2021 18th International Conference on Privacy, Security and Trust (PST) | 978-1-6654-0184-5/21/$31.00 ©2021 IEEE | DOIL: 10.1109/PST52912.2021.9647827

A Practical Oblivious Cloud Storage System based
on TEE and Client Gateway

Wensheng Zhang
Department of Computer Science, lowa State University
Ames, Iowa, USA 50011
E-mail: wzhang @iastate.edu

Abstract—In this paper, we propose a new oblivious cloud
storage system, which is more efficient and scalable than existing
schemes due to the combined leverage of SGX-based trusted
execution environment (TEE) at the cloud server side and the
moderate storage space at the client side. The TEE is employed to
securely implement functionalities of ORAM model in the server
without tightly involving the clients. Meanwhile, the storage at
the client side is utilized to store metadata and recently/frequently
accessed data, which facilitates the client to remotely determine
the strategies for data query/eviction and to reduce the frequency
of directly accessing data from the server. The evaluation results
show that, when the size of outsourced data is 1-20 GB and
the block size is 1-8 KB, the data access throughput between
320 KB/s and 640 KB/s can be attained, and the average query
latency for each block is only 2.26-12.80 ms.

I. INTRODUCTION

Clients of cloud storage service may worry that the content
and access patterns to their outsourced data could be revealed
to the service provider, its employees, or attackers invading the
system. Encryption algorithms can protect the secrecy of data
content, and a variety of oblivious RAM (ORAM) [1] based
techniques have been developed to protect the clients’ data ac-
cess pattern. Though last decade has witnessed the significant
improvement in the efficiency of the ORAM-based techniques,
there is still a noticeable performance gap between an ORAM-
based oblivious storage system and a normal storage system
without obliviousness in data access.

In this paper, we propose a new oblivious cloud storage
system that further improves the efficiency of ORAM con-
structions by leveraging two recent developments in cloud
system architecture: the emerging trusted execution environ-
ments (TEEs) enabled by more accessible technologies such
as Intel Software Guard Extension (SGX) [2] and Arm’s Trust-
Zone [3]; the increasing popularity of hybrid cloud model.

TEEs can be utilized to securely implement some func-
tionalities of ORAM model in the server without tightly
involving clients. With the hybrid cloud model, a client can
run a local gateway with moderate storage resources. To
achieve efficiency and scalability, the gateway outsources most
of the client’s data to a remote cloud storage server, while
retaining meta and recently/frequently-accessed data to reduce
the frequency of accessing data directly from the remote
server. There have been efforts [4], [S], [6] on implementing
ORAM models in SGX enclaves and efforts [7] on improving
the efficiency of ORAM construction based on the hybrid

cloud model. However, to the best of our knowledge, there
has no prior effort in leveraging both of them.

Our proposed system is based on the ORAM construction
proposed by Ma and Zhang [7] but extend it significantly in
both the cloud server and the client sides. In the server side,
a trusted component is executed in an Intel SGX enclave to
obliviously retrieve the query target block from a sequence
of randomly selected blocks; it also obliviously permutes and
re-encrypts data blocks on a path to implement the eviction
(shuffling) function of ORAM. The following techniques are
used to make the oblivious retrieval and eviction more efficient
and accountable. First, each data block is doubly encrypted,
where authenticated cipher AES-GCM is used to encrypt
the plaintext for data confidentiality and integrity, and more
computationally-lightweight SHA256-XOR cipher is used to
efficiently hide the data permutation pattern during the eviction
process. Second, data blocks are permuted and re-encrypted
piece by piece in the enclave memory to further improve the
efficiency and scalability of eviction. Third, reading/writing
data blocks from/to storage to/from memory is conducted
in parallel with the computationally-intensive permutation/re-
encryption process in enclave, which also reduces the latency
of eviction. In the client side, data structures are thoughtfully-
designed to keep recently/frequently accessed data in the
client gateway while gradually evicting the least-frequently
accessed data to the server. The client side design also enables
parallelism of data query and eviction processes, and hence
reduces the data query latency experienced by the client.

A prototype of the proposed design is implemented to
evaluate the performance. The result shows that, when the size
of outsourced data is 1-20 GB and the block size is 1-8 KB,
the attained data access throughput is between 320 KB/s and
640 KB/s, and the average query latency for each block is
only 2.26-12.80 ms. The performance is significantly better
than that incurred in state of the art systems.

In the rest of the paper, Section II defines the research
problem. Section III describes our proposed design. Section IV
presents performance evaluation. Section V briefly summarizes
related works. Finally, Section VI concludes the paper.

II. PROBLEM DEFINITIONS
A. System Model

We consider a system composed of a cloud storage server
(called server hereafter), a client-side on-premise storage gate-

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

way (called client gateway hereafter), and a set of clients who
access data via the client gateway. The client gateway has a
moderate storage capacity, though is still much smaller than
(say, around 0.1% of) the server’s.

Assume there are up to N data blocks accessible to the
clients. The client gateway may store a small subset of the
blocks accessed recently/frequently, but export the rest to the
cloud server. Each data access from the client gateway to the
cloud storage is of two types: read a data block D of unique
ID 7 from the cloud server’s storage; write a data block D of
unique ID ¢ to the cloud server’s storage. The client gateway
should encrypt the data blocks and hide the block IDs from
the server, and should store the keys used. As the content and
IDs of the accessed data blocks are both hidden, the cloud
server (as well as any one who can observe the cloud server’s
behavior) can only observe the following two types of access
to storage locations: retrieve (i.e., read) a data block D from
location [at the cloud server’s storage; upload (i.e., write) a
data block D to location [at the cloud server’s storage.

B. Security Assumptions and Design Goals

We aim to protect the privacy of data access pattern for
the clients against the cloud storage service provider, its
employees, or attacker who has invaded the cloud storage
system, who altogether are referred to as the adversary.

With the trusted execution environment (TEE) technology
such as Intel Software Guard Extension (SGX), the cloud
server can run in the trusted mode or the un-trusted mode.
The server’s main memory includes the trusted enclave space,
where the data is encrypted, and the un-trusted regular space.
The enclave space is much smaller than regular space; partic-
ularly, the total size of enclave space is usually only 64 or 128
mega bytes, which is divided into pages each of 4 kilobytes.

When the server runs in the trusted mode, it can only
execute code in enclave, but can access data both inside or
outside enclave. We assume that, in this mode, the pattern of
the server’s accesses within a page of the enclave memory
space (including what data are accessed, the types of access,
and in which order are the accesses) is not observable by the
adversary [5]. Hence, we aim to protect the access privacy at
the granularity of page.

We assume the clients and the client gateway are trusted
and not compromised, and thus their behaviors (i.e., behaviors
occurring within the clients’ on-premise environment) cannot
be observed by the adversary.

Our design goals are twofold: security and efficiency. As our
design is based on the ORAM proposed by Ma and Zhang, for
which the security (i.e., privacy preservation) has been proved,
in this paper we mainly target at achieving page-level privacy
in accessing the enclave memory and improving the efficiency
which is measured by the latency for data query and eviction.

III. PROPOSED DESIGN

This section presents our proposed design, in terms of data
block encryption, storage organization, query and eviction.

A. Double Encryption of Data Blocks

Each data block is encrypted twice for dual purposes:
protecting data secrecy and integrity; making decryption/re-
encryption more efficient during the eviction process.

Let k£ denote the secret key used in the double encryp-
tion. Each data block whose plain text is denoted as b, is
first encrypted and authenticated using k£ and an authenti-
cated encryption algorithm such as AES-GCM (referred to
as GCM hereafter). The result is denoted as b’. Then, b’ is
divided into multiple 256-bit (i.e., 32-byte) pieces denoted
as (b'[1],b[2],- -). Next, these pieces are encrypted using k,
secure hash function S H A256 and the bit-wise XOR operation
@ as follows: a 32-byte vector b”[0] is randomly generated;
each b'[i] for ¢ = 1,2, -, is transformed to b"[i] = ¥'[i] ®
SHA256(k|b"[0]]7). The resulting (b[0], b [1],b"[2],- - -) be-
comes the ciphertext of b after double-encryption. Decryption
is the reverse of the above encryption procedure.

B. Storage Organization at Cloud Server

In the server, the space for storing encrypted data blocks
is organized as a me-ary storage tree, the same as in [7].
Following the work, we also use L to denote the height of the
tree, Zy the capacity of each leaf node and Z; the capacity of
each non-leaf node. Different from [7], each block stored in
the tree should have been doubly-encrypted as above.

The enclave memory keeps the secret key &, which is shared
with the client gateway, and also allocates several pages to
facilitate oblivious permutation and decryption/re-encryption
of data blocks. The details about these pages are discussed in
Section ITI-E. Additionally, the cloud server also maintains in
the un-trusted memory space several buffers. The details of
these buffers are discussed in Section III-D.

C. Storage Organization at Client Gateway

The client gateway maintains in its main memory an index
table for all of the NV real data blocks and an index block for
each node on the cloud server’s storage tree. In addition, it
maintains the following data structures to facilitate concurrent
query and eviction: R, which is a ring that can store up to 2¢
blocks, where ¢ is the number of queries before a round of
eviction process can be launched; (), which a queue of query
requests waiting to be sent.

Ring R has pointers pg, p1 and po. Pointer py points to the
first of the ¢ blocks that are being evicted at the server for the
current eviction round, p; points to the first of the blocks that
will be evicted at the server in the next eviction round, and
p2 points to the space for the block that will be next uploaded
to the server for eviction. Hence, the blocks from the position
pointed to by p; to the position ahead of that pointed to by p2
will be evicted in the next eviction round. Note that, the blocks
from the position pointed to by py to the position before po
are replicas of blocks at the server. By keeping these replicas,
clients are allowed to query the blocks that are currently being
evicted at the server without accessing them from the server;
this way, eviction can be conducted without being interfered
with by ongoing queries.

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

Queue @) queues up pending query requests, where each
query is either retrieval-type or update-type. A retrieval-type
query contains only a block ID of the query target, and aims
to retrieve the content of the desired block from the server.
An update-type query contains both a block ID and up-to-
date block content, and aims to retrieve the desired block and
then replace it with the up-to-date content.

D. Data Block Query

Data block query is accomplished through the collaboration
among the client gateway, the un-trusted component of the
server, and the trusted enclave of the server.

The process is initiated by the client gateway, who first looks
up its index table to find out the path ID, denoted as p;, of
the query target block with ID ¢. Then, the client gateway
selects the blocks that should be accessed from the server’s
storage tree following the query algorithm proposed in [7].
The location sequence of the selected blocks can be denoted
as ((lo, 00), (i, 01), -+, (ly—1, oy—1)), where for each
i €{0,---,y — 1}, pair (I;,0;) indicates that the block with
intra-layer offset o; on layer [; should be accessed from the
server’s storage tree. Among the pairs, assuming the query
target block’s location is indicated by pair (I, 0.), the client
gateway encrypts index z to ciphertext ' = encaon, k()
using the shared secret key k and authenticated encryption
algorithm GCM. Then, the client gateway sends the following
query request to the un-trusted component of the server:
(<(l07 00)7 (l17 01)7 T (ly—17 0y—1)>7xl)'

Upon receiving the query request, the un-trusted component
of the server reads the data blocks whose locations are
indicated by the pairs into a temporary buffer buf in main
memory. Then, it calls the query function in the enclave,
named enclave_query, with arguments: the pointer to buffer
buf, the size of each block, and z’ received from the client
gateway. The query function works as follows to securely and
obliviously extract the query target block, re-encrypt it, and
return the block in ciphertext.

o The function allocates within the enclave a temporary
buffer, denoted as bu f’, which is large enough to store a
data block, and then z’ is decrypted to .

o The block with index z is obliviously read into the
enclave temporary buffer. For this purpose, the following
operation is conducted for each of the y blocks: for each
piece ¢ of the block, it is loaded to a register Ry; piece
1 of buf’ is loaded to another register R;; if the block
is the query target, content of R is written to piece ¢ of
buf’, or otherwise, content of Ry is written to the piece
(i.e., the piece is unchanged).

e Block buf’ is doubly-decrypted. If the GCM-based de-
cryption fails, the client gateway reports that the block’s
integrity has been compromised and then aborts. Other-
wise, the block is re-encrypted with GCM and key k.

E. Data Block Eviction

Data block eviction is also accomplished through the col-
laborations between the client gateway, and the un-trusted and

the trusted (enclave) components of the server.

1) Client-side Operations: The process is started by the
client gateway. From the blocks that it stores, the client
gateway uploads those the least recently accessed to the un-
trusted component of the server, who stores the received blocks
into the buffer in the main memory. Note that, due to the limits
in the memory space and the speed of data block eviction with
the server, the client gateway cannot upload blocks too fast.

After every ¢ blocks have been uploaded, a new round of
eviction can be started. Also, the client gateway needs to figure
out how the g blocks should be evicted in the cloud server by
running the eviction algorithm proposed in [7], and this results
in the following sequence of L permutation maps (recall that L
is the height of the storage tree): IT = (mg, 71, -+, Tr—1),
and each 7; is a permutation of {0, 1, ---, s; — 1}, where
s; =q+ Zy for i < L —1 (i.e., layer ¢ is the leaf layer) and
s;i = q+ Zg for i = L — 1 (i.e., layer ¢ is a non-leaf layer).
Here, each 7; in the sequence should be used as follows: When
the eviction is conducted on layer ¢, the ordered sequence of
blocks stored in the evicting node on this layer is appended
by the ordered sequence of current evicting blocks to form
a combined ordered sequence of s; blocks. This combined
sequence is then re-ordered according to permutation 7;; that
is, the block on position j in the combined sequence should
be moved to position 7;[j]. Then, the first Z; (f i < L — 1)
or Zy (if ¢ = L — 1) blocks of the re-ordered sequence should
be moved to the evicting node on this layer, while the rest ¢
blocks are dropped if ¢ = L — 1 or otherwise become the new
evicting blocks to be used during the eviction for layer ¢ + 1.

The above permutation maps should not be exposed to the
un-trusted component of the server; otherwise, the adversary
can track how the blocks are shuffled. As the client gateway
cannot directly communicate remotely with the program in
the trusted enclave, the permutations should be encrypted and
also carry authentication code to protect its confidentiality and
integrity. For this sake, the client uses the GCM algorithm to
obtain an authenticated encryption of each 7;, denoted as 7; =
encgom,k (i, timestamp), and sends = (g ,Tp—1)tO
the untrusted component of the server. Note that, timestamp
is included to prevent replay attacks.

2) Server-side Operations: Upon obtaining and decrypting

the permutation maps, in theory, the enclave component could
conduct data block eviction directly on behalf of the client
gateway. However, this is infeasible because the enclave has
too limited memory space to contain the blocks needed for
secret permutation. To address this limitation, each round of
eviction is conducted layer by layer, and for each layer, we
adopt piece-wise eviction that works as follows.
Operations by the Un-trusted Component. When the
eviction is conducted for layer ¢, where ¢ = 0,--- ,L — 1,
of an eviction round, the un-trusted component allocates the
following buffer spaces for the trusted server to access the
information too large to fit in the enclave memory space:

o bufy stores the sequence IT of encrypted permutation
maps used for the current round of eviction.

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

o bufp, stores the sequence of encrypted permutation maps
to be used for the next round of eviction.

e bufcpp stores the current evicting blocks (CEBs) for
layer 7 of the current eviction round.

e bufopn stores the blocks in the current evicting node
(CEN) of the current evicting round; i.e., the node on
layer ¢ of the current eviction path.

o bufypp stores the next-round evicting blocks (NEBs) to
be used for the next round of eviction round.

e bufypn stores the blocks in the next evicting node
(NEN).

o bufyw g stores the blocks that needed to be written back
to the storage tree at the secondary storage.

Here, each of the above buffer has the size of g blocks.

The un-trusted server is responsible for filling/dumping
information to/from the above buffers, and the processes
for filling/dumping should be conducted as concurrently as
possible for system performance. Initially, all these buffers are
empty. Then, the following rules are applied to fill/dump the
buffers concurrently:

o Whenever a block is uploaded from the client gateway,
the block is appended to the tail of bufygp.

o When a new sequence of encrypted permutation maps is
received, the sequence is saved to buf,.

e When NEB_buf is empty, the un-trusted server proac-
tively uploads the blocks in the next evicting node to
NEB_buf. Note that, if an eviction process is ongoing,
the next evicting node is obviously the child of the current
evicting node on the current evicting path; if there is no
eviction process ongoing, the next evicting node is the
root of the storage tree.

When bufy,, bufvep and bufyeny have been filled, and
meanwhile there is no eviction process ongoing, the un-trusted
component does the following to prepare for a new round of
eviction:
o It swaps bufy with bufy, bufcen with bufnen, and
bquEB with bquEB-
o It identifies the current evicting path (CEP), based on
the deterministic reverse-lexicographic order for selecting
evicting paths.

Then, it calls the enclave’s evict function, with 1:[0 stroed in
bufs, bufcen and bufcrp as parameters, to start eviction
for layer O for the current evicting path CEP.

When the evict function completes for layer i of the
current evicting path, the un-trusted component is informed
and responds as follows:

o It waits for bu fiyp to be empty. Then, it swaps bufiyp
with bufogn and starts a thread to write the blocks in
bu fw p back to the current evicting node.

o If layer ¢ is the leaf layer, it will empty bufs and
bquENy wait for bufﬁ,, bquEN and bquEB to be
filled, and then start a new eviction process as described
above.

o If layer 7 is not the leaf layer, it will wait for bufypn
to be filled; then, it will swap bufopny with bufnpn,

and call enclave’s evict function to evict blocks for layer
¢+ 1 with the parameters including 7;41 stored in bu fg,
bufcrpn and bufcgrp.

Operations by the Trusted Component (Enclave). The
trusted enclave exposes a function named evict, which can
be called by the un-trusted component to conduct eviction
for layer 7 of the storage tree. Essentially, the function is to
obliviously permute and re-encrypt a set of blocks, denoted as
buf’, which is the ordered sequence including the blocks in
the current evicting node (CEN) in bufopny and the current
evicting blocks (CEBs) in bufcgp. Here, the number of
blocks in bujf’ is no greater than max(Zy, Z1) + ¢; recall
that Zy and Z; are the number of blocks in a leaf and non-
leaf node, respectively. In the practical settings, the number
of blocks in buf’ is on the order of thousands but usually
no greater than 8 thousands. Given the limited size of trusted
memory space, it is not feasible to obliviously permute/re-
encrypt the blocks in the unit of block; hence, we propose to
process the blocks in a small unit of 32-byte piece.

Let buf’ denote the concatenation of the sequences
of blocks in bufcgny and bufcpp ie., bufl =
bufcen|bufcrp, and |buf’| denote the number of blocks
in buf’. To support oblivious piece-wise permutation/re-
encryption of these blocks, the trusted server allocates the
following smaller data structures to temporarily buffer the
secret information needed for the processing:

e m;: permutation map for blocks in buf’.

e ORV P: 64 pages (each of 4K bytes) store the old
random vectors of the blocks; each page j of ORV P,
denoted as ORV P[j], stores |buf’| words where each
word has 4 bits; hence, ORV P[j][b] stores word j of the
old random vector for block b in buf’.

e NRV P: similar to ORV P, NRV P has 64 pages stor-
ing the new random vectors of the blocks; each page
NRV PJj] stores |buf’| 4-bit words; hence, N RV P[j][b]
stores word j of the new random vector for block b in
buf’.

e PIECE: similar to ORV P and NRV P, piece has
64 pages each storing |buf’| 4-bit words; hence, each
PIECE]j|[b] stores word j of a 32-byte piece of block
b in buf’.

o k: the key shared between the enclave and the client.

The evict function works as follows. In the beginning, it

decrypts the encrypted permutation map 7; passed in by the
untrusted component, to obtain permutation map 7; in plain
text. Then, it loads into the random vector pages ORV P
the pieces with index 0 of every encrypted blocks in buf’.
Each piece is divided into 64 words each of 4 bits, and
each word p € {0,---,63} is stored to page p of ORV P
respectively; this way, no matter which block’s old random
vector is accessed, all the pages of ORV P have to be
accessed, which achieves the page-level obliviousness. Note
that, each encrypted data block is treated as a sequence of
32-byte pieces, and thus each block has block_size/32bytes
pieces; piece 0 is the random vector used in the SHA256-XOR

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

encryption of the block and the rest blocks are the ciphertexts
of the encryption. In addition, the evict function also initializes
the new random vectors by filling randomly-generated data
into the new random vector pages N RV P, and stores these
random vectors to every block as their piece 0.

After the above completes, the evict function re-encrypts
and permutes the blocks in buf’ piece-by-piece. Specifically,
for each piece j = 1,---,block_size/32bytes — 1, the
following steps are applied on each block with index b in bu f:
First, piece j of block b, is loaded into a temporary variable
piece. Then, the piece is decrypted by bitwise-XORed with

v = SHA256(ORV P[0][b], - -- , ORV P[63][b]),

marked to be moved to index ¥’ = m;[b] of buf’, and re-
encrypted by bitwise-XORed with
v = SHA256(ORV P|0][V'],--- ,ORV P[63][V']).

Following the above steps, the resulting piece is divided into 4-
bit words, and each word p € {0, - ,63} is stored to word &’
in page p of PIECE; note that, all of the pages of PITECFE
are accessed regardless of the permutation map, which also
achieves page-level obliviousness. After the above steps have
been applied over all the blocks in buf’, the resulting pages
PIECE are written back to buf’ as piece j of the blocks.

IV. PERFORMANCE EVALUATION

We evaluate our designed scheme on a computer with Intel
Core 15-8400 CPU (2.80GHz) of six cores and a RAM of
8.00GB. Both the cloud storage server (including the trusted
and un-trusted components) and the client gateway are run on
the same computer. This way, the impact of network commu-
nication delay, which varies significantly in different settings
is ignored. The impact of network bandwidth is not considered
because the designed scheme only incurs the communication
overhead of sending query/eviction strategy, which is very
small compared to the amount of data accessed/shuffled. A
client is simulated, which runs the following loop to continu-
ously generate query requests: it randomly generates a block
ID; requests the client gateway to query the target block; waits
for the result; and then randomly generates the next block ID
to query. Similar to [7], we set security parameter to 32, and
thus one round of eviction is launched after every 25\ = 800
queries have been processed; We set parameter m = 8 as
it balances the performance and storage cost. The proposed
design is evaluated on the following metrics:

o Query latency (best), which is measured as the average
time to complete a query in the best scenario (i.e., the
query can be immediately handled without any ongoing
eviction or in parallel with an ongoing eviction).

¢ Query latency (avg.), which is measured as the average
time to complete a query (including a query that can be
processed immediately and that having to wait).

o System throughput, which is measured as the amount of
data (in the unit of bytes) that can be queried per second.

In the following, Tables I, II and III show the main results
of evaluation, where each number is an average over the time
period that around 10,000 queries are processed.

data size | query latency (best) | query latency (avg.) throughput
1 GB 0.54 ms 2.26 ms 453.81 KB/s
2 GB 0.63 ms 2.59 ms 395.13 KB/s
4 GB 0.66 ms 2.90 ms 353.59 KB/s
10 GB 0.86 ms 3.14 ms 325.98 KB/s
20 GB 0.88 ms 3.20 ms 319.20 KB/s

Table I: Performance with varying data size and 1 KB block.

Table I shows the performance when the size of data block
is fixed at 1 KB and the size of the total outsourced real data
varies from 1 GB to 20 GB. As can be observed, along with
the increasing data size, the query latency increases and the
data access throughput decreases. This is because, as the data
size increases, the size and height of the storage tree increases
as well, which results in higher cost for query and eviction.
Meanwhile, we can find that the increase in latency and the
decrease in throughput are much slower than the increase of
data size. For instance, when the data size increases from 1
GB to 2 GB, the average query latency increases from 2.26
ms to 2.59 ms and the throughput drops from 453.81 KB/s to
395.13 KB/s; however, when the data size increases from 10
GB to 20 GB, the average query latency only slightly increases
from 3.14 ms to 3.28 ms and the decrease of throughput from
325.98 KB/s to 319.20 KB/s is small as well. Hence, the result
indicates the scalability of our design in term of the delivered
performance contrast to the size of outsourced data.

block size | query latency (best) | query latency (avg.) throughput
1 KB 0.86 ms 3.14 ms 325.98 KB/s
2 KB 0.77 ms 4.96 ms 413.31 KB/s
4 KB 0.67 ms 6.93 ms 590.99 KB/s
8 KB 0.82 ms 12.16 ms 673.46 KB/s

Table II: Performance with varying block size and 10 GB data.

Table II shows the performance when the size of outsourced
real data is fixed at 10 GB but the block size varies from 1 KB
to 8 KB. As expected, the average query latency increases with
the block size. However, the increase in the per-block query
latency is slower than the increase of block size, which results
in the increase of data access throughput. The similar trend can
be observed in Table III, which shows the performance when
the number of outsourced real data blocks is fixed at 2 million
but the block size varies from 1 KB to 8 KB.

block size | query latency (best) | query latency (avg.) throughput
1 KB 0.63 ms 2.59 ms 395.13 KB/s
2 KB 0.61 ms 4.02 ms 509.10 KB/s
4 KB 0.69 ms 6.90 ms 593.59 KB/s
8 KB 0.74 ms 12.80 ms 640.18 KB/s

Table III: Performance with varying block size and 2 M blocks.

Comparisons to the most related works. Among the works
related to ORAM and SGX, the ZeroTrace system by Sasy et
al. [4] and the SGX-based ORAM constructions by Rachid et

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

al. [5] are the most related. Our system includes both cloud
storage server and client gateway, where the client gateway
maintains information on how the outsourced data is stored
in the cloud storage and instructs the trusted component at
the server side to perform data query and eviction. However,
the related systems [4], [S] implement the oblivious access
completely in the server side. Also, our system adopts the
piece-wise approach for data eviction, which is more efficient
in supporting large block size. Due to the differences, our
system has better performance. Particularly, when the size of
the outsourced data is 10 GB and the block size if 1 KB,
our system incurs the average query latency at 3.14 ms, but
the ZeroTrace system has the latency of 49 ms and 140 ms
when the underlying ORAM construction is Path ORAM and
Circuit ORAM, respectively, and the data backend is HDD,
and the constructions implemented by Rachid et al. [5] has
even higher latency. We attribute the performance difference
mainly to the difference in system settings, and hence do not
conduct more detailed comparison in this paper.

V. RELATED WORKS

Many ORAM constructions have been proposed since Gol-
dreich and Ostrovsky [1], [8] first introduced the concept. The
constructions roughly fall into two categories, hash-based and
index-based. The hash-based ORAMs [1], [9], [10], [11], [12],
[13] organize the data storage as layers and use hash tables
for data look up, while the index-based ORAMs [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24] rely on index
tables. Clients of index-based ORAMSs are required to access
index tables, either stored locally or outsourced to the server
(sometimes recursively). The construction proposed by Ma and
Zhang [7], which is the underlying ORAM construction of
our proposed system, is a hash-based ORAM. Representative
index-based ORAMs include SSS ORAM [15], binary tree
ORAM (T-ORAM) [14], Path ORAM [17], etc. Particularly,
the Path ORAM is also a tree-based ORAM that organizes its
data storage as a binary tree; each query and eviction operation
requires a root-to-leaf path on the tree to be completely
accessed. It is the underlying ORAM in [4] and [5].

Before the ORAM functionality was proposed to be
implemented in TEE, improving the efficiency of client-
server communication has been a focus of research. Several
ORAMs have been developed to have constant client-server
bandwidth-blowup. For example, Devadas et al. proposed
Onion-ORAM [22] and Moataz et al. proposed C-ORAM [18].
Hoang et al. [25] proposed S?ORAM based on the deployment
of multiple (at least three) non-colluding servers, to achieves
O(1) bandwidth-blowup for client-server communication at
the cost of requiring O(log N) bandwidth-blowup for com-
munication between the servers.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a practical oblivious cloud storage
system, based on the combined leverage of SGX-based trusted
execution environment (TEE) at the cloud server side and
the moderate storage space at the client side. The evaluation

results show that, when the size of outsourced data is 1-20
GB and the block size is 1-8 KB, the data access throughput
between 320 KB/s and 640 KB/s can be attained, and the
average query latency for each block is only 2.26-12.80 ms. In
the future, we plan to further improve the performance of the
system by applying techniques such as multi-thread execution
of eviction inside the enclaves. We also plan to polish the
implementation and make the system more robust to deploy.

ACKNOWLEDGEMENT
The work is supported by NSF under grant CNS-1844591.

REFERENCES

[1]1 O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM, vol. 43, no. 3, 1996.

[2] V. Costan and S. Devadas, “Intelsgxexplained,” JACR Cryptology ePrint-
Archive, pp. 1-118, 2016.

[3] “Arm TrustZone Technology,” https://developer.arm.com/ip-
products/security-ip/trustzone, [Online; accessed 1-August-2021].

[4] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory
primitives from intel SGX,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.

[5] M. H. Rachid, R. Riley, and Q. Malluhi, “Enclave-based oblivious ram
using intel’s sgx,” 2020.

[6] T. Hoang, R. Behnia, and Y. Jang, “Mose : Practical mutli-user oblivious
storage via secure enclaves,” in ACM CODASPY, 2020.

[71 Q. Ma and W. Zhang, “Efficient and accountable oblivious cloud storage
with three servers,” IEEE CNS, 2019.

[8] O. Goldreich, “Towards a theory of software protection and simulationon
oblivious rams,” Proc. SIGACT STOC, 1987.

[91 M. T. Goodrich and M. Mitzenmacher, “Mapreduce parallel cuckoo

hashing and oblivious ram simulations,” Proc. CoRR, 2010.

B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in Proc.

CRYPTO, 2010.

M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of

outsourced data via oblivious ram simulation,” Proc. ICALP, 2011.

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,

“Oblivious ram simulation with efficient worst-case access overhead,”

Proc. CCSW, 2011.

P. Williams and R. Sion, “Single round access privacy on outsourced

storage,” in Proc. CCS, 2012.

E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with

o((logn)?3) worst-case cost,” Proc. ASIACRYPT, 2011.

E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”

Proc. NDSS, 2011.

C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs,

“Optimizing oram and using it efficiently for secure computation,” Proc.

PETS, 2013.

E. Stefanov, M. V. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and

S. Devadas, “Path oram: an extremely simple oblivious ram protocol,”

Proc. CCS, 2013.

T. Moataz, T. Mayberry, and E.-O. Blass, “Constant Communication

ORAM with Small Blocksize,” in Proc. CCS, 2015.

E. Stefanov and E. Shi, “ObliviStore: high performance oblivious cloud

storage,” in Proc. S&P, 2013.

J. Dautrich and C. Ravishankar, “Combining oram with pir to minimize

bandwidth costs,” Proc. CODASPY, 2015.

B. Chen, H. Lin, and S. Tessaro, “Oblivious parallel ram: Improved

efficiency and generic constructions,” JACR Cryptology ePrint Archive,

2015.

S. Devadas, M. van Dijk, C. Fletcher, L. Ren, E. Shi, and D. Wichs,

“Onion oram: A constant bandwidth blowup oblivious ram,” Proc.

Theory of Cryptography Conference, 2015.

J. Dautrich, E. Stefanov, and E. Shi, “Burst oram: Minimizing oram

response times for bursty access patterns,” Proc. USENIX Security, 2014.

E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” Proc. CCS,

2013.

T. Hoang, C. Ozkaptan, A. Yavuz, J. Guajardo, and T. Nguyen, “S3oram:

A computation-efficient and constant client bandwidth blowup oram with

shamir secret sharing,” Proc. CCS, 2017.

[10]
(11]
[12]

[13]
[14]
[15]

[16]

(17]

(18]
[19]
[20]

(21]

[22]

(23]
[24]

[25]

Authorized licensed use limited to: lowa State University. Downloaded on May 27,2022 at 15:01:50 UTC from IEEE Xplore. Restrictions apply.

