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Abstract. This paper considers the setting where a cloud server exe-
cutes tasks submitted by multiple clients. Every client wishes to assure
honest execution of the tasks by employing a trusted third party (TTP)
to verify with a probability. The cloud server makes a deposit for each
task it takes, each client allocates a budget for each task submitted, and
every party has its limited fund. We study how to allocate the funds opti-
mally such that: a economically-rational cloud server honestly computes
each task; the server’s wage is maximized; the delay for task verifica-
tion is minimized. Game theory is applied to formulate these problems,
and optimal solutions are developed. Each solution is evaluated through
rigorous proofs. To the best of our knowledge, this is the first work on
optimizing fund allocation for verifiable outsourcing of computation in
the setting of one server and multiple clients, based on game theory.

Keywords: Outsourcing · Computation verification · Game theory ·
Optimization

1 Introduction

The popularity of cloud services promotes computation outsourcing. Clients out-
source heavy computational tasks (e.g., data mining, machine learning) to a
cloud server with rich resources to handle them. The server aims to efficiently
utilize its resources and maximizes its profit from the computation. Each client
desires to pay no more than a certain predefined budget and gets correct com-
putation results with short latency.

To assure that the server returns correct results, verifiable outsourced compu-
tation mechanisms should be in place. A large variety of verification schemes have
been proposed in the literature. They can rely on cryptography [1–12], trusted
hardware [13–16], redundant system (with at least one trusted server) [17,18],
game theory [19–26], or combinations of the above. The approaches purely rely-
ing on cryptography or trusted hardware usually have high costs and/or low per-
formance/scalability, while the game-based approaches have been more appeal-
ing for their lower costs due to the practical assumption of economically-rational
participants. Hence, we also apply game theory in our study.
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We adopt the basic model that each client outsources her tasks to only one
server (without redundancy) but with probabilistic auditing. Additionally, for
each task, the server is required to make a deposit, which can be taken by the
client when the server is found misbehaving; each client should prepare a budget
that includes the wage paid to the server (if the server is not found dishonest) and
the cost for hiring a trusted third party (TTP) to check the result returned by
the server (i.e., auditing). A relation among the deposit, wage and the auditing
probability can be found such that, the server’s most beneficial strategy is to act
honestly as long as the condition is satisfied.

It is natural to assume the cloud has a certain fund to spend as deposits for
the tasks it take. However, the fund is limited at a time and should be spent
smartly so that the server can maximize its benefit, which we measure as the
wage it can earn. A client is also assumed to have certain fund for the tasks she
outsources. The client’s fund is limited too, and thus should be smartly spent
as well to maximize her benefit, which we measure as the delay that she has to
experience when waiting for her tasks to complete. Here, the client’s spending
strategy includes: first, how to distribute a given amount of fund to the tasks that
are submitted simultaneously or within the same time window; second, for each
of the tasks, how to further divide the assigned budget for paying the server’s
wage and for hiring a TTP respectively. How can we smartly allocate the server
and the clients’ funds to maximize their profits? To the best of our knowledge,
this is a question that has not been raised or answered in the literature. The
focus of this paper is to formulate and solve this problem.

We formulate the problem as follows. First, we formulate a per-task game-
based outsourcing model. The model enforces a secure relation among three
components, the server’s deposit, the server’s wage and the client’s auditing
probability, where the latter two determine the client’s budget, to ensure the
server’s best choice to be compute honestly. In addition, the model has the
attractive property that, the wage and the auditing probability are not fixed
but functions of the server’s deposit and the client’s budget; the larger is the
deposit and/or the budget, the larger is the wage and the smaller is the auditing
probability. Note that, larger wage and smaller auditing probability (and thus
shorter delay) are desired by the server and the client, respectively. Second,
we formulate the interactions between the server and clients into an infinite
extensive game with perfect information. Within this game, the server and the
clients are the parties; the different ways to dividing the server’s fund into the
tasks’ deposits and to dividing the clients’ funds into the tasks’ budgets are the
parties’ actions; and the parties’ utilities are defined as functions of the actions.

To solve the formulated problem, we develop algorithms that find the Nash
Equilibria of the games, which are also the optimal solutions that maximize the
server’s wage and minimize the clients’ delays in two settings: there is one client
or multiple clients in the system.

In the following, Sect. 2 introduces the system model and the per-task game-
based outsourcing model. Section 3 defines the game between the server and
the clients. Sections 4 and 5 develop the solutions. Finally, Sect. 6 concludes the
paper.
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2 System Architecture

System Model. We consider a system consisting of a cloud service provider (called
cloud server or server hereafter), m clients that need to outsource computation
tasks to the server, and some trusted third parties (called TTPs hereafter) which
the clients can resort to for verifying outsourced computation.

The server, denoted as S, is not completely trusted and its execution of
the tasks outsourced by the clients may not always be correct. However, we
assume the server is economically rational; that is, it always aims to maximize
its profit and will not misbehave if that would cause penalty. As to be elaborated
in Sect. 2, we introduce a game-based approach to guarantee that the server
honestly executes the outsourced tasks. We assume that the server is willing to
use a certain amount of fund as deposit to assure its client of its honest behavior.

We denote the m clients as C1, · · · , Cm. The tasks outsourced by each client
Ci are denoted as ti,j for j = 1, · · · , ni, where ni is the number of such tasks.
Each task ti,j is associated with two costs denoted as ci,j and ĉi,j , where ci,j is
the server’s cost to execute the task and ĉi,j is each TTP’s cost to execute the
task. To simplify the presentation, we assume the execution time is proportional
to the costs; that is, assuming k is a certain constant, the server’s execution time
of the task is k · ci,j and each TTP’s execution time of the task is k · ĉi,j . Each
client Ci allocates a budget bi,j for each task ti,j , where bi,j ≥ ci,j so that the
server is willing to take the task.

Each TTP can be hired at the price of ĉi,j by a client to check if the server’s
execution is correct via re-execution. A TTP can also be a cloud server that has
a trusted execution environment (TEE) such as Intel SGX enclave.

Finally, we assume that the server, the clients and the TTPs can access a
blockchain system so that no any centralized trusted authority is required.

Per-task Game-Based Outsourcing Model. To ensure that the server honestly
executes tasks, we adopt a game theoretic approach as follows. For each task
ti,j , the server should make a deposit of di,j and client Ci should promise a
budget with a certain expected value of bi,j .

After the client outsources ti,j to the server, with a probability denoted as pi,j
it also hires a TTP to execute the task. After the client has received a result of
computation task from the server and/or the TTP, funds are distributed between
the client and the server as follows: If no TTP is hired, or the results returned
by the server and the hired TTP are the same, the client should pay a wage
denoted as wi,j , where wi,j ≥ ci,j , to the server, and the server should also be
returned with its deposit di,j . If the results returned by the server and the TTP
are different, deposit di,j should be given to the client. Hence,

bi,j = wi,j + pi,j · ĉi,j . (1)

Also, as stated in the following theorem (proved in [27]), is the sufficient condition
to deter the server from misbehaving and ensure it honestly executes task ti,j .

Theorem 1. If wi,j ≥ ci,j and pi,j ≥ ci,j
wi,j+di,j

, an economically rational server
must execute task ti,j honestly and submit a correct result to the client.
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3 Optimization Problem

Game between The Server and The Clients. We model the interactions between
the server and the clients as an infinite extensive game with perfect informa-
tion, denoted as G = (P,A,U). Here, P = {S,C1, · · · , Cm} is the set of play-
ers. A is the set of actions taken by the players, including (i) all possibilities
that each Ci can split its budget bi to ni tasks and (ii) all possibilities that
S can split its deposit fund d to the n =

∑m
i=1 ni tasks. Hence, the action

set each Ci can take is denoted as Ac,i = {(bi,1, · · · , bi,ni
) | ∑ni

j=1 bi,j = bi},
where bi is Ci’s total budget for its tasks, and each action (bi,1, · · · , bi,ni

) is
one possible division of bi to ni tasks; the action set S can take is denoted as
As = {(d1,1, · · · , dm,nm

)|∑m
i=1

∑ni

j=1 di,j = d}, where d is the server’s fund for
deposits, and each action (d1,1, · · · , dm,nm

) is one possible division of d to n
tasks. U = {Us, Uc,1, · · · , Uc,m} are the players’ utility functions.

Constraints on Budgets and Deposit. According to the above definitions of the
clients’ and the server’s actions, the following constraints are obvious:

ni∑

j=1

bi,j = bi, ∀ i ∈ {1, · · · ,m}, and
m∑

i=1

ni∑

j=1

di,j = d. (2)

For each task ti,j , the server’s deposit for it should be at least ĉi,j , to compensate
client Ci’s cost for hiring a TTP if the server is found dishonest. Hence, we have
the following constraint:

di,j ≥ ĉi,j . (3)

Regarding budget bi,j for ti,j , according to Eq. (1), it includes wage wi,j paid
to the server for honest computation and the expected cost to hire TTP. First,
based on Theorem 1 and that TTP should be hired as infrequently as possible,
we set

pi,j =
ci,j

wi,j + di,j
. (4)

Second, wi,j ≥ ci,j must hold to incentive the server. Because bi,j = wi,j +
ci,j ĉi,j

wi,j+di,j
, which is from Equations (1) and (4), is an increasing function of wi,j ,

it holds that wi,j ≥ ci,j is equivalent to bi,j ≥ ci,j + ci,j ĉi,j
ci,j+di,j

. Further due to
di,j ≥ ĉi,j , we set

bi,j ≥ ci,j +
ci,j ĉi,j

ci,j + ĉi,j
, (5)

which implies bi,j ≥ ci,j + ci,j ĉi,j
ci,j+di,j

and wi,j ≥ ci,j .

Utility Functions. Server S aims to maximize its total wage
∑m

i=1

∑ni

j=1 wi,j

under the constraints of (1), (4), (2), (3) and (5). From (1) and (4), it holds that
bi,j = wi,j + cj,j ĉi,j

wi,j+di,j
which can be written as a quadratic equation for variable

wi,j as w2
i,j + wi,j(di,j − bi,j) + cj,j ĉi,j − bi,jdi,j = 0. Then, we have

w(bi,j , di,j) =
bi,j − di,j +

√
(bi,j + di,j)2 − 4ci,j ĉi,j

2
. (6)
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Therefore, the utility of server S is Us(As, Ac,1, · · · , Ac,m) =
∑m

i=1∑ni

j=1 w(bi,j , di,j). Each Ci aims to minimize the expected time for verifying
its ni tasks. For each task ti,j , the expected verification time, denoted as Ti,j , is

Ti,j(bi,j , di,j) = k · (bi,j − w(bi,j , di,j)) = k · bi,j + di,j − √
(bi,j + di,j)2 − 4ci,j ĉi,j

2
.

Then, the utility of client Ci is defined as Uc,i(As, Ac,i) =
∑ni

j=1[Ti,j(bi,j , di,j)].

Nash Equilibrium of the Game. A Nash equilibrium of the game is a com-
bination of action, denoted as (A∗s, A∗c,1, · · · ,A∗c,m), taken by the server
and the clients respectively, such that: for the server and any As �= A∗s,
Us(As, A∗c,1, · · · , A∗c,m) ≤ Us(A∗s, A∗c,1, · · · , A∗c,m); for each client i ∈
{1, · · · ,m} and any Ac,i �= A∗c,i, Uc,i(A∗s, Ac,i) ≤ Uc,i(A∗s, A∗c,i).

4 Setting I: Server S vs Single Client Ci

4.1 Client’s Optimization Problem

The client’s purpose is to minimize her utility, i.e., the expected time for verifying
her tasks. Hence, the client’s optimization problem is as follows. (Note: parameter
k is ignored for the simplicity of exposition.)

min
ni∑

j=1

bi,j + di,j − √
(bi,j + di,j)2 − 4ci,j ĉi,j

2
(7)

s.t.,

ni∑

j=1

di,j = d;
ni∑

j=1

bi,j = bi; di,j ≥ ĉi,j ; bi,j ≥ ci,j +
ci,j ĉi,j

ci,j + ĉi,j
. (8)

4.2 Server’s Optimization Problem

The server’s purpose is also to maximize its utility, i.e., the total wage earned
from the client. Hence, its optimization problem is as follows.

max
ni∑

j=1

bi,j − di,j +
√

(bi,j + di,j)2 − 4ci,j ĉi,j
2

, s.t., constraints (8). (9)

Note that, the sum of the above two objective functions is

(7) + (9) =
ni∑

j=1

bi,j = bi.

Hence, the objective of the server’s optimization problem can be re-written to

max bi −
ni∑

j=1

bi,j + di,j − √
(bi,j + di,j)2 − 4ci,j ĉi,j

2
,
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which is further equivalent to min
∑ni

j=1

bi,j+di,j−
√

(bi,j+di,j)2−4ci,j ĉi,j
2 . There-

fore, the above two optimization problems are equivalent: a solution to the
client’s optimization problem is also a solution to the server’s optimization prob-
lem; thus it is also the Nash equilibrium of the game.

4.3 Proposed Algorithm

Due to the equivalence of the above two optimization problems, we only need
to solve one of them. Next, we develop the algorithm, formally presented in
Algorithm 1, to find the solution to the client’s optimization problem. The core
of the algorithm is to solve the following optimization problem, which is re-
written from the afore-presented client’s optimization problem.

min
ni∑

j=1

f(si,j , i, j)

where f(x, i, j) =
x − √

x2 − 4ci,j ĉi,j

2
s.t.si,j = bi,j + di,j and constraints (8) (10)

Note that, f(x, i, j) is the client’s utility associated with each task ti,j , when the
task is assigned with x as the sum of bi,j and di,j . In the algorithm, we also use
a partial derivative function of f(x, i, j), which is defined as

f ′(x, i, j) =
∂f(x, i, j)

∂x
. (11)

After the client and server exchange with each other their budget and deposit
(i.e., bi and d), they each run Algorithm 1 to optimally allocate bi + d to the
ni tasks, i.e., each task ti,j is assigned with budget bi,j and deposit di,j where∑ni

j=1 bi,j = bi and
∑ni

j=1 di,j = d, with the goal of maximizing the client’s utility.
Intuitively, the algorithm runs in the following three phases:

In the first phase, each task ti,j is assigned an initial value for si,j , which
denotes the sum of bi,j and di,j . Here, the initial value is set to ĉi,j+ci,j+

ci,j ĉi,j
ci,j+ĉi,j

in order to satisfy constraints (8). After this phase completes, s = bi + d −
∑ni

j=1(ĉi,j + ci,j + ci,j ĉi,j
ci,j+ĉi,j

) remains to be allocated in the second phase.
In the second phase, s is split into units each of size δ and the units are further

assigned to the tasks step by step. Specifically, with each step, one remaining
unit is assigned to task ti,j whose f ′(si,j , i, j) is the minimal among all the tasks;
this way, the units are assigned in a greedy manner to maximize the total utility
of all the ni tasks.

After the bi+d have been greedily assigned to all the tasks, in the third phase,
si,j is further split into bi,j and di,j such that, the shorter verification time a
task has, the larger deposit is assigned to it. This way, the server’s deposit can
be reclaimed as soon as possible from the tasks.
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Algorithm 1. Optimizing Resource Allocation (Server S v.s. Client Ci with
Static Task Set)
Input: bi - total budget of client Ci; d - total deposit of server S; ni - total number of
tasks; task set {ti,1, · · · , ti,ni} and associated costs {ci,1, · · · , ci,ni} and {ĉi,1, · · · , ĉi,ni}.
Output: {bi,1, · · · , bi,ni} and {di,1, · · · , di,ni}.
Phase I: Initialization.

1: for j ∈ {1, · · · , ni} do

2: si,j ← (ĉi,j + ci,j +
ci,j ĉi,j
ci,j+ĉi,j

) � meet constraints (8)

Phase II: Greedy Allocation of the Remaining Fund.

1: s ← [bi + d − ∑ni
j=1(ĉi,j + ci,j +

ci,j ĉi,j
ci,j+ĉi,j

)] � remaining fund to distribute

2: while s ≥ δ do � distribute remaining fund in unit δ
3: j∗ ← arg minj∈{1,··· ,ni} f ′(si,j , i, j)
4: si,j∗ ← (si,j∗ + δ); s ← (s − δ)

Phase III: Splitting Sum to Budget/Deposit.

1: d′ ← d − ∑ni
j=1 ĉi,j

2: tempSet = {1, · · · , ni}
3: while tempSet �= ∅ do
4: j∗ = arg minj∈{1,··· ,ni} f(si,j , i, j) � find the task with the shortest verification

time
5: x ← min{d′, si,j∗ − ĉi,j∗ − (ci,j +

ci,j ĉi,j
ci,j+ĉi,j

)}
6: di,j∗ ← (ĉi,j∗ + x) � assign as much deposit to task with the shortest

verification time
7: bi,j∗ ← (si,j∗ − di,j∗)
8: d′ ← (d′ − x)
9: tempSet ← (tempSet − {j∗})

4.4 Analysis

It can be proved that Algorithm 1 finds an optimal solution for the client’s opti-
mization problem (which is also a solution for the server’s optimization problem),
and the solution is a Nash equilibrium of the game between the client and the
server. We develop the proof in the following steps. First, we introduce an opti-
mization problem, as follows, which is relaxed from (10):

min
ni∑

j=1

f(si,j , i, j) =
ni∑

j=1

si,j −
√

s2i,j − 4ci,j ĉi,j

2
(12)

s.t. − si,j + ci,j +
ci,j ĉi,j

ci,j + ĉi,j
+ ĉi,j ≤ 0. (13)

Second, we derive the following Lemmas.

Lemma 1. The optimization problem defined in (12) has a unique solution.

Lemma 2. Phases I and II of Algorithm 1 find the unique solution to the opti-
mization problem defined in (12).
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Lemma 3. Phase III of Algorithm 1 converts a solution of the problem defined
in (12) to a solution of the problem defined in (10).

Based on the above lemmas, we therefore have the following theorem:

Theorem 2. Algorithm 1 finds a solution of the problem defined in (10).

Finally, it can also be proved the following theorem:

Theorem 3. Algorithm 1 finds a Nash equilibrium of the game between server
S and client Ci.

The proofs for the above lemmas and theorems can be found in [27].

5 Setting II: Server S vs Clients C1, · · · , Cm

Different from the previous context of single client, optimizing for the server’s
utility and for each client’s utility are not equivalent. So we cannot solve it
in one step. Instead, we tackle the problem in two steps: we first optimize for
the server’s utility, which produces an allocation of the server’s deposits to the
clients; then, we optimize for each client’s utility based on the client’s budget
and the deposit allocated by the server.

5.1 Algorithm

We propose an algorithm, formally presented in Algorithm 3, which runs in the
following two steps.

First, we solve the server’s optimization problem, which produces the optimal
allocation of the server’s deposits to the clients that maximizes the server’s
wages. Thus, the optimization problem can be defined as follows:

max
m∑

i=1

ni∑

j=1

w(bi,j , di,j), where w(x, y) is defined as in (6)

s.t. constraints (8). (14)

Because
m∑

i=1

bi −
m∑

i=1

ni∑

j=1

w(bi,j , di,j) =
m∑

i=1

ni∑

j=1

[bi,j − w(bi,j , di,j)]

=
m∑

i=1

ni∑

j=1

bi,j + di,j − √
(bi,j + di,j)2 − 4ci,j ĉi,j

2
=

m∑

i=1

ni∑

j=1

f(bi,j + di,j , i, j),

the objective function of the above optimization problem, i.e., (14), is equivalent
to min

∑m
i=1

∑ni

j=1 f(bi,j +di,j , i, j). Furthermore, let si,j = bi,j +di,j , and then
the above optimization problem can be converted to:
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min
m∑

i=1

ni∑

j=1

f(si,j , i, j), where f(x, i, j) is defined as in (10),

s.t.

si,j ≥ ci,j +
ci,j ĉi,j

ci,j + ĉi,j
+ ĉi,j ,

ni∑

j=1

si,j ≥ bi +
ni∑

j=1

ĉi,j ,

m∑

i=1

ni∑

j=1

si,j =
m∑

i=1

bi + d.(15)

Here, the constraints are derived from constraints (8). This optimization problem
can be solved in three phases, as formally presented in Algorithm 2.

Algorithm 2. Optimal Splitting of Deposit (Server S v.s. Client Ci, i =
1, · · · ,m, with Static Task Set)
Input: bi - total budget of each client Ci; d: total deposit of server S; ni - total number
of tasks from each Ci; task set {t1,1, · · · , t1,n1 , · · · , tm,1, · · · , tm,nm} and associated
costs {c1,1, · · · , c1,n1 , · · · , cm,1, · · · , cm,nm} and {ĉ1,1, · · · , ĉ1,n1 , · · · , ĉm,1, · · · , ĉm,nm}.
Output: deposit di allocated to each client Ci.
Phase I: Initialization.

1: for i ∈ {1, · · · , m} do
2: for j ∈ {1, · · · , ni} do

3: si,j ← (ĉi,j + ci,j +
ci,j ĉi,j
ci,j+ĉi,j

)

Phase II: Greedy Allocation of Clients’ Remaining Budgets.

1: for i ∈ {1, · · · , m} do

2: b′
i ← bi − ∑ni

j=1(ci,j +
ci,j ĉi,j
ci,j+ĉi,j

)

3: while b′
i ≥ δ do

4: j∗ = arg minj∈{1,··· ,ni} f ′(si,j , i, j).
5: si,j∗ ← (si,j∗ + δ); b′

i ← (b′
i − δ)

Phase III: Greedy Allocation of Remaining Deposit to tasks.

1: d′ ← d − ∑m
i=1

∑ni
j=1 ĉi,j

2: TS = {(1, 1), · · · , (1, n1), · · · , (m, 1), · · · , (m, nm)}
3: while d′ ≥ δ do
4: (i∗, j∗) = arg min(i,j)∈TS f ′(si,j , i, j)
5: si∗,j∗ ← (si∗,j∗ + δ); d′ ← (d′ − δ)

Phase IV: Preparing the Output.

1: for i ∈ {1, · · · , m} do
2: di ← ∑ni

j=1 si∗,j∗ − bi

In the second step, it is already known the server’s deposits allocated to the
clients. Because the budget of each client is also known, each server-client pair
can run Algorithm 1, presented in the previous section, to find out the optimal
allocation of budget/deposit to the client’s tasks to minimize the client’s utility.
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Algorithm 3. Optimal Resource Allocation (Server S v.s. Client Ci, i =
1, · · · ,m, with Static Task Set)
Input: bi - total budget of each client Ci; d - total deposit of server
S; {ni} - total number of tasks from each Ci for i = 1, · · · , m;
task set {t1,1, · · · , t1,n1 , · · · , tm,1, · · · , tm,nm} and associated costs
{c1,1, · · · , c1,n1 , · · · , cm,1, · · · , cm,nm} and {ĉ1,1, · · · , ĉ1,n1 , · · · , ĉm,1, · · · , ĉm,nm}.
Output: {b1,1, · · · , b1,n1 , · · · , bm,1, · · · , bm,nm} and
{d1,1, · · · , d1,n1 , · · · , dm,1, · · · , dm,nm}.

1: {d1, · · · , dm} ← Algorithm 2
2: for i ∈ {1, · · · , m} do � for each client
3: ({bi,1, · · · , bi,ni}, {di,1, · · · , di,ni}) ← Algorithm 1.

5.2 Analysis

To analyze the solution, the following can be proved: First, the optimization
problem defined in (15) has only one unique solution. Second, Algorithm 2
solves the optimization problem defined in (15). Third, the optimization problem
defined in (15) is equivalent to the one defined in (14). Finally, the budget and
deposit allocation strategy produced by Algorithm 3 is a Nash equilibrium.

Lemma 4. The optimization problem defined in (15) has one unique solution.

Theorem 4. Phases I-III of Algorithm 2 solves optimization problem (15).

Lemma 5. Optimization problem (14) is equivalent to that defined in (15).

Theorem 5. Algorithm 3 finds a Nash Equilibrium for the game between server
S and m clients C1, · · · , Cm.

The proofs for the above lemmas and theorems can be found in [27].

6 Conclusions and Future Works

In this paper, we study the verifiable computation outsourcing problem in the
setting where a cloud server services a set of tasks submitted by multiple clients.
We adopt a game-based model, where the cloud server should make a deposit for
each task it takes, each client should allocate a budget that includes the wage
paid to the server and the possible cost for hiring TTP for each task it submits,
and every party (i.e., each of the server and the clients) has its limited fund
that can be used for either deposits or task budgets. We study how the funds
should be optimally allocated to achieve the three-fold goals: a rational cloud
server should honestly compute each task it takes; the server’s wages earned from
computing the tasks are maximized; and the overall delay experienced by each
task for verifying her tasks is minimized. Specifically, we apply game theory
to formulate the optimization problems, and develop the optimal or heuristic
solutions for two application scenarios: one client outsources a set of tasks to
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the server; multiple clients outsource a set of tasks to the server. For each of the
solutions, we analyze the solutions through rigorous proofs.

In the future, we will study in more depth the setting where there are multiple
clients submitting dynamic sequences of tasks to the server. As it is challenging
to develop optimal solution for the currently-defined general setting, we will
explore to refine the problem with reasonable constraints and then develop an
optimal solution for it.
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