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ARTICLE INFO ABSTRACT

Keywords: Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized
Theta as “non-verbal” intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and
Beta adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults,
Gal?qma . there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine
Fluid reasoning o . . . 5 ca. . . .
Development longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically

developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during
magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization
in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly
implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional,
compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature
adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with
improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift
in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid
reasoning during this important period of development.

1. Introduction

Fluid reasoning, or the ability to problem solve in the absence of
prior situational knowledge, is a form of non-verbal intelligence that
undergoes dynamic, rapid development throughout childhood and ado-
lescence. Prior research has linked fluid intelligence abilities to aptitude
in a number of other critical cognitive domains including working mem-
ory, processing speed, and crystallized (i.e., verbal) intelligence among
others (Conway et al., 2002; Crone and Ridderinkhof, 2011; Ferrer et al.,
2009; Mcardle et al., 2002). Given its associations with so many other
domains of functioning, it is perhaps unsurprising that fluid intelligence
is predictive of outcomes across the lifespan such as academic achieve-
ment, life expectancy, work performance, and income (Ferrer et al.,
2009; Gottfredson and Deary, 2004; Kievit et al., 2018; Mcardle et al.,
2002).

Fluid intelligence generally increases throughout childhood and ado-
lescence before plateauing in young adulthood (Mcardle et al., 2002).
Importantly, the development of fluid intelligence abilities, including
such skills as abstract reasoning, is closely coupled with brain matura-
tion (Bazargani et al., 2014; Ramchandran et al., 2019; Shaw, 2007).
Accumulating evidence over the past two decades commonly implicates
a distributed frontoparietal network of brain regions serving fluid in-
telligence processes (Basten et al., 2015; Dumontheil, 2014; Jung and
Haier, 2007; Shaw, 2007). A number of studies have specifically impli-
cated left-hemispheric regions in fluid reasoning abilities, with many
fMRI studies showing increased activation in left frontoparietal and
temporal areas with increasing reasoning abilities (Basten et al., 2015;
Hobeika et al., 2016; Perfetti et al., 2009). These areas of the brain are
known to follow a protracted path of maturation extending into adult-
hood. Structurally, frontoparietal areas exhibit significant gray matter
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pruning during childhood and adolescence resulting in robust decreases
in gray matter thickness and volume (Casey et al., 2000; Wierenga et al.,
2014). Further, white matter tracts connecting critical frontal and pari-
etal areas undergo a pivotal architectural reorganization during de-
velopment (Fuhrmann et al., 2019; Simpson-Kent et al., 2020). These
structural changes have been linked to longitudinal improvements in
fluid reasoning abilities (Estrada et al., 2019; Simpson-Kent et al., 2020;
Wendelken et al., 2017, 2016).

Studies examining the neural oscillatory dynamics serving fluid intel-
ligence regularly implicate frontal and parietal cortices, but frequently
produce disparate results concerning which oscillatory dynamics are
most critically involved in fluid reasoning. Among mature, healthy
adults, some researchers have found that theta (4-8 Hz) oscillatory
activity is key (Neubauer et al., 2017; Pahor and JauSovec, 2014),
whereas others suggest that alpha (8-12 Hz; Neubauer and Fink, 2003;
Ramos et al., 1993) or even high-frequency gamma (30 Hz+) responses
(Santarnecchi et al., 2016, 2013) most crucially support fluid reasoning.
Theta activity in frontal and parietal regions has been strongly tied to
cognitive control and higher order cognitive abilities (Cavanagh et al.,
2012), including several cognitive functions that are closely coupled
with fluid reasoning (e.g., working memory, attention; Jensen and
Tesche, 2002; Rajan et al., 2018; Sauseng et al., 2005). In general, theta
power is shown to increase as a function of task demands and cogni-
tive effort (Cavanagh and Frank, 2014; Wascher et al., 2014). Likewise,
alpha activity in these same regions has been closely linked to higher
order abilities, though perhaps in a different capacity. Some research
suggests that shifts in alpha power may be indicative of neural inhibi-
tion (Cohen and Ridderinkhof, 2013; Sadaghiani et al., 2012). By in-
hibiting certain processes, neural resources can be redirected to pro-
cessing relevant inputs for achieving the goal-directed behavior at hand.
However, changes in alpha power have also been noted in instances of
high cognitive demand, suggesting that increases in alpha power may
be indicative of cognitive load and mental effort (Koshy et al., 2020;
Meyer et al., 2013; Rosen and Reiner, 2017). Gamma activity in fron-
toparietal regions has been less well characterized. While some studies
suggest that early gamma responses may be beneficial in novel problem
solving (Cohen and Ridderinkhof, 2013; Rosen and Reiner, 2017), others
have suggested that greater gamma power is indicative of inefficiencies
in neural processing (Phillips and Takeda, 2009). Regardless, given the
strong links between these three oscillatory responses and high order
cognitive abilities, it is perhaps unsurprising that these have been at the
center of studies examining the neural dynamics serving fluid reasoning.

Despite the mixed oscillatory results surrounding fluid reasoning
abilities, there is a common theme that emerges; basically, greater re-
cruitment of left frontal and parietal areas tends to be associated with a
more mature adult-like response, higher overall fluid intelligence, and
overall better performance in fluid reasoning tasks among adults. Of
course, the neural oscillatory dynamics underlying fluid intelligence
abilities also undergo major developmental changes, in line with the ro-
bust maturation observed in both behavior and in brain structure during
childhood and adolescence. That said, studies examining the develop-
mental trajectory of these neural dynamics are decidedly rare.

One recent study by Taylor et al. (2020) mapped the developmen-
tal trajectory of multi-spectral neural oscillatory dynamics serving ab-
stract reasoning abilities in a cohort of children and adolescents. The
authors found robust age-related changes specifically in theta (4-8 Hz)
oscillatory activity across a distributed frontoparietal network. Impor-
tantly, the findings suggested that shifts in theta power as a function
of age, particularly in left frontal and parietal regions, supported bet-
ter behavioral performance during the abstract reasoning task. Another
study in a narrow age-range of older adolescents found that alpha (8-
12 Hz) oscillations critically index fluid abilities during an analogical
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reasoning task (Dix et al., 2016). Specifically, larger alpha desynchro-
nizations (i.e., band-limited power decreases) during the task were asso-
ciated with greater fluid intelligence abilities, faster learning, and better
behavioral performance among youths. The findings from these studies
are rather intuitive when considering the functional roles of theta and
alpha oscillatory activity in the noted brain regions. Namely, theta and
alpha activity in left frontoparietal areas has been commonly implicated
in complex cognitive processing like working memory manipulation and
directed attention (Cavanagh and Frank, 2014; McDermott et al., 2016a,
2016b; Meyer et al., 2013; Sauseng et al., 2005; Wilson et al., 2016).

The few developmental studies that have focused on the neural oscil-
latory dynamics serving fluid reasoning abilities have made major con-
tributions to the field’s understanding of maturation in these systems.
However, these have been purely cross-sectional works and there is a
major need for longitudinal studies detailing within-person changes in
the oscillatory dynamics over time as fluid reasoning abilities mature.
The field has come to the consensus that longitudinal studies are neces-
sary investments for understanding within-person trajectories of change
in cognitive and brain development. Longitudinal works have repeat-
edly shed light on unique aspects of development that are not captured
by cross-sectional designs (Feldstein Ewing et al., 2018; Jernigan et al.,
2018; Kievit and Simpson-Kent, 2021).

Herein, we extend our previous work published in
Taylor et al. (2020) and quantify within-person changes in the os-
cillatory dynamics serving fluid reasoning in a sample of children and
adolescents. All participants completed two magnetoencephalography
(MEG) recordings approximately one year apart and performed the
same abstract reasoning task during each session. Using robust source
imaging methods, we report changes in the neural dynamics underlying
fluid reasoning and link these to shifts in behavioral performance.
Based on previous works in children (Dix et al., 2016; Taylor et al.,
2020), we predicted that youths would exhibit reduced recruitment
of compensatory regions over time, and increased recruitment of
task-relevant regions as indexed by changes in oscillatory power. Given
the limited consensus in the literature on key oscillatory bands of
interest, we did not make specific hypotheses as to which frequencies
would show changes over time. Finally, we expected that these regional
changes in oscillatory power would be associated with improvements in
performance on the abstract reasoning task (i.e., faster reaction times,
increased task accuracy).

2. Methods
2.1. Participants

The sample was comprised of a subset of youths recruited for the
Developmental Chronnecto-Genomic Study (Dev-CoG; Stephen et al.,
2021), for which children and adolescents were invited to complete
neuropsychological testing and neuroimaging annually for three consec-
utive years. All participants in the present investigation were recruited
from the Omaha, Nebraska site. As part of the longitudinal protocol,
youth were asked to complete an abstract reasoning task during MEG
in the second and third years of the study. Notably, the current study
is an extension of the sample reported in Taylor et al. (2020) and in-
cluded all youths who completed the abstract reasoning task twice. A
total of 45 youth (27 male) completed the abstract reasoning task at two
separate visits. Youth were between the ages of 9.99 to 15.96 years-old
(M =12.74 years, SD = 1.66) at time 1, with approximately one year be-
tween visits (M = 1.01 years, SD = 0.079, range = 0.90 to 1.34 years). Ex-
clusionary criteria included medical conditions affecting CNS function,
neurological or psychiatric disorder, history of loss of consciousness,
current substance abuse, current use of any medication known to af-
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fect CNS function, and the MEG Laboratory’s standard exclusion criteria
(e.g., dental braces, metal implants, battery operated implants, and/or
any type of ferromagnetic implanted material). Parents of child partic-
ipants signed informed consent forms, and child participants signed as-
sent forms before proceeding with the study. All procedures were ap-
proved by the university’s Institutional Review Board.

Of the 45 participants who completed the abstract reasoning task at
both time points, data from 11 participants were excluded from all anal-
yses due to poor performance on the task (< 60% correct; ngpe; = 1,
Nime2 = 2), technical problems during data acquisition (ngpe; = 3,
Miime2 = 0), or excessive MEG artifacts or outliers (npe; = 3, Nimen = 2)-
Thus, the final sample was comprised of 34 youth (23 male) who
were between the ages of 9.99 and 15.41 years-old (M = 12.87 years,
SD = 1.59) when they first completed the abstract reasoning task, with
.90 to 1.17 years between visits (M = 1.00 years, SD = 0.063). Youth
who were included in the final sample did not differ from those who
were excluded based on age (t43y = -0.96, p = .341, d = 0.319), sex
(r%a) = 1.28, p = .257), IQ (f(33) = .056, p = .955, d = .021), or fluid
intelligence composite scores (t43y = 0.51, p = .613, d = 0.182).

2.2. Cognitive assessments

All participants completed the four-scale Wechsler Abbreviated Scale
of Intelligence (WASI-II; Wechsler, 2011) approximately one year prior
to the first MEG session reported herein (Stephen et al., 2021). A Full-
Scale IQ score, a verbal comprehension index (VCI), and a perceptual
reasoning index (PRI) were computed for each participant in accordance
with the publisher recommendations. Of note, the PRI composite is an
index of fluid intelligence. Each composite from the WASI-II is expected
to have a mean of 100 in the population, with a standard deviation of
15. Average scores in the present study were generally above average
(Full-Scale 1Q: M = 114.16, SD = 13.97; VCI: M = 114.27, SD = 16.99;
PRI: M =111.11, SD = 13.35).

2.3. Abstract reasoning task

The abstract reasoning task has been previously described
(Taylor et al., 2020). Briefly, youth were presented with a grid of four
boxes surrounding a central fixation point, with one of the two bottom
boxes highlighted in white. After a duration of 2750 ms (+ 250 ms),
the four boxes would populate with complex images for a duration of
4000 ms. Participants were instructed to indicate with a button press
whether the figure in the highlighted box correctly completed the ma-
trix of complex images (i.e., a match; see Fig. 1). Patterns could be
matched on number, color, or orientation. In total, there were 120 tri-
als with equal numbers of pseudo-randomly presented “match” versus
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Fig. 1. The abstract reasoning task. Participants were pre-

sented with an empty grid of gray boxes for 2500 to 3000 ms,

during which time either the left or right bottom square was

highlighted in white indicating the location of the upcom-

ing target. Then, the grid populated with complex figures for

4000 ms. Participants indicated with a corresponding but-

ton press whether the image in the highlighted box correctly

completed the pattern in the grid (i.e., “match”; 60 trials),

L or incorrectly completed the pattern in the grid (i.e., “non-

. match”; 60 trials). Match and non-match trials were pseudo-

randomly presented for the duration of the task, with a 30 s
break halfway through the paradigm.

“non-match” trials (additional examples are shown in Supplemental Fig.
S1). The task took approximately 14 min to complete, with a 30 s break
halfway through the paradigm.

2.4. MEG data acquisition

Neuromagnetic data were recorded using an Elekta MEG system with
306 sensors (204 planar gradiometers; Elekta, Helsinki, Finland) within
a one-layer magnetically shielded room with active shielding. MEG data
were sampled at 1kHz using a bandwidth of .1 to 330 Hz. Recorded data
were corrected for head motion per participant and per session, and
noise reduction was applied via signal space separation with a temporal
extension (tSSS; Taulu and Simola, 2006; Taulu et al., 2005).

2.5. MEG coregistration and structural MRI processing

At the start of each MEG session, four coils were attached to the par-
ticipant’s head and localized, along with three fiducial points and the
scalp surface using a 3-D digitizer (Fastrak 3SFO002, Polhemus Nav-
igator Sciences, Colchester, VT, USA). Participants were then seated
and properly positioned within the MEG. An electric current with a
unique frequency was fed to each of the coils (e.g., 322 Hz) allowing
measurement of the generated magnetic field which could be localized
in reference to the MEG sensors throughout the recording session. Be-
cause the coil locations were also known in head coordinates, all MEG
measurements could be transformed into a common coordinate system.
This coordinate system was used to coregister MEG data to each partici-
pant’s individual structural T1-weighted MRI prior to source reconstruc-
tion in BESA MRI (v. 2; BESA GmbH, Gréfelfing, Germany). Structural
MRIs were acquired using a Siemens Skyra 3T MRI scanner with a 32-
channel head coil and a MP-RAGE sequence with the following parame-
ters: TR = 2400 ms; TE = 1.94 ms; flip angle = 8°; FOV = 256 mm; slice
thickness = 1 mm (no gap); voxel size = 1 x 1 x 1 mm. Acquired images
were aligned to the anterior and posterior commissure and transformed
into standardized space. Finally, 4.0 x 4.0 x 4.0 mm functional images
computed during source analysis (i.e., beamforming) were also trans-
formed into standardized space in the same manner as the structural
MRI volumes.

2.6. MEG Time-frequency transformation and statistics

To begin, ocular and cardiac artifacts were removed from the raw
data using signal space projection (SSP; Uusitalo and Ilmoniemi, 1997).
Continuous magnetic timeseries were epoched into 6500 ms segments,
spanning from 2500 ms prior to the stimulus pattern onset, to 4000 ms
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Fig. 2. Association between changes in reaction time and changes in accuracy.
Arrows alongside the x- and y-axes indicate the interpretation of effects. The
differences in task accuracy and average reaction time over years of the study
(Time 2 - Time 1) were negatively correlated, suggesting that youths who im-
proved in accuracy over time also tended to respond faster over time.

Table 1
Coordinates of significant cluster peaks for paired samples t test of time
2 versus time 1 oscillatory dynamics.

Oscillatory Band/Region X y z
Theta

R lateral prefrontal gyrus 41 -77 -13
R inferior occipital gyrus 35 56 28
Beta

L superior temporal gyrus -57 -2 -1
L inferior frontal gyrus -51 31 -1
R parahippocampal gyrus 31 -9 -30

Note: Peak coordinates are in MNI standard coordinate space. There
were no clusters that survived thresholding within the gamma window.

after (i.e., the duration of the target stimulus presentation). Baseline was
defined as -1800 ms to -800 ms prior to the stimulus pattern onset to
avoid any potential anticipation effects, although no such effects were
apparent in the final analyses. Epochs containing large artifacts (e.g.,
coughing, swallowing, muscle tension) were rejected by using a fixed
threshold method based on the distribution of amplitudes and gradients
across trials per participant. The highest values were rejected per par-
ticipant. Importantly, thresholds were determined based on both sig-
nal amplitude (Mjpe; = 1263.07 fT, SD = 308.53; Myjpe, = 1231.84
fT, SD = 308.94) and gradient (M;jne; = 234.55 fT/s, SD = 137.32;
Miimeo = 212.00 fT/s, SD = 101.62) to better account for differences
in sensor proximity and head size between individuals. The number of
trials included in analyses did not differ across years in the final sample
(tss) =-0.26, p = .80, d = 0.058; Mype; = 91.94 trials, SD = 10.52;
Miimez = 91.35, SD = 9.93), nor did it correlate with age (r ime1(34)
=-.004, p = .98; T timen(34) = --097, p =.59).

The remaining artifact-free epochs were transformed into the time-
frequency domain via complex demodulation at a 2 Hz and 25 ms reso-
lution. The resultant spectral power estimates were averaged across all
trials per sensor, thereby generating time-frequency plots of mean spec-
tral density. Sensor-level data were normalized to the mean baseline
power (-1800 ms to -800 ms) per participant. Time-frequency windows
for source reconstruction were determined via statistical analysis of the
sensor-level data across all trials, participants, and years, and utilized all
gradiometers. Our analyses focused on the first 1000 ms post stimulus
onset in order to maximize focus on the cognitive aspects of stimulus
processing while minimizing the impact of other brain responses (i.e.,
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motor), which were not of interest in this investigation. Statistical analy-
sis of sensor-level data was completed in a two-step process to minimize
Type I error. First, we computed two-tailed paired-samples t-tests com-
paring the data to baseline for each time point, with the output spec-
trograms thresholded at p < .05 across all participants. Time-frequency
bins which survived the threshold were then clustered with temporally-
and/or spectrally-neighboring bins that also survived thresholding, and
a cluster value was derived by summing all t-values within the resultant
cluster. We then applied nonparametric cluster-based permutation test-
ing with 1000 permutations to build a distribution of cluster values and
significance levels (Ernst, 2004; Maris and Oostenveld, 2007). The re-
sultant spectrograms were used to determine time-frequency windows
containing significant oscillatory events across all participants, which
we then reconstructed into source space. Note that these analyses were
completed using MEG data from both time 1 and time 2 recordings in
order to reduce any session-specific bias.

2.7. MEG source imaging and statistics

Cortical activity was imaged using an extension of the linearly con-
strained minimum variance vector beamformer (Gross et al., 2001;
Hillebrand et al., 2005; Veen et al., 1997). This beamformer uses
frequency-specific spatial filters to compute source power for the entire
brain volume. Single images were computed from cross-spectral densi-
ties using all possible combinations of gradiometers averaged over the
specified time-frequency window, and the solution of the forward prob-
lem for each location on a grid specified by input voxel space. We com-
puted noise-normalized source power per voxel in each participant, for
each year of the study, using passive (i.e., baseline) and active (i.e., task)
periods of equal duration and bandwidth (Hillebrand et al., 2005). The
resultant images are referred to as pseudo-t maps, with units reflecting
noise-normalized power differences between active and passive periods
per voxel. MEG preprocessing was completed using BESA Research ver-
sion 7.0.

For each participant, and for each year of the study, normal-
ized differential source power was computed for the statistically-
identified time-frequency windows (see “Sensor-Level Results”) at
4.0 x 4.0 x 4.0 mm resolution. Note that youths whose individual maps
contained artifactual activity (peak values exceeding 3 times the stan-
dard deviation of the entire sample) within a given oscillatory band
were excluded from analyses using those maps. A total of 30 youths
were included in analyses of theta oscillatory activity, 27 youths were
included in beta oscillatory activity analyses, and 31 youths were in-
cluded in gamma oscillatory analyses. Note that all analyses were at-
tempted with and without listwise exclusion and yielded similar patterns
of results, thus we retained a pairwise exclusion approach per oscilla-
tory band to retain statistical power. The final 3D maps of brain activity
were averaged separately for time 1 and for time 2 across all partic-
ipants to identify the neuroanatomical basis of the significant sensor-
level oscillatory responses during the task. For further analyses, we uti-
lized the individual-level maps for each year of the study in order to
best capture the nature of individual variability in neural oscillatory
dynamics. In an initial set of analyses, we compared the maps derived
for each year of the study using paired-samples t-tests to decipher any
significant longitudinal changes in neural oscillatory power. We next
extracted the pseudo-t values from the peak voxel of each significant
cluster (4.0 x 4.0 x 4.0 mm resolution) to determine the specific re-
sponse’s relationship to task performance (i.e., reaction time and accu-
racy), and to cognitive assessments (i.e., the PRI composite from the
WASI). Of note, we computed these analyses using pseudo-t values ex-
tracted from the peak and a cluster average of pseudo-t values that in-
cluded the peak and neighboring voxels that shared a side (of the cube)
with the peak. These analyses yielded the same conclusions (see Sup-
plemental Fig. S2); thus, we only report the findings using peak voxel
values to ensure the best comparability with other MEG studies, as using
the peak voxel in such analyses is by far the most common approach.
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Fig. 3. Spectrograms of significant periods of oscillatory activity during the abstract reasoning task, collapsed across years of the study. Using time frequency
decomposition and permutation-corrected statistical analysis (p < .05, corrected), we detected three time-frequency bins with significant responses relative to
baseline during the period of interest (i.e., the first 1000 ms following stimulus presentation). These included theta activity (4-8 Hz) from 100 to 400 ms, beta
activity (12-18 Hz) from 400 to 1000 ms, and gamma activity (80-94 Hz) from 100 to 1000 ms. Here we show the gradiometers most clearly showing the response
(i.e., M2232 for theta and beta, and M2032 for gamma), though all gradiometers were included in the statistical analyses.
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Fig. 4. Averaged maps of oscillatory activity in each year of the study. Increased theta oscillations were broadly distributed across frontal, parietal, and occipital
portions of the cortex and notably diminished at time 2. Beta oscillations appeared predominantly in occipital and parietal cortices, with a peak in the left parietal
lobule. Activity appeared stronger at time 2. Finally, gamma responses were more focal and restricted to occipital cortices, with comparable activity at both time
points.
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Fig. 5. Differences in oscillatory activity across years of the study. Paired-samples t-tests comparing oscillatory activity at time 2 to time 1 revealed differences in
theta and beta activity. Youths exhibited significantly reduced theta in right lateral prefrontal (left) and occipital areas (not shown), and significantly stronger beta
responses in the left superior temporal and inferior frontal gyri (right), as well as the right parahippocampal gyrus (not shown). L-PFC: lateral prefrontal cortex; IFG:

inferior frontal gyrus; STG: superior temporal gyrus.

Relationships to task behavior and neuropsychological assessment were
conducted in Mplus version 8.1. In a second set of exploratory analy-
ses, we computed individual subtraction maps for each participant to
identify differences in oscillatory activity between time 1 and time 2.
We then computed whole-brain correlations between the resultant sub-
traction maps per participant and changes in task performance across
both years of the study. All clusters were conservatively thresholded at
a significance level of p < .005 and corrected for multiple comparisons
using a cluster correction criterion requiring a minimum of at least 5
contiguous voxels (i.e., > 320 mm3).

2.8. Data/code availability statement

The data used in this article are openly available through the COINS
framework (https://coins.trendscenter.org/). See dataset COINS:Dev-
CoG. Those who wish to use the data can create an account with COINS
and complete a data request process for the study, similar to other major
open access data repositories.

3. Results
3.1. Demographic and behavioral data

Youth included in the final sample performed the task well and
showed significant improvements in accuracy (tz3) = 2.63, p = .013,
d = 0.402; M 0, = 83.48%, SD = 6.98; M ;e = 86.18%, SD = 6.45)
and reaction time (f(33) = -2.65, p =.012, d = 0.313; M ;,,o; = 1949.87
ms, SD = 314.17; M (jmeo = 1853.96 ms, SD = 297.69) across years
of the study. Accuracy and reaction time were both relatively reliable
across visits, suggesting that those who were better at performing the
task one year tended to perform better in the following year (accuracy:
T34y = -61, p < .001; reaction time: rz4) = .76, p < .001). Finally, dif-
ferences in reaction times and differences in accuracy across years were
significantly correlated; individuals who responded faster in time 2 rel-
ative to time 1 also tended to be more accurate in time 2 relative to time
1 (rg4y =-.61, p <.001; see Fig. 2).

3.2. Sensor-Level Results

Time-frequency spectrograms indicated three windows of significant
oscillatory activity. There was a significant increase in theta activity
(i.e., theta synchronization) relative to baseline from 4 to 8 Hz across
a distributed array of sensors from 100 to 400 ms. There was also a
strong decrease in beta activity (i.e., beta desynchronization) relative to
baseline from 12 to 18 Hz in posterior and central sensors from 400 to
1000 ms. Finally, an increase in gamma activity (i.e., gamma synchro-
nization) relative to baseline from 80 to 94 Hz was observed in posterior
sensors from 100 to 1000 ms (see Fig. 3).

3.3. Functional mapping results

Grand-averaged beamformer images for each of the three time-
frequency bins are displayed in Fig. 4, separately for each year of the
study. Theta increases relative to baseline were strongest in the occipital
cortices during both years of the study, with an extended distribution
along primarily right frontal and parietal regions. The activity appeared
markedly less diffuse in time 2 relative to time 1. In the beta band,
there was a robust decrease relative to baseline in occipital and parietal
cortices, with a notable cluster in the left superior parietal. These beta
oscillations (i.e., decreases in power relative to baseline) appeared more
robust at time 2 relative to time 1. Finally, there was a strong increase
in gamma activity relative to baseline confined to occipital areas, which
appeared to be similar in magnitude and distribution across years of the
study.

To examine differences in neural oscillatory activity across years,
we conducted paired-samples t-tests comparing the functional activa-
tion maps from time 2 to those from time 1. There was a statistically
significant decrease in theta activity in time 2 relative to time 1 within
the right inferior occipital (tpg) = -3.69, p = .001, d = 0.495) and lateral
prefrontal cortices (t5g) = -3.67, p = .001, d = 0.709). Conversely, there
were significantly stronger beta oscillations (i.e., greater decreases in
power relative to baseline) in the right parahippocampal gyrus (t56) = -
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Fig. 6. Neural dynamics associated with changes in task accuracy. We correlated the difference in overall task accuracy (time 2 — time 1) with theta, beta, and gamma
oscillatory subtraction maps (time 2 — time 1), controlling for the effect of age in each analysis. There were no significant associations between changes in accuracy
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both theta and gamma oscillatory activity. Overall, increases in theta activity and decreases in gamma activity (not shown) were associated with improvements in
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5.56, p < .001, d = 0.685), and in the left inferior frontal (t5) =-3.44,
p =.002, d = 0.836) and superior temporal gyri (26, =-4.51,p <.001,
d = 0.994; see Fig. 5 and Table 1).

We extracted pseudo-t values at the peak of each identified cluster for
each year of the study and computed the difference in oscillatory power
between time 2 and time 1. We then examined the extent to which each
peak difference was related to general fluid intelligence and to changes
in task behavior using three multivariate regression analyses. For task
behavior analysis, models were designed such that the differences in
pseudo-t values at all five identified clusters were simultaneously mod-
eled as predictors of difference in accuracy, or difference in reaction
time. In a third model, we tested the degree to which PRI scores from
the WASI were predictive of the five extracted peak differences. In all
analyses we controlled for the effect of age during time 1 of the study.
There was only one significant relationship that emerged, which indi-
cated that differences in beta activity in the left superior temporal gyrus
were related to PRI composite scores (f = -.42, b = -0.13, p = .019).
Specifically, youth who had greater fluid intelligence as assessed by the
WASI-II tended to exhibit stronger beta responses over time (i.e., greater
decreases in power at time 2 relative to time 1). There were no signifi-
cant relationships between any of the peaks and either changes in accu-
racy or changes in reaction time in the MEG task (note: full model results
are available in supplemental Tables S1-S3). Thus, we further probed
for relationships to changes in task behavior in a set of exploratory anal-
yses.

3.4. Exploratory links to behavioral change

To identify links between oscillatory and behavioral changes be-
tween time 1 and time 2, we computed subtraction maps per person for
the theta, beta, and gamma images, with the resultant maps indicating
differences in oscillatory activity over time (time 2 minus time 1) across
the entire brain. Using these subtraction maps, we computed whole-
brain correlations between differences in neural oscillatory activity and
changes in MEG task performance (i.e., accuracy and reaction time). In
each correlation analysis, we covaried out the effect of age during time 1

of the study. We maintained the statistical and cluster thresholding from
the main analyses. There were significant correlations between changes
in theta activity and task accuracy within the right superior temporal
(rs0) = -58, p = .001) and precentral gyri (r3) = .54, p = .003), and
within the left superior (r3) = .56, p =.003) and inferior frontal gyri
(rzoy = -57, p = .002; Fig. 6). The data indicated that above and beyond
the effects of age, youth who had greater increases in theta activity over
time in these regions also tended to have greater improvements in task
accuracy. There was also a notable correlation between changes in ac-
curacy and gamma activity. Namely, after accounting for age effects,
youth who had decreased gamma activity within the right inferior tem-
poral gyrus (r(3y = -.58, p = .001) tended to show greater improvements
in task accuracy over time.

With respect to changes in reaction time, there were significant as-
sociations with theta activity such that increases in theta within the left
cuneus were associated with slower responses over time (rzg) = .57,
p = .004). Conversely, increases in theta within the right precentral
(r@oy = --55, p = .002) and superior temporal gyri (rsy = -.55,
p = .002), and increases in gamma in the left precentral gyrus (r(3;) = -
.58, p = .001) and right inferior parietal cortex (r(3;) = -.53, p = .004)
were all associated with faster reaction times (Fig. 7). Of note, theta
peaks in the right precentral and superior temporal gyri closely over-
lapped with those observed for accuracy (Fig. 6).

4. Discussion

The present study examined longitudinal changes in neural oscilla-
tory dynamics serving abstract reasoning among typically developing
children and adolescents. Our key findings showed robust changes in
the neural oscillatory dynamics across years of the study indicating re-
duced recruitment of compensatory, additional regions, and increased
recruitment of areas commonly associated with efficient fluid reason-
ing in adults. We additionally saw that youths with greater fluid intel-
ligence abilities measured by a traditional neuropsychological assess-
ment tended to exhibit stronger beta oscillations (i.e., greater decreases
in power relative to baseline) within the left superior temporal gyrus
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over time. Finally, we found multiple associations between changes in
oscillatory power and changes in performance on the abstract reasoning
task across years of the study. We discuss these findings in detail below.

Our data indicated a broad reduction in recruitment of the right lat-
eral prefrontal cortex longitudinally. Specifically, the right prefrontal
cortex showed robust theta oscillations at time 1 but was scarcely ac-
tive in the subsequent year. In concert, youths exhibited significantly
greater recruitment of the left inferior frontal and superior temporal
cortices longitudinally, as indexed by the emergence of beta oscillations
(i.e., decreases from baseline or desynchronizations) at time 2. Impor-
tantly, although these changes in neural dynamics were not associated
with performance during the MEG task, youths who showed greater re-
cruitment of the left superior temporal gyrus over time tended to have
greater fluid intelligence as indexed by a gold-standard neuropsycho-
logical assessment. Although we did not hypothesize shifts in beta os-
cillatory activity across years of the study, this finding is rather intu-
itive. Previous works have linked stronger beta responses (i.e., larger
desynchronizations) to a number of higher order cognitive processes
such as top-down attentional control (Koshy et al., 2020; Stoll et al.,
2016). Further, recent works have distinctly implicated beta oscillations
in processing finite local features of complex visual stimuli (Romei et al.,
2011; Zaretskaya and Bartels, 2015). For instance, Zaretskaya and Bar-
tels (2015) noted that local feature processing, relative to global stim-
ulus processing, was characterized by stronger beta activity. It is pos-
sible that the shift in beta oscillatory responses noted in the present
study reflected maturing local processing capabilities given the abstract
reasoning task demands, which required youths to quickly dissect local
features of complex visual stimuli.

On the other hand, we did detect additional changes in neural oscil-
latory dynamics that were specifically related to aspects of behavioral
performance on the abstract reasoning task. Improvements in both ac-
curacy and reaction times across years of the study were associated with
shifts in theta and gamma activity across a distributed network, includ-

ing key frontal and temporal regions frequently implicated in fluid rea-
soning (Jung and Haier, 2007). For example, increasing theta activity in
the left inferior frontal gyrus was associated with greater accuracy on the
task. As mentioned previously, the left inferior frontal gyrus is frequently
highlighted for its role in fluid reasoning abilities in the mature adult
brain (Basten et al., 2015; Jung and Haier, 2007). Coupled with the role
of theta as a purveyor of long-range neural communication, including
top-down attentional control mechanisms (Basar and Giintekin, 2013;
Cavanagh and Frank, 2014; Colgin, 2013), it is sensible that we would
see this pattern of maturation emerge in the present longitudinal study.

Interestingly, we saw close overlap in effects within the theta band,
such that increasing theta power in the right precentral and supe-
rior temporal gyri was associated with improvements in both accu-
racy and reaction time across years of the study. These findings are
supported by a broad body of literature examining links between
theta oscillatory activity and motor performance. In a recent study,
Muthukrishnan et al. (2020) explored changes in oscillatory dynam-
ics in adults performing a working memory paradigm of varying load.
They found that theta connectivity among distributed right hemisphere
regions spanning parietal and temporal areas was diminished during
high-load working memory conditions, and that reduction in theta con-
nectivity was associated with poorer performance on the task (i.e.,
lower accuracy). Another study in individuals with Parkinson’s Disease
showed that theta activity in the right superior temporal gyrus increased
following transcranial magnetic stimulation therapy, and that this in-
crease in theta activity was associated with improved motor outcomes
(Tanaka et al., 2002). In general, the literature points to a key functional
role of theta activity in these brain regions for optimizing both motor
and cognitive performance.

With respect to gamma, we found that increasing gamma in the left
precentral gyrus and right inferior parietal cortex was associated with
faster reaction times across years of the study, areas that are commonly
implicated in planning and executing motor responses (Chung et al.,
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2017; Spooner et al., 2021). It is possible that these effects reflect the
upcoming motor response during the task, although the statistically-
defined time bin for our gamma responses extended from 100 to 1000 ms
after the stimulus onset, which was well before the group mean reac-
tion time of ~1900 ms. Further, while the left precentral gyrus is the
most common source of the motor-related gamma response to move-
ments of the right hand/fingers, no studies to our knowledge have re-
ported such responses in the parietal cortices (Heinrichs-Graham et al.,
2018; Trevarrow et al., 2019; Wiesman et al., 2020). About the tim-
ing, there was a wide distribution of response times among the sample
in both years of the study and some participants responded closer to
the 1000 ms mark, which could help explain that discrepancy, at least
for the left precentral gyrus response. Further investigation using motor
response-locked analyses would shed more light on the nature of mo-
tor gamma in the current study, and its role in properly processing and
performing the abstract reasoning task.

Taken together, these data support previous literature suggesting a
fundamental reconfiguration of functional networks underlying fluid
reasoning across child and adolescent development (Fuhrmann et al.,
2019; Menon, 2013; Simpson-Kent et al., 2020). More specifically, our
developmental data illustrate reduced recruitment of brain regions that
are not as strongly linked to fluid reasoning (e.g., right lateral prefrontal
cortex), along with increased recruitment of areas known to be critical
for fluid reasoning among mature adults (e.g., left inferior frontal gyrus;
Basten et al., 2015; Jung and Haier, 2007). The overall network of re-
gions showing oscillatory change over time in the present study closely
resembles that of a recent f{MRI/PET-based meta-analysis reporting the
neural regions critical for fluid reasoning among primarily older adoles-
cents and young adults (Santarnecchi et al., 2017). Other studies have
also reported developmental changes in functional brain activity, with
or without changes in behavioral performance, across multiple cogni-
tive domains including relational reasoning (Dumontheil et al., 2010),
executive functioning (Guevara et al., 2013), and attentional process-
ing (Taylor et al., 2019, 2016). Such findings are believed to reflect
shifts in neurocognitive strategies as learning and development occur.
Indeed, a seminal study by Uhlhaas et al. (2009) showed that shifts in
synchronization specifically within theta, beta, and gamma bands from
childhood into adulthood are indicative of restructured functional net-
works during development. Such a shift is consistent with the functional
roles of these different oscillatory bands in the mature brain. Theta and
beta oscillatory responses have been repeatedly implicated in the co-
ordination of long-range neural communication (e.g., between frontal
and parietal areas) during higher order cognitive processing (Engel and
Fries, 2010; Schnitzler and Gross, 2005; Spitzer and Haegens, 2017;
Uhlhaas et al., 2008), whereas gamma activity is believed to be criti-
cal for local information maintenance and integration during complex
tasks (Gregoriou et al., 2009; Mellem et al., 2013; Uhlhaas et al., 2008).
Thus, framing the data acquired in the current study in the context of
the extant literature, our data may be suggestive of improved perfor-
mance through the reconfiguration of functional networks serving fluid
reasoning, as indicated by changes in long-range communication across
key regions involved in fluid reasoning, and critical local maintenance
and processing of the complex stimuli in the abstract reasoning task.

Before closing, we must address several limitations of the current
study. First, we had a relatively limited number of youths who success-
fully completed the abstract reasoning task at both time points. Fur-
ther, the sample was not perfectly balanced, with a greater proportion
of male participants in the final sample. Given the smaller, somewhat
imbalanced sample size, we were limited in the breadth and depth of
analyses we were able to perform, including explorations of sex-specific
changes in neural oscillatory dynamics over time. Several recent stud-
ies have shown unique trajectories of development among male versus
female youths in investigations of both task-based (Fung et al., 2021;
Taylor et al., 2021, 2020) and spontaneous cortical dynamics (Ott et al.,
2021). Future longitudinal studies should aim to acquire data from
larger samples of equally-balanced male and female youths to further
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disentangle the unique trajectories of fluid reasoning maturation in this
dynamic period of development. It would also be fruitful to explore ad-
ditional time points to better model non-linear patterns of longitudinal
development. It goes without saying that longitudinal data sets are rich
in nature, and the analytic approach utilized in the current investiga-
tion was one of many possible avenues for understanding the nature of
maturation in neural oscillatory dynamics. Future investigations should
incorporate additional statistical tools to further probe changes in neural
processing during adolescence. For instance, linear mixed effects mod-
eling would allow for more individualized approaches to understanding
changes in neural oscillations over time as a function of age at the start of
the study. Further, dynamic functional connectivity analyses may reveal
shifts in brain network organization that were not obvious in the cur-
rent statistical design. Future studies could also employ more regional
approaches to identifying whether specific oscillatory responses exhibit
clear relationships to behavioral performance and/or general cognitive
abilities. While we tested both peak voxel and local cluster methods and
found the conclusions to be identical, inflating the region even more
broadly may illuminate new relationships. Finally, we only explored
changes in neural dynamics during an abstract reasoning task. Although
this is a common type of assessment for fluid reasoning, there are many
ways to assess fluid intelligence abilities that entail varying cognitive de-
mands and stimulus types. Thus, while our data provide a unique view
into the within-person developmental changes in oscillatory dynamics
serving abstract reasoning, these findings may not be fully generalizable
to the broader construct of fluid intelligence.

To conclude, the present study is one of a limited number to quan-
tify longitudinal changes in abstract reasoning abilities in children and
adolescents. We found distributed shifts in theta, beta, and gamma os-
cillatory activity during the task, which largely indicated decreased re-
cruitment of areas that are rarely linked to fluid reasoning in adults
(e.g., right lateral prefrontal cortex), and increased recruitment of re-
gions classically implicated in fluid reasoning among such mature adults
(e.g., left frontal and parietal regions). Importantly, such changes in os-
cillatory dynamics were associated with fluid intelligence measured by a
gold-standard neuropsychological assessment, and with improvements
in accuracy and reaction time across years of the study. These data may
reflect critical developmental changes in the reconfiguration and timing
of the functional brain dynamics underlying fluid intelligence among
children and adolescents.
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