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Abstract—In recent years, cross-spectral iris recognition has emerged as a promising biometric approach to establish the identity of
individuals. However, matching iris images acquired at different spectral bands (i.e., matching a visible (VIS) iris probe to a gallery of
near-infrared (NIR) iris images or vice versa) shows a significant performance degradation when compared to intraband NIR matching.
Hence, in this paper, we have investigated a range of deep convolutional generative adversarial network (DCGAN) architectures to
further improve the accuracy of cross-spectral iris recognition methods. Moreover, unlike the existing works in the literature, we
introduce a resolution difference into the classical cross-spectral matching problem domain. We have developed two different novel
techniques using the conditional generative adversarial network (cGAN) as a backbone architecture for cross-spectral iris matching. In
the first approach, we simultaneously address the cross-resolution and cross-spectral matching problem by training a cGAN that jointly
translates cross-resolution as well as cross-spectral tasks to the same resolution and within the same spectrum. In the second
approach, we design a coupled generative adversarial network (cpGAN) architecture consisting of a pair of cGAN modules that project
the VIS and NIR iris images into a low-dimensional embedding domain to ensure maximum pairwise similarity between the feature
vectors from the two iris modalities of the same subject. To assure the efficacy of our methods, we perform several experiments
considering multiple real-life scenarios on three publicly-available cross-spectral iris datasets. Our best experimental results obtained
from the cpGAN network outperform the existing benchmark convolutional neural network (CNN) with a supervised discrete hashing
(SDH) approach [1] by as much as 1.67%, and 2.22% GAR at FAR of 0.01, while our cGAN provides recognition accuracy with
significantly lower EER value of 1.5%, and 1.54% for PolyU bi-spectral dataset, and Cross-eyed-cross-spectral iris recognition
database, respectively. It indicates the superiority of our approaches over results previously published in the literature.

Index Terms—VIS, NIR, DCGAN, cGAN, cpGAN, CNN.
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1 INTRODUCTION

Identity verification based on the analysis of a person’s physio-
logical properties is believed to be more reliable than other means
of identification such as a PIN or password, username, or access
card. Fingerprint, palmprint, face, and iris biometric modalities
have seen widespread use for human identification [2]-[5]. Among
all biological traits, iris is well suited for the most accurate and
secure personal authentication because of the distinctive patterns
present in the iris textures for individuals [5], [6]. The human iris
pattern is observed to have unique and different textures due to
the process of chaotic morphogenesis that causes its formation in
early childhood, exhibiting variation even among identical twins.
Therefore, in recent decades, iris recognition has received signif-
icant attention as an identity verification method in the biometric
community [7], [8] for civilian and surveillance applications.

Conventional iris recognition biometric systems are based on
iris images obtained under near-infrared (NIR) illumination due
to the optical properties of the human iris in the NIR band of
the electromagnetic spectrum. Broadly speaking, the NIR light
absorption characteristics of the pigment melanin within the iris
tissue determines the visibility of iris texture details in NIR
imaging. As a result, the iris textures appear much better under
illumination in the 700 ~ 900 nm wavelength range compared
to illumination within the visible wavelengths in the 400 ~ 700
nm range. For this reason, in most commercial iris recognition
systems, single-band near-infrared (NIR) iris matching techniques
have been extensively used for identity authentication tasks [7],
[9]. These systems use well-established algorithms and protocols
to perform identification when the probe and gallery are in the
same domain, which has resulted in highly-accurate performance.

However, the majority of these methods require close-distance
iris imaging to ensure that the acquired images are in good
quality with minimum acceptable iris diameter [5]. To eliminate
these constraints in the NIR-based iris recognition, several visible
wavelength based iris recognition systems have been developed
[10], [11] in the last few years, which has expanded the scope
of investigating the capabilities of the iris matching techniques
under visible light illumination. In addition, several competitions
such as the Noisy Iris Challenge Evaluation (NICE) [12], and
the Mobile Iris Challenge Evaluation [13] focus on the realistic
acquisition process of visible iris images. The major factors behind
this attention to visible wavelength-based iris recognition are (1)
visible range cameras are capable of acquiring images from long
distance, and (2) they are low-cost compared to NIR cameras.
Emerging dual imaging technology in recent smartphones offer
image capture in the visible and NIR illuminations. As a result,
now police and every law enforcement officer, customs and
border protection officer, and special operator has an agency-
issued cellphone to perform multi-modal biometric captures (face,
fingerprint, and iris), which are used later for authentication. In this
context, effective usage of this opportunistic visible iris images
requires accurate iris matching with the corresponding NIR images
enrolled in the national ID databases.

Moreover, recent advances in video surveillance technology
have enabled the capture of very high-resolution iris images in
the visible spectrum using low-cost camera technologies, which
can be used for identification purposes within the same domain or
across different spectra. However, most large-scale galleries of iris
images have been acquired in the lower resolution near-infrared
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(NIR) domain. Therefore, cross-spectral and cross-resolution iris
matching has emerged as a major challenge [1], [14]. It is essential
to address both cross-spectral as well as cross-resolution methods
for matching these opportunistic visible iris query probes against
the enrolled NIR iris images in a gallery.

In the last few years, deep neural network architectures,
such as a convolutional neural network (CNN), have dramat-
ically improved the capabilities in automatically learning the
deep representation of specific image features for object detection
and classification of visual patterns. These algorithms have also
shown superior results when compared to classical techniques
based on hand-crafted features. Recently, successful deployment
of deep learning architectures for the task of the same or cross-
domain iris recognition has gained attention in the literature.
Generative adversarial networks (GANs) [18], among other deep
neural network architectures, have shown outstanding capabilities
in different areas of computer vision and biometric applications
[19]-[29]. A range of applications of GANs for iris recognition
has been presented, including data augmentation, synthesis of
NIR periocular images, synthesizing iris images and iris super-
resolution [30], [31]. In this paper, our main contribution is the
extensive application of our novel algorithms on three publicly
available iris datasets comparing two different GAN-based frame-
works for cross-spectral (VIS vs NIR) and cross-resolution (low-
resolution (LR) NIR to high-resolution (HR) VIS) iris matching,
which resulted in a new state-of-the-art approach in the area of
ocular biometrics.

We have developed two approaches by which we apply a
family of deep learning frameworks for different cross-spectral iris
matching scenarios. In our first approach, we employ a conditional
GAN (cGAN) [32] architecture to map the cross-spectral data to
the same spectral domain. We apply it at the same resolution and
extend it to the cross-resolution iris matching problem. We have
designed our first method based on a scenario when one already
has access to an Open-source or a commercial off-the-shelf iris
matcher (e.g., Open-Source OSIRIS [33] matcher) to conduct the
iris verification process. The key idea in our first method is to
synthesize the VIS iris images from their corresponding NIR iris
images in a gallery at the same resolution or higher resolution
through a joint cross-modal super-resolution process. Our first
method is assumed to be a preprocessing module that translates
a NIR image into its corresponding VIS iris image before using
a commercial iris matcher. In our work, we have used OSIRIS
software to conduct the matching between the synthesized VIS
iris images from a gallery of NIR iris images and a prob VIS iris
image. In a summary, our first approach offers four contributions
to the field of iris recognition:

* A new domain adaptation framework, which acts as a
preprocessing module for cross-spectral iris matching based on
generative adversarial networks to transform the cross-domain
problem to the same domain and achieves comparable perfor-
mance when compared to several state-of-the-art methods.

* Integrating the cross-resolution matching scenario into the
cross-spectrum setting and redefining the matching framework as
a joint super-resolution and cross-spectral matching architecture.

¢ Introducing a new WVU face and iris dataset, which will
contribute to the biometric field for cross-spectral face and iris
recognition.

¢ Performing substantial experiments on the PolyU Bi-Spectral
dataset [1], [14], WVU face and iris dataset and cross-eyed-cross-

spectral iris recognition database [34].

We observe a significant improvement in the cross-spectral
iris matching accuracy from the experimental results of our first
approach, which validates that our domain adaptation technique
requiring self-learned features extracted from the raw data can
achieve remarkable performance gains for iris verification tasks
similar to the previous research presented in the literature. How-
ever, it is still essential to explore a more compressed and distinc-
tive representation of the raw data. In earlier works, researchers
have widely used subspace learning for data representation [35]—
[37]. Basically, it has been proven that the most relevant and useful
inner characteristics of an image can be mapped to a reduced low-
dimensional latent subspace.

Motivated by this, in our second method, we focus on the idea
of designing a dedicated cross-spectral iris matcher completely
avoiding the use of any commercial off-the-shelf iris matcher.
We hypothesize that iris images in the VIS domain possess a
latent connection with iris images in the NIR domain in a latent
feature subspace. Therefore, we exploited this latent connection
by projecting the VIS and NIR iris images into a common latent
embedding subspace, even if they are at different resolutions.
Furthermore, we posit that, if we perform matching in this latent
domain, verification performance would be more accurate than
our first method due to the inherent direct iris matching in a
shared common feature domain. Moreover, our second method
is designed to circumvent several shortcomings of the commercial
iris matchers that our first method depends on. The idea can be
elaborated on with a use of a case scenario. For example, the
matching engine of a commercial iris matcher cannot be adjusted
to the resolution of the iris images captured at a distance. It cannot
operate directly on the lower resolution images while enrolled
images in the gallery, are comparatively, at a higher resolution.
In addition, effective usage of opportunistic high-resolution VIS
iris images captured by smartphones, surveillance cameras, etc.
requires an accurate, fast, stable, and secure iris matcher. This
can be achieved with the real-valued feature representation in the
common embedded latent subspace instead of a binarized feature
representation like the one used in other classical iris recognition
approaches in the literature. These underlying reasons motivated
us to develop such a dedicated cross-spectral iris matcher, which is
highly desirable. Hence, we have proposed a deep coupled learn-
ing framework for cross-spectral iris recognition, which utilizes a
conditional coupled generative adversarial network (cpGAN) [17]
to learn a common embedded feature vector via exploring the
correlation between the NIR and VIS iris images in a reduced
dimensional latent embedding feature subspace. The key benefits
from our second iris recognition approach can be summarized as
the following:

* We analyze an effective method to learn the subspace em-
bedded features and develop a novel framework for cross-spectral
iris matching using our cpGAN architecture.

e Comprehensive experiments on three different benchmark
datasets (1) PolyU Bi-Spectral dataset (2) WVU face and Iris
dataset and (3) Cross-eyed-cross-spectral database with superior
results over the baseline approaches ascertain the validity of our
cpGAN framework.

e To the best of our knowledge, this is the first study that
has investigated two different techniques utilizing the potential
capabilities of a GAN to improve the performance of existing
cross-spectral iris recognition methods reported in the literature.
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TABLE 1

A summary of the recent related works on cross-spectral iris recognition, accuracy is reported at a given False Acceptance Rate (FAR).

Reference Method Database Iris comparison Iris matching Features Matching accuracy
[15] A predictive NIR iris image ~ WVU Multi-spectral iris Genuine = 280 Cross-spectral Hand-crafted 95.2%
is used from the color image  database Impostor = 20,745 (FAR =0.001)
[16] IrisCode using 1D (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 52.6%
Log-Gabor filter iris database Impostor = 1,953,000 (FAR =0.1)
(2) Cross-eyed-cross- Genuine = 2160 2) 70.3%
spectral iris recognition Impostors = 516,240 (FAR =0.1)
database
[14] NIR to VIS texture (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 64.91%
synthesis using MRF iris database Impostor = 1,953,000 (FAR =0.1)
model (2) Cross-eyed-cross- Genuine = 2160 (2) 78.13%
spectral iris recognition Impostors = 516,240 (FAR =0.1)
database
[1] CNN with softmax (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 90.71%
cross-entropy loss for iris database Impostor = 1,953,000 (FAR =0.01)
feature extraction and (2) Cross-eyed-cross- Genuine = 2160 (2) 87.18%
SDH for compression spectral iris recognition Impostors = 516,240 (FAR =0.01)
and classification database
cpGAN [17] Conditional coupled (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 92.38%
generative adversarial iris database Impostor = 1,953,000 and cross- in the embedded (FAR=0.01)
network (cpGAN) resolution domain

2 RELATED WORK

Cross-spectral iris recognition requires a VIS iris probe to be
matched against a gallery of NIR iris images. While conventional
iris recognition methods have achieved high matching accuracy,
cross-spectral iris matching algorithms have not yet reached a high
level of performance and pose a greater challenge for real-world
applications.

Table 1 summarizes recent cross-spectral iris algorithms that
are based on two strategies 1) extracting information from both
spectral domains and then combining such information for the
final decision, or 2) synthesizing a NIR image from its correspond-
ing visible image and then matching against a NIR gallery. Using
the first strategy, Vyas and Kanumuri [38] proposed a new feature
descriptor using template partitioning based on variations in the
iris texture. In their work, they have applied a 2D Gabor filter
bank to obtain the iris pattern at various scales and orientations.
They utilize the difference of variance (DoV) features to divide
the filtered iris template into sub-blocks, as the DoV features are
invariant to noise caused by illumination occlusion and position
shifting. However, this method could not achieve the high accuracy
required for practical applications (high equal error rate (EER) of
31.08%) because it is unable to relate the information comprised
in the NIR and VIS images. Tan et al. [39] describe a framework
for segmenting iris images in both domains which is helpful for
further multi-spectral fusion of information. According to Oktiana
et al. [40] local binary pattern (LBP) and binary statistical image
feature (BSIF) are the best feature descriptors based on the VIS
and NIR imaging systems, which are able to accurately extract the
texture patterns of the iris for cross-spectral matching.

Another recent work [41] also used BSIF along with the x?
distance metric to obtain match scores between the VIS prob and
NIR reference ocular images. They then fuse all the scores to
make the final decision. To encourage advances in cross-spectral
iris and periocular recognition, there has been a competition [42]
held among five teams, which is considered as an extension of 1st
competition that was arranged for a similar task (more recently,
Sequeira et al. [341] released a new cross-eyed and cross-spectral

iris dataset to advance research on the challenging cross-spectral
iris matching problem). They submitted twelve methods for the
periocular task and five for the iris task. In the work of Alonso-
Fernandez et al. [43] fusion of periocular and iris information
achieved considerable match performance improvement, where
iris information is obtained by using different iris features ex-
traction techniques. Wild et al. [44] used information from iris
images captured at multiple bands of the electromagnetic spectrum
and presents an efficient feature-level fusion to improve cross-
spectral iris recognition performance. Sharma et al. [45] proposed
an algorithm, that consists of two neural network architectures,
and trained it on a cross spectral periocular dataset. It resulted in
an improved matching accuracy compared to the existing feature
descriptors previously mentioned above.

On the other hand, using the second strategy, several efforts
toward estimating NIR images from visible images have been
proposed recently. For instance, researchers in [15] have explored
an adaptive learning method to predict NIR images to address
the performance shortcomings, which was considered below the
benchmarks caused by cross-spectral matching. Similarly, in [14],
authors develop a domain adaption framework using Markov
random fields (MRF) to estimate a NIR iris image from its
corresponding VIS iris image and perform matching against a
NIR image gallery. In the same direction, Burge and Monaco
[46], [47] implemented a model which utilized features derived
from the color and structure of the VIS iris images to predict
the corresponding synthesized NIR iris images. We have also
noticed similar works in the ocular biometric field for the task
of cross-spectral periocular image recognition. Recently, Reja et
al. [48] proposed a novel image transformation technique using
cascaded refinement networks to synthesize a NIR periocular
image from the corresponding VIS periocular image. Another
study [49] reported that feature-based approaches are prone to
changes during the feature extraction process. Therefore, they
have adopted phase-only correlation and band-limited phase-only
correlation techniques to develop a phase-based iris recognition
system.
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Fig. 1. Cross-domain and cross-resolution iris recognition framework; Scenario 1: NIR to visible translation; Scenario 2: NIR to visible joint/separate

translation and Super-resolution , Scenario 3: Visible to NIR translation.

Although the approaches mentioned above have advanced
cross-spectral iris matching one step ahead by achieving good
results, but to keep pace with the increasing demand for more
robust biometric systems, researchers have recently concentrated
their efforts towards CNN-based iris verification system [I]. In
this study, the authors observed that CNN-based features offer a
significantly compact representation for the iris template along
with sparse information, which potentially helps to improve the
accuracy of the iris recognition system. Moreover, this approach
incorporates a supervised discrete hashing (SDH) on the learned
features, which achieved an EER of 5.39%.

Another interesting approach, iris image super-resolution, has
also gained attention due to its impact on iris verification methods.
The authors in [50] explored deep learning architectures such
as stacked auto-encoders and CNN for single-image iris super-
resolution. Wang et al. [51] proposed a framework based on an
adversarial training with triplet networks in order to improve iris

image resolution for further recognition.

3 METHODOLOGY

To address the performance degradation reported in cross-spectral
iris matching, our primary goal is to develop an algorithm that
minimizes the distance between the VIS iris image and NIR
iris image distributions belonging to the same person. Therefore,
we have developed two different domain adaptation techniques.
These two techniques are based on finding a mapping, or a
low-dimensional shared latent subspace, between the VIS and
NIR iris modalities to significantly reduce the cross-spectral iris
matching discrepancy and provide a new state-of-the-art result.
The techniques developed in this paper are shown in Fig. 1 and
Fig. 2, respectively. Since most of the available iris galleries are
acquired under NIR illumination and the opportunistic iris images
are obtained under the VIS domain at higher resolution, in our
first technique we find a mapping between the NIR and VIS
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Fig. 2. Architecture of our proposed conditional cpGAN framework. During training, the contrastive loss function is used in the latent embedding
subspace to optimize the network parameters so that latent features of iris images from different spectral domain of the same identity are close to
each other while the features of different identities are pushed further apart [17].

iris images and design a new framework (see Fig. 1) based on
joint cross-domain and cross-resolution matching to enable cross-
spectrum iris recognition for pairs of images with the same and
different resolutions. In greater detail, we address two challenges:
1) performing cross-domain mapping for the purpose of the intra-
domain iris matching, and 2) doing the same when the images
from each spectral domain have different resolutions. As a result,
there should be a joint transformation of spectrum and resolution,
which will be discussed in detail in subsections 3.1.1 and 3.1.2.

We consider three main scenarios, as shown in Fig. 1, and de-
velop our iris matching framework around them based on different
cross-spectral scenarios. The first scenario is matching a visible
probe against an NIR gallery translated to an equivalent visible
gallery. The second scenario is matching a high-resolution visible
probe against a translated and super-resolved NIR gallery to a
high-resolution visible gallery. The third scenario is matching an
NIR probe against a visible gallery translated to an equivalent NIR
gallery. The reason behind including the cross-resolution setting in
our framework, is that, as an emerging problem domain, current
opportunistic visible iris images extracted from high-resolution
face images are typically at a higher resolution than the NIR
images.

Apart from being focused solely on the generation of a synthe-
sized VIS image from its NIR counterpart, in our second approach,
we emphasize the idea of learning a latent subspace to extract
meaningful representative features from the VIS and NIR iris
images. Thus, we develop our second approach as shown in Fig.
2, which projects both the NIR and VIS iris images to a common
latent low-dimensional embedding subspace using two generative
networks. The key reason behind developing this architecture is
to learn the semantic similarity between two samples of the same
subject but in different spectral domains. Therefore, inspired by
our previous cpGAN architecture [17], we trained this network

using a similarity measure based on a contrastive loss [52] to
ensure that the distance between the images corresponding to the
genuine pairs (VIS iris image and NIR iris image of the same
person) is minimized, and that of the imposter pairs (VIS iris
image and NIR iris image of the different persons) is maximized.

To summarize our two approaches, we have studied and devel-
oped two different deep convolutional GAN-based architectures
to ascertain the adaptive learning potential for cross-spectral iris
matching, i.e., cGAN and cpGAN. Like other approaches, before
training both networks, preprocessing steps require iris images
from both spectra to be subjected to segmentation, normalization
and image enhancement processes. Then, normalized image sam-
ples are fed to each network. The network in our first approach
mainly utilizes the adversarial loss to synthesize VIS iris image
from its NIR counterpart before performing different verification
scenarios, while in our second approach, the network integrates the
contrastive loss along with the adversarial learning [ 1 8] to generate
matching scores. The following sections provide the details of our
approaches and introduce the cGAN and cpGAN architectures
along with the associated loss functions that are implemented
in our framework to investigate the cross-spectral iris matching
problem.

3.1

Recently, GANs have received considerable attention from the
deep learning research community due to their significant con-
tributions in the field of image generation. The basic GAN
framework consists of two modules— a generator module, G,
and a discriminator module, D. The objective of the generator,
G, is to learn a mapping, G : z — ¥, so that it can produce
synthesized samples from a noise variable, z, with a prior noise
distribution, pz(z), which is difficult for the discriminator, D, to
distinguish from the real data distribution, pgqtq, Over y. The

Deep Conditional Adversarial Framework
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generator, G(z;0,) is a differentiable function which is trained
with parameters 6, when mapping the noise variable, z, to the
actual data space, y. Simultaneously, the discriminator, D, is
trained as a binary classifier with parameters 64 such that it can
distinguish the real samples, y, from the fake ones, G (z) Both
the generator and discriminator networks compete with each other
in a two-player minimax game. We calculate the following loss
function, L(D, G), for the GAN:

L(D,G) = Ey p,,,.(y(log D(y)]
+ E.p,(»)[log(1 — D(G(2)))].

The objective function of GAN defines the term “two-player
minimax game” by optimizing the loss function, L(D, &), as
follows:

6]

mén max L(D,G) = mén mgx[EyNPdam () [log D(y)]

+ E.np.(»[log(l — D(G(2)))]].

One of the variants of GAN, the ¢cGAN is introduced in
[32], which expands the scope of synthesized image generation
by setting a condition for both the generative and discriminative
networks. The cGAN applies an auxiliary variable, z, as a condi-
tion which could be any kind of useful information such as texts

[53], images [54] or discrete labels [32]. The loss function for
the cGAN, L.(D, @), can be represented as follows:

LC(Da G) = EyNPdata(y)[logD(y|'r)]
+ E.p.(»)llog(l — D(G(z]x)))].
Similar to (2), the objective function of the cGAN is mini-

mized in a two-player minimax manner, which is denoted as
Legan(D,G,y,z) and defined by:

@

3)

LCGAN(D7 G7 Y, I) = mén mgX[EyNPdata (y) [1Og D(y|il?)]
+ E.p. (2 [log(1 — D(G(z[2)))]]-

3.1.1 Domain Translation Using cGAN

A more recent algorithm in the field of ocular biometrics [14],
[55] has shown success in estimating NIR iris images from VIS
iris images and then matching them against the NIR instances in
the gallery. However, they did not use CNN-based algorithms,
even though many of the recent iris recognition systems have
investigated the capabilities of CNN in learning anatomical prop-
erties. Therefore, we have developed a deep CNN-based domain
translation network in our first method. We proposed to translate
the iris images from the NIR domain to visible, or vice versa.
Therefore, image translation plays an important role as one of two
integral parts of our frameworks.

Recent advances in deep learning reported in the literature
have provided very powerful tools for the task of image-to-image
translation [54]. Such translations can be interpreted as image
domain transformations, where the task is to learn a mapping from
one modality to another modality. In our first method, we use the
conditional GAN (cGAN) architecture [54] for the task of NIR to
VIS iris image translation or vice versa. The cGAN architecture
has been successful in a variety of image-to-image translation
tasks in the computer vision research community. It includes
Sketch — Portrait, Sketch— Pokemon, Depth— Streetview, pose
transfer, etc. Such deployment of cGAN in image translation
tasks has inspired us to explore its performance in synthesizing
corresponding VIS iris images from the NIR iris gallery, to be

6

used as a preprocessing module for the cross-spectral iris image
translation.

During training the cGAN, we condition on an NIR iris image
and generate a corresponding synthesized VIS iris output image
or vice versa as shown in our proposed framework (see Scenario
1 and Scenario 3 in Fig. 1). Here, we have demonstrated that
a simplified cGAN framework is sufficient to achieve adequate
synthesized results through adversarial learning. In addition, our
analysis shows that this method is effective at conducting cross-
spectral iris matching under the same spectrum setting (a VIS
iris probe is matched against a synthesized VIS gallery generated
from its corresponding NIR gallery or vice versa.) with impressive
results.

3.1.2 Joint Translation and Super-Resolution Using Modi-
fied cGAN
Leveraging the benefits of the cGAN architecture, we have in-
vestigated the possibility of iris domain translation by using a
structured loss [54] to penalize any probable structural mismatch
between the synthesized output and target. Successful deployment
of this network helps us to overcome the challenge faced in
cross-spectral iris matching. However, in Scenarios 2(a) and 2(b),
representing the additional cross-resolution case (see Fig. 1), the
size of the output image should be larger than the size of the
input image, i.e., the network should learn domain translation to
a higher resolution. In this context, we modify the architecture
of our cGAN generator by integrating the concept of super-
resolution during the cross-domain translation. Super-Resolution
(SR) estimates a HR super-resolved image from its LR counter-
part, which has been vigorously applied to various computer vision
applications. Although reconstructing an accurate HR image from
its LR version is a very difficult task, multiple SR algorithms have
been developed in recent years [56] to address this challenge.
Recently, the GAN-based SRGAN [57] approach has shown
excellent results with high perceptual image quality by retrieving
the fine textural details from a LR input image. Following their
approach of up-sampling the LR input image, we improve our
c¢GAN-based translation architecture and incorporate a super-
resolution layer as part of our cross-spectral framework to deal
with the cross-resolution task considered in our basic Scenario
2. To synthesize high-quality VIS iris images, we train our
network with a perceptual loss [58], which helps to generate a
more accurate VIS iris images along with the widely used Lo
reconstruction loss [59], [60] and the adversarial loss [57] func-
tions. A similar iris super-resolution method has been proposed
in [51], which integrates adversarial training into triplet networks
in order to develop a super-resolution architecture for low-quality
iris images. However, the ability of their SR network is limited
to super-resolving iris images in the same spectral domain. On
the other hand, we jointly perform super-resolution and domain
transformation in one shot to overcome the limitations of acquiring
high-resolution NIR iris images. More specifically, our network
produces a gallery of super-resolved HR VIS iris images from a
gallery of LR NIR iris images, which is then used to match a HR
VIS iris probe against it.

3.2 Verification

In this article, we have proposed to perform cross-spectral iris
matching under the same spectra and the same resolution setting
by adopting joint translation and super-resolution technique fol-
lowed by the verification process. To accomplish this, we train our
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network on unrolled iris images of one spectral domain as input
and generate unrolled iris images of the other spectral domain at
the same resolution or higher resolution based on the scenarios
described in the earlier sections. To perform verification, we
employ a commercially available software, Open Source for IRIS
(OSIRIS), which was developed within the BioSecure project [33]
and offered by its authors as a free, open-source iris matcher.
OSIRIS follows the iris matching concept proposed in the works
of Daugman [5]. It applies Daugman’s rubber sheet model for
unwrapping the iris image from polar coordinates onto a Cartesian
rectangle to process image segmentation and normalization tasks.
Hence, during verification we match a normalized VIS iris probe
against a gallery of synthesized normalized VIS iris images
generated from our network using this OSIRIS software. It first
generates iris codes by applying phase quantization of multiple
Gabor wavelet filtering outcomes, while matching is performed
using XOR operation, with normalized Hamming distance as an
output dissimilarity metric. For genuine comparisons, we expect
values close to zero, while we expect scores around 0.5 for
imposter comparisons.

3.3 Deep Coupled Adversarial Framework

Our second proposed technique is a cpGAN architecture that con-
sists of two coupled cGAN modules with the same architecture,
as shown in Fig. 2. One of them is dedicated to synthesizing
the VIS iris images, and hence, we refer to as the VIS cGAN
module. Similarly, the other module is dedicated to synthesizing
the NIR iris images, which is referred to as the NIR cGAN module.
Our cpGAN network is inspired by the Siamese network [61],
which ensures pairwise learning, where all the parameters are
simultaneously updated throughout the network. We have followed
a more recent U-Net-based, densely-connected encoder-decoder
structure proposed in [62] to design our generator, which helps
to achieve the low-dimensional embedded subspace for cross-
spectral iris matching via a contrastive loss along with the standard
adversarial loss. In addition to the adversarial loss and contrastive
loss [52], the perceptual loss [58], and Lo reconstruction loss are
also used to guide the generators towards the optimal solutions.
Perceptual loss is measured via a pre-trained VGG 16 network
[63], which helps in sharp and realistic reconstruction of the
images. In realistic opportunistic iris recognition scenarios, a VIS
iris probe is usually matched against a gallery of NIR iris images.
To create such application scenario, we focus on matching a VIS
iris probe against a gallery of NIR iris images, that have not
been seen before by the network. To perform this matching in
a cross-spectral domain setting, a discriminative model is required
to produce a domain-invariant representation. Therefore, we force
the network to learn iris feature representations in a common em-
bedding subspace by utilizing a U-Net auto-encoder architecture
that uses class-specific contrastive loss to match the iris patterns in
the latent domain. As previously mentioned, we use a U-Net auto-
encoder architecture for our generator due to its structural ability
of extracting features in the latent embedding subspace. More
specifically, the contracting path of the “U shaped” structure of the
U-Net captures contextual information, which is passed directly
across all the layers, including the bottleneck. In neural networks,
the bottleneck forces the network to learn the compressed version
of the input data that only contains useful information to preserve
the structural integrity of the image required to reconstruct the
input. Along with the bottleneck, the high-dimensional features
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of the contracting path of the U-Net, combined with the corre-
sponding upsampled features of the symmetric expanding path,
provides a means to share the useful information throughout the
network. Moreover, during domain transformation, a significant
amount of low-level information needs to be shared between input
and output, which can be accomplished by leveraging a U-Net-like
architecture.

We have followed the architecture of patch-based discrimina-
tors [54] to design the discriminators of our proposed model. The
discriminators are trained simultaneously along with the respective
generators. It is worthwhile to mention that the L loss performs
very well when applied to preserve the low-frequency details but
fails to preserve the high-frequency information, whereas patch-
based discriminator penalizes the structure at the patch scale to
ensure the preservation of high-frequency details.

The main idea behind using the U-Net shaped generator is to
gradually build a connection between the VIS and NIR iris images
in the common embedding feature subspace. Since the features are
domain invariant in the embedded subspace, it provides credibility
to discriminate images based on identity. Therefore, our final
objective is to find a set of domain invariant features in a common
latent embedding subspace by coupling the two generators via a
contrastive loss function, Leop: [52].

The contrastive loss function, L., is defined as a distance-
based loss metric, which is computed over a set of pairs in the
common embedding subspace such that images belonging to the
same identity (genuine pairs i.e., a VIS iris image of a subject
with its corresponding NIR iris image) are embedded as close as
possible, and images of different identities (imposter pairs i.e., a
VIS iris image of a subject with a NIR iris image of a different
subject) are pushed further apart from each other. The contrastive
loss function is formulated as:

Leont(21 (xi/ls), 22(553\/11%)7 Y)=
1, 1 , ©
(1=Y)5(D2)* + (V)5 (max(0,m — D.))*,

where a:ﬁ/ 1 and va 1 denote the input VIS and NIR iris images,
respg:ctively. The variable, Y, is a binary label, which is set to 0
if 21, ;¢ and o, p belong to the same class (i.e., genuine pair),
and equal to 1 if 2}, ;¢ and @)y, belong to different classes
(i.e., impostor pair). z1(.) and 22(.) are denoted as the encod-
ing functions of the U-Net auto-encoder, which transform both
@}, ;¢ and T p, respectively into a common latent embedding
subspace. Here, m, is used as the contrastive margin to “tighten”
the constraint. The El_lclidean distance, D, between the outputs
of the functions, z1 (2}, ;g), and z2(x ), is given by:

(6)

D. = |l rs) - (@),

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive
loss function, (Lcont), is given as:

i j 1 i j 2
Leont(21(7y 1g), 22(55‘5\/11%)7 Y)= 3 Hzl (Tv1s) — 22(555\/11%))‘27

and if Y = 1 (i.e., impostor pair), then the contrastive loss
function, (Leont), is

Leont(21 (l’%/]s),ZQ(l"}VIR), Y)=
1 ) e
§max<0, m — Hzl (4 1g) — zz(xgle)Hg)

®)
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Thus, the total loss for coupling the VIS generator and NIR
generator is denoted by L., and is given as:
N

1 i .
7z 2o 2 Leomt (1@ 1), 22 (2 1), V),

i=1j=1

chl = 9

where N is the number of training samples. The contrastive loss in
the above equation can also be replaced by some other distance-
based metric, such as the Euclidean distance. However, the main
aim of using the contrastive loss is to be able to use the class labels
implicitly and find a discriminative embedding subspace, which
may not be the case with some other metric such as the Euclidean
distance. This discriminative embedding subspace would be useful
for matching the VIS iris images against the gallery of NIR iris
images.

4 Loss FUNCTIONS
4.1 Generative Adversarial Loss

The VIS and NIR generators are denoted as Gy s and G R, as
they will synthesize the corresponding VIS and NIR iris images
from the input VIS and NIR iris images, respectively. The patch-
based discriminators used for the VIS and NIR iris GANs are
denoted as Dy s and DR, respectively. To implement our
proposed methods, we have used the conditional GAN, where
the generator networks Gy ;s and Gnyr are conditioned on the
input VIS and NIR iris images, respectively. In addition, we have
trained the generators and the corresponding discriminators with
the cGAN loss function [32] to ensure a real-looking natural image
reconstruction such that the discriminators cannot distinguish the
generated images from the real ones. Let Ly ;s and L yr denote
the cGAN loss functions for the VIS and NIR GANS, respectively.
Therefore, the loss function for the cGAN which is considered as
the backbone architecture in our first approach, can be defined as
following:

(10

an

where L.gan is defined as the cGAN objective function in (4).
The term, xﬁ/ 15- is used to denote the VIS iris image, which is
defined as a condition for the VIS ¢cGAN, and y%, 15> 1s denoted
as the real VIS iris image. It is worth mentioning that the real
VIS iris image, y%/ 15> 18 same as the network condition given by
z, ;. Similarly, 2 ; 5, denotes the NIR iris image that is used as
a condition for the NIR ¢cGAN. Again, like y7,; 5, the real NIR iris
image, Yy ;. is same as the network condition given by .
The total adversarial loss for our proposed cpGAN is given by:

Lvis = Legan(Dvis, Gvis: Yvis, Ty rs)s

_ J J
Lyigr = Legan(Dnir, GNIR, YNTR: TNIR)

Lgan = Lvis + LNiR- (12)

4.2 L, Reconstruction Loss

We consider the Lo reconstruction loss as a classical constraint for
both the VIS ¢cGAN and NIR cGAN to ensure better results. The
Ly reconstruction loss measures the reconstruction error in terms
of the Euclidean distance between the reconstructed iris image and
the corresponding real iris image. We denote the reconstruction
loss for the VIS ¢cGAN as Ly, and define it as:

Loy s = ||Gvis(zlatrs) — vhrs]s (13)

where y%,ls is the ground truth VIS iris image, and
Gvrs(z|x}, ), is the output of the VIS generator.
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Similarly, we denote the reconstruction loss for the NIR cGAN
as Loy, 5t

; . 2
— J J

Lonin = HGNIR(Z|$N1R) - yNIRH2 ’ (14)
where y?v g 18 the ground truth NIR iris image, and
GnN1r(2|@) ), is the output of the NIR generator. Depending
on the different cross-spectral iris matching scenarios, we use
either Lo, ,, or Lo, as the reconstruction loss, which is again
generally termed as Lo, ,, for the method proposed in our first
approach.

For the cpGAN architecture proposed in our second approach,
the total Lo .,y Teconstruction loss can be defined by the
following equation:

1 N N

m Z Z(LQVIS + L2NIR)'

i=1j=1

Loy (15)

cpGAN —

4.3 Perceptual Loss

Although the GAN loss and the reconstruction loss are used to
guide the generators, they fail to reconstruct perceptual features in
the generated images. Perceptual features are defined by the visual
characteristics of objects, which provide a perceptually pleasing
look to the image. Hence, we have also used the perceptual loss,
introduced in [58], for style transfer and super-resolution. The
perceptual loss function basically measures high-level differences,
such as content and style dissimilarity, between images. The
perceptual loss is based on high-level representations from a pre-
trained VGG-16 [63] like CNN. Moreover, it helps the network
to generate better and sharper high-quality images [58]. As a
result, it can be a significant alternative to solely using the L
or Ly reconstruction error. Recently, Zhang et al. [64] introduced
the LPIPS loss metric, which has been adapted in several deep
learning architectures for image reconstruction. Therefore, it can
be considered as an alternative loss function for perceptual fidelity
instead of the well-known ImageNet pre-trained VGG-based per-
ceptual loss [58].

In both of our approaches, we have added perceptual loss to
both the VIS and NIR cGAN modules using a pre-trained VGG-16
network. It involves extracting the high-level features (ReLU3-3
layer) of VGG-16 for both the real input image and the recon-
structed output of the generator. The perceptual loss calculates the
L distance between the features of real and reconstructed images
to guide the generators Gy ;s and G ng. The perceptual loss for
the VIS cGAN network is defined as:

1 Cp W, H,
Lpvis :CPWPHP ;; hz::l (16)

)

HV(G”S(Z|5171{/1rs))c’w’}I ~V(yy1s)"

where V() is used to denote a particular layer of the VGG-16 and
Cp, Wp, and Hy, denote the layer dimensions.
Likewise, the perceptual loss for the NIR cGAN network is:

1 Cp Wp Hp
L T C,W,oH, ;; ,;1 (17)
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Here, we simply define Lp,,,; or Lpy,, as Lp,. ., to calculate
perceptual loss for our first approach. The total perceptual loss
function for the cpGAN is given by:

N N
1
LPchAN = N2 Z Z(LPVIS + LPNIR)'

i=1j=1

(18)

4.4 Overall Objective Function

We sum all the loss functions defined above to calculate the overall
objective function Liot,c,y and Liot,,qay for our proposed
c¢GAN and cpGAN architectures, respectively:

LtOtCGAN - L2CGAN + )\ILCGAN + )\QLPCGAN7 (19)

where Lo,y is the total reconstruction error, L.g an is the total
conditional generative adversarial loss function, and Lp,_.,, is
the total perceptual loss for our proposed cGAN model. Variables
A1, and \g are the adjustable hyper-parameters used to weigh the
different loss terms. The total loss for cpGAN is given as:

LtotchAN - chl + /\SLGAN + )\4LPCT_,GAN + )\5L2chAN7
(20)

where Ly, is the coupling loss, Lg 4 is the total generative ad-
versarial loss, Lp, ., is the total perceptual loss, and La_, ¢ 4
is the total reconstruction error. Variables A3, A4, and )5 are the
hyper-parameters used as a weight factor to numerically balance

the magnitude of different loss terms.

5 EXPERIMENTS

We first briefly introduce the publicly available datasets that we
have used in our experiments and discuss the implementation
details of our proposed cGAN and cpGAN architectures along
with their training setup. To evaluate the performance of our
methods, we perform a range of experiments for different cross-
spectral iris matching scenarios and compare their performance
with other state-of-the-art iris recognition methods in the cross-
domain setting. We provide detailed comparative experimental
results in the following sections. Finally, in order to ascertain
the usefulness of our cross-spectral iris recognition frameworks,
we conduct additional experiments for cross-device iris matching
scenarios.

5.1

Three available cross-spectral database, PolyU bi-spectral iris
database [14], WVU Face and Iris Dataset',> and Cross-eyed-
cross-spectral iris recognition database [34] are employed to
validate our proposed methods.

Database

5.1.1 PolyU Bi-Spectral iris database

The PolyU Bi-Spectral iris database contains iris images of 209
subjects acquired simultaneously under both the VIS and NIR
illuminations. Each subject consists of 15 different instances of
right and left-eye images with a resolution of 640 x 480 pixels for
both VIS and NIR spectrum. Therefore, the total number of images
in this dataset is 12,540 (209 x 2 x 2 x 15). We used a publicly-
available segmentation algorithm [11] to accurately segment and

1. This data was collected at WVU under IRB # 1805125982 with appropri-
ate human subjects’ approval.
2. This dataset is available upon request at biic.wvu.edu.
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normalize iris images for the experiments. This segmentation
algorithm provides normalized iris images of 512 x 64 pixels,
samples of which are shown in Fig. 3(a). Following the approach
used in [14], we selected the first ten instances for our network
training and the remaining five instances for the testing. The
all-to-all matching protocol generated 2,800 genuine scores and
1,953,000 imposter scores.

5.1.2 WVU face and iris dataset

The West Virginia University (WVU) Face and Iris dataset is
particularly developed for cross-spectral opportunistic iris recog-
nition. It contains 1,248 subjects, which provides a total of 2,496
left and right NIR as well as VIS iris images (1, 248 x 2). We use
the method presented in [ ] to extract the normalized iris images
(512 x 64) from the original iris images of size 640 x 480 pixels.
Sample images from this dataset are shown in Fig. 3(b). Again,
following the same train-test protocol used in reference [14] for
this dataset, we attained 750 genuine scores and 561,750 imposter
scores for 375 test subjects.

5.1.3 Cross-eyed-cross-spectral iris recognition database

The Cross-eyed-cross-spectral iris recognition database provides
3,840 iris images from 240 classes for both spectra obtained
from 120 subjects. Each of the classes from every subject has
eight sample of 400 x 300 pixels for both spectra. We use
the same iris segmentation and normalization algorithm used in
[11] to normalize all the iris images. The dimension of all the
segmented and normalized iris images from this dataset is 512 x 64
pixels. Sample images from the cross-eyed cross-spectral database
are shown in Fig. 3(c). In order to ensure fair comparison, we
follow the train-test protocol used in [14] and choose five image
samples for training and the remaining three samples for testing.
Applying an all-to-all matching protocol, the network generated
2,160 genuine scores and 516,240 imposter scores.

5.2 cGAN Architecture Implementation

We adopted our proposed cGAN network structure from reference
[57] as depicted in Fig. 4 for our domain translation technique,
and formulated the overall loss function inspired by references
[54], [57], [58]. In more detail, for our generator (see Fig. 4(a)),
we have implemented the ResNetl6 architecture [605], with 16
identical residual blocks. A single residual block is composed of
two convolutional layers with 3 X 3 kernels, 64 feature maps,
batch-normalization layers and a Parametric Rectified Linear Unit
(ReLLU) [66], [67] activation function. We use this network for iris
domain translation based on two different cross-spectral situations
(see Scenario 1 and Scenario 3 in Fig. 1) that we have proposed in
our first approach. We also integrate the super-resolution process
in the translation network by adding a sub-pixel convolution layer
with the layout explained in [60], which has been illustrated in
Scenario 2(a) of Fig. 1. Like [57], for our discriminator archi-
tecture, we follow what is presented in [25], which consists of
eight convolutional layers with 3 x 3 kernel size. The number of
kernels increases from 64 to 512, similar to VGGNet [63]. Rather
than max-pooling, strided convolution is employed for resolution
reduction. As shown in Fig. 4(b), after that, we add a dense layer, a
Leaky RELU, another dense layer, and finally, a sigmoid activation
function. In summary, the generator gets a low-resolution (or high-
resolution) image from one of the domains and translates it or
jointly translates and super-resolves it to the other domain, and
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Fig. 3. Iris image preprocessing steps (Segmentation, Normalization, Enhancement) for (a) PolyU bi-spectral iris database and (b) WVU face and
iris dataset (c) Cross-eyed-cross-spectral iris recognition database.
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Fig. 4. Architecture of our proposed cGAN (a) generator and (b) discriminator with corresponding kernel size (k), number of feature maps (n) and
stride (s) indicated for each convolutional layer.
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the discriminator is fed with the output of the generator and also
a high-resolution image of the other domain.

5.3 cpGAN Architecture Implementation

We have implemented our cpGAN architecture using the U-
Net architecture as the generator module. We have followed the
architecture of ResNet-18 [65] to implement both the encoder and
decoder sections of the U-Net model. In encoder, each block is
designed by applying two 3 x 3 convolutions, each followed by a
ReLU. For downsampling, it uses a 2 X 2 max pooling operation
with stride 2. We double the number of feature channels at each
downsampling step. Similarly, each step in the decoder section
upscales the feature map by applying a 2 X 2 transpose convolution
[68], upsampling the dimension of the feature map. Each feature
map is concatenated with the corresponding feature map from
the encoder, followed by two 3 X 3 convolutions with a ReLU
activation function.

5.4 Training details

Both of our frameworks have been implemented in Pytorch. We
trained the network with a batch size of 16 and a learning rate
of 2 x 10~%. We used the Adam optimizer [69] with a first-order
momentum of 0.5, and a second-order momentum of 0.999. We
have used Leaky ReLU as the activation function with a slope of
0.35 for the discriminator. To find the optimal hyper-parameters
for our learning algorithms, we have used a random search strategy
[70]. Following their technique, we experiment with different
scaling heuristics to find the optimal hyper-parameter multiplier,
which results in the best verification accuracy. Accordingly, for
the network convergence, we set A3 to 1, and A4, and A5 to 0.3. In
addition, A1, and s, are set to 1076 and 2 x 1073, respectively.
For training, genuine/impostor pairs are created from the VIS
and NIR iris images of the same/different subjects. During the
experiments, we ensure that the training set is balanced by using
the same number of genuine and impostor pairs.

5.5 Evaluation on PolyU Bi-Spectral Database

We perform our first set of experiments on the PolyU Bi-Spectral
database considering many different cross-spectral iris matching
cases for both previously-mentioned approaches. In all the ex-
periments, each iris probe image is matched against a gallery of
iris images, which generates genuine and imposter scores. Using
these matching scenarios, we calculate the key recognition perfor-
mance parameters, such as genuine acceptance rate (GAR), false
acceptance rate (FAR), and equal error rate (EER). In addition,
we also plot receiver operating characteristics (ROC) curves to
analyze the GAR with respect to FAR. In addition, we compare
our results over other considered state-of-the-art cross-spectral iris
recognition methods described in [1], [14], [16] and [71] . We use
the same train-test protocol provided in their original paper for fair
comparison.

5.5.1 To evaluate the effectiveness of our proposed cGAN
architecture, we conduct the following experiments:

(a) Scenario 1 : NIR to VIS domain translation

In this experiment, we train the network to translate a gallery
of NIR iris images to its corresponding gallery of synthesized
visible iris images at the same resolution (see Fig. 1 Scenario 1).
Then, each VIS iris probe of the test set is matched against this
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synthesized VIS iris gallery. We have shown the ROC result from
this experiment in Fig. 5(a) and report the EER in Table 2. We
observe that our proposed algorithm achieves 99.50% and 80.50%
GAR at 0.1 and 0.01 FAR, respectively, and obtains an EER of
1.5%, which outperform the results reported for the algorithms
evaluated in [14], [16], and [71] using the same train-test protocol.
The network shows significant improvement in cross-spectral iris
matching by obtaining 15.53% and 25.18% less EER compared to
the results in [71], and [14], respectively.

(b) Scenario 2(a) : Joint translation and super-resolution from
the LR NIR to HR VIS domain

Recently, with the emergence of new biometrics applications
on smartphones, there is a strong demand for acquiring high-
resolution visible iris images at low cost. However, while the
availability of higher resolution visible iris images will eventually
lead to a cross-resolution mismatch in the problem of cross-
spectral iris matching, almost no attention has been turned toward
it yet. Although there would be higher noise levels in the visible
domain compared to the NIR domain, hopefully the higher res-
olution can compensate for the effect of this noise. To address
the resolution differences, we determined how to match LR NIR
iris images against the HR visible iris images (i.e., unrolled NIR
image size: 32x256, unrolled visible image size: 64x512). We train
the network to translate the LR NIR images to HR VIS images in
such a way that it jointly transforms the image domain and super-
resolves it. Therefore, the network simultaneously learns both
image translation and super-resolution tasks. The network super
resolves the input image by a factor of two, and then the output
can be used as a gallery of visible iris images for visible-to-visible
iris verification. Fig. 5(b) and Table 2 illustrates that our proposed
joint translation and super-resolution technique outperforms the
baseline approach. It is worth mentioning that we separately train
both networks and report the results as a baseline approach to show
the comparative performance of the joint learning. We notice that
the joint training significantly increases the matching accuracy by
3.94%, 5.60% and 13.8% GAR at FAR of 0.1, 0.01 and 0.001,
respectively.

(c) Scenario 2(b) : Separate translation and super-resolution
from the LR NIR to HR VIS domain

We have also fed the low-resolution NIR images to a cross-
domain translation network from reference [54] and then the low-
resolution output is fed to a super-resolution GAN (SRGAN) from
reference [57]. This is the Scenario 2(b) in Fig. 1, and results are
shown in Fig. 5(b) and Table 2. The separate training achieves
88.89%, 70.10%, and 56.10% GAR at FAR of 0.1, 0.01 and 0.001,
respectively, which are significantly lower compared to the joint
training. These results validate our idea of joint transformation and
super-resolution.

(d) Scenario 3 : VIS to NIR Domain Transformation

In order to examine whether or not the NIR-to-visible image
translation is a more effective solution than translating the visible
to NIR, both at the same resolution, we have trained a network
to map the visible images to the NIR domain and performed
verification on the synthesized NIR iris images (i.e., matching the
synthesized NIR images against a gallery of NIR images). We feed
a given visible iris probe image to the network, which is trained
to map visible to NIR images, and then use the output image to
compare with an existing gallery of NIR images. We report the
ROC result obtained from this experiment in Fig. 5(b) along with
the comparative results from other approaches. We consider the
algorithm used in [33] as comparable benchmark for this scenario.
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Fig. 5. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with cGAN
architecture and (c) cpGAN architecture obtained on the PolyU Bi-Spectral database for the different cross-spectral matching scenarios [17].

TABLE 2

Comparative performances on the PolyU Bi-Spectral database. Symbol ’-” indicates that the metric is not available for that protocol.

Algorithm Matching GAR@FAR=0.] GAR@FAR=0.01 GAR@FAR=0.001 EER (%)
Wang et al. [71] HR VIS vs HR NIR — 59.10 37.00 17.03
CNN with SDH [1] HR VIS vs HR NIR — 90.71 84.50 5.39
Nalla et al. [14] HR VIS vs HR NIR 58.8 — — 26.68
NIR to VIS texture synthesis using MRF model [14] HR VIS vs HR NIR 6191 — — 23.87
IrisCode using 1D Log-Gabor filter [16] HR VIS vs HR NIR 52.6 — — 17.03
cpGAN [17] HR VIS vs HR NIR 99.99 92.38 84.98 1.02
cpGAN [17] HR VIS vs LR NIR 96.5 89.89 81.21 1.21
cpGAN [17] HR NIR vs LR VIS 93.30 84.75 73.45 1.26
cpGAN [17] LR NIR vs LR VIS 82.60 70.10 59.97 2.51
NIR to VIS domain translation (Ours cGAN) Scenariol 99.50 80.50 70.1 1.5
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 92.83 75.70 69.9 1.6
Domain Translation & super-resolution (Separate Training) Scenario 2(b) 88.89 70.10 56.10 1.9
VIS to NIR domain translation (Ours cGAN) Scenario 3 87.49 69.50 64.90 1.4
Iriscode (OSIRIS) [33] HR VIS vs HR NIR 74.60 61.10 54.50 2.59
Iriscode (OSIRIS) [33] LR VIS vs LR NIR 71.05 55.60 43.10 3.0

It proves the efficacy of our proposed approach by acquiring
2.19% less EER compared to the baseline result mentioned above.

5.5.2 Similarly, to ascertain true cross-spectral matching
ability of our proposed cpoGAN network, we experiment with
different types of cross-comparisons as follows:

(a) Matching HR VIS probe against a HR NIR gallery:
To perform this verification, we train our coupled learning
network with the unrolled HR 64 x 512 VIS and NIR iris images
such that VIS and NIR generators are trained to obtain domain
invariant features in a common latent embedding subspace using
a contrastive loss. We plot ROC curves comparing our approach
with other state-of-the-art deep learning methods presented in
[1], [71], which apply different types of feature extraction
techniques. From Fig. 5 (c) and Table 2, we notice that our
cpGAN framework performs much better than the baseline
matching algorithms mentioned above. In this setting, our method
achieves 1.67% more identification accuracy with 4.37% decrease
in EER compared to the most recent cross-spectral iris recognition
method [1]. Additionally, it outperforms the method described in
[14], [33] by a significant decrease of 1.57% and 22.85% in EER,
respectively. This significant improvement clearly indicates that
using a cpGAN framework for projecting both the VIS and NIR
iris images into a common latent embedding subspace to retrieve

the domain invariant features is better than the other existing deep
learning methods.

(b) Matching HR VIS probe against a LR NIR gallery:

Here, we consider a realistic iris matching scenario to analyze
the cross-spectral matching accuracy of our network. Due to
the advances in imaging technology, opportunistic iris images
extracted from faces in the visible spectrum are at a higher
resolution, while images already stored in the gallery are in the
low-resolution NIR domain. It has become a challenging task to
build a correlation between iris images in different resolutions
as well as in different spectra. Many algorithms fail to retrieve
accurate semantic similarity among iris images of different
resolutions and spectra, which has resulted in a significant
performance degradation in existing iris verification systems.
Therefore, we resolve this issue by training our cpGAN with
the unrolled HR (64 x 512) VIS and LR (32 x 256) NIR iris
images, which ensures the retrieval of contextual and semantic
features of the iris images in a common embedding subspace.
The results summarized in Fig. 5(c) and Table 2 indicate that
the cpGAN network remains robust enough to provide superior
results compared to our matching Scenario 2(a) that was shown in
Fig. 5(b). It has increased the GAR almost by 14% at 0.01 FAR.

10"
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(c) Matching LR VIS iris images against a gallery of HR NIR
iris images:

In addition to the study mentioned above, we have also focused
on matching LR VIS iris probe against a gallery of HR NIR iris
images. We consider a fact when subjects are at a large standoff
distance from the camera. Consequently, captured faces are
assumed to be suffering from poor quality due to low-resolution.
On the other hand, the gallery images have comparatively
higher resolution which are usually taken in the NIR spectrum.
Therefore, the modality gap between probe and gallery images
makes the cross-spectral matching even more challenging. Hence,
we train the VIS and NIR generator of our network with the
unrolled LR VIS iris images (32 x 256) and HR NIR iris images
(64 x 512), respectively, and perform matching in the latent
embedded subspace, that contains basic information about the iris
texture patterns irrespective of the resolution. The experimental
results reported in Table 2 show that our proposed scheme has
produced EER with a value of 1.26% which proves the adequacy
of our approach even in low-quality videos.

(d) Matching LR VIS iris images against a gallery of LR NIR
iris images :

We also perform additional experiments where our gallery images
are in the low-resolution NIR domain. To investigate the matching
performance of our network, we feed both the VIS and NIR
generator with the unrolled LR VIS and NIR iris images. The
experimental results reported in Table 2 and Fig. 5(c) indicate the
matching accuracy of our network for this cross-spectral setting
compared to the approach used in [33]. Even though we achieve
an EER of 2.51% that is much lower than several comparable
methods, there is a tradeoff with verification performance, which
is not as satisfactory as our previous experiments outlined above.

5.6 Evaluation on WVU Face and Iris Database

To assess the effectiveness of our proposed approaches, we con-
duct a number of extensive experiments on the WVU face and iris
database for different cross-spectral matching scenarios similar to
the experiments performed on the PolyU bi-spectral database. To
the best of our knowledge, there is no other baseline algorithm in
the literature that have performed cross-spectral iris matching on
this dataset. Therefore, our evaluation on the WVU face and iris
dataset yields a new state-of-the-art cross-spectral iris matching
result, which will further encourage the biometric research com-
munity to investigate the performance of other existing algorithms
on this dataset. In this context, we first report on the evaluation
of the method in our first approach for matching cross-spectral
iris images under the same spectral domain. Then we discuss
experimental results obtained from our second method, which
performs matching in the embedded domain.

5.6.1 Matching Results Obtained From cGAN Architecture

We consider similar experimental scenarios as stated in Section
5.5 when we trained our cGAN model with the WVU face and
iris database. We plot ROC results in Fig. 6(a) obtained from the
c¢GAN network that has been trained and tested for Scenario 1
and Scenario 3. In addition, we summarize the EER in Table 3.
Fig. 6(a) and Table 3 demonstrate that our proposed algorithm
achieves 99.50%, 80.50% and 70.1% GAR at 0.1, 0.01 and 0.001
FAR, respectively for Scenario 1, where each VIS iris probe image
of the test set is matched against a gallery of synthesized VIS iris
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images. For comparison, we report recognition accuracy for this
database which has been obtained from the algorithm used in [33]
for matching the HR VIS iris probe image against a gallery of HR
NIR iris images. It is obvious that our proposed cGAN algorithm
significantly increases the recognition accuracy by 18.8% for
the FAR of 0.01 with 1.14% decrease in EER compared to the
cross-spectral iris matching result reported as a baseline approach
(Matching HR VIS iris probe image against a gallery of NIR iris
images).

We also report identification accuracy for the reverse case as
described by Scenario 3. In this case, we train a network to map
the VIS iris images to the NIR domain and perform matching
between the synthesized NIR iris images and a gallery of NIR iris
images. The experimental results summarized in Table 3 prove
that even for the reverse scenario our approach achieves 8.1%
higher recognition accuracy and 0.76% lower EER compared to
the baseline result.

Again, to ascertain the comparative performance of our joint
network described in Scenario 2(a), which simultaneously trans-
lates and super-resolves a LR NIR iris image to a HR VIS
image, we separately train both networks and use the result as
baseline. Additionally, we apply the popular IrisCode approach
[33] to generate comparative matching scores (i.e., matching the
LR VIS iris probe against a gallery of LR NIR iris images).
The ROC results from this set of experiments are shown in Fig.
6(b), which indicate the superiority of our proposed joint learning
method over other benchmark results. Table 3 summarizes that
our joint translation and super-resolution technique significantly
outperforms the result obtained from separate training by 8.20%
recognition rate at 0.01 FAR.

5.6.2 Matching Results Obtained From coGAN Architec-
ture

To evaluate the verification performance of our coupled learning
framework, we follow similar experimental settings that were
previously discussed in the earlier section for the PolyU bi-spectral
database. We experiment with four different cross-spectral and
cross-resolution iris matching scenarios for this dataset and plot
ROC results in Fig. 6(c) to show the recognition accuracy of our
proposed network. We also provide EER results in Table 3.

The experimental results illustrated in Table 3 indicate that our
cpGAN network, which performs verification in the embedding
subspace, achieves a lower EER of 0.90% with a higher GAR
of 93% at 0.01 FAR, when matching HR VIS iris probe image
against a gallery of HR NIR iris images. Moreover, it significantly
improves the matching accuracy by 31% GAR at 0.01 FAR
compared to the reported baseline result [33] using the same test
data for the same cross-spectral matching scenario.

Next, we consider a real-life cross-resolution matching sce-
nario within the cross-spectral domain and train our cpGAN with
the unrolled HR (64 x 512) VIS and LR (32 x 256) NIR iris
images, which gradually learns the inherent hidden correlation
between iris images in the cross-resolution and cross-spectral
domains. The matching results briefly presented in Fig. 6(c)
and Table 3 show that our cpGAN network ensures an accurate
retrieval by outperforming the matching Scenario 2(a) in Fig. 6(b)
with 10.9% higher recognition accuracy at 0.01 FAR.

Also, we conduct experiments for the scenario with low-
quality videos. ROC results and EER scores detailed in Table 3
prove that our proposed scheme maintains robust performance
even when matching a LR VIS iris probe against an available
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Fig. 6. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with cGAN
architecture and (c) cpGAN architecture obtained on the WVU face and iris database for the different cross-spectral matching scenarios.

TABLE 3
Comparative performances on the WVU face and iris database.

Algorithm Matching GAR@FAR=0.] GAR@FAR=0.01 GAR@FAR=0.001 EER (%)
¢pGAN(Ours) HR VIS vs HR NIR 99.54 93 84 0.90
cpGAN(Ours) HR VIS vs LR NIR 97.04 87.7 80.8 1.15
cpGAN(Ours) HR NIR vs LR VIS 92.89 83.50 72.70 1.20
cpGAN(Ours) LR NIR vs LR VIS 82.52 69.2 59.70 1.85
NIR to VIS domain translation (Ours cGAN) Scenario 1 97.79 80.8 75.1 1.0
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 94.97 77.8 69.5 1.34
Domain translation & super-resolution (Separate Training) Scenario 2(b) 83.50 69.60 60.0 1.97
VIS to NIR domain translation (Ours cGAN) Scenario 3 88.53 70.10 67.70 1.38
Iriscode (OSIRIS) [33] HR VIS vs HR NIR 76.02 62.0 56.1 2.14
Iriscode (OSIRIS) [33] LR VIS vs LR NIR 71.7 55.5 42.7 3.01

HR NIR gallery. It has generated an EER of 1.20%, which is
considered as a lower EER value for an ideal biometric system.

Finally, we investigate the verification performance of our
proposed cpGAN network when iris images in the gallery are
in low-resolution NIR domain. Therefore, we force the cpGAN
network to learn invariant features in the common embedding
subspace from both the LR (32 x 256) VIS and NIR iris images.
The experimental results in Table 3 show that our proposed
algorithm obtains 3.7% more recognition accuracy at 0.01 FAR
than the approach used in [33] on the same test data for this cross-
spectral setting.

5.7 Evaluation on Cross-Eyed-Cross-Spectral Iris

Recognition Database

We perform another set of experiments using the cross-eyed
database to quantify the cross-spectral iris recognition accuracy
for both of the approaches developed for this paper. We follow the
same experimental settings conducted for the other two datasets
for different cross-spectral matching scenarios that have been
described in the previous sections. It is worth noting that while
comparing our results obtained for this dataset over existing
algorithms [1], [14], [16], [33], we follow the same train-test
protocol used in their paper to show fair evaluation.

The comparative matching results from our cGAN and cpGAN
architectures are shown in Fig. 7, while the corresponding EER
results are summarized in Table 4. For comparison we use several
highly competitive benchmark MRF approach [14], polpular gabor

filter based IrisCode [33], SDH method [1] and another 1D log-
gabor filter based IrisCode [16] to ascertain the superiority of our
proposed approaches.

Fig. 7(a) depicts the experimental results for Scenario 1 and
Scenario 3 from our cGAN architecture compared to the baseline
result using the most widely deployed IrisCode [33] approach.
The results from Scenario 1 indicate that our proposed domain
translation technique using the cGAN architecture significantly
improves the cross-spectral iris matching accuracy by 28.59% at
0.01 FAR compared to the benchmark result using the IrisCode
[33] approach. In addition, it also achieves 15.3% higher GAR
at 0.01 FAR and 0.73% lower EER even when we experiment
matching for Scenario 3.

In Fig. 7(b), we present ROC results for showing the per-
formance of our proposed joint network Scenario 2(a) where the
network learns to translate and super-resolve simultaneously from
the LR NIR to HR VIS iris image, and compare this result to
the approach when both techniques are applied separately (see
Fig. 1 Scenario 2(b)). Table 4 shows that joint training obtains
74.8% GAR at 0.01 FAR, which outperforms the separate training
considered as baseline by 14.8% GAR.

We also investigate the performance of our coupled learning
framework for four different cross-spectral and cross-resolution
scenarios. We plot the resulting ROC curves in Fig. 7(c). Table
4 summarizes the EER results comparing our proposed approach
with other state-of-the-art deep learning iris recognition method
proposed in [1], [14], [16], [33] for the same train-test protocol.

10"
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Fig. 7. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with
cGAN architecture and (c) cpGAN architecture obtained on the Cross-eyed-cross-spectral iris recognition database for the different cross-spectral

matching scenarios.

TABLE 4
Comparative performances on the Cross-eyed-cross-spectral iris recognition database. Symbol ’-’ indicates that the metric is not available for that
protocol.
Algorithm Matching GAR@FAR=0.] GAR@FAR=0.01 GAR@FAR=0.001 EER (%)
CNN with SDH [1] HR VIS vs HR NIR — 87.18 — 6.34
NIR to VIS texture synthesis using MRF model [14] HR VIS vs HR NIR 78.13 — — 18.40
IrisCode using 1D Log-Gabor filter [16] HR VIS vs HR NIR 70.3 — — 19.48
¢pGAN(Ours) HR VIS vs HR NIR 96.30 89.4 81.8 1.1
cpGAN(Ours) HR VIS vs LR NIR 90.3 81.7 79.6 1.28
cpGAN(Ours) HR NIR vs LR VIS 86.40 78.4 72.3 1.31
cpGAN(Ours) LR NIR vs LR VIS 81.80 62.0 59.0 2.55
NIR to VIS domain translation (Ours cGAN) Scenario 1 90.30 80.09 70.1 1.54
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 80.8 74.8 67.02 1.71
Domain translation & super-resolution (Separate Training) Scenario 2(b) 71.30 60.0 54.90 3.04
VIS to NIR domain translation (Ours cGAN) Scenario 3 79.0 66.8 63.8 2.17
Iriscode (OSIRIS) [33] HR VIS vs HR NIR 60.0 51.5 44.8 39
Iriscode (OSIRIS) [33] LR VIS vs LR NIR 53.1 442 38.8 5.67

We notice that when we match the HR VIS iris probe image
against a HR NIR iris gallery, our cpGAN achieves superior recog-
nition performance over the other baseline matching algorithms.
It obtains almost 26% and 18.17% more identification accuracy
compared to the approach used in [16] and [14], respectively. In
addition, it also outperforms the most competitive cross-spectral
iris recognition approach [!] in the literature by a remarkable
decrease of 5.24% in EER. All the other scenarios achieve EER
less than 2%, which reveals the robustness of our coupled network.
Again, even if we consider a LR NIR iris probe matched against a
LR NIR iris gallery, we observe it performs much better than the
benchmark using IrisCode [33] for the same scenario.

6 CROSS-DATABASE PERFORMANCE EVALUA-
TION

One of the most promising benefits of deep-learning-based iris
recognition is its generalization capability, which offers high
matching performance even when using the model trained on
completely different iris database. Therefore, we also evaluate
cross-database matching performance to validate the generaliza-
tion capability of both of our approaches.

During this cross-database performance evaluation, first, we
directly employ one of our models that has been trained on the

PolyU bi-spectral database to ascertain the verification perfor-
mance for the WVU face and iris database and Cross-eyed-cross-
spectral iris recognition database without any fine-tuning. More
specifically, we have used one dataset for training, and disjoint
dataset for testing. Next, we follow the same technique to perform
cross-database matching for the other two datasets: we use a model
trained on the WVU face and iris image database to evaluate the
recognition performance for the PolyU and Cross-eyed database,
and similarly, for a model that is trained using the Cross-eyed
dataset. We maintain the same test-protocol as described for
the respective databases in previous sections. For matching we
consider only Scenario 1 when evaluating the performance of the
c¢GAN architecture. To report evaluation of the cpGAN network,
we specifically consider the scenario where the HR VIS iris probe
is matched against a HR NIR gallery. We have already introduced
both of these scenarios in the earlier sections.

The aim of this evaluation is to validate the generalization
capability of our proposed frameworks when the target iris
database has limited training samples. We show the compar-
ative performance from the respective databases in Fig. 8-10
and report respective EER values in Table 5-7 from this cross-
database performance evaluation. These results for the cross-
database matching also indicate the performance improvement
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Fig. 8. Comparative ROC results showing the cross-database matching of our approach (a) Scenario 1 with cGAN architecture (b) cpGAN
architecture (matching the HR VIS iris probe against a HR NIR gallery) where both networks were trained only on the PolyU bi-spectral dataset.
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architecture (matching the HR VIS iris probe against a HR NIR gallery) where both networks were trained only on the WVU face and iris dataset.
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iris recognition dataset.
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TABLE 5

Cross-dataset matching performance evaluation. We trained both networks only on the PolyU bi-spectral dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01 | GAR@FAR=0.001 | EER (%)
PolyU Bi-Spectral 92.38 84.98 1.02
cpGAN(ours) Eg I\\]Iilsz Vs WVU Face and Iris 88.9 81.7 1.13
Cross-eyed-cross-spectral 85.2 71.5 1.20
PolyU Bi-Spectral 80.5 70.1 1.5
c¢GAN(ours) Scenario 1 WVU Face and Iris 77.8 62.9 1.64
Cross-eyed-cross-spectral 75.5 57.9 1.72

TABLE 6
Cross-dataset matching performance evaluation. We trained both networks only on the WVU face and iris dataset.
Approach Iris Comparison Test Dataset GAR@FAR=0.01 | GAR@FAR=0.001 | EER (%)
WVU Face and Iris 93.0 84.0 0.90
HR VIS vs .

cpGAN(ours) HR NIR PolyU Bi-Spectral 89.40 81.9 1.13
Cross-eyed-cross-spectral 85.8 78.5 1.18

WVU Face and Iris 80.8 75.1 1.54

c¢GAN(ours) Scenario 1 PolyU Bi-Spectral 79.6 68.9 1.60
Cross-eyed-cross-spectral 76.0 67.5 1.66

TABLE 7
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Cross-dataset matching performance evaluation. We trained both networks only on the Cross-eyed-cross-spectral iris recognition dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01 | GAR@FAR=0.001 | EER (%)
HR VIS vs Cross-eyed-gross-spectral 89.4 81.8 1.1
cpGAN(ours) HR NIR PolyU Bi-Spectral 82.30 74.80 1.21
WVU Face and Iris 81.5 71.8 1.26
Cross-eyed-cross-spectral 80.09 70.1 1.54
c¢GAN(ours) Scenario 1 PolyU Bi-Spectral 71.5 68.9 1.75
WVU Face and Iris 69.2 64.4 1.9

TABLE 8

Matching performance of our proposed cGAN using different
hyperparameters settings on the PolyU Bi-Spectral test dataset.

Dataset PolyU Bi-Spectral
Iris Comparison Scenario 1 (HR VIS vs Synthesized VIS)
Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001
A =100 X =2x1073 68.9 54.6
A =10"2, 0 =2x1073 75.7 63.5
A =104 =2x10"3 78.1 66.8
AL =10"% 2, =2x 1078 80.5 70.1
A =1076 0 =2x 1072 727 61.4
A =107 =2x10""! 70.1 58.5

gained by employing our framework and reveal its generalization
capability.

7 ABLATION STUDY

Training a GAN-based architecture is always difficult due to the
GAN’s natural instability. Additional loss functions in guiding the
GAN training can significantly improve the performance. How-
ever, these loss terms in the total combined loss are inconsistent on
a numerical scale. Therefore, we use hyperparameters as weight
factors to numerically balance the magnitude of different losses
which accelerates the total loss convergence. To determine the
optimal hyperparameters for our both cGAN and cpGAN models,
we conduct an ablation study through changing the value of
hyperparameters : A1, As, and A3, A4, A5 adapted in equation (19)
and (20), respectively. We have summarized the analysis in Tables
8-9, and show the match performance in Figs. 11-12.

o Scenario 1 (A; =10°% A, =2x1073)

Scenario 1 (A; =1072,A; =2x1073)
Scenario 1 (A; =107%,A; = 2x107%)
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Fig. 11. Comparative ROC results showing the sensitivity of matching
performance on the hyperparameters of our proposed cGAN, when it is
trained only on the PolyU Bi-Spectral dataset for Scenario 1.

7.1 Hyperparameter Analysis

We evaluate the sensitivity of match performance when hyperpa-
rameters are varied across a range for training our proposed cGAN
module. Training the cGAN with an Lo term alone might lead
to blurry results, since this loss penalizes the squared distance
between ground truth outputs and synthesized outputs at pixel
level. Since synthesized image quality is our top priority, we have
added the ImageNet trained VGG-based perceptual loss, which is
effective at generating realistic synthesized images by including
more recognizable structure. Therefore, we keep the weight factor
of the Ly loss term 1 and train cGAN at A\; € {10°,1076}, and
A2=2x 1073, which are used as weight factors for adversarial loss



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE

TABLE 9
Matching performance of our proposed cpGAN using different
hyperparameters settings on the PolyU Bi-Spectral test dataset.

Dataset PolyU Bi-Spectral
Iris Comparison HR VIS vs HR NIR
Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001
AM=1LXA=1X=03 87.3 74.2
A3=1,X=07 X =03 89.7 78.9
A3 =1, =051 =03 90.1 81.8
A3 =1,24 =0.3, A5 = 0.3 92.38 84.98
A3=1X=03X =05 89.3 76.6
A3=1,2=03 X =07 85.4 74.0
A3=1,2=03 X1 =0.1 87.1 71.9

term and perceptual loss term, respectively. We have also trained
the network for a varied range of Ao € {2x1073,2x 1071}, when
A1 = 107C. From the analysis of hyperparameters, as shown in
Fig. 11, and Table 8, we notice that our proposed cGAN achieves
the best matching performance for Scenario 1, when it is trained
with A1 = 1076, and Ay = 2 x 1073 on the PolyU Bi-Spectral
dataset. We have used this setting to perform all the experiments
for cGAN and reported the obtained results in this paper.

For training the cpGAN, we have considered additional con-
straints, such as Lo loss and VGG-based perceptual loss along
with adversarial, and contrastive loss functions. Since we have
developed our 2nd method to perform cross-spectral iris matching
in the common embedded latent feature subspace, we put more
emphasis on contrastive loss, which cares about the distance
between genuine pairs and also penalizes mismatch between
imposter pairs. Therefore, the weight factor for this loss term
remains 1, and other hyperparameters have been changed to
stabilize the cpGAN training, which allows it to converge faster,
and thoroughly improve performance.

As seen in Fig. 12, and Table 9, we keep the adversarial
weight factor, A3 = 1, when changing the values \4, and A5 from
0.3 to 1.0, which define weight factors for perceptual, and Lo
reconstruction loss term, respectively. From this ablation study,
we have observed that A\y= As= 0.3 obtains the best matching
accuracy, when the HR VIS iris probe is matched against the HR
NIR iris gallery for the PolyU Bi-Spectral dataset (see Fig. 12 and
Table 9). For fair comparison, we have used these settings to train
the cpGAN for other datasets and reported the results in this paper.

8 LIMITATION OF THE IRIS IMAGE ACQUISITION
METHOD ON THE OBSERVED RESULTS

The quality of iris images affects the matching performance of any
iris recognition system, which indicates the significant role of the
iris acquisition process. It is the most initial part of any typical
iris recognition system. During the acquisition of iris images, one
must maintain an ISO standard iris image format (iris diameter
has to be 150 pixels [72]), which is not easy to achieve in many
data acquisition environments. Most of the commercial iris image
acquisition systems are designed to work at a close range and
maintain a small operating distance, which is less than 1 meter
[73]. Moreover, all of them need users’ cooperation. Therefore,
it has become troublesome to capture iris images at a distance
to generate low-resolution iris images in realistic environments.
Therefore, there are no datasets available to study the effect cross-
resolution and cross-spectral mismatch on iris recognition systems
in the literature. To overcome this limitation to some extent, the re-
searchers developing state-of-the-art iris recognition systems have
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Fig. 12. Comparative ROC results showing the sensitivity of matching
performance of our proposed cpGAN, when it is trained only on the
PolyU Bi-Spectral dataset for matching the HR VIS iris prob against a
HR NIR gallery.

resized the original high-resolution iris images to their desired
low-resolution images. In our work, we first apply a Gaussian filter
and then resize the iris image using a bicubic interpolation method.
We assume that these artificially-generated low-resolution images
have similar characteristics as the original low-resolution images.
However, we cannot certainly say that we would have achieved
exactly similar performance if we used the original low-resolution
images. We have tried to obtain low-resolution iris images as close
as possible to a realistic setting. These results can be considered
as a baseline for further improvement if the low-resolution iris
images can be acquired in a realistic setting.

9 CONCLUSION

In this paper, we have described the development of two different
deep learning frameworks for cross-spectral and cross- resolution
iris recognition. While both frameworks are developed based on
domain transformation, one of them functions by translating from
one domain to the another (NIR to VIS or vice versa), and the
other framework transforms both domains to a latent embedding
subspace. Briefly stated, in our first approach, we have introduced
a domain translation network which can be considered as pre-
processing step for any commercial off-the-shelf iris recognition
system. In addition, we have proposed a new joint translation
and super-resolution technique to address cross-resolution iris
matching under the cross-domain problem. Experimental results
on three publicly available cross-spectral datasets indicate the
superiority of our proposed method over the earlier methods
presented in the literature. This paper also investigates the domain
invariant capability of our proposed cpGAN framework, which
projects both the VIS and NIR iris texture features into a common
latent embedding subspace to perform matching in the embedded
domain. The goal of this network is to maximize the pair-wise
correlation via contrastive loss during projection for more accurate
cross-spectral iris matching. Results reported in Section 5 show
significant improvement in the matching accuracy compared to
other deep learning cross-spectral iris recognition algorithms. For
instance, cpGAN achieves improvements of approximately 33%,
when compared to the results reported in [71] for the PolyU Bi-
Spectral dataset. Finally, we perform cross-database iris matching
under the cross-spectral domain to evaluate the generalization
capability of our methods.
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