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Abstract

Privacy concerns for rare disease data, institutional or IRB policies, access to local
computational or storage resources or download capabilities are among the reasons
that may preclude analyses that pool data to a single site. A growing number of multi-
site projects and consortia were formed to function in the federated environment to
conduct productive research under constraints of this kind. In this scenario, a quality
control tool that visualizes decentralized data in its entirety via global aggregation of
local computations is especially important, as it would allow the screening of samples
that cannot be jointly evaluated otherwise. To solve this issue, we present two algo-
rithms: decentralized data stochastic neighbor embedding, dSNE, and its differentially
private counterpart, DP-dSNE. We leverage publicly available datasets to simulta-
neously map data samples located at different sites according to their similarities.
Even though the data never leaves the individual sites, dSNE does not provide any
formal privacy guarantees. To overcome that, we rely on differential privacy: a formal
mathematical guarantee that protects individuals from being identified as contribu-
tors to a dataset. We implement DP-dSNE with AdaCliP, a method recently proposed
to add less noise to the gradients per iteration. We introduce metrics for measuring
the embedding quality and validate our algorithms on these metrics against their cen-
tralized counterpart on two toy datasets. Our validation on six multisite neuroimaging
datasets shows promising results for the quality control tasks of visualization and
outlier detection, highlighting the potential of our private, decentralized visualization

approach.
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1 | INTRODUCTION

Even though the availability of public data continues to increase, there
are still many “unsharable,” private datasets which arise multiple chal-
D. K. Saha, V. D. Calhoun, and S. M. Plis contributed equally to this study. lenges for machine learning systems (Plis, Sarwate, Dylan,
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et al., 2016). The importance of operating on decentralized sensitive
data and, as a result, of (virtually) pooling very large-scale neuroimag-
ing datasets is exemplified by the success of the ENIGMA project
(Thompson Paul, Stein Jason, Sarah, et al., 2014). The continuing
growth in the value of large and diverse neuroimaging datasets should
inevitably increase the demand for similar decentralized consortia.
Multiple large consortia, such as the Global Imaging Genetics in Ado-
lescents (GIGA) consortium (Gunter, Vivek, Chunshui, et al., 2019), are
already leveraging decentralized approaches. Several decentralized
systems are being developed to virtually pool and facilitate computa-
tion on distributed datasets, for example COINSTAC (Plis, Sarwate,
Dylan, et al., 2016) and others (Amadou, Yannick, Julia, et al., 2014;
Carter Kim et al., 2015; Carter Kim, Francis Richard, Carter, et al, ;
Shuang, Jiang Xiaogian, Yuan, Samuel, & Lucila, 2013). For all of them,
quality control is essential.

Intuitive visualization of the complete virtual dataset that is physi-
cally spread across multiple locations is a much-needed tool for filtering
out participating sites with bad data, detecting incorrect processing, or
identifying mistakes in the input process. For example, consider a mag-
netic resonance image (MRI) data sample that consists of the entire
brain, containing on the order of 100,000 volumetric pixels (voxels)
(Scott, 2014). Outliers in smaller datasets at consortium sites make sta-
tistical analyses of the consortium data much more difficult. One solu-
tion is to develop methods for quality control of large-scale brain
imaging data. Since it is challenging to scan through each data sample,
an effective method of quality control is to simultaneously embed mul-
tiple samples onto a lower dimensional space for visualization. These
visualizations have been shown to be useful tools to assess and monitor
data quality, while revealing interesting relationships (Panta Sandeep,
Runtang, Jill, et al., 2016). Beyond data quality, we can also use these
approaches to visualize relationships among groups (e.g., diagnostic cat-
egories) or continuous measures (such as disease severity or cognitive
performance) (Plis, Devon, Ruslan, et al., 2014).

A common way of visualizing a dataset consisting of multiple high-
dimensional data points is to embed them into a 2- or 3-dimensional
space. Existing methods like principal component analysis (PCA)
(Hotelling, 1933) can be useful for revealing the linear structure of data.
However, the nonlinearity of biomedical data makes analysis with PCA
difficult, failing to preserve and convey the hidden structure within the
data. To resolve this issue, many other methods, including Sammon
mapping (Sammon Jr, 1969), curvilinear component analysis (Pierre &
Jeanny, 1997), stochastic neighbor embedding (Geoffrey & Sam, 2003),
isomap (Tenenbaum Joshua, Vin, & Langford John, 2000), maximum
variance unfolding (Weinberger & Saul, 2006), locally linear embedding
(Roweis Sam & Saul, 2000), and Laplacian Eigenmaps (Mikhail &
Partha, 2003) were developed to embed and visualize nonlinear
datasets. These methods perform well on artificial data, but can strug-
gle in real high-dimensional settings due to their inability to retain local
and global structure in a single map. Several methods have been pro-
posed to overcome these problems as well. To visualize underlying
structure and intrinsic transitions in high-dimensional biological data, an
approach that is highly scalable both in memory and runtime, called
potential of heat diffusion for affinity-based transition embedding

(PHATE), was recently introduced (Kevin, David, Zheng, et al., 2019).
Other notable methods include t-distributed stochastic neighbor
embedding (t-SNE) (Laurens & Geoffrey, 2008), viSNE (EI-Ad, Kara,
Michelle, et al., 2013), and hierarchical stochastic neighbor embedding
(HSNE) (van Unen, Hollt, Pezzotti, et al., 2017). Lastly, to reduce dimen-
sions and overcome computational restrictions, Uniform Manifold
Approximation and Projection (UMAP) (Leland, John, Nathaniel, &
Lukas, 2018) was proposed and has proven to be effective in the field
of bioinformatics. However, all of these methods were built on the prin-
ciple that the datasets are locally accessible. If the data samples were
distributed across multiple sites, the sites would have to pool their data
to a single site for analysis.

In this paper, we propose decentralized stochastic neighbor
embedding (dSNE), an algorithm that embeds a high-dimensional,
decentralized dataset into a 2D map for subsequent visualization and
inspection. Our approach improves on our preliminary adopts the
method of embedding multiple modalities into the same Euclidean
space based on their co-occurrence statistics (Amir, Gal, Fernando, &
Naftali, 2007). Since we cannot physically pool all of the data to a single
local site, we use publicly available anonymized datasets as a common
reference and build the overall embedding around it. This approach is
most similar to the method of landmark points, previously used for
improving computational efficiency (Vin & Joshua, 2004; Vin &
Tenenbaum Joshua, 2003). Our approach, dSNE, significantly extends
the original landmark points approach, using t-SNE as the base of our
algorithm. Our method can be seen as a dynamic modification that can
embed data points into a common space after capturing the relation-
ship among samples distributed across different locations. It signifi-
cantly improves on our prior work (Saha, Calhoun, Panta, & Plis, 2017)
by using multiple iterations to improve the embedding. Even though
dSNE provides a way to visualize data in a decentralized manner, it
comes with no formal privacy guarantees. To remedy this, we also pro-
pose an (g, 6)-differentially private version of dSNE (DP-dSNE). Differ-
ential privacy is a framework which quantifies the privacy risk to
individuals when functions of their data are released to untrusted
parties. DP-dSNE adds noise to the gradients of the private and shared
data per iteration, using a method called AdaCliP. We evaluate our DP-
dSNE algorithm using Rényi Differential Privacy (llya, 2017) and present
a privacy analysis using the moments accountant to keep track of the
privacy loss per iteration. To evaluate and compare the performance
with the centralized version in controlled settings, we demonstrate
both of our algorithms (dSNE and (e, 5)-DP dSNE) on multiple datasets.
We also introduce a novel performance metric of overlap and round-
ness to quantify the quality of our embeddings. Lastly, we apply our
approaches to six different multisite neuroimaging datasets, showing
that our methods can capture information and perform quality control

of distributed datasets producing highly pragmatic visualizations.

2 | METHODS

In the centralized problem of data embedding, we are given the task
of producing a dataset of N samples Y = [y;...,yn], where y; € R™, from
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a dataset X = [x1...,xn], where x; € R", such that m < n. For the conve-
nience of visualization, m is usually set to m = 2. The goal is for the
embedding Y to give a “faithful” embedding of the data X in the sense

that similar points in X will be mapped to close pointsin Y.

21 | Background: t-SNE

In t-SNE, the distances between the points in Y must be as close to
the distances between the corresponding points in X, where preserv-
ing the closeness of nearby points is weighted more heavily than far
points (Laurens & Geoffrey, 2008). In the first step, t-SNE converts
the high-dimensional Euclidean distances between datapoints into
conditional probabilities, called pairwise affinities, that represent simi-
larities between data points (see Algorithm 1). The algorithm takes a
scalar parameter called the perplexity p. To compute similarity of a
datapoint x; to datapoint x;, the algorithm first computes the weight of
x; given by a Gaussian kernel centered at x; with bandwidth (variance)
ilp)?, where it identifies the value of o; separately for each datapoint
by performing a binary search across a range of values until it can
match the user-specified perplexity. The similarity is a conditional
probability distribution p;; formed by renormalizing the N likelihoods
into a probability mass function:

0 j=i
2
wo(Chonlzae?)

Pii =
5> exp (I — %l /261(p)°
k#i

These similarities can be gathered into an N x N matrix P and the
affinity is the symmetrized matrix P = (ﬁ+ﬁT )/(2N). This makes P a
matrix representing a joint distribution on pairs of data points.

For the low-dimensional representation Y, we compute pairwise
weights in a similar way, except that this time for the joint distribution
g; we use the Student's t distribution with one degree of freedom
(or a Cauchy distribution) instead of a Gaussian:

0 j=i
(1 lv-wlF) "

qij= :
S (14 Ive-vil)
k#1

j#iQ @)

These can be gathered into a matrix Q representing a joint distri-
bution for the embedded points. Algorithm 2 outlines the full t-SNE

Algorithm 1  PairwiseAffinities

Input: p (perplexity), X € RN*"

Output: P ¢ RNV
Equation (1) to compute pj; with perplexity p
Set p; = (py + py)/(2 N) for all i, j

procedure. To embed the data points into a low-dimensional space, t-
SNE tries to minimize the mismatch between distribution P and Q in
higher and lower dimensional spaces. The algorithm performs gradient
descent on the Kullback-Leibler (KL) divergence (or relative entropy)
between the joint distribution P and the joint distribution Q:

JY) = Zngln;’—g- 3)

[ E

The gradient of the Kullback-Leibler divergence between P and
the Student's t based joint probability distribution Q is expressed in
Equation (4),

aJ) o\ -1

a—w:4;(p;,—q,;)(y,»—y,») (1+lvi-wl®) (4)
Inspired by the overall satisfactory performance of t-SNE on a

range of tasks, we use it as the base of our decentralized algorithm.

2.2 | Proposed method: dSNE
In the decentralized setting, the privacy and sensitivity of datasets
often preclude the pooling of local data, making computation of dis-
tances among samples across different sites difficult. Without these
distances (see Equation (1)), we cannot obtain a common embedding.
Fortunately, in neuroimaging (and many other fields), there are now
multiple large public repositories of MRI data that we can leverage to
make this computation feasible (Dan, Huerta Michael, McAuliffe Mat-
thew, & Farber, 2012; Mary, 2015; Xavier, Adriana, Cameron, Mehta
Ashesh, & Milham, 2013).

In the decentralized setting we have L sites where each site # has

(local) data X* = [x{xgxﬁf] consisting of N, vectors x” in R". In

Algorithm 2 tSNE

Input:
Data: X = [X1,X2...Xn], X; € R"
Scaling parameter: p (perplexity)
Optimization parameters: T (number of iterations),
n (learning rate), @ (momentum)
Output: Y ={y1,Ys,...Yn},Yi ER™",m<n
{pj} = PairwiseAffinites(p, X)
Y N(0,1071), 1€ R™*™ initialize from Gaussian
fori=1to Tdo
Equation (2) to compute low-dimensional affini-
ties gj;
Equation (4) to compute 2J/dy{t — 1)
Yilt) = yilt — 1) + 5(0J/dy;) + alt)lyd{t — 1) — yilt — 2))
end for
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addition, we have a shared data set X° = xsl,xg,...,xf\,s} . The goal is to
produce embeddings {Y?} and Y*, where Y/ = {y{,yg,...yfh] for each ¢
and Y° = {ysl,ysz,...yst] contain vectors in R™ where m<n. Typically
we will consider m = 2 to produce 2D visualizations of the data set.
As in t-SNE, we want the distances close x points to remain close in
the embedding of y points. We assume all sites have access to the
shared data X° and its embedding Y* and can modify Y°* when they
update locally.

We implemented three algorithms: (1) Single-shot dSNE,
(2) Multi-shot dSNE, and (3) Differentially private multi-shot dSNE,
which we describe in the following subsections. Detailed procedure
and experimental results of Single-shot dSNE are provided in our prior
work (Saha et al., 2017), in C, and Figure 14.

2.3 | Multi-shot dSNE

For multi-shot dSNE, we pass messages iteratively between the local
sites and central site in rounds. At time t, the centralized site passes
the reference embedding Y*(t — 1) from the previous iteration to each
of the local sites. At this point each site # has X’, past values of
Yt —j) forj = 1, 2, ..., t, the reference data set X°, and the updated
embedding Y*(t — 1). Each local site then computes the gradient
update (Algorithm 3) using a “momentum” approach that combines
information from the past two iterations. The result are updates Y*(t)
and Y*“(t) for the local and shared data embeddings, respectively. The
sites send their new embeddings of the local data Y*“(t) to the central
site, which averages them to form Y’ and sends that back to the local
sites.

The local sites then update their local and shared embeddings and
compute the average of all embedding to help recenter. They send
this average to the coordinator, who averages across sites and sends
back a global mean that sites use to center their local and shared
embeddings to get YAt) and Y®(t) for the next iteration. The
pseudocode and overall procedure for multi-shot dSNE are shown in
Algorithm 4. Note, at each iteration, the embedded vector Y for the
shared dataset will be the same at all of the local sites. This ensures

that the local values of different sites are influenced by the same and

Algorithm 3 LocalGradStep

Input:
Data embeddings: Y/(t — 1), Y/(t — 2) (local), Y*(t — 1),
Y¥(t — 2) (shared), P € R(NeH+Ns)x(NeNs)
Optimization parameters: 7, a
Output: \?[(t) (local), Yg(t) (shared)
Equation (2) on [YA(t), Y(t)] to compute low-dimensional
affinities g;
Equation (4) to compute dJ/dyi{t — 1)
yi(t) =n(2J/dyi(t = 1)) +alyi(t—1) —y;(t - 2)
Group {y;(t)} into \A{f(t) (local) and Ys(t) (shared)

common reference data at each iteration. [Correction added on
24 March 2022, after first online publication: Repeated text deleted.

Text appears at end of section 2.4.]

2.4 | Differentially private multi-shot dSNE

We begin by reiterating the setup of multi-shot dSNE. In dSNE, there
are n local sites (each with their own disjoint dataset) that would like
to collaborate to learn a global structure among the data samples.
However, the sensitivity of biomedical data prevent centralized ana-
lyses that pool all of the data to a single site. Even though the local
data samples never leave the sites in dSNE, since the embeddings of
the shared data are influenced by the local data points, there is room
for a potential privacy leak. To resolve this, we introduce DP-dSNE, a
differentially private dSNE algorithm that formally guarantees privacy.
We now define differential privacy (Cynthia, Frank, Kobbi, &
Adam, 2006) and the AdaCliP algorithm (Venkatadheeraj, Ananda, Yu
Felix, Sashank, & Sanjiv, 2019).

We say that two datasets D, D are neighboring datasets if they
differ by one data entry. A randomized mechanism A:D— & is said
to be (e, §)-differentially private if for all neighboring databases
D,D’ € D, and any measurable set S C %, we have

P(A(D) € 8) <e“P(A(D') € 8) +, (5)

where P(B) is the probability of the event B and the probability is
taken over the randomness in the mechanism A(-).

We use the shorthand notation (e, 6)-DP for (e, 6)-differentially
private. A standard method to preserve privacy of a function is to add
noise, where the variance of the noise is proportional to the sensitiv-
ity of the function. Mathematically, we define the ¢, global sensitivity

of a function f as

A2(f) = max|[f(D) —f(D)],- ()

Given that the #, sensitivity of a function f is A, one way to pre-
serve privacy is to add Gaussian noise (Cynthia & Aaron, 2014) of var-
iance A%6?, such that A(D) =f(D) +/\/(O,A202). Then, if we choose &
to be %, /2Iog%, each iteration of the algorithm is (e, 6)-DP
(Cynthia & Aaron, 2014; Martin, Andy, lan, et al., 2016). However, in
practice, finding a priori bound on the size of the gradients (i.e., the
sensitivity of the gradients) is difficult, and often does not exist. In lit-
erature, one way to solve this issue is to bound the gradients by clip-
ping each gradient in #, norm for a clipping threshold C (Martin
et al., 2016). This clipping would ensure that the sensitivity of the gra-
dients change by at most C. Although this is a plausible method, clip-
ping all of the gradients to a fixed value of C can often add more noise
than needed, as the size of the gradients generally grow smaller during
training (Algorithms 5 and 6).

To add less noise per iteration, we adopt in using AdaCliP

(Venkatadheeraj et al., 2019), a recently proposed method to
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Algorithm 4 multishotDSNE

Input:
Objective parameters: p (perplexity)
Optimization parameters: T, 5, a
Shared Data: X° = xsl,xsz...xf\,s] X eR"
Local Data: X’ = [x{,xg...va], X eR" =12 .,1}
Output: {Y:¢=1,2,.., L}, Y°
Sample Y*(0) i.i.d. from N(O,lO"‘Im) > Initialize from
Gaussian
Coordinator sends X°, Y*(0) to all sites
for £ = 0 to L do [>Initialize at sites
P’ = PairwiseAffinities(p, [X,, X])
Sample Y/(0), Y/(—1) from N(O,lO*“I) Jcrmxm
end for
fort =1to Tdo
Coordinator sends Y/(t — 1) to all sites
for/=1toLdo
Y (£),¥" (t) = LocalGradStep
(Y(t—1),Y (t-2),Y (t—1),Y°(t—2),n,q)
Site # sends v to Cooordinator
end for
v 1y’ [>Average local shared embeddings
Coordinator sends Y’ to all sites
for p = 0 to P do [>At local sites
Y =Yt-1)+Y
Y=yit-1+Y

N, N,
¥ =iy v+ 27,5 >Mean embedding

Sendy’ to Coordinator
end foLr
=12V
Coorﬁ:ir%ator sends Yy to all sites
for £ =1 to L do [>Recenter the embeddings
Sety!(t)=y, —yforalli
Setyi(t)=y; —y foralli
end for
end for
[Correction added on 24 March 2022, after first online

publication: Expression has been corrected in Algorithm 4]

adaptively clip and add noise based on the size of the gradients. By
introducing AdaCliP into our multi-shot dSNE algorithm, we can
preserve the privacy of the individuals in the dataset. The modifica-
tion that we need in order to make dSNE (e, 6)-DP is to replace
LocalGradStep in Algorithm 4 with DP-LocalGradStep, as shown in
Algorithm 7. There are two things to note about the DP algorithm:

Algorithm 5 noiseAddition

Input:

Gradients: g (gradient at iteration t)

Noise Parameters: m', b', & (noise scale)
Output: §t (privacy-preserving approximation of g‘)

Compute transformed gradient: w! :3';—,'"'
Clip transformed gradient: wh :WW

Add noise to gradient: W' = w! +N (0,021
Rescale the gradient: §' =b'W' +mt

Algorithm 6 AdaCliP

Input:
Gradients: g (gradient at iteration t)
Noise Parameters: m', st, & (noise scale)
Parameters: hy, hy, f1, 2

t+1’ s

Output: §t (gradient at iteration t), m t+1

updated noise
parameters)

fori=0tondo

n
bi= /st /2ot
V2

end for

Noise addition to gradients: §' = noiseAddition(g’, mt,
bt, o)

Update m': mt~1 = g;m* + (1— )"

Compute variance v v/ = min(max ((§t fmt> - (bf)zﬂzy
hq), h2)

Update s: st*1 =g, (Sf)2 +(1-ppv*

Algorithm 7 DP-LocalGradStep

Input:
Data embeddings: Y/(t — 1), Y/(t — 2) (local), Y*(t — 1),
Y5(t — 2) (shared), P € R(Ne+Ns)x(Ne+Ne)
Optimization parameters: 7, a
Output: ?f(t) (local), ?S(t) (shared)
Equation (2) on [Y(t), Y,(t)] to compute low-dimensional
affinities g;
Equation (4) to compute g{*l = dJ/dy{t—1)
g1, mt, st = AdaCliP(gt 2, mt~ %, stY)
Vi) =n(8t +aly;(t—1)—yi(t—2)
Group {y;(t)} into ?K(t) (local) and Vs(t) (shared)

WILEY_| 23

(1) DP-LocalGradStep brings two extra parameters, m and s that we (Cynthia & Aaron, 2014). In the next section, we provide a privacy
use and update at every iteration and (2) even though we are com- analysis using Rényi Differential Privacy and the moments accoun-
puting a global mean based on each local site's mean, each step is tant to keep track of the total privacy loss during training (Martin

still differentially private due to postprocessing invariance et al., 2016).
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2.5 | Privacy analysis of differentially private multi-
shot dSNE

In this section, we analyze the privacy loss of our differentially private
multi-shot dSNE algorithm using Rényi Differential Privacy (RDP)
(llya, 2017). In order to define Rényi Differential Privacy, we first need
to define the Rényi divergence. Let P and Q be two probability distri-
butions over a set %. Then, the Rényi divergence of order a for a>1

is defined as

D. (PHQ) :af 7l0gEo {%} N 7)

Rényi Differential Privacy uses the Rényi divergence on the pri-
vacy loss random variable (i.e., the ratio between the distributions
over the neighboring datasets) to naturally “relax” the privacy parame-
ters. Formally, a randomized mechanism A:D — &% is said to be (a,
7)-Rényi differentially private if for all D,D’ € D with D~D and any
measurable set S C & the following holds:

D.(Po|Po) 7. (®)

where Pp(y) is the distribution of the mechanism A(D). We can keep
track of the privacy loss of the DP-dSNE algorithm in terms of RDP and
then convert the result into an (e, §)-DP bound. Recall that in our
decentralized setup, each local site has data that is disjoint from the
other local sites. Thus, it is sufficient to analyze the privacy loss random
variable of a single site. We start our analysis of the DP-dSNE algorithm
by reviewing some definitions and connections between RDP and DP.

If A is a randomized algorithm satisfying (a, y)-RDP, then it also
satisfies (y+fﬁ,§)-DP for any 0 <6< 1. Further, if A has ¢, sensitivity
A, then the Gaussian mechanism A(D) +Z, where Z ~ A (0,62), sat-
isfies (a, %)—RDP (llya, 2017). We now need to derive the sensitivity
of our gradients from using AdaCliP to translate our RDP bound to an
(e, 6)-DP bound. [Correction added on 24 March 2022, after first
online publication: Z./\7(0,0'2) has been corrected to Z ~ N (0,62)]

Let g' = [g}.gb,...8%] and g = [g,g%,....g] be gradient vectors of

two neighboring datasets at iteration t. Using AdaCliP, we have two
additional vectors for each dataset: m'=[m{,m},...mi] and
b' = [b},b},...b}]. By the definition of the sensitivity of the gradients
of neighboring databases, we have

_ t ot
1=max|w'—w'|, ©

B gt—mt gt_mt
e 1o
t 't
_ -
riv:ol (11)
bmax = max||g* —g*|| ., (12)

D~D'

where ||x||,, = max; | x; | (i.e., the £, norm a vector x with i entries) and
Brmax = ||bt||oo' Since the transformed gradient w' is clipped at norm
1, its sensitivity is also 1. Following this analysis and from the gradient
transformation of AdaCliP, we obtain that the sensitivity of the gradi-
ent g' is bmax.

By using the conversion definitions stated previously, if J denotes
the number of iterations, the DP-dSNE algorithm satisfies

1
(%ﬁfﬂ,é)—DP, where 62 is the variance of the noise, 0<§<1, and

[ 2 1
= 2|log=
a=1+ bmax-’g Iogé. (13)

Note that in the DP conversion, € is directly proportional to a and

ais

J, which indicate that as the number of iterations increase, the overall €
will also increase, guaranteeing less privacy. This is an inherent trade-
off that arises across all differentially private algorithms, and hence it is
important to keep track of how e changes throughout the course of our
algorithm by using Equation (13). At each iteration, we keep track of
bmax in order to compute our (e, 5)-DP guarantee. Note that in our pri-
vacy analysis, we defined our (g, 5)-DP guarantee in terms of RDP, but
we can also easily derive these values using the moments accountant
(Martin et al., 2016), similar to that of the analysis done by Imtiaz
et al. (Imtiaz, Mohammadi, Silva, et al., 2019), since RDP and the
moments accountant are equivalent notions. In the following sections,
we make comparisons between RDP and the moments accountant by

demonstrating how e changes for a fixed value of 6 for DP-dSNE.

2.6 | Comparison metrics

To measure the performance and quality of clustering, several metrics
have been proposed, including the Davies-Bouldin (DB) index
(Davies & Bouldin, 1979), Dunn index (Dunn, 1974), quality index
(Halkidi, Vazirgiannis, Batistakis, & Zighed Djamel, 2000), Bayesian
information criterion (BIC) index (Raftery, 1986), and the silhouette
coefficient (Rousseeuw, 1987). Other metrics such as F-measure,
entropy, purity, and rand index can also be used as an external com-
parison metric.

In the distributed setting, it is important to make sure that the
embedding of a data point gets clustered into its correct
corresponding class. To test the cluster qualities of our decentralized
algorithms, we use two a priori labeled datasets: (1) the MNIST
dataset and (2) the COIL-20 dataset, whose clusters are known and
described (Laurens & Geoffrey, 2008). We consider each label as the
known number of clusters as our ground truth. We introduce three
new validation techniques: (1) K-means ratio, (2) Intersection area,
and (3) Roundness.

1. The k-means criterion (or ratio) is the ratio of intra and inter-
cluster distances between clusters. Mathematically, this is

defined as
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where n is the number of clusters. We can interpret this ratio as the
following: the numerator indicates intra cluster distance, in which a
smaller value shows that each distinct cluster is tightly bounded. A
larger denominator value implies that the inter clusters are well sepa-
rated from each other. Thus, if the a value is generally small, we can
conclude that the algorithm performs well.

2. The intersection area can be seen as computing the overlap
between two clusters. We first remove the outliers (see Figure 1)
(Tony, Ming, & Zhi-Hua, 2012) to compute the convex hull for
each group and use them to measure the overlap. For the inter-
section area, we find the area of each polytope(cluster) and find
the total area by summing them. After that we compute the over-
lap area between each cluster. In specific, this is done by summing
all of the polytope areas minus the area of the union of all the
polytopes, normalized by the area of the union. The lower value of
intersection area determines the formation of good cluster with
less overlap.

3. Roundness is the ratio of the area of each polytope to the area of
the circumscribed circle. To compute the roundness of each clus-
ter, we first represent each cluster as a cloud with a convex hull.
To remove the effect of the differences in perimeters, we normal-
ize the perimeters. This normalization effectively approximates the
process of making the perimeters equal. Finally, we compute the
area of the polytope and use the area as our measure of round-
ness. The higher roundness metric value determines the good qual-
ity of the cluster. More precisely, it quantifies how the samples are

distributed around the mean of a given cluster.

MNIST datasets

FIGURE 1

3 | DATA

We base our experiments on eight datasets:

1. MNIST dataset (Yann & Corinna, 2010).

2. COIL-20 dataset? (Nene, Nayar, & Hiroshi, 1996).

3. Autism Brain Imaging Data Exchange (ABIDE) fMRI dataset®
(Di Martino, Yan, Li, et al., 2014).

4. Pediatric Imaging Neurocognition Genetics (PING) dataset?
(Jernigan, Brown, Hagler, et al., 2016).

5. Structural Magnetic Resonance Imaging (sMRI) dataset.

6. Function Biomedical Informatics Research Network (fBIRN) struc-
tural MRI dataset (Yuhui, Zening, Sui, et al., 2019).

7. Bipolar and Schizophrenia Network for Intermediate Phenotypes
(BSNIP) structural MRI dataset (Du Yuhui et al., 2019).

8. Mind Research Network (MRN) fMRI dataset.

MNIST dataset was taken from a Kaggle competition which had
28,000, 28 x 28 gray-scale images of all 10 handwritten digits. For
our experiments, we randomly chose 5,000 different samples from
the dataset (while preserving class balance). For centralized t-SNE and
dSNE, we preprocessed the dataset by reducing the dimensions of the
data samples from 784 to 50 using Principal Component Analy-
sis (PCA).

COIL-20 dataset contains images of 32 x 32 = 1,024 pixels of
20 different objects. Each object was placed on a motorized turntable
against a black background. Between 0° and 360°, a picture was taken
in 5° intervals. Each object was viewed from 72 equally spaced orien-
tations, yielding a total of 1,440 images.

ABIDE fMRI dataset contains data samples of 1,153 subjects
accessible through the COINS data exchange.” The ABIDE dataset
was preprocessed down to multiple spatial and temporal quality con-

trol (QC) measures. Since this dataset inherently had lower

Coil-20 datasets

A t-SNE output on centralized MNIST and COIL-20 dataset; and outlier-free convex hull boundaries



2% | WILEY.

SAHA ET AL

dimensions, we ran t-SNE and dSNE directly on the dataset without a
dimensionality reduction step.

PING is a multisite study containing neural developmental histo-
ries, information about developing mental and emotional functions,
multimodal brain imaging data, and genotypes for well over 1,000 chil-
dren and adolescents between the ages of 3-20. We take 632 sub-
ject's fMRI data from this dataset for our experiment. The data is
preprocessed with SPM5 (John & Friston Karl, 2005) software. It is
slice time corrected and warped to the standard MNI brain template
from SPM5. This image is used for extracting the data for the experi-
ment. For the first time point, the voxel values at each location from
all the brain slices are first added across slices along the Z axis,
resulting in a single row vector of size 3,339. This was done to reduce
the computational load on the system, and hence improve run time of
the proposed algorithm. These voxel values from each image scan
served as inputs to the t-SNE and dSNE algorithms.

sMRI scans (3D T1-weighted pulse sequences) are prepro-
cessed through the voxel based morphometry (VBM) pipeline using
the SPM5 software. VBM is a technique using MRI that facilitates
examination of focal differences in brain anatomy, using the statisti-
cal approach of parametric mapping. Gray matter maps are
extracted from segmenting the T1 weighted nifti images. The
unmodulated gray matter concentration images from the VBM pipe-
line are registered to the SPM template. In some cases, the non-
modulated maps are preferred compared to the modulated maps
according to existing literature (Meda et al., 2008). The data from
these unmodulated gray matter normalized images is used for this
experiment. To reduce the computational load on the system, and
hence improve run time of the proposed algorithm, for each scan,
the voxel values at each location from all the brain slices are first
added across slices, resulting in a matrix size of 91 x 109. All of the
voxel values from each image scan are converted into a single row
vector of size 9,919 for each data point and passed as inputs to the
t-SNE and dSNE algorithms.

fBIRN and BSNIP datasets used in this study were collected from
seven and six imaging sites, respectively. Each subject was selected
based on head motion (<3° and <3 mm) and functional data providing
nearly full brain normalization (Fu, Caprihan, Chen, et al., 2019). These
criteria yielded a total of 311 subjects (160 schizophrenia
(SZ) patients and 151 healthy control (HC)) for the fBIRN dataset and
419 subjects (181 SZ and 238 HC) for the BSNIP dataset. In this
study, the Neuromark pipeline (Du Yuhui et al., 2019) was adopted to
extract reliable intrinsic connectivity networks (ICNs) that were repli-
cated across independent datasets.

MRN fMRI is a multiscanner, and multistudy dataset where the
harmonized imaging protocol was used during the acquisition. This
dataset consists of 3,910 subjects of echo planar imaging data by fol-
lowing different protocols across multiple sites and studies. For
preprocessing, the statistical parametric mapping (SPM5) toolbox was
used for slice time correction, motion correction, and spatial normali-
zation. For each of these images, six quality control (QC) metrics are
computed from this data and are given as inputs to t-SNE algorithm.
As the QC matrices values were low-dimensional, we directly run t-
SNE and dSNE without reducing the dimensions.

4 | EXPERIMENTAL SETUP

In this section, we discuss the experiments used to compare centralized
t-SNE to dSNE and DP-dSNE. The experiment with the fMRI dataset
illustrates how we can use dSNE for outlier detection and quality control.
We use the terms ‘“reference” and “shared” data interchangeably
throughout the setup. We organize this section into two parts: (1) experi-
ments on t-SNE and dSNE and (2) experiments on t-SNE and DP-dSNE.

41 | Experiments with dSNE

411 | MNIST data

The objective of this experiment is to investigate the adaptability of our
algorithm when there is an imbalance in the number of data samples
between the local site and central node. This imitates a plausible phe-
nomenon, where the centralized site accumulates and stores more data
than the local sites (and perhaps, vice versa). In this experiment, each
local site holds samples according only one digit (label), while the refer-
ence dataset contains all of the digits (0-9). We consider two cases:
(1) each site contains 400 samples while each digit in the reference
consists of 100 samples and (2) the inverse case, in which the local sites
have only 100 samples, while the reference has 400 samples.

4.1.2 | COIL-20 data

For the COIL-20 dataset, we have two different experiments:

1. Our first experiment is very similar to the experiment of MNIST.
Here, we apply the same strategy in which the centralized node
holds more data than the local sites. In this experiment, each local
site contains only one type of object while the reference dataset
contains all of the objects (1-20). We consider two cases: (1) each
site contains 52 samples of its corresponding object while each
object in the reference dataset consists of 20 samples (2) and the
inverse case, when each site holds 20 samples, while the reference
objects are represented by 52 samples.

2. Here, we investigate the scenario in which some objects are miss-
ing from the shared dataset. Each local site out of 20 contains a
single object. We run 10 experiments with different random seeds,
where in each run, the reference dataset is missing objects from
local sites 16-20. For each of these experiments, we have two
conditions: (1) the reference dataset is small (20 samples for each
object) while the sites are large (52 samples per site) and (2) the
reference dataset is large (52 samples per object) and the dataset
of the sites are small (only 20 samples).

4.1.3 | ABIDE fMRI data

To simulate a consortium of multiple sites, we randomly partition the
ABIDE dataset into 10 local and one reference dataset. We run three
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different dSNE experiments, each corresponding to one random split.
We use this dataset to also demonstrate how we can perform quality
control of data samples using dSNE. Lastly, we collect all of the data
into one local site to simulate a centralized visualization using t-SNE

to compare to our dSNE algorithm.

414 | sMRIldata

The sMRI dataset consists of subjects with four different age groups:
below 11, 11 to 17, 30 to 34, and above 64. We run a total of three
experiments using this dataset:

1. We use each age group as a unique local site (four sites in total)
and form reference samples by taking 100 samples from each
local site.

2. For this experiment, we keep the local sites the same as the previ-
ous setting, but create reference data by taking 100 samples from
only the first site.

3. In this case, we randomly take 50 samples from site 2 and place
them in site 1 and take 100 samples from site 4 and distribute
them equally between sites 2 and 3. This analyzes the effect in

which each local site has data samples from the same class.

41.5 | PINGdata
We collect our PING dataset from five different data sources to run

four different experiments:

1. For the first experiment, we use each data source (total of five) as
a local site and form our reference samples by taking small samples
from each site.

2. The second experiment also uses five local sites, but we form the
reference dataset by taking 100 samples from only the sec-
ond site.

3. Similar to Experiment 3 of the sMRI dataset, we randomly take
30 samples from site 2 to place in site 1, take 20 samples from site
3 to place in site 2, take 10 samples from site 2 to place in site
3, and take 10 samples from site 1 to place in site 4. The reference
samples are formed by taking small samples from each local site.

4. For this experiment, we keep sites 1, 3, and 4 unchanged from the
first experiment, but form reference samples by taking all of the
samples from sites 2 and 5. This yields a total of 3 local sites and

one reference sample, consisting of data from sites 2 and 5.

41.6 | fBIRN and BSNIP data

For the dSNE experiment, as we collected the fBIRN data from seven
different sites, we considered each of them as a local site. The BSNIP
dataset (collected from six imaging sites) served as our reference

dataset. For t-SNE, we treated each dataset as its own and ran t-SNE

separately. We also ran t-SNE on combined datasets (fBIRN + BSNIP)

for visual comparisons with dSNE.

41.7 | MRN fMRI data

We collected MRN data from three different sites (MRN, Avanto, and
Boulder). For the dSNE experiment, we use each data site as its own
unique local site (total of three local sites). However, we randomly
picked 200 samples from site 2 and placed them in site 1. Sites 2 and
3 had its own corresponding data from Avanto and Boulder, respec-
tively. We formed the reference dataset by picking 1,383 samples
from site 1 and 622 samples from site 2. For comparison, we pooled
data from all three sites and performed a centralized t-SNE analysis.
We ran another experiment where the shared samples only contains
the bad scans. The procedure and experimental results are pro-
vided in B.

4.2 | Experiments with DP-dSNE

For the DP-dSNE experiment, we used the MNIST and PING
datasets to demonstrate the robustness of dSNE even in formal pri-
vate settings. For the MNIST dataset, we manually created three
local sites and one coordinator node to participate in the computa-
tion. Each local site holds two classes (digit) from the dataset and the
coordinator node contains all classes (four in total). For the PING
dataset, we used the same setup as stated in Experiment 1 of sec-
tion 4.1.5. We compare our results to centralized t-SNE and dSNE
and show that our algorithm still provides good utility. We hypothe-
size that our DP-dSNE algorithm will generalize well to other

neuroimaging data.

5 | RESULTS

We organize this section into three parts: (1) comparison between t-
SNE and dSNE, (2) comparison between t-SNE and dSNE on biomedi-
cal data, and (3) comparison between t-SNE and DP-dSNE.

5.1 | Comparison between t-SNE and dSNE

5.1.1 | MNIST data

Figure 2 represents the results of MNIST dataset. In Figure 2, the
plots in each row correspond to the best and worst performing runs,
respectively. The first column layout is colored by the digits, rep-
resenting different clusters. The second column has layouts colored
corresponding to sites. The box plots on the left show performance
metrics computed by the three proposed metrics. t-SNE was com-
puted on pooled, centralized data and SMALL and LARGE represent
smaller and larger sizes of the reference dataset in dSNE runs. The
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FIGURE 2 MNIST Experiment: Reference data contains samples of all of the MNIST digits, but is either a small or large amount. In the
boxplots, tSNE was computed on pooled data and SMALL and LARGE represent smaller and larger reference datasets, respectively. Each row of
the plots correspond to the best and worst performing runs. For each experiment, we ran the simulation 10 times with different random seeds.
From the 10 experimental results, we picked the best and worst results, labeled as “best” and “worst” run. The left plots correspond to clusters
labeled by digits, whereas the right plots correspond to clusters labeled by sites

comparison metrics show that performance is generally better when
the shared portion of the data contains a large amount of data. How-
ever, the cluster roundness degrades with the size of the sample in
the shared data. Thus, we observe this tradeoff between the round-
ness of the cluster and general performance. Overall, however, we
observe that the dSNE clusters are less “round” compared to central-
ized t-SNE. Some additional results with different experimental set-
tings for the MNIST dataset are provided in our prior work (Saha
etal, 2017).

5.1.2 | COIL-20 data

Figure 3 depicts the results of Experiment 1 on the COIL-20 dataset.
Similar to that of Figure 2, the rows of the plots correspond to best
and worst dSNE runs. The first column has plots colored by each
object, whereas the second column has clusters colored by sites. In
the boxplots, t-SNE was computed on pooled data and SMALL and
LARGE represent smaller and larger sizes of the reference datasets,

respectively. The comparison metrics show similar results as the

MNIST experiments. For large amounts of shared data, the compari-
son metric shows better performance than in the case of smaller sam-
ples in the reference dataset.

Figure 4 depicts the results of Experiment 2 of the COIL-20
dataset. The comparison metrics show that we always obtain better
results when the reference sample size is larger. For smaller reference
samples, we observe highly overlapped clusters for which it is hard to
distinguish the clusters for different objects. From this experiment,
we observe that it does not affect the performances when the refer-
ence samples does not contain all type of objects, but the local

sites do.

5.2 | Comparison of t-SNE and dSNE on
biomedical data

We investigate the performance of multi-shot dSNE in comparison
with the embedding produced by t-SNE on the pooled data using the
QC metrics of the ABIDE fMRI, sMRI, PING, fBIRN, BSNIP and fMRI

datasets.
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FIGURE 3 COIL-20 Experiment 1: reference data contains samples of all COIL-20 objects but is either in small or large amounts. In the
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unique COIL-20 object that is present at one of the local sites. In the

boxplots, tSNE was computed on pooled data and SMALL and LARGE represent smaller and larger reference datasets, respectively. Each row of
the plots correspond to the best and worst performing runs. The left plots correspond to clusters labeled by objects, whereas the right plots

correspond to clusters labeled by sites

52.1 | ABIDEfMRIdata

The layout of dSNE from the ABIDE dataset is shown in Figure 5. In
every experiment, a total of 10 local and one remote sites are

participating in the computation. The result from a centralized t-SNE
run shows 10 different clusters. For each of the three random seed
experiments of our decentralized simulation, we obtain 10 different
clusters as well. In the layout, the samples that belong to the same site
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FIGURE 5

Experiment for the QC metrics of the ABIDE dataset. (a) the tSNE layout of pooled data; (b-d) are the dSNE layouts for the three

different experiments. In each dSNE experiment, 10 local and a coordinator sites participate in the computation. Similar to tSNE, in the
decentralized setup, we get 10 clusters, where each site is marked by unique color

are marked the same color. In Experiment 1, samples from site 1 and
4 are homogeneous. That is why they are grouped together in the
final embedding. In each of the experiments, we observe good separa-
tion among the clusters and consistent grouping of homogeneous
samples, which shows that dSNE produces stable embedding. The
experimental results show that when homogeneous samples are dis-
tributed in different sites, dSNE can embed and group them together
without the direct communication between the sites.

5.2.2 | sMRldata

Figure 6 depicts embeddings produced by dSNE on sMRI data in our
three experiments specified in section 4.1.4. In Experiment 2, we
obtain poor results, where all clusters are overlapped. There are two
possible reasons that may cause this type of result. (1) An unre-
presentative reference dataset predictably leads to such a layout.
(2) In both t-SNE and dSNE, the simulation begins with a random ini-
tialization of low-dimensional Y values. If the initialization is poor (gra-
dient descent may get stuck in a local minimum), the global minimum
can sometimes not be obtained. Thus, in this case, we may not get
good results. However, in Experiments 1 and 3, results closely resem-
ble those obtained by tSNE. Note that in all successful experiments
scans of children younger than 11 formed a distinct separate cluster.
Meanwhile the other age groups, although connected together in a

single contiguous cluster, are ordered according to the age. Although

the categories are discrete, it may be worth further investigation to
inspect whether the age transition is smooth. This is an example of
exploratory data analysis, where the structure of the resulting embed-
ding may reveal some inherent regularities in a dataset. The age
groups may not be as interesting, but serve as a clear demonstration
that it is possible to use dSNE for discovery of data properties not
already known to the researcher, similar to (Plis, Devon, Ruslan,
et al., 2014). The dSNE can be used as visual and thus quick, intuitive
and interpretable quality assurance, outlier detection, assessment of

compatibility of datasets, and even assessment of site effects.

52.3 | PING data

Figure 7 depicts the experimental results of the PING dataset. In this
plot, each point is colored by its respective site. For Experiments 1, 2,
and 3, we used five different sites and the reference data was formed
by taking samples from each of the sites. In Experiment 4, we used
three different sites and formed the reference samples by combining
the data from two different sources and marked them by the same
color. Among the 632 subjects with age group 3-20, we get four
major clusters. Like our previous experiments, here, we observe that
the homogeneous samples from the different sites are grouped
together. We also find that the number of clusters in the pooled sce-
nario of t-SNE is equivalent to the number of clusters in dSNE on

decentralized data.
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Experiment for the QC metrics of the sMRI dataset. (a) t-SNE layout of pooled data. (b-d) are the dSNE layouts for the three

different experiments. In all of the experiments, there are four total classes corresponding to an age group each and each class is marked by a
unique color. The sMRI dataset consists of brain scans from different age group people and one of the brain scans is shown in the figure. These
scans are preprocessed before entering the dSNE algorithm. In the layout, each point represents a single individual
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Experiment for QC metrics of the PING dataset. (a) The tSNE layout of the pooled data. In all of the columns, the top figure

presents the best performing run, while the lower one represents the worst performing run. (b-e) are the dSNE layouts for four different dSNE
experiments. In all of the dSNE experiments, we get four clusters, just like the t-SNE case. The PING dataset consist of brain imaging data of
children and adolescents and one of the scans is shown in the figure. These scan data are preprocessed first and give input to our algorithm. In

the layout, each point represents a single individual

5.24 | fBIRN and BSNIP data

Figure 8 depicts the results of the fBIRN and BSNIP experiments. In
the first column, we present the t-SNE layout, where the top and bot-
tom plots correspond to fBIRN and BSNIP, respectively. We obtain
relatively well separated groups (HC and SZ) for fBIRN but not for
BSNIP. In the second column, we present the t-SNE layout of com-
bined datasets (fBIRN and BSNIP), where the top and bottom figures
are colored by groups and sites, respectively. We ran t-SNE on the
combined datasets, but for the plots, we only show fBIRN subjects.
This is because our objective is to see how subjects from the same
group of the fBIRN dataset from different sites embed together in
lower dimensional space. In the third column, we present the dSNE
layout of the combined datasets, where the top and bottom figures
are colored by groups and sites, respectively. Again, we only plotted
fBIRN after running dSNE on the combined datasets. From the layout
of both t-SNE and dSNE on the combined datasets, we notice that
subjects from the HC group are densely clustered in both plots. We
obtain less dense clusters for the SZ group, but get embeddings that
are similar in both t-SNE and dSNE plots. However, in the dSNE lay-
out, we get more overlaps between clusters compared to t-SNE. We
believe this is a reasonable tradeoff, as there is no direct communica-

tion between the private local sites.

It is also worth noting that during plotting, some points can
be embedded in a very small dense region. To picture this better,
we plotted the embeddings colored by sites. To our knowledge,
we did not see any evidence of bias in which data are grouped
by sites.

525 | MRN fMRI data

With the MRN data, we demonstrate how we can perform quality
control using t-SNE and dSNE visualizations. Figure 9 depicts the
experimental results of MRN fMRI data. In this figure, we observe
four distinct clusters for both t-SNE on pooled data and dSNE on
decentralized data. Having the same number of clusters in these cases
highlight the potential of performing decentralized visualization with
dSNE. Significantly, we can also observe the poor quality scan samples
marked by the red cluster in the layout. The size of the red clusters in
both plots are small and separated from the other samples. This shows
that these samples are “outliers” from the other samples in the
dataset. The main goal of our distributed low-dimensional embedding
technique is to measure the quality control of data. From this experi-
ment, we observe that our algorithm can successfully separate the

poor quality scans from the whole dataset.
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FIGURE 8 Experiment for the QC metrics of fBIRN and BSNIP datasets. (a) Top and bottom plots represent the t-SNE layout of fBIRN and
BSNIP, respectively. (b) Top and bottom plots represent t-SNE layouts of combined (fBIRN-+BSNIP) datasets but colored by groups and sites,
respectively. (c) Top and bottom plots represent dSNE layouts of combined (fBIRN + BSNIP) datasets but colored by groups and sites,
respectively. The fBIRN and BSNIP are the brain imaging data of healthy control and Schizophrenia. From these data intrinsic connectivity
networks (ICNs) were extracted and used as input to our algorithm. One of the spatial maps of ICNs is shown in the figure

(a) t-SNE layout (b) dSNE layout

FIGURE 9 Experiment for the QC metrics of the MRN fMRI dataset. (a, b) The layouts colored by Scanners for t-SNE and dSNE, respectively.
In both experiments, we get four distinct clusters. Here, we can identify poor quality scan samples marked by the red cluster. In this experiment,
three local and one remote sites participated in the computation. In the layout, each point represents a brain scan of an individual

5.3 | Comparison between dSNE and DP-dSNE dSNE, respectively. For all experiments and in all plots, we see four

different clusters corresponding to each class. Each cluster is distinct
Lastly, we make a comparison between t-SNE, dSNE, and DP-dSNE and well-separated among the other clusters. This proves to show the
on the MNIST and PING datasets. Figure 10 depicts the experimental potential of our DP-dSNE algorithm, in which we can provide high
results of DP-dSNE after 1,000 iterations. In this figure, the left, mid- utility while providing privacy of sensitive datasets in distributed

dle, and right columns correspond to centralized t-SNE, dSNE and DP- locations.
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FIGURE 10 Experiment for DP-dSNE of MNIST and PING dataset with 62 = 0.001. (a-c) The t-SNE, dSNE, and DP-dSNE layout for the

MNIST dataset; (d-f) the t-SNE, dSNE, and DP-dSNE output for the PING dataset, respectively. We observe that DP-dSNE gives overall close
results to dSNE and centralized t-SNE. In the MNIST layout, each class is marked by a unique color and in PING layout, each site is marked by a

unique color

Figure 11 shows a plot of € for a fixed & for the PING dataset as
we increase the number of iterations for convergence. We fix § to be
a value 5<<%, where N denotes the number of samples used in the
computation. Again, since each site has disjoint data samples from the
other sites, we only observe b,y of the first site to compute e. We
also compare the (e, 6) pairs of the RDP analysis compared to the
strong composition (Cynthia, Rothblum Guy, & Salil, 2010). Both the
moments accountant and the RDP method are shown to give tighter,
stronger privacy bounds (llya, 2017; Martin et al., 2016), showing the
benefits of defining the guarantees in terms of RDP. After 1,000 itera-
tions, for the PING dataset, given 6 = 10> and ¢? = 0.001, we obtain
(1.39, 10~°)-DP using the moments accountant and RDP method and
(5.85, 10~°)-DP using strong composition. These (e, 8) pairs are similar
for the MNIST dataset.

6 | DISCUSSION

The current practice of data sharing and pooling face great challenges
as privacy concerns such as subject de-identification becomes more
apparent. Previous studies have showed that in some cases it is possi-
ble to identify specific subjects from a dataset consisting of patients
with rare diseases (Latanya, 2013; Latanya, Merce, & Michael, 2015).
The inability to combine datasets from different research groups and

data sites can be devastating, as individual sites rarely contain enough

Overall € for 8target = 1€-05 for PING
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FIGURE 11 Plot of the number of iterations (J) versus the total e
given 5 = 107> and 62 = 0.001. The RDP and moments accountant

gives smaller values of € over the strong composition method

data to answer the questions of foremost importance in biomedical
research. There have been many notable methods that address the
problem of data scarcity at individual sites in decentralized settings.
For example, Virtual Pooling and Analysis of Research Data (ViPAR)
(Carter Kim et al., 2015) is a framework proposed in which a secure

and trusted coordinator node (or server) synchronizes with the remote
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sites involved in the computation. At each iteration, each remote site
sends data via an encrypted channel to the secure server. Data are
then stored in RAM on the ViPAR coordinator server, where the data
samples are analyzed and subsequently removed without ever being
permanently stored. However, this process still relies on sending data
outside of the original site. In addition, sending data via an encrypted
channel incurs severe bandwidth and traffic overhead that ultimately
increases computational load. Another promising approach is the
Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA)
consortium (Thompson Paul et al., 2014), which is a community
approach that requires the local sites to upload or email the summary
statistics of the data following implementation of shared analysis
scripts. ENIGMA uses both mega (if data pooling is possible) and
meta-analysis. In meta-analysis, each local site runs the same analysis
(e.g., regression) using the same measurements of the brain to aggre-
gate summary statistics from all of the sites. The ENIGMA model has
been widely embraced by the community. To run a meta-analysis, the
leading site has to coordinate with all of the local sites before starting
and after the completion of computation. Meanwhile, the ENIGMA
meta-analysis approach does not support multivariate or multi-shot
computation, that is, computing results in an iterative manner (Anand,
Sergey, Jessica, Mohammad, & Vince, 2014). This is key as close to
50% of the data in some work groups, based on internal polling, can-
not be centralized and thus much rely on meta-analysis. In addition, a
standard meta-analysis approach does not provide any formal guaran-
tees that it will prevent the re-identification of individuals. In many
machine learning problems, there are many cases in which statistics
exchange must be done in a multi-shot manner, as single-shot is not
enough to obtain an optimal solution (Saha et al., 2017).

Some recent research combining federated learning, differential
privacy and encrypted computing is described in a recent whitepaper
(Emma, 2019). The Intel corporation has started a collaboration with
the University of Pennsylvania and 19 other institutions to advance
real world medical research using federated learning. Their work
showed that a deep learning model trained by the traditional feder-
ated learning approach can reach up to 99% training accuracy (Sheller,
Anthony, Brandon, Jason, & Spyridon, 2018).

Several notable tools and algorithms were introduced to handle
federated computing efficiently. PySyft (OpenMined, 2019) is one of
OpenMined's Python code libraries that integrated cryptography and
distributed technology with PyTorch and Tensorflow. This was mainly
developed to train Al models in a secured way by ensuring patient pri-
vacy using distributed data. Our platform COINSTAC (Plis et al., 2016)
is another example of an open source platform addressing these tasks.
Researchers at Google Inc. introduced a model of federated learning
using distributed data of user's mobile devices (Brendan, Eider, Dan-
iel, & Agtiera, 2016). In this model, a mobile device downloads and
trains the model by accessing the data of the user's device. It summa-
rizes the changes and sends them as an update to the cloud using
encrypted communication. Finally, the updates coming from all of the
devices are averaged in the cloud and improves the shared model.

Federated Averaging (FedAvg) is a computation technique intro-
duced in 2016 to fit a global model in the decentralized setting

(Brendan et al., 2016). In this model, the parameters are initialized on
the server and distributed to the local clients. After training the model
on each local dataset over multiple iterations, the trained parameters
are delivered to the server, which computes the average to send the
weights back to the local sites. We adopted a very similar approach to
Federated Averaging in dSNE (Saha et al., 2017) before proposing the
proxy data sharing technique (Yue et al., 2018). In dSNE, each local
site accesses a publicly available dataset and updates its model using
the combination of the shared data and its own local data. Similar to
the communication round in Zhao et al. (Yue et al., 2018), each site
runs the operations over a fixed number of iterations to reach the
optimal solution. We also applied the averaging technique in which
the local model is averaged after each iteration and transferred to by
the coordinator node.

None of these existing methods fully address how we can per-
form data assessment and quality control in a decentralized manner.
Data centers and institutions may not be willing or able to share their
data due to a need to preserve the privacy of their subjects, preclud-
ing analyses that pool the data to a single site. To address these
issues, we introduced a way to visualize federated datasets in a single
display: dSNE (Saha et al., 2017) and its differentially private counter-
part, DP-dSNE. In both algorithms, one coordinator node communi-
cates with all local sites during one computation period. Our multi-
shot approach follows from the averaging strategy similar to that of
(Anand et al., 2014). The performances of t-SNE and dSNE are pres-
ented in Figures 2-9. In the best case scenarios, dSNE almost repli-
cates t-SNE and shows great performance in terms of the comparison
metrics. We showed that the performance increases when the refer-
ence data contains a large amount of samples as shown in Figure 2 for
the MNIST dataset. We observe the similar type of behavior for the
COIL-20 dataset, shown in Figures 3 and 4. Our results in the influ-
ence of large reference samples reflect the results also shown in djICA
(Baker, Silva, Calhoun, Sarwate, & Plis, 2015).

In Figures 5-9, we were also able to observe significant results
for six different biomedical datasets (ABIDE, sMRI, PING, fBIRN,
BSNIP, and MRN). Data assessment and quality control plays a vital
role during data acquisition from multiple data sources, especially to
keep consistency or adjust parameters across various studies. We
designed 4.1.7 to check the effectiveness of our algorithm in
detecting outliers in multisite consortia. In Experiment 4.1.7, we col-
lected 705 samples from Boulder site, where 120 of the samples were
acquired from the second 3T dataset that was from a specific study
with a very different acquisition protocol. Most importantly, these
120 samples were examples of a poor quality scan. In Figure 9, we see
that these specific samples are clustered together (marked by red
color) as outliers in both t-SNE and dSNE plots. Our results are similar
to one of our earlier works, which used t-SNE to detect outliers of the
same MRN dataset (Panta Sandeep et al., 2016).

In Figures 10 and 11, we can see the performance of DP-dSNE
with a noise variance of 62 = 0.001 on the MNIST and PING datasets.
From Figure 10, we see that DP-dSNE gives very similar results com-
pared to t-SNE and dSNE. We implemented DP-dSNE as dSNE does
not provide any formal privacy guarantees. Even though the data
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samples in each local site never leaves the sites, sending the gradient
values from each local site could potentially leak privacy. For datasets
that are sensitive and have stricter protocols, we propose that DP-
dSNE can provide utility similar to that of dSNE with strong privacy
guarantees.

Lastly, we also implemented single-shot dSNE, but the results
were not as promising as multi-shot dSNE (dSNE), as shown in 14. In
single-shot dSNE, there is no way for the local sites to communicate
iteratively. Additionally, a major problem of averaging arises when dif-
ferent sites are widely varied in terms of size and population (Plis
et al., 2016). This problem is analogous to the size of the reference
dataset in multi-shot dSNE. The reference dataset should provide var-
iability and be large in size, in which otherwise, there is a high chance
of not obtaining the optimal embedding. To obtain an optimal embed-
ding, the algorithm should be run multiple times with a different
initialization.

The Collaborative Informatics and Neuroimaging Suite Toolkit for
Anonymous Computation (COINSTAC’) (Harshvardhan, Ross, Javier,
et al., 2020; Plis et al., 2016), a dynamic and decentralized platform,

CONSTAC

Decentralized Multishot TSNE Demo ~

was introduced to address the difficulty of data sharing. This platform
gives scope to perform distributed computation by using the com-
monly used algorithm in privacy-preserving mode. Our dSNE algo-
rithm is currently deployed within the COINSTAC framework.®
Figure 12 shows the different computation phases of dSNE experi-
ment in COINSTAC using MNIST dataset. In this experiment, three
local and one remote site participate in the computation, where the
remote site contains 200 samples of each digit (O to 9) and each local
site contains 20 samples of each digit. The results shown in Figure 12
demonstrate the robust capability of the COINSTAC framework.
Future work consists of running simulations using all of the datasets
used in this paper. This serves to demonstrate that COINSTAC
ensures the real time applicability of our algorithm in the biomedical
domain.

In our algorithm, the shared dataset can be provided by the mas-
ter node, to be distributed across the participants. A number of multi-
center neuroimaging datasets, currently are publicly available data and
can be utilized to enable dSNE. There are many options providing data
which can be of use for this including: OpenNEURO,” Human
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Connectome Project,’® COINS,'* NITRC, various datasets available
through DataLad®? (Halchenko, Kyle, Benjamin, et al., 2021) or kaggle
competitions, and many more. We provide an extended list in the
Appendix A.

Throughout this paper, we empirically compared our algorithm
with t-SNE on different datasets. In terms of computational complex-
ity, dSNE also outperforms the t-SNE algorithm. In dSNE, recall that
one needs to compute the pairwise distance between all co-located
samples. This amounts to m reference samples and k local samples. In
this case, each site creates (m + k) x (m + k) matrices to compute the
pairwise affinities. If the data were pooled, this pairwise matrix would
necessarily be (m + sk) x (m + sk), for s sites. Note that this is signifi-
cantly larger in comparison with the parallel decentralized creation of
s (m + k) x (m 4 k) matrices. As our algorithm is an iterative approach,
and we do not consider any random subsets of samples in each itera-
tion, our algorithm does not allow stochastic gradient descent (SGD).
The computational and the memory complexity of dSNE are
O(s(m+k)2>. In dSNE, to obtain the optimal results, it may need to
run the same experiment several times. In dSNE, the simulation begins
based on the randomly initialized low-dimensional Y values. If the ini-
tialization is happens to be poor, it may face some local minimas dur-
ing the gradient descent computation. In that case, the global minima
may not be obtained and the simulation should be ran again to get the
optimal solution.

7 | CONCLUSIONS

In this paper, we have proposed two algorithms: decentralized stochas-
tic neighbor embedding (dSNE) and differentially private decentralized
stochastic neighbor embedding (DP-dSNE). Our dSNE algorithm
enables the embedding of high-dimensional private neuroimaging data
spread over multiple sites into low-dimensional space for visualization.
This visualization allows us to perform quality control of poor data sam-
ples and also helps learn a global interrelation structure among brain
volumes or feature vectors. Throughout the dSNE computation, no
data samples leave their respective local sites, and only minimal gradi-
ent information from the embedding space is transferred across the
sites. The clusters in the output embeddings are formed by samples
belonging to classes, possibly present across many locations. Of course,
the algorithm is neither explicitly aware nor requires the prior existence
of any classes. The main idea of this iterative method is to share only
the parts related to the publicly available reference dataset. As our
results show, this is enough to co-orient classes that are spread across
multiple locations. Extensive validation of eight datasets (two toy and
six multisite neuroimaging) demonstrate the utility of our approaches.
Our results showed that although multi-shot dSNE is robust to various
conditions and settings (e.g., changes in the number of sites, and rare or
missing data), and highest performance is achieved when the reference
dataset is dense. Even though the data samples never leave the local
sites in dSNE, there is still room for a potential privacy leak, as we are
sending the gradients over to a coordinator node. DP-dSNE tackles this

by introducing formal privacy guarantees within the gradients. Our

results show that both dSNE and DP-dSNE provide good utility for
decentralized visualization while preserving privacy of the local sam-
ples. The implementation and integration of the algorithm with an exis-
ting neuroimaging platform for federated neuroimaging COINSTAC
provides our methods as ready to use tools.

For future work, we believe that an alternative solution to our
decentralized setting can be to use an average of the gradients
weighted by the quality of the respective local t-SNE embeddings.
However, it is not immediately clear how one should approach this.
Using clustering measures on location specific data to weigh each
Y may bias the results toward good local groupings over poor ones.
Our novel metrics are also not quite able to convey each site's contri-
bution to give it proper weight. In most general settings, we do not
know a priori what type of data samples each site contains, as each
local site has private data. Given these difficulties, we leave the prob-
lem for future work, noting that it could be an exciting research direc-
tion. Finally, we conclude with that we believe dSNE is a valuable
quality control tool for virtual consortia when working with private

data in decentralized settings.
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ENDNOTES

1 https://www.kaggle.com/c/digit-recognizer

2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3 http://fcon_1000.projects.nitrc.org/indi/abide/

4 http://pingstudy.ucsd.edu/Data.php

5 https://coins.trendscenter.org/

¢ The full list is available here: https://github.com/preprocessed-
connectomes-project/quality-assessment-protocol/tree/coordinator/
normative_data

7 https://coinstac.org/

8 The code is available at: https://github.com/trendscenter/coinstac-
dsne-multishot
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10 http://www.humanconnectomeproject.org/

1 http://coins.trendscenter.org

12 http://www.datalad.org/

13 https://www.kaggle.com/c/mlsp-2014-mri/data
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APPENDIX A: PUBLIC SHARED DATA

OpenNEURO is one of the data sources to access the public data and
utilize it for our experiments. For the sMRI dataset, we have filtered
based on the MRI scans of human subjects (no of subjects 2100) and
used the same type of preprocessing measurements that we have
used for our dataset. Here are some of the versions which can be

used for our experiments:

o https://openneuro.org/datasets/ds000243/versions/00001
e https://openneuro.org/datasets/ds003643/versions/1.0.4
e https://openneuro.org/datasets/ds003481/versions/1.0.3
e https://openneuro.org/datasets/ds003949/versions/1.0.0
o https://openneuro.org/datasets/ds000158/versions/1.0.0
o https://openneuro.org/datasets/ds003097/versions/1.2.1
o https://openneuro.org/datasets/ds002790/versions/2.0.0

For the fMRI dataset, we have filtered based on the resting state
data of human subjects(no of subjects 2100) and used the same type
of preprocessing measurements that we have used for our dataset.
Here are some of the versions which can be used for our

experiments:
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e https://openneuro.org/datasets/ds000243/versions/00001
o https://openneuro.org/datasets/ds003346/versions/1.1.2
o https://openneuro.org/datasets/ds003481/versions/1.0.3
e https://openneuro.org/datasets/ds002843/versions/1.0.1

Some public MRI datasets for the healthy controls and
Schizophrenia patients are available in the Kaggle site.r® In the
repository, two modalities of MRI (functional and structural) are
available. From this resource, both functional networks connectiv-
ity values, and source based morphometry (SBM) features can be
utilized.

The resting state fMRI data of healthy controls can be accessed
from the Human Connectome Project repository.

APPENDIX B: MRN fMRI DATA

In this experiment, we check the scenario when the shared dataset
only contains poor-quality scans. We have run an experiment on the
MRN dataset to test this special case. In our experiment, there are a
total three local and a remote site participating in the computation.
We place 125 poor-quality fMRI samples to the remote site and each
local site contains 200 good fMRI scans. Additionally, we ran a t-SNE
experiment on the accumulated data for comparison. We represent

APPENDIX C: SINGLE-SHOT dSNE

For single shot dSNE (Algorithm 8), we first pass the reference data
from centralized site C to each local site.

Now each local site has data consisting of two portions: (1) its
local dataset, for which we need to preserve privacy, and (2) the

Algorithm 8 SingleshotDSNE

Input:

Objective parameters: p (perplexity)
Optimization parameters: T, 5, «

Shared data: X; = {xsi,xsz...xf\ls] X ER"
Data at site pvp: X, = [x‘{,xp...xﬁ,p] X eR"

Output: Y ={yy,y,...Yn},Yi € R",m<n,N=3 N, +N;
Ys — tSNEQX, p, T, 1, @) [>At the coordinator node
forp =0toPdo

Y, P

Run tSNE on [X,,, X;] [>At local site p

At each iteration only update Y, [>At local site p
end for
Y — [] [>At the coordinator
for p = 0 to P do [>At the coordinator

—p
our t-SNE and dSNE plot in Figure 13. We observe that our algorithm Yo
shows robust behavior even when all the shared samples are bad Y —IY. Yl
scans. This suggests the main benefit of the shared data is to serve as end for
a common reference for the sites, rather than as a source of high qual- Y —[Y. Y]
ity data (Figure 14).
Scanners
e 1
e 2
e 3
L] 3
o xrd ° % ®0,% '
< °® o° ":}. &
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(a) t-SNE plot

FIGURE 13

(b) dsNE plot

Experiment for outlier detection of the MRN fMRI dataset. In this experiment, the shared sample only contains the bad scans. In

both t-SNE and dSNE, we can successfully identify poor quality scans which is marked by the red color. In this experiment, three local and one
remote sites participated in the computation. In the layout, each point represents a brain scan of an individual
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FIGURE 14

Single-shot dSNE layout of MNIST data (Saha et al., 2017). Single-shot was run for the experiment of 1, 3 and 4 of MNIST

dataset. For all experiments, we are able to embed and group same digits from different sites with-out passing any site info to others. Here every
digit is marked by a unique color. Centralized is the original tSNE solution for locally grouped data. Digits are correctly grouped into clusters but

these clusters tend to heavily overlapped

shared reference dataset. Each local site runs the t-SNE algorithm on
this combined data (local and reference) and produces an embedding
into a low-dimensional space. However, while computing each itera-
tion of tSNE, a local site computes gradient based on combined data,
but it only updates the embedding vectors y for the local dataset. The
embedding for the shared data has been precomputed at the coordi-
nator node and shared with each local site. Similar to the landmark
points approach (Vin & Joshua, 2004), our method uses reference

points to tie together data from multiple sites. In practice, the samples
in the shared dataset are not controlled by the researchers using our
method, and it is hard to assess the usefulness of each sample in the
shared data in advance. In the end, each local site obtains an embed-
ding of its data and the embedding of the shared dataset. Since the
embedding points of the shared dataset do not change, all local
embeddings are easily combined by aligning the points representing
the shared data.
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