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Abstract—In recent years, cross-spectral iris recognition has emerged as a promising biometric approach to establish the identity of

individuals. However, matching iris images acquired at different spectral bands (i.e., matching a visible (VIS) iris probe to a gallery of

near-infrared (NIR) iris images or vice versa) shows a significant performance degradation when compared to intraband NIR matching.

Hence, in this paper, we have investigated a range of deep convolutional generative adversarial network (DCGAN) architectures to

further improve the accuracy of cross-spectral iris recognition methods. Moreover, unlike the existing works in the literature, we

introduce a resolution difference into the classical cross-spectral matching problem domain. We have developed two different novel

techniques using the conditional generative adversarial network (cGAN) as a backbone architecture for cross-spectral iris matching. In

the first approach, we simultaneously address the cross-resolution and cross-spectral matching problem by training a cGAN that jointly

translates cross-resolution as well as cross-spectral tasks to the same resolution and within the same spectrum. In the second

approach, we design a coupled generative adversarial network (cpGAN) architecture consisting of a pair of cGAN modules that project

the VIS and NIR iris images into a low-dimensional embedding domain to ensure maximum pairwise similarity between the feature

vectors from the two iris modalities of the same subject. To assure the efficacy of our methods, we perform several experiments

considering multiple real-life scenarios on three publicly-available cross-spectral iris datasets. Our best experimental results obtained

from the cpGAN network outperform the existing benchmark convolutional neural network (CNN) with a supervised discrete hashing

(SDH) approach [1] by as much as 1.67%, and 2.22% GAR at FAR of 0.01, while our cGAN provides recognition accuracy with

significantly lower EER value of 1.5%, and 1.54% for PolyU bi-spectral dataset, and Cross-eyed-cross-spectral iris recognition

database, respectively. It indicates the superiority of our approaches over results previously published in the literature.

Index Terms—VIS, NIR, DCGAN, cGAN, cpGAN, CNN.

✦

1 INTRODUCTION

Identity verification based on the analysis of a person’s physio-

logical properties is believed to be more reliable than other means

of identification such as a PIN or password, username, or access

card. Fingerprint, palmprint, face, and iris biometric modalities

have seen widespread use for human identification [2]–[5]. Among

all biological traits, iris is well suited for the most accurate and

secure personal authentication because of the distinctive patterns

present in the iris textures for individuals [5], [6]. The human iris

pattern is observed to have unique and different textures due to

the process of chaotic morphogenesis that causes its formation in

early childhood, exhibiting variation even among identical twins.

Therefore, in recent decades, iris recognition has received signif-

icant attention as an identity verification method in the biometric

community [7], [8] for civilian and surveillance applications.

Conventional iris recognition biometric systems are based on

iris images obtained under near-infrared (NIR) illumination due

to the optical properties of the human iris in the NIR band of

the electromagnetic spectrum. Broadly speaking, the NIR light

absorption characteristics of the pigment melanin within the iris

tissue determines the visibility of iris texture details in NIR

imaging. As a result, the iris textures appear much better under

illumination in the 700 ∼ 900 nm wavelength range compared

to illumination within the visible wavelengths in the 400 ∼ 700
nm range. For this reason, in most commercial iris recognition

systems, single-band near-infrared (NIR) iris matching techniques

have been extensively used for identity authentication tasks [7],

[9]. These systems use well-established algorithms and protocols

to perform identification when the probe and gallery are in the

same domain, which has resulted in highly-accurate performance.

However, the majority of these methods require close-distance

iris imaging to ensure that the acquired images are in good

quality with minimum acceptable iris diameter [5]. To eliminate

these constraints in the NIR-based iris recognition, several visible

wavelength based iris recognition systems have been developed

[10], [11] in the last few years, which has expanded the scope

of investigating the capabilities of the iris matching techniques

under visible light illumination. In addition, several competitions

such as the Noisy Iris Challenge Evaluation (NICE) [12], and

the Mobile Iris Challenge Evaluation [13] focus on the realistic

acquisition process of visible iris images. The major factors behind

this attention to visible wavelength-based iris recognition are (1)

visible range cameras are capable of acquiring images from long

distance, and (2) they are low-cost compared to NIR cameras.

Emerging dual imaging technology in recent smartphones offer

image capture in the visible and NIR illuminations. As a result,

now police and every law enforcement officer, customs and

border protection officer, and special operator has an agency-

issued cellphone to perform multi-modal biometric captures (face,

fingerprint, and iris), which are used later for authentication. In this

context, effective usage of this opportunistic visible iris images

requires accurate iris matching with the corresponding NIR images

enrolled in the national ID databases.

Moreover, recent advances in video surveillance technology

have enabled the capture of very high-resolution iris images in

the visible spectrum using low-cost camera technologies, which

can be used for identification purposes within the same domain or

across different spectra. However, most large-scale galleries of iris

images have been acquired in the lower resolution near-infrared

http://arxiv.org/abs/2108.01569v1
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(NIR) domain. Therefore, cross-spectral and cross-resolution iris

matching has emerged as a major challenge [1], [14]. It is essential

to address both cross-spectral as well as cross-resolution methods

for matching these opportunistic visible iris query probes against

the enrolled NIR iris images in a gallery.

In the last few years, deep neural network architectures,

such as a convolutional neural network (CNN), have dramat-

ically improved the capabilities in automatically learning the

deep representation of specific image features for object detection

and classification of visual patterns. These algorithms have also

shown superior results when compared to classical techniques

based on hand-crafted features. Recently, successful deployment

of deep learning architectures for the task of the same or cross-

domain iris recognition has gained attention in the literature.

Generative adversarial networks (GANs) [18], among other deep

neural network architectures, have shown outstanding capabilities

in different areas of computer vision and biometric applications

[19]–[29]. A range of applications of GANs for iris recognition

has been presented, including data augmentation, synthesis of

NIR periocular images, synthesizing iris images and iris super-

resolution [30], [31]. In this paper, our main contribution is the

extensive application of our novel algorithms on three publicly

available iris datasets comparing two different GAN-based frame-

works for cross-spectral (VIS vs NIR) and cross-resolution (low-

resolution (LR) NIR to high-resolution (HR) VIS) iris matching,

which resulted in a new state-of-the-art approach in the area of

ocular biometrics.

We have developed two approaches by which we apply a

family of deep learning frameworks for different cross-spectral iris

matching scenarios. In our first approach, we employ a conditional

GAN (cGAN) [32] architecture to map the cross-spectral data to

the same spectral domain. We apply it at the same resolution and

extend it to the cross-resolution iris matching problem. We have

designed our first method based on a scenario when one already

has access to an Open-source or a commercial off-the-shelf iris

matcher (e.g., Open-Source OSIRIS [33] matcher) to conduct the

iris verification process. The key idea in our first method is to

synthesize the VIS iris images from their corresponding NIR iris

images in a gallery at the same resolution or higher resolution

through a joint cross-modal super-resolution process. Our first

method is assumed to be a preprocessing module that translates

a NIR image into its corresponding VIS iris image before using

a commercial iris matcher. In our work, we have used OSIRIS

software to conduct the matching between the synthesized VIS

iris images from a gallery of NIR iris images and a prob VIS iris

image. In a summary, our first approach offers four contributions

to the field of iris recognition:

• A new domain adaptation framework, which acts as a

preprocessing module for cross-spectral iris matching based on

generative adversarial networks to transform the cross-domain

problem to the same domain and achieves comparable perfor-

mance when compared to several state-of-the-art methods.

• Integrating the cross-resolution matching scenario into the

cross-spectrum setting and redefining the matching framework as

a joint super-resolution and cross-spectral matching architecture.

• Introducing a new WVU face and iris dataset, which will

contribute to the biometric field for cross-spectral face and iris

recognition.

• Performing substantial experiments on the PolyU Bi-Spectral

dataset [1], [14], WVU face and iris dataset and cross-eyed-cross-

spectral iris recognition database [34].

We observe a significant improvement in the cross-spectral

iris matching accuracy from the experimental results of our first

approach, which validates that our domain adaptation technique

requiring self-learned features extracted from the raw data can

achieve remarkable performance gains for iris verification tasks

similar to the previous research presented in the literature. How-

ever, it is still essential to explore a more compressed and distinc-

tive representation of the raw data. In earlier works, researchers

have widely used subspace learning for data representation [35]–

[37]. Basically, it has been proven that the most relevant and useful

inner characteristics of an image can be mapped to a reduced low-

dimensional latent subspace.

Motivated by this, in our second method, we focus on the idea

of designing a dedicated cross-spectral iris matcher completely

avoiding the use of any commercial off-the-shelf iris matcher.

We hypothesize that iris images in the VIS domain possess a

latent connection with iris images in the NIR domain in a latent

feature subspace. Therefore, we exploited this latent connection

by projecting the VIS and NIR iris images into a common latent

embedding subspace, even if they are at different resolutions.

Furthermore, we posit that, if we perform matching in this latent

domain, verification performance would be more accurate than

our first method due to the inherent direct iris matching in a

shared common feature domain. Moreover, our second method

is designed to circumvent several shortcomings of the commercial

iris matchers that our first method depends on. The idea can be

elaborated on with a use of a case scenario. For example, the

matching engine of a commercial iris matcher cannot be adjusted

to the resolution of the iris images captured at a distance. It cannot

operate directly on the lower resolution images while enrolled

images in the gallery, are comparatively, at a higher resolution.

In addition, effective usage of opportunistic high-resolution VIS

iris images captured by smartphones, surveillance cameras, etc.

requires an accurate, fast, stable, and secure iris matcher. This

can be achieved with the real-valued feature representation in the

common embedded latent subspace instead of a binarized feature

representation like the one used in other classical iris recognition

approaches in the literature. These underlying reasons motivated

us to develop such a dedicated cross-spectral iris matcher, which is

highly desirable. Hence, we have proposed a deep coupled learn-

ing framework for cross-spectral iris recognition, which utilizes a

conditional coupled generative adversarial network (cpGAN) [17]

to learn a common embedded feature vector via exploring the

correlation between the NIR and VIS iris images in a reduced

dimensional latent embedding feature subspace. The key benefits

from our second iris recognition approach can be summarized as

the following:

• We analyze an effective method to learn the subspace em-

bedded features and develop a novel framework for cross-spectral

iris matching using our cpGAN architecture.

• Comprehensive experiments on three different benchmark

datasets (1) PolyU Bi-Spectral dataset (2) WVU face and Iris

dataset and (3) Cross-eyed-cross-spectral database with superior

results over the baseline approaches ascertain the validity of our

cpGAN framework.

• To the best of our knowledge, this is the first study that

has investigated two different techniques utilizing the potential

capabilities of a GAN to improve the performance of existing

cross-spectral iris recognition methods reported in the literature.
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TABLE 1
A summary of the recent related works on cross-spectral iris recognition, accuracy is reported at a given False Acceptance Rate (FAR).

Reference Method Database Iris comparison Iris matching Features Matching accuracy

[15] A predictive NIR iris image WVU Multi-spectral iris Genuine = 280 Cross-spectral Hand-crafted 95.2%

is used from the color image database Impostor = 20,745 (FAR = 0.001)

[16] IrisCode using 1D (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 52.6%

Log-Gabor filter iris database Impostor = 1,953,000 (FAR = 0.1)

(2) Cross-eyed-cross- Genuine = 2160 (2) 70.3%

spectral iris recognition Impostors = 516,240 (FAR = 0.1)

database

[14] NIR to VIS texture (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 64.91%

synthesis using MRF iris database Impostor = 1,953,000 (FAR = 0.1)

model (2) Cross-eyed-cross- Genuine = 2160 (2) 78.13%

spectral iris recognition Impostors = 516,240 (FAR = 0.1)

database

[1] CNN with softmax (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 90.71%

cross-entropy loss for iris database Impostor = 1,953,000 (FAR = 0.01)

feature extraction and (2) Cross-eyed-cross- Genuine = 2160 (2) 87.18%

SDH for compression spectral iris recognition Impostors = 516,240 (FAR = 0.01)

and classification database

cpGAN [17] Conditional coupled (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 92.38%

generative adversarial iris database Impostor = 1,953,000 and cross- in the embedded (FAR=0.01)

network (cpGAN) resolution domain

2 RELATED WORK

Cross-spectral iris recognition requires a VIS iris probe to be

matched against a gallery of NIR iris images. While conventional

iris recognition methods have achieved high matching accuracy,

cross-spectral iris matching algorithms have not yet reached a high

level of performance and pose a greater challenge for real-world

applications.

Table 1 summarizes recent cross-spectral iris algorithms that

are based on two strategies 1) extracting information from both

spectral domains and then combining such information for the

final decision, or 2) synthesizing a NIR image from its correspond-

ing visible image and then matching against a NIR gallery. Using

the first strategy, Vyas and Kanumuri [38] proposed a new feature

descriptor using template partitioning based on variations in the

iris texture. In their work, they have applied a 2D Gabor filter

bank to obtain the iris pattern at various scales and orientations.

They utilize the difference of variance (DoV) features to divide

the filtered iris template into sub-blocks, as the DoV features are

invariant to noise caused by illumination occlusion and position

shifting. However, this method could not achieve the high accuracy

required for practical applications (high equal error rate (EER) of

31.08%) because it is unable to relate the information comprised

in the NIR and VIS images. Tan et al. [39] describe a framework

for segmenting iris images in both domains which is helpful for

further multi-spectral fusion of information. According to Oktiana

et al. [40] local binary pattern (LBP) and binary statistical image

feature (BSIF) are the best feature descriptors based on the VIS

and NIR imaging systems, which are able to accurately extract the

texture patterns of the iris for cross-spectral matching.

Another recent work [41] also used BSIF along with the χ2

distance metric to obtain match scores between the VIS prob and

NIR reference ocular images. They then fuse all the scores to

make the final decision. To encourage advances in cross-spectral

iris and periocular recognition, there has been a competition [42]

held among five teams, which is considered as an extension of 1st

competition that was arranged for a similar task (more recently,

Sequeira et al. [34] released a new cross-eyed and cross-spectral

iris dataset to advance research on the challenging cross-spectral

iris matching problem). They submitted twelve methods for the

periocular task and five for the iris task. In the work of Alonso-

Fernandez et al. [43] fusion of periocular and iris information

achieved considerable match performance improvement, where

iris information is obtained by using different iris features ex-

traction techniques. Wild et al. [44] used information from iris

images captured at multiple bands of the electromagnetic spectrum

and presents an efficient feature-level fusion to improve cross-

spectral iris recognition performance. Sharma et al. [45] proposed

an algorithm, that consists of two neural network architectures,

and trained it on a cross spectral periocular dataset. It resulted in

an improved matching accuracy compared to the existing feature

descriptors previously mentioned above.

On the other hand, using the second strategy, several efforts

toward estimating NIR images from visible images have been

proposed recently. For instance, researchers in [15] have explored

an adaptive learning method to predict NIR images to address

the performance shortcomings, which was considered below the

benchmarks caused by cross-spectral matching. Similarly, in [14],

authors develop a domain adaption framework using Markov

random fields (MRF) to estimate a NIR iris image from its

corresponding VIS iris image and perform matching against a

NIR image gallery. In the same direction, Burge and Monaco

[46], [47] implemented a model which utilized features derived

from the color and structure of the VIS iris images to predict

the corresponding synthesized NIR iris images. We have also

noticed similar works in the ocular biometric field for the task

of cross-spectral periocular image recognition. Recently, Reja et

al. [48] proposed a novel image transformation technique using

cascaded refinement networks to synthesize a NIR periocular

image from the corresponding VIS periocular image. Another

study [49] reported that feature-based approaches are prone to

changes during the feature extraction process. Therefore, they

have adopted phase-only correlation and band-limited phase-only

correlation techniques to develop a phase-based iris recognition

system.
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Fig. 1. Cross-domain and cross-resolution iris recognition framework; Scenario 1: NIR to visible translation; Scenario 2: NIR to visible joint/separate
translation and Super-resolution , Scenario 3: Visible to NIR translation.

Although the approaches mentioned above have advanced

cross-spectral iris matching one step ahead by achieving good

results, but to keep pace with the increasing demand for more

robust biometric systems, researchers have recently concentrated

their efforts towards CNN-based iris verification system [1]. In

this study, the authors observed that CNN-based features offer a

significantly compact representation for the iris template along

with sparse information, which potentially helps to improve the

accuracy of the iris recognition system. Moreover, this approach

incorporates a supervised discrete hashing (SDH) on the learned

features, which achieved an EER of 5.39%.

Another interesting approach, iris image super-resolution, has

also gained attention due to its impact on iris verification methods.

The authors in [50] explored deep learning architectures such

as stacked auto-encoders and CNN for single-image iris super-

resolution. Wang et al. [51] proposed a framework based on an

adversarial training with triplet networks in order to improve iris

image resolution for further recognition.

3 METHODOLOGY

To address the performance degradation reported in cross-spectral

iris matching, our primary goal is to develop an algorithm that

minimizes the distance between the VIS iris image and NIR

iris image distributions belonging to the same person. Therefore,

we have developed two different domain adaptation techniques.

These two techniques are based on finding a mapping, or a

low-dimensional shared latent subspace, between the VIS and

NIR iris modalities to significantly reduce the cross-spectral iris

matching discrepancy and provide a new state-of-the-art result.

The techniques developed in this paper are shown in Fig. 1 and

Fig. 2, respectively. Since most of the available iris galleries are

acquired under NIR illumination and the opportunistic iris images

are obtained under the VIS domain at higher resolution, in our

first technique we find a mapping between the NIR and VIS
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Fig. 2. Architecture of our proposed conditional cpGAN framework. During training, the contrastive loss function is used in the latent embedding
subspace to optimize the network parameters so that latent features of iris images from different spectral domain of the same identity are close to
each other while the features of different identities are pushed further apart [17].

iris images and design a new framework (see Fig. 1) based on

joint cross-domain and cross-resolution matching to enable cross-

spectrum iris recognition for pairs of images with the same and

different resolutions. In greater detail, we address two challenges:

1) performing cross-domain mapping for the purpose of the intra-

domain iris matching, and 2) doing the same when the images

from each spectral domain have different resolutions. As a result,

there should be a joint transformation of spectrum and resolution,

which will be discussed in detail in subsections 3.1.1 and 3.1.2.

We consider three main scenarios, as shown in Fig. 1, and de-

velop our iris matching framework around them based on different

cross-spectral scenarios. The first scenario is matching a visible

probe against an NIR gallery translated to an equivalent visible

gallery. The second scenario is matching a high-resolution visible

probe against a translated and super-resolved NIR gallery to a

high-resolution visible gallery. The third scenario is matching an

NIR probe against a visible gallery translated to an equivalent NIR

gallery. The reason behind including the cross-resolution setting in

our framework, is that, as an emerging problem domain, current

opportunistic visible iris images extracted from high-resolution

face images are typically at a higher resolution than the NIR

images.

Apart from being focused solely on the generation of a synthe-

sized VIS image from its NIR counterpart, in our second approach,

we emphasize the idea of learning a latent subspace to extract

meaningful representative features from the VIS and NIR iris

images. Thus, we develop our second approach as shown in Fig.

2, which projects both the NIR and VIS iris images to a common

latent low-dimensional embedding subspace using two generative

networks. The key reason behind developing this architecture is

to learn the semantic similarity between two samples of the same

subject but in different spectral domains. Therefore, inspired by

our previous cpGAN architecture [17], we trained this network

using a similarity measure based on a contrastive loss [52] to

ensure that the distance between the images corresponding to the

genuine pairs (VIS iris image and NIR iris image of the same

person) is minimized, and that of the imposter pairs (VIS iris

image and NIR iris image of the different persons) is maximized.

To summarize our two approaches, we have studied and devel-

oped two different deep convolutional GAN-based architectures

to ascertain the adaptive learning potential for cross-spectral iris

matching, i.e., cGAN and cpGAN. Like other approaches, before

training both networks, preprocessing steps require iris images

from both spectra to be subjected to segmentation, normalization

and image enhancement processes. Then, normalized image sam-

ples are fed to each network. The network in our first approach

mainly utilizes the adversarial loss to synthesize VIS iris image

from its NIR counterpart before performing different verification

scenarios, while in our second approach, the network integrates the

contrastive loss along with the adversarial learning [18] to generate

matching scores. The following sections provide the details of our

approaches and introduce the cGAN and cpGAN architectures

along with the associated loss functions that are implemented

in our framework to investigate the cross-spectral iris matching

problem.

3.1 Deep Conditional Adversarial Framework

Recently, GANs have received considerable attention from the

deep learning research community due to their significant con-

tributions in the field of image generation. The basic GAN

framework consists of two modules− a generator module, G,

and a discriminator module, D. The objective of the generator,

G, is to learn a mapping, G : z → y, so that it can produce

synthesized samples from a noise variable, z, with a prior noise

distribution, pz(z), which is difficult for the discriminator, D, to

distinguish from the real data distribution, pdata, over y. The
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generator, G(z; θg) is a differentiable function which is trained

with parameters θg when mapping the noise variable, z, to the

actual data space, y. Simultaneously, the discriminator, D, is

trained as a binary classifier with parameters θd such that it can

distinguish the real samples, y, from the fake ones, G(z). Both

the generator and discriminator networks compete with each other

in a two-player minimax game. We calculate the following loss

function, L(D,G), for the GAN:

L(D,G) = Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1 −D(G(z)))].
(1)

The objective function of GAN defines the term “two-player

minimax game” by optimizing the loss function, L(D,G), as

follows:

min
G

max
D

L(D,G) = min
G

max
D

[Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1−D(G(z)))]].
(2)

One of the variants of GAN, the cGAN is introduced in

[32], which expands the scope of synthesized image generation

by setting a condition for both the generative and discriminative

networks. The cGAN applies an auxiliary variable, x, as a condi-

tion which could be any kind of useful information such as texts

[53], images [54] or discrete labels [32]. The loss function for

the cGAN, Lc(D,G), can be represented as follows:

Lc(D,G) = Ey∼Pdata(y)[logD(y|x)]

+ Ez∼Pz(z)[log(1−D(G(z|x)))].
(3)

Similar to (2), the objective function of the cGAN is mini-

mized in a two-player minimax manner, which is denoted as

LcGAN(D,G, y, x) and defined by:

LcGAN(D,G, y, x) = min
G

max
D

[Ey∼Pdata(y)[logD(y|x)]

+ Ez∼Pz(z)[log(1−D(G(z|x)))]].
(4)

3.1.1 Domain Translation Using cGAN

A more recent algorithm in the field of ocular biometrics [14],

[55] has shown success in estimating NIR iris images from VIS

iris images and then matching them against the NIR instances in

the gallery. However, they did not use CNN-based algorithms,

even though many of the recent iris recognition systems have

investigated the capabilities of CNN in learning anatomical prop-

erties. Therefore, we have developed a deep CNN-based domain

translation network in our first method. We proposed to translate

the iris images from the NIR domain to visible, or vice versa.

Therefore, image translation plays an important role as one of two

integral parts of our frameworks.

Recent advances in deep learning reported in the literature

have provided very powerful tools for the task of image-to-image

translation [54]. Such translations can be interpreted as image

domain transformations, where the task is to learn a mapping from

one modality to another modality. In our first method, we use the

conditional GAN (cGAN) architecture [54] for the task of NIR to

VIS iris image translation or vice versa. The cGAN architecture

has been successful in a variety of image-to-image translation

tasks in the computer vision research community. It includes

Sketch → Portrait, Sketch→ Pokemon, Depth→ Streetview, pose

transfer, etc. Such deployment of cGAN in image translation

tasks has inspired us to explore its performance in synthesizing

corresponding VIS iris images from the NIR iris gallery, to be

used as a preprocessing module for the cross-spectral iris image

translation.

During training the cGAN, we condition on an NIR iris image

and generate a corresponding synthesized VIS iris output image

or vice versa as shown in our proposed framework (see Scenario

1 and Scenario 3 in Fig. 1). Here, we have demonstrated that

a simplified cGAN framework is sufficient to achieve adequate

synthesized results through adversarial learning. In addition, our

analysis shows that this method is effective at conducting cross-

spectral iris matching under the same spectrum setting (a VIS

iris probe is matched against a synthesized VIS gallery generated

from its corresponding NIR gallery or vice versa.) with impressive

results.

3.1.2 Joint Translation and Super-Resolution Using Modi-

fied cGAN

Leveraging the benefits of the cGAN architecture, we have in-

vestigated the possibility of iris domain translation by using a

structured loss [54] to penalize any probable structural mismatch

between the synthesized output and target. Successful deployment

of this network helps us to overcome the challenge faced in

cross-spectral iris matching. However, in Scenarios 2(a) and 2(b),

representing the additional cross-resolution case (see Fig. 1), the

size of the output image should be larger than the size of the

input image, i.e., the network should learn domain translation to

a higher resolution. In this context, we modify the architecture

of our cGAN generator by integrating the concept of super-

resolution during the cross-domain translation. Super-Resolution

(SR) estimates a HR super-resolved image from its LR counter-

part, which has been vigorously applied to various computer vision

applications. Although reconstructing an accurate HR image from

its LR version is a very difficult task, multiple SR algorithms have

been developed in recent years [56] to address this challenge.

Recently, the GAN-based SRGAN [57] approach has shown

excellent results with high perceptual image quality by retrieving

the fine textural details from a LR input image. Following their

approach of up-sampling the LR input image, we improve our

cGAN-based translation architecture and incorporate a super-

resolution layer as part of our cross-spectral framework to deal

with the cross-resolution task considered in our basic Scenario

2. To synthesize high-quality VIS iris images, we train our

network with a perceptual loss [58], which helps to generate a

more accurate VIS iris images along with the widely used L2

reconstruction loss [59], [60] and the adversarial loss [57] func-

tions. A similar iris super-resolution method has been proposed

in [51], which integrates adversarial training into triplet networks

in order to develop a super-resolution architecture for low-quality

iris images. However, the ability of their SR network is limited

to super-resolving iris images in the same spectral domain. On

the other hand, we jointly perform super-resolution and domain

transformation in one shot to overcome the limitations of acquiring

high-resolution NIR iris images. More specifically, our network

produces a gallery of super-resolved HR VIS iris images from a

gallery of LR NIR iris images, which is then used to match a HR

VIS iris probe against it.

3.2 Verification

In this article, we have proposed to perform cross-spectral iris

matching under the same spectra and the same resolution setting

by adopting joint translation and super-resolution technique fol-

lowed by the verification process. To accomplish this, we train our
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network on unrolled iris images of one spectral domain as input

and generate unrolled iris images of the other spectral domain at

the same resolution or higher resolution based on the scenarios

described in the earlier sections. To perform verification, we

employ a commercially available software, Open Source for IRIS

(OSIRIS), which was developed within the BioSecure project [33]

and offered by its authors as a free, open-source iris matcher.

OSIRIS follows the iris matching concept proposed in the works

of Daugman [5]. It applies Daugman’s rubber sheet model for

unwrapping the iris image from polar coordinates onto a Cartesian

rectangle to process image segmentation and normalization tasks.

Hence, during verification we match a normalized VIS iris probe

against a gallery of synthesized normalized VIS iris images

generated from our network using this OSIRIS software. It first

generates iris codes by applying phase quantization of multiple

Gabor wavelet filtering outcomes, while matching is performed

using XOR operation, with normalized Hamming distance as an

output dissimilarity metric. For genuine comparisons, we expect

values close to zero, while we expect scores around 0.5 for

imposter comparisons.

3.3 Deep Coupled Adversarial Framework

Our second proposed technique is a cpGAN architecture that con-

sists of two coupled cGAN modules with the same architecture,

as shown in Fig. 2. One of them is dedicated to synthesizing

the VIS iris images, and hence, we refer to as the VIS cGAN

module. Similarly, the other module is dedicated to synthesizing

the NIR iris images, which is referred to as the NIR cGAN module.

Our cpGAN network is inspired by the Siamese network [61],

which ensures pairwise learning, where all the parameters are

simultaneously updated throughout the network. We have followed

a more recent U-Net-based, densely-connected encoder-decoder

structure proposed in [62] to design our generator, which helps

to achieve the low-dimensional embedded subspace for cross-

spectral iris matching via a contrastive loss along with the standard

adversarial loss. In addition to the adversarial loss and contrastive

loss [52], the perceptual loss [58], and L2 reconstruction loss are

also used to guide the generators towards the optimal solutions.

Perceptual loss is measured via a pre-trained VGG 16 network

[63], which helps in sharp and realistic reconstruction of the

images. In realistic opportunistic iris recognition scenarios, a VIS

iris probe is usually matched against a gallery of NIR iris images.

To create such application scenario, we focus on matching a VIS

iris probe against a gallery of NIR iris images, that have not

been seen before by the network. To perform this matching in

a cross-spectral domain setting, a discriminative model is required

to produce a domain-invariant representation. Therefore, we force

the network to learn iris feature representations in a common em-

bedding subspace by utilizing a U-Net auto-encoder architecture

that uses class-specific contrastive loss to match the iris patterns in

the latent domain. As previously mentioned, we use a U-Net auto-

encoder architecture for our generator due to its structural ability

of extracting features in the latent embedding subspace. More

specifically, the contracting path of the “U shaped” structure of the

U-Net captures contextual information, which is passed directly

across all the layers, including the bottleneck. In neural networks,

the bottleneck forces the network to learn the compressed version

of the input data that only contains useful information to preserve

the structural integrity of the image required to reconstruct the

input. Along with the bottleneck, the high-dimensional features

of the contracting path of the U-Net, combined with the corre-

sponding upsampled features of the symmetric expanding path,

provides a means to share the useful information throughout the

network. Moreover, during domain transformation, a significant

amount of low-level information needs to be shared between input

and output, which can be accomplished by leveraging a U-Net-like

architecture.

We have followed the architecture of patch-based discrimina-

tors [54] to design the discriminators of our proposed model. The

discriminators are trained simultaneously along with the respective

generators. It is worthwhile to mention that the L1 loss performs

very well when applied to preserve the low-frequency details but

fails to preserve the high-frequency information, whereas patch-

based discriminator penalizes the structure at the patch scale to

ensure the preservation of high-frequency details.

The main idea behind using the U-Net shaped generator is to

gradually build a connection between the VIS and NIR iris images

in the common embedding feature subspace. Since the features are

domain invariant in the embedded subspace, it provides credibility

to discriminate images based on identity. Therefore, our final

objective is to find a set of domain invariant features in a common

latent embedding subspace by coupling the two generators via a

contrastive loss function, Lcont [52].

The contrastive loss function, Lcont, is defined as a distance-

based loss metric, which is computed over a set of pairs in the

common embedding subspace such that images belonging to the

same identity (genuine pairs i.e., a VIS iris image of a subject

with its corresponding NIR iris image) are embedded as close as

possible, and images of different identities (imposter pairs i.e., a

VIS iris image of a subject with a NIR iris image of a different

subject) are pushed further apart from each other. The contrastive

loss function is formulated as:

Lcont(z1(x
i
V IS), z2(x

j
NIR), Y ) =

(1 − Y )
1

2
(Dz)

2 + (Y )
1

2
(max(0,m−Dz))

2,
(5)

where xi
V IS and x

j
NIR denote the input VIS and NIR iris images,

respectively. The variable, Y , is a binary label, which is set to 0

if xi
V IS and x

j
NIR belong to the same class (i.e., genuine pair),

and equal to 1 if xi
V IS and x

j
NIR belong to different classes

(i.e., impostor pair). z1(.) and z2(.) are denoted as the encod-

ing functions of the U-Net auto-encoder, which transform both

xi
V IS and x

j
NIR, respectively into a common latent embedding

subspace. Here, m, is used as the contrastive margin to “tighten”

the constraint. The Euclidean distance, Dz , between the outputs

of the functions, z1(x
i
V IS), and z2(x

j
NIR), is given by:

Dz =
∥

∥

∥z1(x
i
V IS)− z2(x

j
NIR)

∥

∥

∥

2
. (6)

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive

loss function, (Lcont), is given as:

Lcont(z1(x
i
V IS), z2(x

j
NIR), Y ) =

1

2

∥

∥

∥z1(x
i
V IS)− z2(x

j
NIR)

∥

∥

∥

2

2
,

(7)

and if Y = 1 (i.e., impostor pair), then the contrastive loss

function, (Lcont), is :

Lcont(z1(x
i
V IS),z2(x

j
NIR), Y ) =

1

2
max

(

0,m−
∥

∥

∥z1(x
i
V IS)− z2(x

j
NIR)

∥

∥

∥

2

2

)

.

(8)
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Thus, the total loss for coupling the VIS generator and NIR

generator is denoted by Lcpl and is given as:

Lcpl =
1

N2

N
∑

i=1

N
∑

j=1

Lcont(z1(x
i
V IS), z2(x

j
NIR), Y ), (9)

where N is the number of training samples. The contrastive loss in

the above equation can also be replaced by some other distance-

based metric, such as the Euclidean distance. However, the main

aim of using the contrastive loss is to be able to use the class labels

implicitly and find a discriminative embedding subspace, which

may not be the case with some other metric such as the Euclidean

distance. This discriminative embedding subspace would be useful

for matching the VIS iris images against the gallery of NIR iris

images.

4 LOSS FUNCTIONS

4.1 Generative Adversarial Loss

The VIS and NIR generators are denoted as GV IS and GNIR, as

they will synthesize the corresponding VIS and NIR iris images

from the input VIS and NIR iris images, respectively. The patch-

based discriminators used for the VIS and NIR iris GANs are

denoted as DV IS and DNIR, respectively. To implement our

proposed methods, we have used the conditional GAN, where

the generator networks GV IS and GNIR are conditioned on the

input VIS and NIR iris images, respectively. In addition, we have

trained the generators and the corresponding discriminators with

the cGAN loss function [32] to ensure a real-looking natural image

reconstruction such that the discriminators cannot distinguish the

generated images from the real ones. Let LV IS and LNIR denote

the cGAN loss functions for the VIS and NIR GANs, respectively.

Therefore, the loss function for the cGAN which is considered as

the backbone architecture in our first approach, can be defined as

following:

LV IS = LcGAN(DV IS , GV IS , y
i
V IS , x

i
V IS), (10)

LNIR = LcGAN(DNIR, GNIR, y
j
NIR, x

j
NIR), (11)

where LcGAN is defined as the cGAN objective function in (4).

The term, xi
V IS , is used to denote the VIS iris image, which is

defined as a condition for the VIS cGAN, and yiV IS , is denoted

as the real VIS iris image. It is worth mentioning that the real

VIS iris image, yiV IS , is same as the network condition given by

xi
V IS . Similarly, x

j
NIR, denotes the NIR iris image that is used as

a condition for the NIR cGAN. Again, like yiV IS , the real NIR iris

image, y
j
NIR, is same as the network condition given by x

j
NIR.

The total adversarial loss for our proposed cpGAN is given by:

LGAN = LV IS + LNIR. (12)

4.2 L2 Reconstruction Loss

We consider the L2 reconstruction loss as a classical constraint for

both the VIS cGAN and NIR cGAN to ensure better results. The

L2 reconstruction loss measures the reconstruction error in terms

of the Euclidean distance between the reconstructed iris image and

the corresponding real iris image. We denote the reconstruction

loss for the VIS cGAN as L2V IS
and define it as:

L2V IS
=

∥

∥GV IS(z|x
i
V IS)− yiV IS

∥

∥

2

2
, (13)

where yiV IS is the ground truth VIS iris image, and

GV IS(z|x
i
V IS), is the output of the VIS generator.

Similarly, we denote the reconstruction loss for the NIR cGAN

as L2NIR
:

L2NIR
=

∥

∥

∥GNIR(z|x
j
NIR)− y

j
NIR

∥

∥

∥

2

2
, (14)

where y
j
NIR is the ground truth NIR iris image, and

GNIR(z|x
j
NIR), is the output of the NIR generator. Depending

on the different cross-spectral iris matching scenarios, we use

either L2V IS
or L2NIR

as the reconstruction loss, which is again

generally termed as L2cGAN
for the method proposed in our first

approach.

For the cpGAN architecture proposed in our second approach,

the total L2cpGAN
reconstruction loss can be defined by the

following equation:

L2cpGAN
=

1

N2

N
∑

i=1

N
∑

j=1

(L2V IS
+ L2NIR

). (15)

4.3 Perceptual Loss

Although the GAN loss and the reconstruction loss are used to

guide the generators, they fail to reconstruct perceptual features in

the generated images. Perceptual features are defined by the visual

characteristics of objects, which provide a perceptually pleasing

look to the image. Hence, we have also used the perceptual loss,

introduced in [58], for style transfer and super-resolution. The

perceptual loss function basically measures high-level differences,

such as content and style dissimilarity, between images. The

perceptual loss is based on high-level representations from a pre-

trained VGG-16 [63] like CNN. Moreover, it helps the network

to generate better and sharper high-quality images [58]. As a

result, it can be a significant alternative to solely using the L1

or L2 reconstruction error. Recently, Zhang et al. [64] introduced

the LPIPS loss metric, which has been adapted in several deep

learning architectures for image reconstruction. Therefore, it can

be considered as an alternative loss function for perceptual fidelity

instead of the well-known ImageNet pre-trained VGG-based per-

ceptual loss [58].

In both of our approaches, we have added perceptual loss to

both the VIS and NIR cGAN modules using a pre-trained VGG-16

network. It involves extracting the high-level features (ReLU3-3

layer) of VGG-16 for both the real input image and the recon-

structed output of the generator. The perceptual loss calculates the

L1 distance between the features of real and reconstructed images

to guide the generators GV IS and GNIR. The perceptual loss for

the VIS cGAN network is defined as:

LPV IS
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥

∥V (GV IS(z|x
i
V IS))

c,w,h − V (yiV IS)
c,w,h

∥

∥

∥,

(16)

where V (.) is used to denote a particular layer of the VGG-16 and

Cp, Wp, and Hp denote the layer dimensions.

Likewise, the perceptual loss for the NIR cGAN network is:

LPNIR
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥

∥V (GNIR(z|x
j
NIR))

c,w,h − V (yjNIR)
c,w,h

∥

∥

∥.

(17)
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Here, we simply define LPV IS
or LPNIR

as LPcGAN
to calculate

perceptual loss for our first approach. The total perceptual loss

function for the cpGAN is given by:

LPcpGAN
=

1

N2

N
∑

i=1

N
∑

j=1

(LPV IS
+ LPNIR

). (18)

4.4 Overall Objective Function

We sum all the loss functions defined above to calculate the overall

objective function LtotcGAN
and LtotcpGAN

for our proposed

cGAN and cpGAN architectures, respectively:

LtotcGAN
= L2cGAN

+ λ1LcGAN + λ2LPcGAN , (19)

where L2cGAN
is the total reconstruction error, LcGAN is the total

conditional generative adversarial loss function, and LPcGAN
is

the total perceptual loss for our proposed cGAN model. Variables

λ1, and λ2 are the adjustable hyper-parameters used to weigh the

different loss terms. The total loss for cpGAN is given as:

LtotcpGAN
= Lcpl + λ3LGAN + λ4LPcpGAN

+ λ5L2cpGAN
,

(20)

where Lcpl is the coupling loss, LGAN is the total generative ad-

versarial loss, LPcpGAN
is the total perceptual loss, and L2cpGAN

is the total reconstruction error. Variables λ3, λ4, and λ5 are the

hyper-parameters used as a weight factor to numerically balance

the magnitude of different loss terms.

5 EXPERIMENTS

We first briefly introduce the publicly available datasets that we

have used in our experiments and discuss the implementation

details of our proposed cGAN and cpGAN architectures along

with their training setup. To evaluate the performance of our

methods, we perform a range of experiments for different cross-

spectral iris matching scenarios and compare their performance

with other state-of-the-art iris recognition methods in the cross-

domain setting. We provide detailed comparative experimental

results in the following sections. Finally, in order to ascertain

the usefulness of our cross-spectral iris recognition frameworks,

we conduct additional experiments for cross-device iris matching

scenarios.

5.1 Database

Three available cross-spectral database, PolyU bi-spectral iris

database [14], WVU Face and Iris Dataset1,2 and Cross-eyed-

cross-spectral iris recognition database [34] are employed to

validate our proposed methods.

5.1.1 PolyU Bi-Spectral iris database

The PolyU Bi-Spectral iris database contains iris images of 209

subjects acquired simultaneously under both the VIS and NIR

illuminations. Each subject consists of 15 different instances of

right and left-eye images with a resolution of 640×480 pixels for

both VIS and NIR spectrum. Therefore, the total number of images

in this dataset is 12,540 (209× 2× 2× 15). We used a publicly-

available segmentation algorithm [11] to accurately segment and

1. This data was collected at WVU under IRB # 1805125982 with appropri-
ate human subjects’ approval.

2. This dataset is available upon request at biic.wvu.edu.

normalize iris images for the experiments. This segmentation

algorithm provides normalized iris images of 512 × 64 pixels,

samples of which are shown in Fig. 3(a). Following the approach

used in [14], we selected the first ten instances for our network

training and the remaining five instances for the testing. The

all-to-all matching protocol generated 2,800 genuine scores and

1,953,000 imposter scores.

5.1.2 WVU face and iris dataset

The West Virginia University (WVU) Face and Iris dataset is

particularly developed for cross-spectral opportunistic iris recog-

nition. It contains 1,248 subjects, which provides a total of 2,496

left and right NIR as well as VIS iris images (1, 248× 2). We use

the method presented in [11] to extract the normalized iris images

(512× 64) from the original iris images of size 640× 480 pixels.

Sample images from this dataset are shown in Fig. 3(b). Again,

following the same train-test protocol used in reference [14] for

this dataset, we attained 750 genuine scores and 561,750 imposter

scores for 375 test subjects.

5.1.3 Cross-eyed-cross-spectral iris recognition database

The Cross-eyed-cross-spectral iris recognition database provides

3,840 iris images from 240 classes for both spectra obtained

from 120 subjects. Each of the classes from every subject has

eight sample of 400 × 300 pixels for both spectra. We use

the same iris segmentation and normalization algorithm used in

[11] to normalize all the iris images. The dimension of all the

segmented and normalized iris images from this dataset is 512×64
pixels. Sample images from the cross-eyed cross-spectral database

are shown in Fig. 3(c). In order to ensure fair comparison, we

follow the train-test protocol used in [14] and choose five image

samples for training and the remaining three samples for testing.

Applying an all-to-all matching protocol, the network generated

2,160 genuine scores and 516,240 imposter scores.

5.2 cGAN Architecture Implementation

We adopted our proposed cGAN network structure from reference

[57] as depicted in Fig. 4 for our domain translation technique,

and formulated the overall loss function inspired by references

[54], [57], [58]. In more detail, for our generator (see Fig. 4(a)),

we have implemented the ResNet16 architecture [65], with 16

identical residual blocks. A single residual block is composed of

two convolutional layers with 3 × 3 kernels, 64 feature maps,

batch-normalization layers and a Parametric Rectified Linear Unit

(ReLU) [66], [67] activation function. We use this network for iris

domain translation based on two different cross-spectral situations

(see Scenario 1 and Scenario 3 in Fig. 1) that we have proposed in

our first approach. We also integrate the super-resolution process

in the translation network by adding a sub-pixel convolution layer

with the layout explained in [60], which has been illustrated in

Scenario 2(a) of Fig. 1. Like [57], for our discriminator archi-

tecture, we follow what is presented in [25], which consists of

eight convolutional layers with 3 × 3 kernel size. The number of

kernels increases from 64 to 512, similar to VGGNet [63]. Rather

than max-pooling, strided convolution is employed for resolution

reduction. As shown in Fig. 4(b), after that, we add a dense layer, a

Leaky RELU, another dense layer, and finally, a sigmoid activation

function. In summary, the generator gets a low-resolution (or high-

resolution) image from one of the domains and translates it or

jointly translates and super-resolves it to the other domain, and
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Fig. 3. Iris image preprocessing steps (Segmentation, Normalization, Enhancement) for (a) PolyU bi-spectral iris database and (b) WVU face and
iris dataset (c) Cross-eyed-cross-spectral iris recognition database.

(a)

(b)

Fig. 4. Architecture of our proposed cGAN (a) generator and (b) discriminator with corresponding kernel size (k), number of feature maps (n) and
stride (s) indicated for each convolutional layer.
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the discriminator is fed with the output of the generator and also

a high-resolution image of the other domain.

5.3 cpGAN Architecture Implementation

We have implemented our cpGAN architecture using the U-

Net architecture as the generator module. We have followed the

architecture of ResNet-18 [65] to implement both the encoder and

decoder sections of the U-Net model. In encoder, each block is

designed by applying two 3× 3 convolutions, each followed by a

ReLU. For downsampling, it uses a 2 × 2 max pooling operation

with stride 2. We double the number of feature channels at each

downsampling step. Similarly, each step in the decoder section

upscales the feature map by applying a 2×2 transpose convolution

[68], upsampling the dimension of the feature map. Each feature

map is concatenated with the corresponding feature map from

the encoder, followed by two 3 × 3 convolutions with a ReLU

activation function.

5.4 Training details

Both of our frameworks have been implemented in Pytorch. We

trained the network with a batch size of 16 and a learning rate

of 2 × 10−4. We used the Adam optimizer [69] with a first-order

momentum of 0.5, and a second-order momentum of 0.999. We

have used Leaky ReLU as the activation function with a slope of

0.35 for the discriminator. To find the optimal hyper-parameters

for our learning algorithms, we have used a random search strategy

[70]. Following their technique, we experiment with different

scaling heuristics to find the optimal hyper-parameter multiplier,

which results in the best verification accuracy. Accordingly, for

the network convergence, we set λ3 to 1, and λ4, and λ5 to 0.3. In

addition, λ1, and λ2, are set to 10−6 and 2× 10−3, respectively.

For training, genuine/impostor pairs are created from the VIS

and NIR iris images of the same/different subjects. During the

experiments, we ensure that the training set is balanced by using

the same number of genuine and impostor pairs.

5.5 Evaluation on PolyU Bi-Spectral Database

We perform our first set of experiments on the PolyU Bi-Spectral

database considering many different cross-spectral iris matching

cases for both previously-mentioned approaches. In all the ex-

periments, each iris probe image is matched against a gallery of

iris images, which generates genuine and imposter scores. Using

these matching scenarios, we calculate the key recognition perfor-

mance parameters, such as genuine acceptance rate (GAR), false

acceptance rate (FAR), and equal error rate (EER). In addition,

we also plot receiver operating characteristics (ROC) curves to

analyze the GAR with respect to FAR. In addition, we compare

our results over other considered state-of-the-art cross-spectral iris

recognition methods described in [1], [14], [16] and [71] . We use

the same train-test protocol provided in their original paper for fair

comparison.

5.5.1 To evaluate the effectiveness of our proposed cGAN

architecture, we conduct the following experiments:

(a) Scenario 1 : NIR to VIS domain translation

In this experiment, we train the network to translate a gallery

of NIR iris images to its corresponding gallery of synthesized

visible iris images at the same resolution (see Fig. 1 Scenario 1).

Then, each VIS iris probe of the test set is matched against this

synthesized VIS iris gallery. We have shown the ROC result from

this experiment in Fig. 5(a) and report the EER in Table 2. We

observe that our proposed algorithm achieves 99.50% and 80.50%

GAR at 0.1 and 0.01 FAR, respectively, and obtains an EER of

1.5%, which outperform the results reported for the algorithms

evaluated in [14], [16], and [71] using the same train-test protocol.

The network shows significant improvement in cross-spectral iris

matching by obtaining 15.53% and 25.18% less EER compared to

the results in [71], and [14], respectively.

(b) Scenario 2(a) : Joint translation and super-resolution from

the LR NIR to HR VIS domain

Recently, with the emergence of new biometrics applications

on smartphones, there is a strong demand for acquiring high-

resolution visible iris images at low cost. However, while the

availability of higher resolution visible iris images will eventually

lead to a cross-resolution mismatch in the problem of cross-

spectral iris matching, almost no attention has been turned toward

it yet. Although there would be higher noise levels in the visible

domain compared to the NIR domain, hopefully the higher res-

olution can compensate for the effect of this noise. To address

the resolution differences, we determined how to match LR NIR

iris images against the HR visible iris images (i.e., unrolled NIR

image size: 32x256, unrolled visible image size: 64x512). We train

the network to translate the LR NIR images to HR VIS images in

such a way that it jointly transforms the image domain and super-

resolves it. Therefore, the network simultaneously learns both

image translation and super-resolution tasks. The network super

resolves the input image by a factor of two, and then the output

can be used as a gallery of visible iris images for visible-to-visible

iris verification. Fig. 5(b) and Table 2 illustrates that our proposed

joint translation and super-resolution technique outperforms the

baseline approach. It is worth mentioning that we separately train

both networks and report the results as a baseline approach to show

the comparative performance of the joint learning. We notice that

the joint training significantly increases the matching accuracy by

3.94%, 5.60% and 13.8% GAR at FAR of 0.1, 0.01 and 0.001,

respectively.

(c) Scenario 2(b) : Separate translation and super-resolution

from the LR NIR to HR VIS domain

We have also fed the low-resolution NIR images to a cross-

domain translation network from reference [54] and then the low-

resolution output is fed to a super-resolution GAN (SRGAN) from

reference [57]. This is the Scenario 2(b) in Fig. 1, and results are

shown in Fig. 5(b) and Table 2. The separate training achieves

88.89%, 70.10%, and 56.10% GAR at FAR of 0.1, 0.01 and 0.001,

respectively, which are significantly lower compared to the joint

training. These results validate our idea of joint transformation and

super-resolution.

(d) Scenario 3 : VIS to NIR Domain Transformation

In order to examine whether or not the NIR-to-visible image

translation is a more effective solution than translating the visible

to NIR, both at the same resolution, we have trained a network

to map the visible images to the NIR domain and performed

verification on the synthesized NIR iris images (i.e., matching the

synthesized NIR images against a gallery of NIR images). We feed

a given visible iris probe image to the network, which is trained

to map visible to NIR images, and then use the output image to

compare with an existing gallery of NIR images. We report the

ROC result obtained from this experiment in Fig. 5(b) along with

the comparative results from other approaches. We consider the

algorithm used in [33] as comparable benchmark for this scenario.
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(a) (b) (c)

Fig. 5. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with cGAN
architecture and (c) cpGAN architecture obtained on the PolyU Bi-Spectral database for the different cross-spectral matching scenarios [17].

TABLE 2
Comparative performances on the PolyU Bi-Spectral database. Symbol ’-’ indicates that the metric is not available for that protocol.

Algorithm Matching GAR@FAR=0.1 GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

Wang et al. [71] HR VIS vs HR NIR — 59.10 37.00 17.03

CNN with SDH [1] HR VIS vs HR NIR — 90.71 84.50 5.39

Nalla et al. [14] HR VIS vs HR NIR 58.8 — — 26.68

NIR to VIS texture synthesis using MRF model [14] HR VIS vs HR NIR 61.91 — — 23.87

IrisCode using 1D Log-Gabor filter [16] HR VIS vs HR NIR 52.6 — — 17.03

cpGAN [17] HR VIS vs HR NIR 99.99 92.38 84.98 1.02

cpGAN [17] HR VIS vs LR NIR 96.5 89.89 81.21 1.21

cpGAN [17] HR NIR vs LR VIS 93.30 84.75 73.45 1.26

cpGAN [17] LR NIR vs LR VIS 82.60 70.10 59.97 2.51

NIR to VIS domain translation (Ours cGAN) Scenario1 99.50 80.50 70.1 1.5

Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 92.83 75.70 69.9 1.6

Domain Translation & super-resolution (Separate Training) Scenario 2(b) 88.89 70.10 56.10 1.9

VIS to NIR domain translation (Ours cGAN) Scenario 3 87.49 69.50 64.90 1.4

Iriscode (OSIRIS) [33] HR VIS vs HR NIR 74.60 61.10 54.50 2.59

Iriscode (OSIRIS) [33] LR VIS vs LR NIR 71.05 55.60 43.10 3.0

It proves the efficacy of our proposed approach by acquiring

2.19% less EER compared to the baseline result mentioned above.

5.5.2 Similarly, to ascertain true cross-spectral matching

ability of our proposed cpGAN network, we experiment with

different types of cross-comparisons as follows:

(a) Matching HR VIS probe against a HR NIR gallery:

To perform this verification, we train our coupled learning

network with the unrolled HR 64× 512 VIS and NIR iris images

such that VIS and NIR generators are trained to obtain domain

invariant features in a common latent embedding subspace using

a contrastive loss. We plot ROC curves comparing our approach

with other state-of-the-art deep learning methods presented in

[1], [71], which apply different types of feature extraction

techniques. From Fig. 5 (c) and Table 2, we notice that our

cpGAN framework performs much better than the baseline

matching algorithms mentioned above. In this setting, our method

achieves 1.67% more identification accuracy with 4.37% decrease

in EER compared to the most recent cross-spectral iris recognition

method [1]. Additionally, it outperforms the method described in

[14], [33] by a significant decrease of 1.57% and 22.85% in EER,

respectively. This significant improvement clearly indicates that

using a cpGAN framework for projecting both the VIS and NIR

iris images into a common latent embedding subspace to retrieve

the domain invariant features is better than the other existing deep

learning methods.

(b) Matching HR VIS probe against a LR NIR gallery:

Here, we consider a realistic iris matching scenario to analyze

the cross-spectral matching accuracy of our network. Due to

the advances in imaging technology, opportunistic iris images

extracted from faces in the visible spectrum are at a higher

resolution, while images already stored in the gallery are in the

low-resolution NIR domain. It has become a challenging task to

build a correlation between iris images in different resolutions

as well as in different spectra. Many algorithms fail to retrieve

accurate semantic similarity among iris images of different

resolutions and spectra, which has resulted in a significant

performance degradation in existing iris verification systems.

Therefore, we resolve this issue by training our cpGAN with

the unrolled HR (64 × 512) VIS and LR (32 × 256) NIR iris

images, which ensures the retrieval of contextual and semantic

features of the iris images in a common embedding subspace.

The results summarized in Fig. 5(c) and Table 2 indicate that

the cpGAN network remains robust enough to provide superior

results compared to our matching Scenario 2(a) that was shown in

Fig. 5(b). It has increased the GAR almost by 14% at 0.01 FAR.
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(c) Matching LR VIS iris images against a gallery of HR NIR

iris images:

In addition to the study mentioned above, we have also focused

on matching LR VIS iris probe against a gallery of HR NIR iris

images. We consider a fact when subjects are at a large standoff

distance from the camera. Consequently, captured faces are

assumed to be suffering from poor quality due to low-resolution.

On the other hand, the gallery images have comparatively

higher resolution which are usually taken in the NIR spectrum.

Therefore, the modality gap between probe and gallery images

makes the cross-spectral matching even more challenging. Hence,

we train the VIS and NIR generator of our network with the

unrolled LR VIS iris images (32 × 256) and HR NIR iris images

(64 × 512), respectively, and perform matching in the latent

embedded subspace, that contains basic information about the iris

texture patterns irrespective of the resolution. The experimental

results reported in Table 2 show that our proposed scheme has

produced EER with a value of 1.26% which proves the adequacy

of our approach even in low-quality videos.

(d) Matching LR VIS iris images against a gallery of LR NIR

iris images :

We also perform additional experiments where our gallery images

are in the low-resolution NIR domain. To investigate the matching

performance of our network, we feed both the VIS and NIR

generator with the unrolled LR VIS and NIR iris images. The

experimental results reported in Table 2 and Fig. 5(c) indicate the

matching accuracy of our network for this cross-spectral setting

compared to the approach used in [33]. Even though we achieve

an EER of 2.51% that is much lower than several comparable

methods, there is a tradeoff with verification performance, which

is not as satisfactory as our previous experiments outlined above.

5.6 Evaluation on WVU Face and Iris Database

To assess the effectiveness of our proposed approaches, we con-

duct a number of extensive experiments on the WVU face and iris

database for different cross-spectral matching scenarios similar to

the experiments performed on the PolyU bi-spectral database. To

the best of our knowledge, there is no other baseline algorithm in

the literature that have performed cross-spectral iris matching on

this dataset. Therefore, our evaluation on the WVU face and iris

dataset yields a new state-of-the-art cross-spectral iris matching

result, which will further encourage the biometric research com-

munity to investigate the performance of other existing algorithms

on this dataset. In this context, we first report on the evaluation

of the method in our first approach for matching cross-spectral

iris images under the same spectral domain. Then we discuss

experimental results obtained from our second method, which

performs matching in the embedded domain.

5.6.1 Matching Results Obtained From cGAN Architecture

We consider similar experimental scenarios as stated in Section

5.5 when we trained our cGAN model with the WVU face and

iris database. We plot ROC results in Fig. 6(a) obtained from the

cGAN network that has been trained and tested for Scenario 1

and Scenario 3. In addition, we summarize the EER in Table 3.

Fig. 6(a) and Table 3 demonstrate that our proposed algorithm

achieves 99.50%, 80.50% and 70.1% GAR at 0.1, 0.01 and 0.001

FAR, respectively for Scenario 1, where each VIS iris probe image

of the test set is matched against a gallery of synthesized VIS iris

images. For comparison, we report recognition accuracy for this

database which has been obtained from the algorithm used in [33]

for matching the HR VIS iris probe image against a gallery of HR

NIR iris images. It is obvious that our proposed cGAN algorithm

significantly increases the recognition accuracy by 18.8% for

the FAR of 0.01 with 1.14% decrease in EER compared to the

cross-spectral iris matching result reported as a baseline approach

(Matching HR VIS iris probe image against a gallery of NIR iris

images).

We also report identification accuracy for the reverse case as

described by Scenario 3. In this case, we train a network to map

the VIS iris images to the NIR domain and perform matching

between the synthesized NIR iris images and a gallery of NIR iris

images. The experimental results summarized in Table 3 prove

that even for the reverse scenario our approach achieves 8.1%

higher recognition accuracy and 0.76% lower EER compared to

the baseline result.

Again, to ascertain the comparative performance of our joint

network described in Scenario 2(a), which simultaneously trans-

lates and super-resolves a LR NIR iris image to a HR VIS

image, we separately train both networks and use the result as

baseline. Additionally, we apply the popular IrisCode approach

[33] to generate comparative matching scores (i.e., matching the

LR VIS iris probe against a gallery of LR NIR iris images).

The ROC results from this set of experiments are shown in Fig.

6(b), which indicate the superiority of our proposed joint learning

method over other benchmark results. Table 3 summarizes that

our joint translation and super-resolution technique significantly

outperforms the result obtained from separate training by 8.20%

recognition rate at 0.01 FAR.

5.6.2 Matching Results Obtained From cpGAN Architec-

ture

To evaluate the verification performance of our coupled learning

framework, we follow similar experimental settings that were

previously discussed in the earlier section for the PolyU bi-spectral

database. We experiment with four different cross-spectral and

cross-resolution iris matching scenarios for this dataset and plot

ROC results in Fig. 6(c) to show the recognition accuracy of our

proposed network. We also provide EER results in Table 3.

The experimental results illustrated in Table 3 indicate that our

cpGAN network, which performs verification in the embedding

subspace, achieves a lower EER of 0.90% with a higher GAR

of 93% at 0.01 FAR, when matching HR VIS iris probe image

against a gallery of HR NIR iris images. Moreover, it significantly

improves the matching accuracy by 31% GAR at 0.01 FAR

compared to the reported baseline result [33] using the same test

data for the same cross-spectral matching scenario.

Next, we consider a real-life cross-resolution matching sce-

nario within the cross-spectral domain and train our cpGAN with

the unrolled HR (64 × 512) VIS and LR (32 × 256) NIR iris

images, which gradually learns the inherent hidden correlation

between iris images in the cross-resolution and cross-spectral

domains. The matching results briefly presented in Fig. 6(c)

and Table 3 show that our cpGAN network ensures an accurate

retrieval by outperforming the matching Scenario 2(a) in Fig. 6(b)

with 10.9% higher recognition accuracy at 0.01 FAR.

Also, we conduct experiments for the scenario with low-

quality videos. ROC results and EER scores detailed in Table 3

prove that our proposed scheme maintains robust performance

even when matching a LR VIS iris probe against an available
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(a) (b) (c)

Fig. 6. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with cGAN
architecture and (c) cpGAN architecture obtained on the WVU face and iris database for the different cross-spectral matching scenarios.

TABLE 3
Comparative performances on the WVU face and iris database.

Algorithm Matching GAR@FAR=0.1 GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

cpGAN(Ours) HR VIS vs HR NIR 99.54 93 84 0.90

cpGAN(Ours) HR VIS vs LR NIR 97.04 87.7 80.8 1.15

cpGAN(Ours) HR NIR vs LR VIS 92.89 83.50 72.70 1.20

cpGAN(Ours) LR NIR vs LR VIS 82.52 69.2 59.70 1.85

NIR to VIS domain translation (Ours cGAN) Scenario 1 97.79 80.8 75.1 1.0

Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 94.97 77.8 69.5 1.34

Domain translation & super-resolution (Separate Training) Scenario 2(b) 83.50 69.60 60.0 1.97

VIS to NIR domain translation (Ours cGAN) Scenario 3 88.53 70.10 67.70 1.38

Iriscode (OSIRIS) [33] HR VIS vs HR NIR 76.02 62.0 56.1 2.14

Iriscode (OSIRIS) [33] LR VIS vs LR NIR 71.7 55.5 42.7 3.01

HR NIR gallery. It has generated an EER of 1.20%, which is

considered as a lower EER value for an ideal biometric system.

Finally, we investigate the verification performance of our

proposed cpGAN network when iris images in the gallery are

in low-resolution NIR domain. Therefore, we force the cpGAN

network to learn invariant features in the common embedding

subspace from both the LR (32× 256) VIS and NIR iris images.

The experimental results in Table 3 show that our proposed

algorithm obtains 3.7% more recognition accuracy at 0.01 FAR

than the approach used in [33] on the same test data for this cross-

spectral setting.

5.7 Evaluation on Cross-Eyed-Cross-Spectral Iris

Recognition Database

We perform another set of experiments using the cross-eyed

database to quantify the cross-spectral iris recognition accuracy

for both of the approaches developed for this paper. We follow the

same experimental settings conducted for the other two datasets

for different cross-spectral matching scenarios that have been

described in the previous sections. It is worth noting that while

comparing our results obtained for this dataset over existing

algorithms [1], [14], [16], [33], we follow the same train-test

protocol used in their paper to show fair evaluation.

The comparative matching results from our cGAN and cpGAN

architectures are shown in Fig. 7, while the corresponding EER

results are summarized in Table 4. For comparison we use several

highly competitive benchmark MRF approach [14], polpular gabor

filter based IrisCode [33], SDH method [1] and another 1D log-

gabor filter based IrisCode [16] to ascertain the superiority of our

proposed approaches.

Fig. 7(a) depicts the experimental results for Scenario 1 and

Scenario 3 from our cGAN architecture compared to the baseline

result using the most widely deployed IrisCode [33] approach.

The results from Scenario 1 indicate that our proposed domain

translation technique using the cGAN architecture significantly

improves the cross-spectral iris matching accuracy by 28.59% at

0.01 FAR compared to the benchmark result using the IrisCode

[33] approach. In addition, it also achieves 15.3% higher GAR

at 0.01 FAR and 0.73% lower EER even when we experiment

matching for Scenario 3.

In Fig. 7(b), we present ROC results for showing the per-

formance of our proposed joint network Scenario 2(a) where the

network learns to translate and super-resolve simultaneously from

the LR NIR to HR VIS iris image, and compare this result to

the approach when both techniques are applied separately (see

Fig. 1 Scenario 2(b)). Table 4 shows that joint training obtains

74.8% GAR at 0.01 FAR, which outperforms the separate training

considered as baseline by 14.8% GAR.

We also investigate the performance of our coupled learning

framework for four different cross-spectral and cross-resolution

scenarios. We plot the resulting ROC curves in Fig. 7(c). Table

4 summarizes the EER results comparing our proposed approach

with other state-of-the-art deep learning iris recognition method

proposed in [1], [14], [16], [33] for the same train-test protocol.
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Fig. 7. ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN architecture, (b) Scenario 2(a) and 2(b) with
cGAN architecture and (c) cpGAN architecture obtained on the Cross-eyed-cross-spectral iris recognition database for the different cross-spectral
matching scenarios.

TABLE 4
Comparative performances on the Cross-eyed-cross-spectral iris recognition database. Symbol ’-’ indicates that the metric is not available for that

protocol.

Algorithm Matching GAR@FAR=0.1 GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

CNN with SDH [1] HR VIS vs HR NIR — 87.18 — 6.34

NIR to VIS texture synthesis using MRF model [14] HR VIS vs HR NIR 78.13 — — 18.40

IrisCode using 1D Log-Gabor filter [16] HR VIS vs HR NIR 70.3 — — 19.48

cpGAN(Ours) HR VIS vs HR NIR 96.30 89.4 81.8 1.1

cpGAN(Ours) HR VIS vs LR NIR 90.3 81.7 79.6 1.28

cpGAN(Ours) HR NIR vs LR VIS 86.40 78.4 72.3 1.31

cpGAN(Ours) LR NIR vs LR VIS 81.80 62.0 59.0 2.55

NIR to VIS domain translation (Ours cGAN) Scenario 1 90.30 80.09 70.1 1.54

Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 80.8 74.8 67.02 1.71

Domain translation & super-resolution (Separate Training) Scenario 2(b) 71.30 60.0 54.90 3.04

VIS to NIR domain translation (Ours cGAN) Scenario 3 79.0 66.8 63.8 2.17

Iriscode (OSIRIS) [33] HR VIS vs HR NIR 60.0 51.5 44.8 3.9

Iriscode (OSIRIS) [33] LR VIS vs LR NIR 53.1 44.2 38.8 5.67

We notice that when we match the HR VIS iris probe image

against a HR NIR iris gallery, our cpGAN achieves superior recog-

nition performance over the other baseline matching algorithms.

It obtains almost 26% and 18.17% more identification accuracy

compared to the approach used in [16] and [14], respectively. In

addition, it also outperforms the most competitive cross-spectral

iris recognition approach [1] in the literature by a remarkable

decrease of 5.24% in EER. All the other scenarios achieve EER

less than 2%, which reveals the robustness of our coupled network.

Again, even if we consider a LR NIR iris probe matched against a

LR NIR iris gallery, we observe it performs much better than the

benchmark using IrisCode [33] for the same scenario.

6 CROSS-DATABASE PERFORMANCE EVALUA-

TION

One of the most promising benefits of deep-learning-based iris

recognition is its generalization capability, which offers high

matching performance even when using the model trained on

completely different iris database. Therefore, we also evaluate

cross-database matching performance to validate the generaliza-

tion capability of both of our approaches.

During this cross-database performance evaluation, first, we

directly employ one of our models that has been trained on the

PolyU bi-spectral database to ascertain the verification perfor-

mance for the WVU face and iris database and Cross-eyed-cross-

spectral iris recognition database without any fine-tuning. More

specifically, we have used one dataset for training, and disjoint

dataset for testing. Next, we follow the same technique to perform

cross-database matching for the other two datasets: we use a model

trained on the WVU face and iris image database to evaluate the

recognition performance for the PolyU and Cross-eyed database,

and similarly, for a model that is trained using the Cross-eyed

dataset. We maintain the same test-protocol as described for

the respective databases in previous sections. For matching we

consider only Scenario 1 when evaluating the performance of the

cGAN architecture. To report evaluation of the cpGAN network,

we specifically consider the scenario where the HR VIS iris probe

is matched against a HR NIR gallery. We have already introduced

both of these scenarios in the earlier sections.

The aim of this evaluation is to validate the generalization

capability of our proposed frameworks when the target iris

database has limited training samples. We show the compar-

ative performance from the respective databases in Fig. 8-10

and report respective EER values in Table 5-7 from this cross-

database performance evaluation. These results for the cross-

database matching also indicate the performance improvement



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE 16

(a) (b)

Fig. 8. Comparative ROC results showing the cross-database matching of our approach (a) Scenario 1 with cGAN architecture (b) cpGAN
architecture (matching the HR VIS iris probe against a HR NIR gallery) where both networks were trained only on the PolyU bi-spectral dataset.

(a) (b)

Fig. 9. Comparative ROC results showing the cross-database matching of our approach (a) Scenario 1 with cGAN architecture (b) cpGAN
architecture (matching the HR VIS iris probe against a HR NIR gallery) where both networks were trained only on the WVU face and iris dataset.

(a) (b)

Fig. 10. Comparative ROC results showing the cross-database matching of our approach (a) Scenario 1 with cGAN architecture (b) cpGAN
architecture (matching the HR VIS iris probe against a HR NIR gallery) where both networks were trained only on the Cross-eyed-cross-spectral
iris recognition dataset.
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TABLE 5
Cross-dataset matching performance evaluation. We trained both networks only on the PolyU bi-spectral dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

cpGAN(ours)
HR VIS vs

HR NIR

PolyU Bi-Spectral 92.38 84.98 1.02

WVU Face and Iris 88.9 81.7 1.13

Cross-eyed-cross-spectral 85.2 77.5 1.20

cGAN(ours) Scenario 1

PolyU Bi-Spectral 80.5 70.1 1.5

WVU Face and Iris 77.8 62.9 1.64

Cross-eyed-cross-spectral 75.5 57.9 1.72

TABLE 6
Cross-dataset matching performance evaluation. We trained both networks only on the WVU face and iris dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

cpGAN(ours)
HR VIS vs

HR NIR

WVU Face and Iris 93.0 84.0 0.90

PolyU Bi-Spectral 89.40 81.9 1.13

Cross-eyed-cross-spectral 85.8 78.5 1.18

cGAN(ours) Scenario 1

WVU Face and Iris 80.8 75.1 1.54

PolyU Bi-Spectral 79.6 68.9 1.60

Cross-eyed-cross-spectral 76.0 67.5 1.66

TABLE 7
Cross-dataset matching performance evaluation. We trained both networks only on the Cross-eyed-cross-spectral iris recognition dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01 GAR@FAR=0.001 EER (%)

cpGAN(ours)
HR VIS vs

HR NIR

Cross-eyed-cross-spectral 89.4 81.8 1.1

PolyU Bi-Spectral 82.30 74.80 1.21

WVU Face and Iris 81.5 71.8 1.26

cGAN(ours) Scenario 1

Cross-eyed-cross-spectral 80.09 70.1 1.54

PolyU Bi-Spectral 71.5 68.9 1.75

WVU Face and Iris 69.2 64.4 1.9

TABLE 8
Matching performance of our proposed cGAN using different

hyperparameters settings on the PolyU Bi-Spectral test dataset.

Dataset PolyU Bi-Spectral

Iris Comparison Scenario 1 (HR VIS vs Synthesized VIS)

Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001

λ1 = 100, λ2 = 2× 10−3 68.9 54.6

λ1 = 10−2, λ2 = 2× 10−3 75.7 63.5

λ1 = 10−4, λ2 = 2× 10−3 78.1 66.8

λ1 = 10
−6, λ2 = 2 × 10

−3 80.5 70.1

λ1 = 10−6, λ2 = 2× 10−2 72.7 61.4

λ1 = 10−6, λ2 = 2× 10−1 70.1 58.5

gained by employing our framework and reveal its generalization

capability.

7 ABLATION STUDY

Training a GAN-based architecture is always difficult due to the

GAN’s natural instability. Additional loss functions in guiding the

GAN training can significantly improve the performance. How-

ever, these loss terms in the total combined loss are inconsistent on

a numerical scale. Therefore, we use hyperparameters as weight

factors to numerically balance the magnitude of different losses

which accelerates the total loss convergence. To determine the

optimal hyperparameters for our both cGAN and cpGAN models,

we conduct an ablation study through changing the value of

hyperparameters : λ1, λ2, and λ3, λ4, λ5 adapted in equation (19)

and (20), respectively. We have summarized the analysis in Tables

8-9, and show the match performance in Figs. 11-12.

Fig. 11. Comparative ROC results showing the sensitivity of matching
performance on the hyperparameters of our proposed cGAN, when it is
trained only on the PolyU Bi-Spectral dataset for Scenario 1.

7.1 Hyperparameter Analysis

We evaluate the sensitivity of match performance when hyperpa-

rameters are varied across a range for training our proposed cGAN

module. Training the cGAN with an L2 term alone might lead

to blurry results, since this loss penalizes the squared distance

between ground truth outputs and synthesized outputs at pixel

level. Since synthesized image quality is our top priority, we have

added the ImageNet trained VGG-based perceptual loss, which is

effective at generating realistic synthesized images by including

more recognizable structure. Therefore, we keep the weight factor

of the L2 loss term 1 and train cGAN at λ1 ∈ {100, 10−6}, and

λ2= 2×10−3, which are used as weight factors for adversarial loss
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TABLE 9
Matching performance of our proposed cpGAN using different

hyperparameters settings on the PolyU Bi-Spectral test dataset.

Dataset PolyU Bi-Spectral

Iris Comparison HR VIS vs HR NIR

Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001

λ3 = 1, λ4 = 1, λ5 = 0.3 87.3 74.2

λ3 = 1, λ4 = 0.7, λ5 = 0.3 89.7 78.9

λ3 = 1, λ4 = 0.5, λ5 = 0.3 90.1 81.8

λ3 = 1, λ4 = 0.3, λ5 = 0.3 92.38 84.98

λ3 = 1, λ4 = 0.3, λ5 = 0.5 89.3 76.6

λ3 = 1, λ4 = 0.3, λ5 = 0.7 85.4 74.0

λ3 = 1, λ4 = 0.3, λ5 = 0.1 87.1 71.9

term and perceptual loss term, respectively. We have also trained

the network for a varied range of λ2 ∈ {2×10−3, 2×10−1}, when

λ1 = 10−6. From the analysis of hyperparameters, as shown in

Fig. 11, and Table 8, we notice that our proposed cGAN achieves

the best matching performance for Scenario 1, when it is trained

with λ1 = 10−6, and λ2 = 2 × 10−3 on the PolyU Bi-Spectral

dataset. We have used this setting to perform all the experiments

for cGAN and reported the obtained results in this paper.

For training the cpGAN, we have considered additional con-

straints, such as L2 loss and VGG-based perceptual loss along

with adversarial, and contrastive loss functions. Since we have

developed our 2nd method to perform cross-spectral iris matching

in the common embedded latent feature subspace, we put more

emphasis on contrastive loss, which cares about the distance

between genuine pairs and also penalizes mismatch between

imposter pairs. Therefore, the weight factor for this loss term

remains 1, and other hyperparameters have been changed to

stabilize the cpGAN training, which allows it to converge faster,

and thoroughly improve performance.

As seen in Fig. 12, and Table 9, we keep the adversarial

weight factor, λ3 = 1, when changing the values λ4, and λ5 from

0.3 to 1.0, which define weight factors for perceptual, and L2

reconstruction loss term, respectively. From this ablation study,

we have observed that λ4= λ5= 0.3 obtains the best matching

accuracy, when the HR VIS iris probe is matched against the HR

NIR iris gallery for the PolyU Bi-Spectral dataset (see Fig. 12 and

Table 9). For fair comparison, we have used these settings to train

the cpGAN for other datasets and reported the results in this paper.

8 LIMITATION OF THE IRIS IMAGE ACQUISITION

METHOD ON THE OBSERVED RESULTS

The quality of iris images affects the matching performance of any

iris recognition system, which indicates the significant role of the

iris acquisition process. It is the most initial part of any typical

iris recognition system. During the acquisition of iris images, one

must maintain an ISO standard iris image format (iris diameter

has to be 150 pixels [72]), which is not easy to achieve in many

data acquisition environments. Most of the commercial iris image

acquisition systems are designed to work at a close range and

maintain a small operating distance, which is less than 1 meter

[73]. Moreover, all of them need users’ cooperation. Therefore,

it has become troublesome to capture iris images at a distance

to generate low-resolution iris images in realistic environments.

Therefore, there are no datasets available to study the effect cross-

resolution and cross-spectral mismatch on iris recognition systems

in the literature. To overcome this limitation to some extent, the re-

searchers developing state-of-the-art iris recognition systems have

Fig. 12. Comparative ROC results showing the sensitivity of matching
performance of our proposed cpGAN, when it is trained only on the
PolyU Bi-Spectral dataset for matching the HR VIS iris prob against a
HR NIR gallery.

resized the original high-resolution iris images to their desired

low-resolution images. In our work, we first apply a Gaussian filter

and then resize the iris image using a bicubic interpolation method.

We assume that these artificially-generated low-resolution images

have similar characteristics as the original low-resolution images.

However, we cannot certainly say that we would have achieved

exactly similar performance if we used the original low-resolution

images. We have tried to obtain low-resolution iris images as close

as possible to a realistic setting. These results can be considered

as a baseline for further improvement if the low-resolution iris

images can be acquired in a realistic setting.

9 CONCLUSION

In this paper, we have described the development of two different

deep learning frameworks for cross-spectral and cross- resolution

iris recognition. While both frameworks are developed based on

domain transformation, one of them functions by translating from

one domain to the another (NIR to VIS or vice versa), and the

other framework transforms both domains to a latent embedding

subspace. Briefly stated, in our first approach, we have introduced

a domain translation network which can be considered as pre-

processing step for any commercial off-the-shelf iris recognition

system. In addition, we have proposed a new joint translation

and super-resolution technique to address cross-resolution iris

matching under the cross-domain problem. Experimental results

on three publicly available cross-spectral datasets indicate the

superiority of our proposed method over the earlier methods

presented in the literature. This paper also investigates the domain

invariant capability of our proposed cpGAN framework, which

projects both the VIS and NIR iris texture features into a common

latent embedding subspace to perform matching in the embedded

domain. The goal of this network is to maximize the pair-wise

correlation via contrastive loss during projection for more accurate

cross-spectral iris matching. Results reported in Section 5 show

significant improvement in the matching accuracy compared to

other deep learning cross-spectral iris recognition algorithms. For

instance, cpGAN achieves improvements of approximately 33%,

when compared to the results reported in [71] for the PolyU Bi-

Spectral dataset. Finally, we perform cross-database iris matching

under the cross-spectral domain to evaluate the generalization

capability of our methods.
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