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System design is commonly thought of as a process of maximizing a
design objective subject to constraints, among which are the system
requirements. Given system-level requirements, a convenient man-
agement approach is to disaggregate the system into subsystems
and to “flowdown” the system-level requirements to the subsystem
or lower levels. We note, however, that requirements truly are
constraints, and they typically impose a penalty on system perfor-
mance. Furthermore, disaggregation of the system-level require-
ments into the flowdown requirements creates added sets of
constraints, all of which have the potential to impose further penal-
ties on overall system performance. This is a highly undesirable
effect of an otherwise beneficial system design management
process. This article derives conditions that may be imposed on
the flowdown requirements to assure that they do not penalize
overall system performance beyond the system-level requirement.
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1 Introduction
Modern systems engineering often comprises a system design

process based on requirements. The common perception is that
the requirements are a set of directives that define what the customer
wants and what the system has to do to meet the needs and wants of
the customer. In fact, however, requirements do not define what the
customer wants. They are a set of constraints that define what the
customer will not accept, and they do not enable ranking of
system alternatives. For example, the system shall not weigh more
than 100 pounds simply says that the customer will not accept
the system if it weighs more than 100 pounds. It does not say
how the customer values weights that meet this requirement, for
example, whether 70 pounds is better than 80 pounds. Thus,
requirements would not serve to define a preference or an objective
function for system optimization. In fact, requirements are con-
straints, and as shown by Hazelrigg and Saari [1], constraints
have the potential to significantly reduce system performance as

measured by the system design objective. Thus, one would nor-
mally prefer to minimize the imposition of constraints.
Current systems practice, however, involves a process of require-

ments flowdown, wherein a system-level requirement, such as a
weight restriction, is flowed down to the subsystem level by assign-
ing weight requirements at that level. The idea in setting the flow-
down requirement is that, if the sum of the subsystem weight
requirements is not greater than the system weight requirement,
the system as a whole will meet its weight requirement. The flow-
down requirements then enable the overall system design project
to be broken down into a set of well-defined design tasks that
empower design teams to preform the necessary subsystem and
component level designs.
The problem with this practice is that the flowdown process intro-

duces a large number of new requirements, each of which consti-
tutes another constraint on the system, and each additional
constraint has the potential to further degrade the system. Con-
straints may be classified as either inactive or active. An inactive
constraint is one that is satisfied by an unconstrained optimal solu-
tion. In other words, the constraint would be satisfied by the solu-
tion if it were not stated at all. An active constraint is one that
requires modification of the optimal solution to be satisfied. Thus,
active constraints always impose penalties on the unconstrained
(or less constrained) optimal solution. Clearly, as the requirements
flowdown process introduces many new constraints (perhaps thou-
sands in a complex system), it can be expected that many of these
will impose penalties on the final system performance. But the flow-
down constraints are self-imposed by the systems engineering
process as a convenience to enable disaggregation of the system
design process. This article addresses this problem for the case of
requirements on differentiable variables such as weights, costs,
volumes, power demands, and component reliabilities.

2 Background
While it is clear that large engineered systems have been

designed and constructed for millennia—pyramids, the Roman
aqueducts, and the Taj Mahal—the “science” of systems engineer-
ing appears to have had its beginnings in the early 1900s in the Bell
Laboratories [2]. Hall was tasked with the establishment of a
systems engineering course for the lab and eventually compiled
extant systems knowledge into an early text on the subject [3]. In
this book, he coins the term objectives, consisting of quantifiable
statements describing what the system is intended to do. These
statements would appear to be the first formal use of requirements
as we know them today. They show further that Hall had grasped
the concept of hierarchically structured objectives. Hall describes
five phases of systems engineering: system studies, exploratory
planning including selecting objectives and system design optimi-
zation, development planning, system development and test, and
late-stage or operational engineering. Fagen [4] reviews applica-
tions of systems engineering during World War II, and in 1946,
the RAND Corporation was created to assist what would later
become the Air Force in the conduct of systems analysis. Also, in
the 1940s systems engineering became an important aspect of
missile and missile-defense systems [5].
Since its founding in 1990, the International Council On Systems

Engineering (INCOSE) has been a major contributor to the theory
and practice of systems engineering and has given considerable
attention to the definition, statement, and flowdown of require-
ments. The INCOSE Systems Engineering Handbook [6] recog-
nizes requirements as a key to the processes of system
management, integration, verification, validation, operation, main-
tenance, and disposal. The Handbook notes, “successful projects
depend on meeting the needs and requirements of the stake-
holder/customer,” and goes on to say, “a great deal of literature
exists on how to write and manage requirements.” The Handbook
then enumerates how to “elicit and capture requirements, generate
a concept of operations, define system capabilities and performance
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objectives, and define non-functional requirements.” However, the
Handbook does not address the management of requirements flow-
down. A later INCOSE document [7] recognizes a “complex rela-
tionship between requirements, the design choices made to
address each requirement, and the system-level consequences of
the sum of design choices across the full set of performance require-
ments···” Neither does this document address the penalties that
requirements can impose on a system.
The National Aeronautics and Space Administration systems

engineering handbook [8] recognizes the requirements flowdown
process. This document recognizes four “system design processes,”
stakeholder expectation definition, technical requirements defini-
tion, logical decomposition, and design solution definition. The
relevant process here is the logical decomposition process, which
NASA describes as “used to improve understanding of the
defined technical requirements and the relationships among the
requirements ··· and to transform the defined set of technical require-
ments into a set of logical decomposition models and their associ-
ated set of derived technical requirements for lower levels of the
system and for input to the design solution definition process.”
This document also does not address the potential penalties that
requirements can impose on a system.
Collopy, in a number of unpublished presentations, has clearly

recognized the penalties that requirements can impose on system
performance. He has specifically addressed the problem of flow-
down requirements, noting that they are constraints that impose
potentially significant penalties. In addition, Collopy and cowork-
ers [9] studied Department of Defense acquisition programs noting
that current system procurement processes lead to an estimated
loss on the order of $200 million per day. It is partly for this
reason that we address the losses that flowdown requirements of
continuous variables such as weight, cost, power consumption,
thermal load, and reliability can impose on system performance
and provide conditions that assure that these penalties are
minimized.

3 Deterministic Formulation of the Problem
Let a system be described by a set of statements, x. The elements

of x may include continuous and integer values, verbal statements
such as colors or textures, descriptions of a system configuration,
manufacturing process descriptions, and even probabilistic state-
ments or beliefs. We will consider the elements of x to be of two
types, xT= [xd, xn], where xd are those components of x that are dif-
ferentiable and xn are the nondifferentiable components of x, which
we shall refer to as the system configuration. Let P(x) be a real
scalar function that denotes the system performance or objective
function such that candidate system designs, x, are evaluated and
ranked by values of P(x). Next, let system-level requirements on
differentiable variables be denoted by r, composed of elements rj,
j= 1, 2, …, n, where n is the number of system-level requirements
on differentiable variables. The rj may derive from statements such
as, “the system shall not weigh more than 100 pounds.” We then
decompose the system-level requirements into subsystem flow-
down requirements qj, with elements qjk, k= 1, 2, …, m, where m
is the number of relevant subsystems.
With this notation, the system design is subject to constraints that

accommodate the requirements,

f j(qj) ≤ rj

gj(x) ≤ qj

qj ≥ 0

(1)

where the notation fj(qj) refers to the vector of functions fj(qj) with
each element of this vector associated with its corresponding
element of rj, and gj(x) refers to the vector of functions gj(x) corre-
sponding to the vector of flowdown requirements for each subsys-
tem, j.

We will assume that the constraint functions are convex so that
the set of feasible solutions is a convex set. We shall also assume
that the first partial derivatives of P(x) with respect to xn and gj
are defined. The solution to the maximization of P(x) can be
obtained via a Lagrangian formulation invoking the Karush–
Kuhn–Tucker (KKT) conditions [10]. This optimization is shown
in Fig. 1.
A requirement that is satisfied by an optimal design without

imposing the requirement does not impose a penalty on the
optimal solution, and it is unnecessary. This would be the case if
the region of feasible solutions, that is, the solutions that satisfy
the inequality constraint on r, encompasses the maximum point.
In this case, we say that the constraint is inactive. The curves cir-
cling the maximum point are lines of constant P(x). For all require-
ments that are not satisfied by an optimal design as shown in the
figure, the requirement imposes a penalty on the optimal solution,
and to minimize that penalty, the solution is the point of tangency
between boundary of the constraint region and a surface of constant
P(x). We refer to these constraints as active.
With these conditions noted, we can frame the system design

problem as follows. First, choose a candidate system configuration,
xn, and flowdown requirements, qj. Second, for this system configu-
ration and flowdown requirements, values of xd are determined by
the following optimization aswritten in the Lagrangian form [10,11]:

Maxwrt xd J(x) = P(x) + λr{r − f j(qj)}

+
∑
j

λqj{qj − gj(x)}
(2)

The KKT conditions for the maximization of J(x) with respect to xd
are as follows:

∂J(x)
∂xd

= 0

f j(qj) ≤ r

gj(x) ≤ qj

λr{r − f j(qj)} = 0

λqj{qj − gj(x)} = 0, j = 1, . . . , m

λr ≥ 0

λqj ≥ 0, j = 1, . . . , m

(3)

Solution to conditions (3) yields values for the multipliers λr and λqj
and the optimum values for the design parameters xd subject to the

Fig. 1 Graphical representation of an optimization with an
inequality constraint
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given values of xn and qj. Note that, if for any requirement λr= 0, that
requirement is inactive.
In this formulation, the λqj represent the marginal penalties,

namely, −∂P(x)/∂qj, of the flowdown requirements on the system
performance. Thus, a condition that assures that the flowdown
requirements do not impose additional constraints on the system
that further penalize performance beyond the penalty imposed by
the system-level requirements r is that the λq’s satisfy a transvers-
ality condition. That is, the λq’s must be transverse (perpendicular
or normal) to the plane of the requirements defined by fj(qj) at the
point of tangency for the optimal solution as shown in Fig. 1.
Note that this point defines the optimal values of q. Furthermore,
the requirement to satisfy the transversality condition makes clear
that if the system-level requirement is inactive, it must be the case
that all flowdown requirements are also inactive, that is, all λq=
0. Contrariwise, if a particular λr is nonzero positive, then that con-
straint is active and the corresponding constraints on all components
of the associated qj must also be active. This is because it is not pos-
sible to satisfy the transversality condition otherwise, and in this
case, we know immediately that the equality conditions on r and
q must apply.
In practice, this can be a very simple requirement to implement.

For example, suppose the flowdown requirement allocates weights
to various subsystems. Then, the flowdown requirement plane is
defined by the following equation:

q1 + q2 + · · · + qm = r (4)

For a hyperplane defined by an equation of the form a1 y1+ a2 y2
+ · · ·+ am ym= c, the basis for vectors that are perpendicular to this
plane is simply [a1, a2, …, am]. Thus, for a flowdown requirement
plane of the form (4), a vector normal to the plane is simply
[1,1, …, 1], and the magnitude of this vector is

��
m

√
. The transvers-

ality condition states that the projection of the λq’s for each flow-
down requirement onto the requirement plane must have
magnitude 0. This means that the vector defined by the components
λq must align with the vector [1,1, …, 1]. In other words, for each
requirement, q, λq1= λq2= · · ·= λqm or, in the more general case
where all ai≠ 1, λq1/a1= λq2/a2= · · ·= λqm/am. Furthermore, if this
condition is not met, this vector sum will have a finite projection
onto the requirement plane, and that projection will show the direc-
tion in which one must adjust the q’s to seek a more optimal allo-
cation of the flowdown requirements. Stated verbally, for a given
flowdown requirement, each design team should first obtain a
“best” design and then estimate the improvement in performance
achievable if the requirement is relaxed by a given small amount.
These “sensitivities” are the respective λ’s. If the λ’s satisfy the
aforementioned transversality condition, then the flowdown require-
ments are allocated optimally, and they will impose no performance
penalty in addition to that imposed by the system-level requirement
r. If the λ’s do not satisfy the aforementioned conditions, then their
vector sum will have a finite projection onto the requirement plane,
and this projection will denote the relative changes to the q’s one
should make to seek a more optimal allocation of the flowdown
requirements. Thus, in practice it is not necessary to find the projec-
tion of the vector sum onto the requirements plane as it is only nec-
essary to assure that the magnitude of the projection is 0.
A key advantage of this approach to the optimization of flow-

down requirements is that it enables the disaggregation of design
tasks in the same manner that the current requirements flowdown
process does. At each step in this process, the subsystem design
teams will have access to flowdown requirements that enable
them to provide candidate designs. Yet, as the design iterates to a
final, optimal design, the flowdown requirements will converge to
a set that imposes no penalties to the system performance beyond
that imposed by the system-level requirements.
It is also worth to note that the λr represent the cost per unit of the

system-level requirements, namely, −∂P(x)/∂r. These data could be
useful in determining whether the system-level requirements are
reasonably determined.

4 Example Problem
We will now consider a simple example problem involving a

single system-level requirement and two subsystem flowdown
requirements. It is an illustrative problem only with parameters
not intended to represent a real design. This example problem can
be envisioned as the design of a table such as that shown in
Fig. 2, where there is a weight requirement, rW, on the assembled
table that is flowed down to weight requirements on the table top
and the legs taken as a group, namely, fW(qW)= qT+ qL, and with
an objective of minimum cost. The weight of the table is given as
the sum of the volumes of the parts of the table times the densities,
ρ, of these parts. For simplicity, we will take the outer dimensions of
the parts to comprise rectangular cuboids, which will be lightened
by material removal resulting in a final volume of η times the orig-
inal volume of the cuboid, namely, V= ηlwt, where l, w, and t are
the length, width, and thickness of the parts, respectively, and
(1 − η) is the fraction of the material that is removed to lighten
each part, 0 < η< 1.2 To prevent the trivial result that the table has
zero surface area, we will take the values of lT and wT to be fixed
and given. In addition, we will assume that the table is to be of a
specified height, h, such that h= (lL+ tT) is also fixed and given.
Thus, the weights of the table parts are given by

gT = ηT lTwT tTρT =WT

gL = 4ηLlLw
2
LρL = 4ηL(h − tT )w

2
LρL =WL

(5)

where WT and WL are the weights of the top and legs, respectively,
noting that the table has four legs and taking their unmachined
cuboids to be of equal width and thickness.
Next, we develop a cost model. For this example, it is convenient

to assume that the cost of the table is composed of a materials cost
C, a cost of machining M, and a cost of assembly A. The material
cost will be taken to be proportional to the weights of the unma-
chined parts, namely, W∗

T = ρTlTwTtT and W∗
L = 4ρL(h − tT )w2

L.
Accordingly, the material cost is

CT =W∗
TPT = PTρT lTwT tT

CL =W∗
LPL = 4PLρL(h − tT )w

2
L

(6)

where PT and PL are the prices per unit weight of the table top and
table leg materials, respectively. Next, we shall use the following
relationships for the cost of machining for the purpose of weight

Fig. 2 The example table

2We use the concept of material removal here to emphasize that we have assured
continuous differentiability of g(xn).
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reduction,

MT = 90(WT − 20)−0.4

ML = 10 1 −
WL

W∗
L

( )1.5 WL

W∗
L

− 0.05

( )−0.5 (7)

These functional forms result in greater cost to achieve lighter
designs. The final term relates to the assembly cost. Here, we
assume that the cost of assembly is a weakly increasing function
of weight.

A = A0 + δ(WT +WL) (8)

It follows that the total cost of production is expressed as follows:3

CT + CL +MT +ML + A = −P(x) (9)

We now see that the differentiable design variables, xd, include
the dimensions of the table top and legs, namely, lT, wT, tT and lL,
wL, and ηT and ηL. Of these, however, only tT, wL, WT=W∗

TηT,
and WL=W∗

LηL are free to be optimized. Furthermore, the relation-
ships between tT and ηT and between wL and ηL would normally be
constrained by relationships that determine the required strength
and stiffness. Thus, to keep this example relatively simple, we
shall also take tT and wL to be given, leaving only WT and WL to
be optimized. These design variables are determined by maximizing
the function:

Maxwrt xd J(x) = P(x) + λr{rW − qT − qL}

+ λqT{qT −WT} + λqL{qL −WL} (10)

To maximize this function, we must satisfy conditions (3). Taking
the partial derivatives of J(x) with respect to the remaining free vari-
ables of xd, namely, WT and WL.

∂J
∂WT

= 36(WT − 20)−1.4 − δ − λqT = 0

∂J
∂WL

=
5(1 −WL/W∗

L )
1.5

W∗
L (WL/W∗

L − 0.05)1.5

+
15(1 −WL/W∗

L )
0.5

W∗
L (WL/W∗

L − 0.05)0.5
− δ − λqL = 0 (11)

Solving for the λ’s,

λqT =
∂P
∂WT

λqL =
∂P
∂WL

(12)

In this example, there are only two flowdown requirements defined
by the equation rW= qT+ qL. Hence, the requirement hyperplane is
a line with normal vectors defined by the direction {1,1} corre-
sponding to the qT and qL axes, and the optimality condition is
expressed as follows:

λqT =
∂P
∂WT

=
∂P
∂WL

= λqL (13)

As noted earlier, condition (4) would be different if the coefficients
of the equation for rW, 1 and 1, were different. It is also possible for
the flowdown requirements to combine nonlinearly in which case
the flowdown requirement surface is not a plane. This typically
would be the case if the flowdown requirements are on component
reliabilities. The more general case of condition (4) is presented in
Appendix A.

To illuminate the example case further, we choose the following
data:

Oak table top
Density= 39.33 lbs/cu-ft
Price= $1.0679/lb
W∗

T = 78.66 lbs
CT= $84.001

316 stainless steel legs
Density= 496.32 lbs/cu-ft
Price= $0.75/lb
W∗

L = 142.46 lbs
CL= $106.845

Assembly cost
A0= $15
δ= $0.05/lb

Weight requirement
r≤ 50 lbs

With these data, convergence to a solution is obtained easily
within ten iterations using a simple gradient search. Figure 3 is a
plot of λqT and λqL as a function of qT, with an optimal solution
of qT= 30.2295 lbs. As both λqT and λqL are positive, we are
assured that the constraint on r is active, and the equality conditions
of the constraints on r and q apply. Figure 4 shows the projection of
the vector sum λqT+ λqL onto the requirement plane. The zero cross-
ing depicts the optimal solution. Figure 5 plots the total cost of man-
ufacture as a function of qT.

Fig. 3 Plot of λqT and λqL as a function of qT

Fig. 4 Plot of λqT− λqL as a function of qT

3Note that we wish to minimize total cost, which is equivalent to maximizing per-
formance, P(x), expressed as the negative of total cost.
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5 Nondeterministic Formulation of the Problem
The formulation for the determination of optimal flowdown

requirements given earlier can be adapted to more complex cases
where there is uncertainty, in which case it may be desirable to
specify the flowdown requirements with “margins” to provide
added confidence that the system-level requirements can be met.
In one case, the margins may be used at the design stage to
assure that some exceedance of the flowdown requirements will
not result in failure of the final design to meet the system-level
requirement. Alternatively, the margins may be used to account
for manufacturing variance, again to assure that the manufactured
product will meet the system-level requirement. It is also possible
to accept different interpretations of the flowdown requirements.
On the one hand, project management could elect to hold all
design teams responsible for meeting their individually assigned
flowdown requirements. On the other hand, management could
elect only to manage requirements at the system level, accepting
exceedances of some flowdown requirements provided they are
accommodated by underages in others. Each of these cases fit
within the overall framework provided here, however with some
modification of the logic by which the payoff function is deter-
mined. While it might be reasonable to expect that the deterministic
formulation will converge to an optimal solution as uncertainties are
reduced through the iterative design process, it may prove more
expeditious to begin with the nondeterministic formulation.
Extension to the nondeterministic case relies on reformulation of

the problem to maximize expected utility of the selection of the
flowdown requirements [12]. For this case, we must consider
more than the marginal penalties of the flowdown requirements
themselves. We must acknowledge the potential that inadequate
provision of margins can lead to cases where the final design fails
to meet the system-level requirements and is, therefore, a failure
that bears a cost to the project. Thus, the formulation given earlier
must be augmented to provide an estimate of the benefit of a suc-
cessful design (one that meets all system-level requirements) as a
function of the flowdown requirements and an estimate of the
cost of a design failure. Note that, while increasing the margin on
the flowdown requirements may increase the probability of achiev-
ing a successful design, doing so penalizes the expected perfor-
mance of the successful design. Thus, maximization of the
expected utility must account for both the utility of successful
designs and that of failed designs.
For the successful designs, the system expected utility is given by

E{us[J(x)]}=E u −P(x)+ λr{r− f j(qj)}+
∑
j

λqj{qj − gj(x)}

[ ]{ }

(14)

In this formulation, it is no longer the case that qj= gj(x). Rather the
inequality, qj≤ gj(x), will now apply. We must next consider
the possibility of design failure, that is, where uncertainty in the
outcome of a design choice leads to an exceedance of a requirement,
either at the system level or at the flowdown level depending on the
project management approach. We shall consider the case of design
choices failing to meet the system-level requirement. For the case of
the table example presented earlier, this means that the total table
weight exceeds a system-level weight requirement. We shall
assume that, when this happens, there is a cost imposed such that
the design outcome has negative value. We denote the utility of
this loss as uf. Then, the expected utility of a choice of flowdown
requirements, in the example case, qT and qL, is given by

E{u[J(x)]}= psE{us[J(x)]}+ (1− ps)uf (15)

where ps is the probability that the design meets the system-level
requirement.
Interestingly, the introduction of uncertainty leads to a require-

ment for additional data, including both data on the nature of the
uncertainty itself and on the context within which the uncertainty

lies. We will consider a very simple case of uncertainty here,
where the choice of the requirements qT and qL leads to uncertain
component weights WT and WL, and where it is required that WT

+WL≤ r. This requirement leads to significant added complexity
in the solution of (5). For this reason, we resort to Monte Carlo
simulation for the evaluation of choices of qT and qL. We also
assume that the decision maker is risk neutral, that is, the utility
of money equals money. The additional data we need for this
case are the following:

Uncertainty in WT

Normal distribution
Mean= qT lbs
Standard deviation= 0.5 lbs

Uncertainty in WL

Normal distribution
Mean= qL lbs
Standard deviation= 0.5 lbs

Economic data
Failure cost= $2000
Sale price= $325
Demand at the sale price= 100 units

Note that, if the decision maker were not risk neutral, for
example, if the decision maker’s risk preferences were expressed
as the utility of money equals the log of money, then in addition
to the aforementioned data we would also require data on the finan-
cial status of the decision maker.
A solution to the aforementioned case is shown in Fig. 6. Clearly,

there would be a considerable penalty to specifying values of qT and
qL equal to the deterministic solution. The labels on the contours
shown in this figure denote the expected utility of the choice of
qT and qL, which in this case equates to the expected profit. The
“+” sign shows the approximate location of the maximum point
with an expected utility of 5132.
Although we have shown through this example that the problem

formulation given is capable of dealing with cases that involve
uncertainties, much work remains to fully exploit this capability.

6 Optimization of System-Level Requirements
Recognize that the λr represents the penalty, ∂P(x)/∂r, that the

system-level requirements impose on the system performance.
Thus, these values can prove useful in evaluating the desirability
of these requirements. For example, if the penalty of the require-
ment, the system shall not weigh more than 100 pounds, seems
excessive, it could encourage the customer to relax the requirement

Fig. 5 Total cost of manufacture as a function of qT
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somewhat. These λr’s might also be used to understand tradeoffs
among system-level requirements. For example, consider the case
of an airplane designed for long-distance routes. System-level
requirements might include cruise speed and range, with more of
each being desirable. However, point-to-point trip times may be
higher because range limitations require refueling stops on long
flights, such that the overall trip time could actually be reduced
by allowing a lower, more fuel-efficient, cruise speed.
Furthermore, it could be useful to determine the system-level

requirements for which the λr= 0 as this condition allows the
system performance to be maximized in the absence of the require-
ments. The process for finding the values of the requirements that
satisfy this condition is the same as that for finding the values of
the flowdown requirements that do not penalize the system
performance.

7 Conclusions
System design by requirements and requirements flowdown is a

well-established and presumably well-understood process. Unfortu-
nately, it imposes added constraints on system design that have the
potential to translate into serious performance penalties. To allevi-
ate these penalties, we have derived a condition that, when
imposed on the flowdown requirements, assures that they impose
no additional penalty on system performance. The mathematics of
the Lagrangian formulation together with the KKT conditions
used in this approach leads to a convenient and powerful method
that enables consideration of nonlinear cases and has the potential
to extend to the case of uncertainty where we seek to optimize
the system with respect to the expected utility of a system perfor-
mance measure. The method also extends easily to multiple levels
of flowdown requirements. A significant advantage of this
method of setting flowdown requirements is that, at all steps
during the design process, system-level and flowdown requirements
are available to the design teams, allowing the design process to

remain essentially unchanged while reducing the performance pen-
alties adherent to the current requirements flowdown systems engi-
neering approach.
By implementing this approach to the selection of requirements

at all levels of system design, it may be possible to significantly
reduce penalties associated with requirements on continuous vari-
ables, while requirements remain available to the design teams so
that their work can proceed as usual. Furthermore, it seems reason-
able that the concepts employed here can be extended to cases
where the requirements are on variables that are not continuously
differentiable. Noting that constraints imposed by requirements
might be made inactive through the proper choice of a system per-
formance measure, the approach provided here could pave the way
to enable the conversion of system design by requirements into a
case of design by preference while leaving the actual design
process and its management largely unchanged.
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Appendix A: The Transversality Condition
The transversality condition may be stated, in order that the flow-

down requirements impose no performance penalty on the system,
the vector λq= [λq1, λq2,…, λqm] must be normal to the requirement
hyperplane defined by r= f (q) at the point q for the optimum design

Fig. 6 Expected utility of choices of qT and qL
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point x. In the case that f (q) takes the form

f (q) = a1q1 + a2q2 + · · · + amqm (A1)

a vector normal to this hyperplane is simply a= [a1, a2, …, am].
Thus, if λq= αa, where α is a positive scalar, the transversality con-
dition is met.
The transversality condition is a bit more complex in the case that

r= f (q) defines a nonplanar surface. Requiring that λ be normal to
the requirement surface at point f(q) is equivalent to requiring that
λq be normal to the hyperplane that is tangent to f(q) at point q. But,
from (A1), we can see that the tangent hyperplane is given by

f (q) = a1q1 + a2q2 + · · · + amqm = r (A2)

where the coefficients are given by

ai =
∂r
∂q1

∣∣∣∣
q

(A3)

Another way of stating the transversality condition is that, in order
that the flowdown requirements impose no performance penalty on
the system, the projection of the vector λq onto the tangent hyper-
plane at point q must have magnitude 0. The projection of λq
onto the requirement hyperplane is simply λq minus the vector
normal to the tangent hyperplane, n, from λq to the hyperplane.
Note that the direction of n is the same as that of a and its magnitude
is obtained from the dot product of λq and a:

|n| = λq · a
|a| (A4)

and

n =
|n|
|a| a (A5)
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