
TEE-based Selective Testing of Local Workers in
Federated Learning Systems

Wensheng Zhang and Trent Muhr
Computer Science Department, Iowa State University

Ames, Iowa, USA 50011
E-mail:{wzhang,muhr}@iastate.edu

Abstract—This paper considers a federated learning system
consisting of a central aggregation server and multiple dis-
tributed local workers, all having access to trusted execution
environments (TEEs). For the local workers, which are untrusted
but economically-rational, to conduct local learning honestly, we
propose a TEE-based selective testing scheme that also combines
techniques from applied cryptography, game theory and smart
contract. Theoretical analysis of the scheme indicates that only a
small number of tests are needed to enforce honest execution by
the local workers. Implementation-based experiments compare
the cost of the proposed scheme against two reference schemes
(i.e., the original scheme without security measure and the all-
SGX scheme which conducts training completely in an SGX
enclave). The results show that, our proposed scheme incurs
much lower cost at the SGX enclave though introducing a higher
cost at the untrusted execution environment. We argue that this
tradeoff is appropriate given that computing in the untrusted
environment can access more resources and is cheaper than in
the trusted environment. The experiment results also show that,
the increase of the cost in the untrusted execution environment
get smaller as the size of the training model increases, which
demonstrates the scalability of the scheme.

I. INTRODUCTION

Along with the increasing popularity of federated learn-
ing [1], comes a host of challenges, including communication
efficiency, non-I.I.D. distribution of data samples, dynamic
participation, and security and privacy.

Related Works: The distributed nature of federated learning
introduces new security and privacy concerns. For example, a
curious server could infer information about the data used by
local workers. Making use of cryptographic primitives such as
masking and public key cryptography, secure aggregation [2],
[3], [4], [5] has been an attempt to prevent this. Though a
lot of research has been conducted to address the security
and privacy risks due to possibly misbehaving aggregation
server, it is imperative to also secure the system against
misbehaving local workers. Without proper security measure
in place, a local worker may deviate from honest behavior
in various ways. For instance, it may use faked rather than
truthful data in local training; not select its local training data
as randomly as expected; not use as many as expected data
samples; not honestly execute the local training operations.
Such misbehavior might be treated as data poisoning attack.
However, countermeasures to such attack [6], [7], [8], [9]
may not be sufficiently accurate or timely, and not be able to
quickly identify and thus avoid and/or punish the misbehaving

local workers. Particularly, when certain privacy protection
mechanisms are applied at the server as well, the inputs from
different local workers could be blindly aggregated which
makes it even more challenging to detecting misbehavior and
identify misbehaving local workers. Besides, there has also
many research [10] on secure and private outsourcing of deep
neural network based inference, based on differential privacy
[11], homomorphic encryption [12], [13], [14], or TEE [15].
However, the schemes proposed may not be directly applicable
to address misbehaving local workers in federated learning.

Our Work: We propose a new scheme to detect misbehavior
directly and immediately at the local workers in a trusted
manner. The scheme is based on the following ideas.

First, contemporary servers, PCs and mobile devices are
commonly equipped with TEEs based on Intel SGX [16],
TrustZone [17], etc. To directly monitor the behavior of local
workers, monitoring function can be deployed to these TEEs.

Second, the monitoring function can be implemented by
directly and immediately repeating a selected subset of the
operations the local workers are expected to have conducted.
However, the execution in TEEs is less efficient than in
untrusted environments due to limited resource. Hence, we
propose a game-theoretic design to minimize the involvement
of TEEs while still ensuring the reliability of monitoring.
Specifically, our design requires each economically-rational
local worker to make a deposit of a small amount (e.g., the
cost for executing only one stage of training a neural network)
when it joins the federated learning system; as we prove,
testing the correctness of only a small number (e.g., two) of
the operations per stage that the worker is expected to conduct
can enforce it to behaves honestly.

Third, directly testing even a single operation, e.g., the com-
putation of one output of a convolutional or fully-connected
layer, could still be very inefficient because a large number
of relevant data items might be involved. Hence, we further
propose to convert heavy tests into lightweight tests to make
the scheme even more efficient and practical. Due to page
limit, the optimization is elaborated in [18].

We implement the proposed scheme, and evaluate its
performance for forward/backward propagation through
convolutional/fully-connected layers. We also compare our
scheme with two reference schemes: the original scheme
which runs completely in untrusted execution environment
without any security measure in place; the all-SGX scheme

20
21

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
riv

ac
y,

 S
ec

ur
ity

 a
nd

 T
ru

st
 (P

ST
) |

 9
78

-1
-6

65
4-

01
84

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
PS

T5
29

12
.2

02
1.

96
47

77
3

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

which runs completely in an SGX enclave and thus ensures
honest execution. The performance is measured by the running
time in the SGX enclave and in the untrusted environment.
According to the evaluation, our scheme only incurs a small
testing cost in the TEE, though it introduces extra operations
(such as constructing Merkle hash trees) to be conducted in
the untrusted execution environment. However, such overhead
is found to be comparable to the costs of the original and
all-SGX schemes, and it gets smaller as the input/output size
increases. Also note that, the total time that our scheme spends
is similar to that by the all-SGX scheme, but the majority of
our scheme’s time is spent in the untrusted environment, which
is easy to be reduced through parallelism. This is different for
the all-SGX scheme, for which the execution time is all spent
in the SGX enclave and thus more difficult to reduce.

Organization: In the rest of the paper, Section II introduces
background and problem description. Section III describes
and analyzes the basic framework of our proposed scheme.
Implementation-based evaluations are presented in Section IV.
Finally, Section v concludes the paper.

II. PROBLEM DESCRIPTION

We consider a system composed of a central server and
multiple local workers. Each local worker has both trusted
execution environment (TEE) and untrusted rich execution
environment (REE). Each local worker has its own training
data, which should never be exposed to others. Coordinated
by the central server, the local workers collaborate in building
a global neural network model. The central server has an initial
model; then, the system works round by round to update it. In
the beginning of each round, each local worker downloads the
current global model from the central server, and uses its own
data to update the weights of connections. The central server
collects the updates, and applies them to the global model to
get a newer version used in the next round.

Assumptions for Local Training Data: Each local worker’s
training data is represented as records. We assume that the
validity of each record can be verified based on a digital
signature mechanism. For example, it is reasonable to assume
that valid medical data records should be digitally signed by
certain authorized personnel and the digital signatures can be
verified using certain certified public keys, so that any user
knowing the certified public keys can verify such signatures
and thus trust the information carried by the signed records.
Hence, each record is assumed to bear the following format:
⟨x1, · · · , xnX

; y1, · · · , ynY
;σ⟩. Here, (x1, · · · , xnX

) is the
vector of nX input features, (y1, · · · , ynY

) is the tag vector of
nY elements, and σ is a digital signature. A Merkle hash tree
for the record is built with the hashes of xi,1, · · · , xi,nX

and
yi,1, · · · , yi,nY

as leaf nodes, the root of the above hash tree is
called record hash, and the hash is signed with an authorized
private key to obtain a verifiable digital signature.

Security Assumptions and Goals: We aim to address the
following attacks that may be launched by a misbehaving
local worker: using invalid data for local learning; failing to
choose training data randomly; failing to honestly conduct

computation. We assume local workers could be selfish or
lazy, by pretending to have more data for training than they
actually have, or by faking (skipping the complete procedure
of) computation to save cost. Hence, we model them as
economically-rational; that is, they always intend to maximize
their profits, computed as the incomes minus the costs that
they have to pay.

A variety of side-channel attacks have been discovered for
SGX-based designs, which are out of the scope of this paper.
Note that, our proposed scheme executes testing only after
the untrusted local worker has completed the tested tasks and
submitted commitments, which cannot be changed. Hence,
even if the worker can observe (but cannot manipulate) the
execution of an enclave.

III. THE TEE-BASED SELECTIVE TESTING SCHEME

A. Primitives: Commitment and Verification

We introduce primitives Construct_Commit and Ver-
ify_Element. Primitive Construct_Commit takes a vector v⃗ as
input, constructs a Merkle hash tree MT (v⃗) with the hashes of
each elements of v⃗ as leaf nodes. Then, the root of the tree is
returned as the commitment of the vector. Meanwhile, for each
element v⃗[i], the sequence of its corresponding co-path hash
values on MT (v⃗) is returned as the evidence for verifying it as
the i-th element of v⃗. Accordingly, primitive Verify_Element
takes four arguments, i.e., an element u, an index i, the
commitment comm(v⃗) for certain v⃗ and an evidence evid.
It assumes u as the i-th element of v⃗ and makes use of the
assumed co-path hash values in evid to recompute the root
of MT (v⃗). If and only if the recomputed root is the same as
comm(v⃗), the element u is confirmed.

B. SIMD Computation

When training a neural network model, on each stage of
each layer, the same type of operation needs to be performed
over different data. Taking the forward propagation over a
convolutional layer l as example, there are two stages. For
the first stage (transformation), the outputs of layer l − 1 are
transformed to the inputs of layer l as follows: the input of
each neuron at layer l is computed as the inner product of
a filter matrix and a set of output elements of layer l − 1.
For the second stage (activation), at each neuron of layer
l, the input is fed to an activation function to obtain the
output of the neuron. We call such computation paradigm at
each stage of each layer as single instruction multiple data
(SIMD) computation, and formalize it as Y⃗ = g(X⃗), where
g(·) represents the operation, X⃗ the vector of input and Y⃗
the vector of corresponding output. When instantiated for the
aforementioned transformation stage of convolutional layer l,
g stands for the inner product operation, Y⃗ is the vector of
input to layer l, and X⃗ is the vector containing all the subsets
of layer l− 1’s output elements used to compute the elements
in Y⃗ . Therefore, the whole model training procedure can be
formalized as a sequence of SIMD computations.

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

Figure 1: System overview: The system is comprised of an
aggregation server and some number of untrusted workers, all
with access to a blockchain with smart contract capabilities.
(0) Each party participates in a smart contract. (1) The
endorsed model is downloaded from the server. (2) Worker
has the local enclave validate records for training and asks the
enclave to select one for training. (3) TLM sends record choice
to untrusted worker. (4,5) The untrusted worker and its local
enclave engage in selective testing. (6) The final update is sent
to the aggregation server, endorsed by the worker’s enclave.

C. The Proposed Selective Testing Scheme

1) System Components: We define the following system
components: a central server (CS), multiple untrusted local
workers (UW), and one trusted local monitor (TLM) co-
residing with each UW. Here, each TLM is run in a TEE.
When a UW joins the system, the TLM co-located with the
UW should authenticate itself to the CS. Then, the TLM
should set up secret pairwise keys with the UW and the CS,
respectively, to secure their communications. Also, we assume
the CS does not collude with any UW.

2) Signing Smart Contract: The CS signs a smart contract
with each UW. With the contract, the UW makes a small
deposit d that is only required to be larger than twice of the
maximal cost of executing one stage of SIMD computations.
If the UW is found dishonest by its co-located TLM through
selective testing, its deposit will be taken by the CS and it will
be evicted from the system; otherwise, the UW will remain in
the system and continue its participation.

3) Validating and Preparing Local Data Records: After
a UW has signed the above smart contract with the CS,
it requests its co-located TLM to validate its data records
and prepare them for federated learning. Each record ⟨ x1,
· · · , xnX

, y1, · · · , ynY
, σ ⟩ is processed as follows. First,

the TLM checks the validity of the record. That is, letting
v⃗ = (x1, · · · , xnX

, y1, · · · , ynY
), it computes comm(v⃗) =

Construct_Commit(v⃗) and verifies if σ is a valid signa-
ture of comm(v⃗). Second, the TLM assigns a unique iden-
tity i ∈ [nR] to the record, where nR is the number of
such records. Thus, each record can be denoted as Ri =
⟨i, xi,1, · · · , xi,nX

, yi, · · · , yi,nY
, σi⟩. Then, a Merkle tree for

all of the nR records is built with hi = hash(i|σi) for all
i ∈ [nR] as leaf nodes. The root hash of the tree is denoted
as hR. The UW keeps this Merkle tree for later use, but the
TLM only keeps hR and nR.

4) Initializing Each Round (i.e., testing for layer 1): After
its local data records have been validated and prepared for
federated learning by its co-located TLM, a UW can formally
participate the federated learning round by round.

The UW downloads the current global model from the CS.
The model should be signed by the CS so that a malicious
UW cannot modify them before giving it to the TLM. For
the simplicity of presentation, we assume that only one record
is processed in each round. The TLM randomly selects an
ID i ∈ [nR] at the beginning of a round, and asks the UW
to pick the record with the ID for training. In response, the
UW retrieves the content of the selected record (i.e., Ri), the
record hash (i.e., hi = hash(i|σi)), and the corresponding co-
path hash values on the Merkle tree of all nR records. Then, it
communicates hi and the corresponding co-path hash values,
which are called the evidence of the input, to the TLM. The
TLM verifies it by recomputing the root hash using hi and the
evidence, and checking if the recomputed root hash is the same
as hR. Once the verification succeeds, the TLM records hi and
proceeds with the rest of the round; otherwise, it identifies the
UW as dishonest and quits the system.

5) Testing for Each Hidden Layer: The operations at each
hidden layer include one or more stages. Along with a UW’s
execution at each stage, its co-locating TLM conducts selective
testing for the stage. The operations of the UW and TLM can
be generally modelled as follows:

Let a stage have n same-type computations, X⃗ be the
input vector, Y⃗ be output vector, and g(.) be the computation
function. Before the stage starts, the TLM should have already
obtained comm(X⃗) and the UW should be able to provide
evidence for verifying each input.

To start the stage, the UW evaluates g(.) with every element
of X⃗ to obtain the corresponding output element in Y⃗ .
Then, it computes the commitment and evidences for Y⃗ by
calling Construct_Commit(Y⃗), keeps the results, and sends
comm(Y⃗) to the TLM. Upon receiving comm(Y⃗), the TLM
randomly selects p out of the n computations to test. For each
of the selected computation i ∈ [n], with X⃗[i] denoting the
input element that should be used in the computation and Y⃗ [i]
denoting the expected output element, the testing is as follows:
The TLM requests the UW for the input element (denoted
as u0) and output element (denoted as u1) of computation
i, as well as the evidences (evid0 and evid1 respectively) for
verifying these elements to be X⃗[i] and Y⃗ [i] respectively. Once
receiving the above, the TLM calls V erify_Element(u0, i,
comm(X⃗), evid0) and V erify_Element(u1, i, comm(Y⃗),
evid1) to verify if u0 = X⃗[i] and u1 = Y⃗ [i]. Then, it checks
if g(u0) = u1. If any of the tests fails, the TLM identifies UW
as dishonest and stops participation.

6) Testing for Layer L: The final layer computes the loss
function during the forward propagation, and computes the
gradients for its input elements (i.e., the output elements from

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

the last hidden layer). Since these computations are not heavy,
the TLM directly repeat them.

7) Endorsing Model Updates: A TLM should endorse the
model updates computed by its co-located UW as long as
the UW is not found dishonest. The CS only accepts a UW’s
model updates that have been endorsed by its co-located TLM;
a UW that fails to provide endorsed model updates is not
allowed to get the current global model from the CS and thus
is evicted from the federated learning system.

D. Game-theoretic Analysis of Selective Testing

We model the interactions between the CS and each UW as
an infinite extensive game with perfect information, denoted
as G = (P,A,U). Here, P = {CS.TLM,UW} is the set
of players where CS.TLM represents the coalition including
CS and TLM. A is the set of actions taken by the players,
including all the combinations of the n same-type computa-
tions to fake and all the combinations of the n computations
to test. As we treat the n computations equally, the action
set that the UW can take is denoted as Auw = {0, 1, · · · , n}
where each element represents the number of computations
that the UW randomly chooses to fake; the action set that
the CS can take is denoted as Acs.tlm = {0, 1, · · · , n} where
each element represents the number of computations that the
CS.TLM randomly chooses to test. U = {Uuw, Ucs.tlm} is the
players’ utility functions.

The UW’s utility is defined as:

Uuw(Auw, Acs.tlm) (1)

=

{
B − (cc(n)− cc(Auw)) if not detected;
−d− (cc(n)− cc(Auw)) if detected.

It says that, if none of the Auw faked computations is detected,
the UW’s utility is B − (cc(n) − cc(Auw)), where B is the
UW’s benefit from sharing the results of federated learning
(by staying in the system) and cc(x) is the cost of honestly
executing all the x computations. Note that, here we assume
that faking a computation does not have computation cost, thus
the computation cost is cc(n)− cc(Auw) when Auw of the n
computations are faked. If any of the Auw faked computations
is detected, the UW loses its deposit; hence, its utility becomes
−d− (cc(n)− cc(Auw)).

Similarly, the CS.TLM’s utility is defined as:

Ucs.tlm(Auw, Acs.tlm) (2)

=


B′ − ct(Acs.tlm) Auw = 0;
−ct(Acs.tlm) + d Auw > 0 and detected;
−Penalty − ct(Acs.tlm) Auw > 0 and not detected.

If there is no faked computation (i.e., Auw = 0), the CS.TLM’s
utility is B′ − ct(Acs.tlm) where B′ is the benefit from
having the UW in federated learning and Ct(x) is the cost for
detecting x randomly-selected computations. If there is faked
computation and it is detected, the CS.TLM takes the UW’s
deposit and thus its utility is −ct(Acs.tlm) + d. If none of the
Auw faked computation is detected, the CS.TLM is penalized

by Penalty for the failure in detection and thus its utility is
−Penalty − ct(Acs.tlm).

The goal of the CS and TLM coalition is to enforce an
economically-rational UW to execute all n computations hon-
estly. The following theorem (for which the proof is provided
in [18]) states the conditions for the goal to be attained.

Theorem 1. For an economically-greedy untrusted local
worker (UW) who aims to maximize its utility, if the CS
and TLM coalition’s testing probability Acs.tlm

n > 1
n (i.e.,

Acs.tlm > 1) and the UW’s deposit d ≥ c
1−e−(Acs.tlm−1) ,

where c is the cost for executing all the n computations, the
UW should honestly execute all the n computations.

Based on the above theorem, letting p = 2, the UW is
only required to make a deposit of c

1−e−1 < 2c and the TLM
only needs to test 2 of the n operations. When applying our
proposed scheme, c is the maximal cost for executing any stage
of the procedure of training a neural network model, which is
small in practice. Hence, our proposed scheme is practical.

IV. PERFORMANCE EVALUATION

We implement a prototype of our proposed scheme and
also two reference schemes: Original (No-SGX) Scheme, with
which the REE runs the convoluntional and fully-connected
layer functions without any security consideration; Full-SGX
Scheme, with which the SGX enclave runs the convolutional
and fully-connected layer functions. In the full-SGX scheme,
due to limited trusted memory space, data should be loaded
from the untrusted memory to the enclave before being pro-
cessed and the processing results should be stored back to
the untrusted memory. For data integrity, a hash of the data
is computed and stored securely in enclave before the data
is stored to the untrusted memory; the hash is recomputed
and compared to the stored hash when the data is re-loaded
to the enclave. The above three schemes are evaluated on a
computer with Intel Core i5-8400 CPU (2.80GHz) of six cores
and a RAM of 8.00GB. The evaluation results are presented
and discussed in the following.

Convolutional Layer: Table I shows the costs of the
schemes for the forward propagation through a convolutional
layer, as the input size varies. The original scheme’s cost is
denoted as original fwd and the full-SGX scheme’s cost is
SGX fwd. For our scheme, the cost incurred at the REE is
dentoed as new fwd and the cost for selective test incurred at
the SGX enclave is selective test. All the costs are measured
as the computation time in micro-second.

input size original fwd SGX fwd new fwd selective test
16×16 124 145 303 35
32×32 818 865 1265 41
64×64 3990 4161 5242 59

128×128 17705 18382 21065 118
256×256 74196 76868 84815 360

Table I: Fwd Prop Cost for Convolutional Layer (unit: µs):
Impact of Input Size. stride = 2, filter_size = 8 × 8, and
filter_number = 16.

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

According to Table I, our scheme introduces higher cost at
the REE, as the price of significantly reducing the cost at the
TEE. The results also demonstrate that, when the input size
is not small (i.e., greater than 32×32), our scheme does not
increase the cost at the REE significantly (i.e., 1.14-1.55 times
of the original scheme) while incurring significantly lower cost
at the TEE (i.e., 0.5%-4.7% of the full-SGX scheme).

filter # original fwd SGX fwd new fwd selective test
4 4411 4666 5275 111
8 8866 9201 10577 117
16 17626 18587 20939 111
32 35367 36730 41942 115

Table II: Fwd Prop Costs for Convolutional Layer (unit: µs):
Impact of Output Size. stride = 2, filter_size = 8× 8, and
input_size = 128× 128.

stride original fwd SGX fwd new fwd selective test
1 68941 71575 78447 123
2 17626 18587 20939 111
4 4583 4789 6009 110
8 1215 1297 1857 107

Table III: Fwd Prop Costs for Convolutional Layer (unit: µs):
Impact of stride. filter_size = 8 × 8, filter_number = 16
and input_size = 128× 128.

filter size original fwd SGX fwd new fwd selective test
8×8 17708 18449 21117 113

16×16 61104 53713 64606 132
32×32 179681 149620 182581 149
64×64 319404 268115 320935 152

Table IV: Fwd Prop Costs for Convolutional Layer (unit: µs):
Impact of filter size. stride = 2, filter_number = 16 and
input_size = 128× 128.

Similar trends have been shown by Tables II, III, and IV, as
the number/size of the filters or the stride changes. Specifically,
our scheme introduces a slightly higher cost at the REE (i.e.,
1.01-1.53 times of the original scheme) and incurs much lower
cost at the TEE (i.e., 0.1%-8.2% of the full-SGX scheme).

Table V shows the costs of the three schemes for backward
propagation through a convolutional layer, as the size of the
input varies from 16×16 to 256×256. According to the table,
the full-SGX scheme’s cost (denoted as SGX bwd) is higher
than (i.e., about twice of) the original scheme’s cost (denoted
as original bwd), because the full-SGX scheme needs to load
and check the integrity of the inputs and outputs of the layer.
Our scheme’s cost at the REE (denoted as new bwd) is also
high because the REE needs to construct large Merkle hash
trees to facilitate selective testing. Specifically, when the input
size is not large (i.e., 32×32 or smaller), the cost at the REE is
as high as 5-24 times of the original scheme’s cost. However,
when the input size becomes larger than 64× 64, the cost at
the REE becomes only 1.5-2.3 times of the original scheme’s
cost. Particularly, the cost is even smaller than the full-SGX
scheme’s cost when the input size is 128× 128 or larger. Our

scheme’s cost at the TEE (i.e., selective test) is the smallest;
i.e., 6-28% of the full-SGX scheme’s cost when the input is
no greater than 32 × 32 and only 0.3-1.6% of the full-SGX
scheme’s cost when the input size is 64× 64 or larger.

input size original bwd SGX bwd new bwd selective test
16×16 188 398 4611 112
32×32 1249 2516 6254 139
64×64 6058 12049 13768 191

128×128 26771 53107 43840 305
256×256 112449 223482 173460 658

Table V: Bwd Prop Costs for Convolutional Layer (unit: µs):
Impact of Input Size. stride = 2, filter_size = 8X8, and
filter_number = 16.

filter number original bwd SGX bwd new bwd selective test
4 6702 13724 11560 228
8 13426 26874 22327 253

16 26765 52957 43884 292
32 53520 105403 93123 389

Table VI: Bwd Prop Costs for Convolutional Layer (unit: µs):
Impact of filter_number = 16. stride = 2, filter_size =
8X8, and input_size = 128× 128.

stride original bwd SGX bwd new bwd selective test
1 104705 206806 130990 367
2 26765 52957 43884 292
4 6994 14308 21471 272
8 1868 4270 15292 259

Table VII: Bwd Prop Costs for Convolutional Layer (unit: µs):
Impact of stride. filter_size = 8X8, filter_number = 16
and input_size = 128× 128.

filter size original bwd SGX bwd new bwd selective test
8×8 26777 53085 43984 291

16×16 92652 184529 143743 342
32×32 269609 541327 447952 420
64×64 488914 981685 1037886 446

Table VIII: Bwd Prop Costs for Convolutional Layer (unit:
µs): Impact of filter size. stride = 2, filter_number = 16
and input_size = 128× 128.

Similar trends can be observed in Tables VI, VII and VIII,
where the schemes’ costs are compared as the number/size
of filters or the stride changes but the input size is fixed at
128× 128. Specifically, our scheme’s cost at the REE ranges
between 1.25-3.07 times of the original scheme’s, except that
the cost is 8.19 times of the original scheme’s when the filter
size is 8×8 and stride is 8, in which case the original scheme’s
workload is small because the stride is large relatively to the
filter size. Our scheme’s cost at the TEE remains low; it ranges
between 0.05-6.1% of the full-SGX scheme’s cost.

Fully-connected Layer: Tables IX and X show the costs of
the three schemes for the forward propagation through a fully-
connected layer, as the input and output sizes vary. As shown,
except for the cases when the input and output sizes are small
(e.g., input size is no greater than 32 and the output size is no

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

input size original fwd SGX fwd new fwd selective test
32 6 114 134 33
64 11 217 148 37
128 21 410 144 36
256 43 781 201 36
512 92 1563 270 38

1024 205 3030 413 37
2048 481 6050 715 39
4096 788 12128 1196 41

Table IX: Fwd Prop Costs for Fully-connected Layer (unit:
µs): Impact of Input Size. The output size is 64.

output size original fwd SGX fwd new fwd selective test
4096 191713 1600367 249100 56
2048 102136 786005 128956 56
1024 51145 383069 65157 53
512 25597 183947 33951 60
256 12820 96058 16649 55
128 4529 32506 5793 56
64 1245 12599 1443 48
32 479 6251 636 43
16 208 3092 284 43

Table X: Fwd Prop Costs for Fully-connected Layer (unit: µs):
Impact of Output Size. The input size is 4096.

greater than 64), our scheme has lower cost at the REE than
the full-SGX scheme. Specifically, the cost ranges between 9-
69% of the full-SGX scheme’s cost. Our scheme’s cost at the
TEE (i.e., selective test) remains the smallest. Similar trends
can be seen in Tables XI and XII, which show the costs of the
three schemes for the backward propagation through a fully-
connected layer, as the input and output sizes vary.

input size original bwd SGX bwd new bwd selective test
32 10 198 202 33
64 20 388 393 37

128 39 752 659 36
256 74 1484 1141 41
512 151 2955 2468 45
1024 293 5824 4132 50
2048 585 11609 8305 70
4096 1178 23215 16437 102

Table XI: Bwd Prop Costs for Fully-connected Layer (unit:
µs): Impact of Input Size. The output size is 64.

output size original bwd SGX bwd new bwd selective test
4096 80876 1461079 503361 152
2048 40225 730257 257843 154
1024 20426 364780 134487 150
512 10620 186273 73545 113
256 5234 93183 41460 110
128 2706 46746 24964 108
64 1444 23394 17034 108
32 701 11780 12222 106
16 298 6028 10163 103

Table XII: Backward Propagation Costs for Fully-connected
Layer (unit: micro-second): Impact of Output Size. Here the
input size is 4096.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a scheme to ensure the correct-
ness of computations performed by an untrusted worker in

a federated learning system for CNN model. Through smart
contract and selectively choosing which untrusted computa-
tions to test, computational overhead performed by the TEE is
minimal, drastically reduced when compared to the reference
scheme with security considerations. In the future, we plan
to expand the scheme to more kinds of neural networks. We
will also explore the possibility to improve the performance
of the commitment process by using alternative cryptographic
constructions.

ACKNOWLEDGEMENT

The work is partly supported by NSF under grant CNS-
1844591.

REFERENCES

[1] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[2] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017.

[3] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möl-
lering, T. Nguyen, P. Rieger, A. Sadeghi, T. Schneider, H. Yalame,
and S. Zeitouni, “Safelearn: Secure aggregation for private federated
learning,” 2021 IEEE Security and Privacy Workshops (SPW), pp. 56–
62, 2021.

[4] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and veri-
fiable federated learning,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 911–926, 2020.

[5] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, pp. 1333–
1345, 2018.

[6] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in NIPS,
2017.

[7] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-
robust distributed learning: Towards optimal statistical rates,” ArXiv, vol.
abs/1803.01498, 2018.

[8] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” ArXiv, vol. abs/1911.11815,
2020.

[9] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in ESORICS, 2020.

[10] F. Mirshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, and
H. Esmaeilzadeh, “Privacy in deep learning: A survey,” ArXiv, vol.
abs/2004.12254, 2020.

[11] Z. Bu, J. Dong, Q. Long, and W. J. Su, “Deep learning with gaussian
differential privacy,” Harvard data science review, vol. 2020 23, 2020.

[12] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: applying neural networks to encrypted data
with high throughput and accuracy,” in ICML 2016, 2016.

[13] V. N. Boddeti, “Secure face matching using fully homomorphic encryp-
tion,” in BTAS, 2018.

[14] B. Reagen, W. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 26–39, 2021.

[15] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” ArXiv, vol. abs/1806.03287,
2019.

[16] V. Costan and S. Devadas, “Intelsgxexplained,” IACR Cryptology ePrint-
Archive, pp. 1–118, 2016.

[17] “Arm TrustZone Technology,” https://developer.arm.com/ip-
products/security-ip/trustzone, [Online; accessed 1-August-2021].

[18] W. Zhang and T. Muhr, “Tee-based selective testing of local workers in
federated learning systems,” ArXiv, vol. abs/2111.02662, 2021.

Authorized licensed use limited to: Iowa State University. Downloaded on May 27,2022 at 15:08:21 UTC from IEEE Xplore. Restrictions apply.

