M xVy) is the reduced data matrix, (Giﬂs{\‘)i

projection from fBIRN to COBRE. (Mx (N-L)) and (F{?ﬁm)_ (L x T) are the group-level and subject-level
For fMRI, we start with X{gR" = [xff‘f'ml;xfz'?f'ﬁ'ﬁ‘l;...;XL?}'EANRI] rep- whitening matrices, respectively. Here, the same L, which means the

resenting the fMRI data for fBIRN cohort. After subject-level and same mask, for COBRE and fBIRN. After ICA decomposition, we can

fBIRN _ AfBIRN _ fBIRN fBIRN i
group-level PCA, we have calculate Zygp; =Amiri  Sgroupsmriy Where Agyp is the M x M mixing
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matrix for fMRI and Sg?oﬁ';'me

is the M x V1 group-level matrix of ICs.
Thus, we obtained a group component for COBRE by linear projection

COBRE COBRE fBIRN
AfMRI ZfMR (sgroup fMRI

for COBRE were obtained as:

) . The subject-specific components

COBRE __ COBRE 4 COBRE COBRE COBRE
Ssub <GIfMR| AfMRI ) (FlfMR| ) xi,fMRI (19)

where Gf}?,gf'z is the ith partition of the Giop< dewhitening matrix
(i=1,2,..,
Finally, we can calculate the between-subject functional variabil-

ity matrix Coer

N, where N is number of subjects).

from Equation (7). Correlation analyses were further
performed on the loadings of the projected target component
between CSGBRE_IC7, ASSERE_IC6, and ASSERE_IC2. Results (Figure 8)
show that the triangle linkage detected in fBIRN can be replicated in
COBRE cohort (r =.29, p =.001* between fMRI_IC7 and GM_ICé;
r =.23, p =.02 between fMRI_IC7 and FA_IC2; r = .44, p = 1.6e-05*
between GM_ICé and FA_IC2), suggesting that the proposed three-
way pGICA provides a reliable association detection among fMRI-
sMRI-dMRI, that is, this association can be replicated in an indepen-
dent cohort. Furthermore, this replicable fMRI-sMRI-dMRI compo-
nent triangle also supports group differences between SZ and HC
(two-sample t tests: p =.003* for fMRI, p =.001* for sMRI, and
p =.006 for dMRI).

In addition to linear projection, we also performed the proposed
method on COBRE cohort separately to test the stability in both
modality linkage detection and pattern replication. The similarity of
component between fBIRN and COBRE was calculated. We calcu-
lated the spatial correlation of the identified linked component
between two cohorts using only voxels masked at |Z| > 2. First, the

spatial maps were transformed into Z scores and masked at |Z| > 2.

Discovery

fMRI_IC7

Then, we obtained two masks from FBIRN (mask_FBIRN) and COBRE
(mask_COBRE) respectively, which were used to perform the voxel
selection. Only voxels that fell in the union of the masks
(mask_FBIRN Umask_COBRE) were used to calculate the cross-cohort
spatial similarity. Thus, the total number of voxels for calculating the
spatial correlation is greatly reduced, for example, from n =153,594
(whole brain voxels) to m =2,135 (for the fMRI component). Spatial
similarity was finally performed on these commonly identified voxels
between two cohorts. In this way, the spatial similarity between
fBIRN and COBRE was measured (r =.56, r =.50, and r =.76 for
fMRI, GMV, and FA components, respectively), and the modality link-
age between the identified component for COBRE was also replicated
(Figure 9). It is clear that the proposed three-way GICA can extract a
stable linked component triangle across cohorts. More importantly,
PCC and caudate in fMRI, bilateral insula and ACC in GMV, and for-
ceps major and forceps minor in FA were replicated individually in
COBRE. This means that not only the modality linkage but also the
linked three-way spatial pattern can both be validated.

4 | DISCUSSION AND CONCLUSION

In this study, we proposed a novel approach to combine spatial and
spatiotemporal MRI data via a parallel fusion, called three-way pGICA.
We incorporate a regularizer that maximizes the correlation among
mixing matrices for fMRI, sMRI, and dMRI, aiming to extract three-
way linked components. Compared with existing three-way multi-
modal fusion methods (mCCA, jICA, three-way plICA), a key benefit of
three-way pGICA is that it can work directly with first-level 4D fMRI
to fuse it with 3D modalities such as sSMRI and dMRI. Another benefit
is that fMRI FNC matrix can be calculated based on the results of
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FIGURE 8
Biomedical Research Excellence (COBRE) data. The intermodality linkage detected in fBIRN cohort can be replicated in COBRE cohort, which also
supports group differences
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FIGURE 9 The proposed three-way parallel group independent component analysis (GICA) was performed on Center for Biomedical
Research Excellence (COBRE) cohort separately to test whether both the pattern and the modality linkage identified in Function Biomedical

Informatics Research Network (fBIRN) can be replicated

three-way pGICA. To the best of our knowledge, this is the first pro-
posed method that can incorporate 4D fMRI in a three-way fusion
framework. This method provides a new way to interpret linked pat-
terns among 4D fMRI and two other 3D modality features.

We note that several conditions were explored when designing
the simulations for comparing three-way pGICA with separate
GICA/pICA and separate GICA/ICA without fusion, in identifying
linked fMRI-sMRI-dMRI component triangle. Simulation results
indicate that the proposed three-way pGICA provides relatively
high intermodality linkage estimation accuracy under both strong
and weak modality correlation, as well as different noise levels. This
means that the proposed method does not inflate the link artificially
while achieving comparable accuracy on source map estimation.
Due to the lack of correlation regularization between fMRI and the
other two modalities, the modality linkage estimation of separate
GICA/pICA and separate GICA/ICA decreases significantly when
the real association is weak, or the noise level is high, as compared
with three-way pGICA. This demonstrates the advantages of three-
way pGICA in detection cross-modality association with weak link-
age and high noise levels, which are always the case in real human
brain data.

In real brain imaging application, we combined data from 4D
fMRI, GMV and FA from SZ patients and HCs. One linked component
triangle (FMRI_IC7-GM_IC6-FA_IC2) was identified. This triangle cor-
related between each modality pair and also presented significant
group difference between SZ and HC. In SZ patients, lower functional
activity in subcortical brain areas including thalamus and para-hippo-
campus, and higher activity in the cerebellum are identified in the
linked fMRI_IC7, consistent with widely reported thalamus-related
network dysfunction and cerebral dysconnections (Pinault, 2011).

GM_IC6 and FA_IC2 are correlated with several main cognitive
domains, which is consistent with the salience network (including
ACC, insula, and prefrontal cortex) detected in sMRI. The covaried
forceps major and forceps minor identified in dMRI are involved in
multiple high-order cognitive functions (Kochunov et al., 2017),
including attention, working memory (Hegde et al., 2020), and learning
(Davidson, 2019). Forceps major has also been reported in ENIGMA
large-scale coordinated study of white matter microstructural differ-
ences in schizophrenia (Kelly et al., 2017). Both modality linked com-
ponents (Figure 4) and modality specific components (Figure 5) can be
detected based on the proposed three-way pGICA. The left attention
network identified in fMRI_IC18 is consistent with the association
observed between time courses of fMRI_IC18 and attention scores.
After multimodal fusion analysis, we also performed post FNC analysis
of fMRI modality. Two abnormal FNC pairs, VIS-SC and DMN-CC
were identified discriminating between SZ and HC groups, which is
consistent with the VIS distortions impairment (Butler et al., 2007)
and self-related processing in SZ (Potvin, Gamache, & Lungu, 2019).
More importantly, the extracted linked fMRI-sMRI-dMRI triangle can
be replicated in the independent COBRE cohort by both linear projec-
tion and separately performing three-way GICA, suggesting that the
proposed three-way pGICA provides a reliable association detection
and pattern extraction among the three modalities. The reproducibility
of neuroimaging analysis methods has become a point of critical con-
cern in brain imaging studies (Botvinik-Nezer et al., 2020; Poldrack,
Gorgolewski, & Varoquaux, 2019). Here, we further demonstrate that
the proposed three-way pGICA method offers reproducible and reli-
able linked three-way component triangle detection among the three
MRI modalities, signaling its great potential for extracting linked multi-
modal imaging biomarkers in brain disorders.
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Apart from MRI modalities, single nucleotide polymorphisms,
methylation data, and behavioral assessments could also be used as
one of the modality fused along with the temporal information of
fMRI via the proposed three-way pGICA. This highlights the flexibility
of our method for general multimodal fusion. Moreover, in addition to
static FNC analysis, as shown in this work, dynamic FNC can also be
evaluated based on three-way pGICA results. A possible limitation is
that the linear back reconstruction for the fMRI modality has be com-
puted in each Infomax iteration to get the group- and subject-specific
fMRI components that generate the functional variability matrix C1
linking to the other two modality features, which is time consuming.
However, with current advanced computing server clusters, the linked
fMRI-sMRI-dMRI triangle can be extract within a few hours.

In sum, we proposed a new temporal information aware three-
way multimodal fusion method called three-way pGICA, and verified
its effectiveness in simulation and real brain imaging data. To the best
of our knowledge, this is the first proposed three-way fusion method
that can directly link 4D fMRI with the other two 3D MRI, seeking for
potential covaried multimodal biomarkers for brain disorders. Based
on the proposed three-way pGICA, we identified one linked fMRI-
sMRI-dMRI triangle that was associated with SZ deficits in major cog-
nitive domains in a discovery dataset and was replicated in an inde-
pendent dataset, highlighting the promise of the proposed method to
detect joint multiway multimodal biomarkers and capture novel infor-
mation that may be useful to characterize and predict brain disorders.
Future work needs to expand the flexibility of the detected associa-
tion structure to retrieve multiple triangles, as well as potentially miss-

ing and higher dimensional linkages.
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